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Abstract. Let l ∈ N≥1 and α : Zl → Aut(N ) be an action of Zl by automorphisms on a
compact nilmanifold N . We assume the action of every α(z) is ergodic for z ∈ Zl \ {0} and
show that α satisfies exponential n-mixing for any integer n ≥ 2. This extends the results
of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms.
Acta Math. 215 (2015), 127–159].

Key words: exponential mixing, multiple mixing, nilmanifold automorphisms, Schmidt’s
subspace theorem, unit equations
2020 Mathematics Subject Classification: 37A25 (Primary); 22D40, 11J87 (Secondary)

1. Introduction
Building on the work of Gorodnik and Spatzier [9, 10], the goal of this paper is to show
multiple mixing with exponential rate for actions of commuting ergodic automorphisms of
a compact nilmanifold. We start by recalling the basic notions involved.

A compact nilmanifold is a quotient N = G/�, where G is a nilpotent, connected,
simply connected real Lie group and � is a cocompact discrete subgroup of G. It carries a
unique G-invariant probability measure that we denote by m and call the Haar measure on
N . The group of automorphisms of N is defined by

Aut(N ) = {ψ ∈ Aut(G), ψ(�) = �}
and acts by measure-preserving transformations on (N , m).

This article deals with the mixing properties of a finite family of commuting automor-
phisms of N , realized as a morphism α : Zl → Aut(N ). Given n ≥ 2, we say that α is
n-mixing if for every tuple of bounded measurable functions f1, . . . , fn : N → R and
for z1, . . . , zn ∈ Zl , we have∫

N

n∏
i=1

fi(α(zi)x) dm(x) −→
n∏
i=1

∫
N
fi(x) dm(x)

as mini �=j‖zi − zj‖ → +∞.
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Note that the case where n = 2 corresponds to the usual notion of mixing, and also that
we do not lose generality by considering smooth test functions.

Our aim is to estimate the rate of mixing of a finite family of ergodic commuting
automorphisms of N . To do so, we need to restrict our attention to a set of regular test
functions. We fix an arbitrary Riemannian metric on N , and for θ ∈ (0, 1], denote by
Hθ (N ) the space of θ -Hölder functions f on N endowed with the norm

‖f ‖Hθ = sup
N

|f | + sup
x �=y∈N

|f (x)− f (y)|
d(x, y)θ

.

We state our main result.

THEOREM 1.1. (Multiple mixing with exponential rate) Let α : Zl → Aut(N ) be an
action of Zl (l ≥ 1) by automorphisms on a compact nilmanifold N = G/�. Assume
α(z) acts ergodically on (N , m) for all non-zero z ∈ Zl .

Then for every n ≥ 2, θ ∈ (0, 1], there is an effective constant η > 0 and an ineffective
constant C > 0 such that for all θ -Hölder functions f1, . . . , fn ∈ Hθ (N ), translation
parameters g1, . . . , gn ∈ G, and z = (z1, . . . , zn) ∈ (Zl )n, one has

∣∣∣∣
∫
N

n∏
i=1

fi(giα(zi)x) dm(x)−
n∏
i=1

∫
N
fi(x) dm(x)

∣∣∣∣ ≤ C

N(z)η

n∏
i=1

‖fi‖Hθ ,

where N(z) = exp(mini �=j‖zi − zj‖).

In other words, a finite family of commuting ergodic automorphisms of a compact
nilmanifold satisfies multiple mixing with exponential rate in the class of θ -Hölder
functions (and their G-translates). In particular, we also obtain exponential multiple mixing
for actions of commuting affine automorphisms.

We explain what effectivity or ineffectivity of the constants mean in §1.2 below.

1.1. Earlier results. Theorem 1.1 for mixing without a rate, that is, the statement that
ergodicity of α(z) for every z ∈ Zl \ {0} implies that α is n-mixing for all n ≥ 2, was
known before. It is due to Parry [16] for l = 1, Schmidt and Ward [18] in the case where
N is a torus and l ≥ 2, and Gorodnik and Spatzier [10] in general.

There are also many prior results on exponential mixing. The case of Theorem 1.1
where N is a torus and l = 1 is due to Lind [13] for n = 2, and to Dolgopyat [3] for
general n. Note that some difficulty arises from the fact that an ergodic automorphism
of a torus is not necessarily hyperbolic: it can have eigenvalues of modulus 1. Still for a
torus but now general l, Miles and Ward [15] prove directional uniformity in the—a priori
non-exponential—rate of 2-mixing under some entropic conditions. For general N and
l ≥ 1, the case where n ≤ 3 was established by Gorodnik and Spatzier [9, 10]. They also
examined the case of higher order mixing, that is n ≥ 4, but only obtain partial results
and mention serious difficulties to reach full generality. Those difficulties consist in a fine
understanding of the size of solutions of some diophantine inequalities.

Theorem 1.1 is new for n ≥ 4, even for tori.
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1.2. Effectivity of the constants. The constant η is effective. This means that by following
the arguments in this paper and its references, one could determine an explicit value for η
such that the theorem holds (for some C). In contrast, the constant C is ineffective. This
means that the proof of the theorem only shows that there exists a finite (and positive) value
of C for which the theorem holds; however, we do not have any means of determining such
a value.

This ineffectivity is caused by our reliance on W. Schmidt’s subspace theorem. In the
cases n ≤ 3, this tool can be replaced by the theory of linear forms in logarithms, as it
is done by Gorodnik and Spatzier in [10], and one can obtain the theorem with effective
constants. We note that, as they are written, the arguments in [10] appeal to [2, Theorem
7.3.2] in several places (see pp. 139–140), which relies on the subspace theorem making
the resulting constants ineffective. However, the application of [2, Theorem 7.3.2] could
be replaced by [14, Proposition 14.13] at the expense of adjusting the exponents in [10].

1.3. Motivation. Katok and Spatzier have made a conjecture about rigidity of higher
rank abelian Anosov actions on compact manifolds, which can be stated somewhat
informally as follows.

Conjecture 1.2. When l ≥ 2, all irreducible Anosov genuine Zl-actions on compact
manifolds are C∞-conjugate to actions on infranilmanifolds by affine automorphisms.

We do not define all the terms appearing in the above conjecture, but we comment
on them briefly. An Anosov diffeomorphism of a compact manifold is a diffeomorphism
such that the tangent bundle can be split as the sum of two invariant subbundles, with one
subbundle that is exponentially contracting and one that is exponentially expanding under
the action. A Zl-action is Anosov if it contains an Anosov diffeomorphism.

The conjecture is false for rank 1 actions, see [17, §1.2] for a simple example or [6]
for a more elaborate one. These can be modified to obtain some higher rank examples,
e.g., actions on manifolds that have quotients on which the action factors through a rank 1
action. The adjective genuine is meant to exclude examples like this, but we do not give a
precise definition.

An infranilmanifold is a compact manifold that is finitely covered by a nilmanifold.
Conjecture 1.2 motivates Theorem 1.1 for two reasons. First, if the conjecture is true, it

implies that actions by affine automorphisms on (infra)nilmanifolds are the only examples
of higher rank abelian Anosov actions in some sense, which demonstrates the importance
of this class of dynamical systems. Second, some recent progress by Fisher, Kalinin,
and Spatzier [8] and by Rodriguez Hertz and Wang [17] toward Conjecture 1.2 relies on
exponential mixing of actions by automorphisms. We note, however, that these applications
require results about 2-mixing only, which is already covered in [10].

We refer to [7, 17] and their references for more information on higher rank abelian
Anosov actions.

1.4. An outline of the paper. Our approach is inspired by the papers of Gorodnik and
Spatzier [9, 10]. The argument we propose is, however, simpler.
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The mixing estimate in Theorem 1.1 can be recast as a problem about quantitative
equidistribution of a certain affine subnilmanifold S in the product nilmanifold N n.
In §2, we use a result by Green and Tao [11, Theorem 1.16] to reduce quantitative
equidistribution of S to a diophantine condition on its Lie algebra. This condition is
related to [10, Theorem 2.3], though our formulation is simpler and easier to prove.

The diophantine condition arising in §2 requires bounding the solutions of certain
generalized unit equations. This problem is studied in §3 using W. Schmidt’s subspace
theorem. It is related to [10, Proposition 3.1], but we prove a more uniform statement,
which is needed to establish the exponential mixing rate. Our proof is based on that of a
very closely related result of Evertse [4].

To apply the results of §3 to the diophantine equations governing the equidistribution
of S in N n, we need to estimate the growth of the eigencharacters of (α(z))z∈Zl acting
on the abelianized Lie algebra g/[g, g]. We do this in §4 using the ergodicity assumption.

Section 5 concludes the paper with the proof of Theorem 1.1 combining the ingredients
worked out in the previous three sections.

2. Equidistribution of rational submanifolds
Let N = G/� be a Riemannian compact nilmanifold and m its Haar probability measure.
An affine rational submanifold S ⊆ N is a quotient gH/(H ∩�), where H is a
connected closed subgroup of G intersecting � cocompactly and g ∈ G is a translation
parameter. It carries a unique gHg−1-invariant probability measure, denoted by mS .

The goal of the section is to reduce quantitative equidistribution of (S , mS ) in (N , m)
to a diophantine condition on the Lie algebra of H.

We call h ⊆ g the respective Lie algebras of H ⊆ G and write t = g/[g, g] for the
largest abelian quotient of g. The projection map from g to t is denoted by g → t, w �→ w

and sends log � to a lattice Z� = log � in t. For future reference, we fix a basis of the
latter, which leads to identifications t ≡ Rd , Z� ≡ Zd .

PROPOSITION 2.1. (Equidistribution of rational submanifolds) Let N = G/� be a
Riemannian compact nilmanifold and let θ ∈ (0, 1]. There exists L > 0 such that for every
δ ∈ (0, 1/2), any affine rational submanifold S ⊆ N satisfying

min{‖q‖ : q ∈ Zd \ {0}, 〈q, h〉 = 0} ≥
(

1
δ

)L

is δ-equidistributed with respect to Hθ (N ), that is,∣∣∣∣
∫
S
f dmS −

∫
N
f dm

∣∣∣∣ ≤ δ‖f ‖Hθ

for all f ∈ Hθ (N ).

We deduce this proposition from Theorem 2.2, which is itself a direct corollary of a
much stronger result of Green and Tao [11, Theorem 1.16].
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THEOREM 2.2. Let N = G/� be a Riemannian compact nilmanifold. Then there is a
constant L > 0 such that, for every δ ∈ (0, 1/2), g ∈ G, and w ∈ g, at least one of the
following two statements is true.
(1) The sequence (g exp(kw)�)1≤k≤n is δ-equidistributed with respect to H1(N ) for

all sufficiently large n. That is to say, for all sufficiently large n, for all f ∈ H1(N ),
we have ∣∣∣∣1

n

n∑
k=1

f (g exp(kw)�)−
∫
N
f dm

∣∣∣∣ ≤ δ‖f ‖H1 .

(2) There is q ∈ Zd\{0} with ‖q‖ < δ−L and 〈q, w〉 ∈ Z.

The above result does not use the full force of [11, Theorem 1.16] in two significant
ways. First, the result of Green and Tao is for general polynomial sequences in place of
g exp(kw). Second, it is possible to control in a very efficient way how large n needs
to be in item (1) at the expense of replacing 〈q, w〉 ∈ Z in item (2) by an upper bound
on dist(〈q, w〉, Z). These features are crucial in some other applications of [11, Theorem
1.16], but we do not need them.

Proof of Proposition 2.1. We suppose without loss of generality that θ = 1 (see [10, proof
of Theorem 2.3]). We choose L > 0 as in Theorem 2.2 and consider an affine rational
submanifold S ⊆ N as well as a constant δ ∈ (0, 1/2).

Assume that S is not δ-equidistributed for H1(N ). Fix a vectorw ∈ h such that ‖w‖ ≤
1
2δ
L and whose projection in h/[h, h] does not belong to any translate of a H ∩�-rational

proper subspace by a H ∩�-rational vector. By Theorem 2.2, or in this case even by an
earlier theorem of Leon Green [1, 12], we have the weak-∗ convergence:

1
n

n∑
k=1

δg exp(kw)� −→ mS .

In particular, for large enough n, the sequence (g exp(kw)�)0≤k≤n does not satisfy
δ-equidistribution for H1(N ) either. Theorem 2.2 yields some integer vector q ∈ Zd \ {0}
such that ‖q‖ < δ−L and 〈q, w〉 ∈ Z. This forces 〈q, w〉 = 0 as our choice of w guarantees
that |〈q, w〉| ≤ 1/2. As the smallest rational subspace of t containing w is h, we get that
〈q, h〉 = 0, which concludes the proof.

3. Diophantine estimates
Let K be a number field. We denote byMK the set of its places, byMK ,∞ its Archimedean
places, and by MK ,f its finite places. We use the convention that we include complex
places twice (one for each complex conjugate embedding), and we write |x|v for x ∈ K
and v ∈ MK ,∞ to denote the usual absolute value arising from the embedding of K in R

or C associated to v. (This convention is not standard, but it is also not unprecedented,
see [14, Ch. 14].) The finite places will not play much of a role in this paper, so we
do not specify which convention is used for inclusion in MK ,f or for the normalization
of the corresponding absolute values. We do insist, however, that the product formula∏
v∈MK

|x|v = 1 holds for all x ∈ K .
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The projective height of a tuple (a1, . . . , an) ∈ Kn is denoted by

H(a1, . . . , an) =
∏
v∈MK

max
j
(|aj |1/[K:Q]

v ).

We note that this quantity is a projective notion, that is, it is invariant under multiplication
of each coordinate by the same scalar. This fact is an immediate consequence of the product
formula.

The ring of integers in K is denoted by O(K) and for h ∈ R≥0, we set

O(K)h = {a ∈ O(K) : |a|v ≤ h for all v ∈ MK ,∞}.
We write O(K)× for the group of (multiplicative) units in O(K). For n ∈ Z≥2 and

u = (u1, . . . , un) ∈ (O(K)×)n, we write

α(u) = min
I⊂{1,...,n},|I |≥2

H(ui : i ∈ I )1/(|I |−1).

In what follows, we consider a generalization of the classical unit equation u1 + u2 = 1
to be solved for u1, u2 ∈ O(K)×. This subject has a rich literature, the recent book [5] is
a good general reference.

THEOREM 3.1. Let K be a number field. For all ε > 0 and n ≥ 2, there is an (ineffective)
constant r > 0 such that the following holds. Let u = (u1, . . . , un) ∈ (O(K)×)n and let
a1, . . . , an ∈ O(K)h not all 0 for some h ∈ R≥0. Suppose

a1u1 + · · · + anun = 0.

Then h ≥ rα(u)1−ε.

We comment on how this result is related to the classical unit equation. Taking n = 3,
a1 = a2 = 1, a3 = −1, u3 = 1, Theorem 3.1 implies that the classical unit equation has
finitely many solutions, a result that goes back to Siegel, Mahler, and Lang.

Theorem 3.1 is not new. It could be deduced (with a slightly weaker exponent) from a
result of Evertse [4], see also [5, Theorem 6.1.1]. We give a short proof based on [4] for
the reader’s convenience.

As a simple application of Dirichlet’s box principle, we also show below that the
exponent in the lower bound on h is almost optimal in the sense that 1 − ε could not
be replaced by a number larger than 1.

3.1. The subspace theorem. At the heart of the proof of Theorem 3.1 is W. Schmidt’s
subspace theorem which we now recall.

THEOREM 3.2. [2, Corollary 7.2.5] Let K be a number field and let {|.|v , v ∈ MK} be
a system of absolute values on K as above. Let n ≥ 2 and let V be an n-dimensional
vector space over K. For each v ∈ MK ,∞, let �(v)1 , . . . , �(v)n be a basis of the dual
space V ∗. Furthermore, let �(0)1 , . . . , �(0)n be another basis of V ∗. Then for all ε > 0,
the solutions of ∏

v∈MK ,∞

n∏
j=1

|�(v)j (x)|v ≤ H(�
(0)
1 (x), . . . , �(0)n (x))

−ε
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for x ∈ V with �(0)j (x) ∈ O(K) for all j = 1, . . . , n are contained in a finite union of
proper subspaces of V.

The functionals �(0)1 , . . . , �(0)n can be used to identify V with Kn and using this
identification, �(v)j can be identified with a linear form for each j and v. Using these
identifications, Theorem 3.2 is translated into the form in [2, Corollary 7.2.5]. In our
application that follows, there is no natural choice for an identification between V and
Kn, so the above formulation will suit our purposes best.

3.2. Proof of Theorem 3.1. The proof is by induction on n. Suppose first n = 2. Let
u1, u2 ∈ O(K)× and a1, a2 ∈ O(K)h for some h ∈ R≥0 such that a1, a2 �= 0 and a1u1 +
a2u2 = 0. We observe that

(u1, u2) =
(
u1

a2
a2, −u1

a2
a1

)
,

hence

H(u1, u2) = H(a1, a2) ≤ (h1/[K:Q])[K:Q] = h.

Since α(u1, u2) = H(u1, u2), this proves our claim with r = 1.
Now suppose n ≥ 3 and that the claim holds for all smaller values of n. Let V be the

subspace of Kn of those points that satisfy the equation x1 + · · · + xn = 0. Observe that

y := (a1u1, . . . , anun) ∈ V .

For each place v ∈ MK ,∞, let �(v)1 , . . . , �(v)n−1 be an enumeration of all but one of
the functionals (x1, . . . , xn) �→ xj so that we omit one of the indices j for which |uj |v
is maximal. We also set �(0)j (x) = xj , say, for j = 1, . . . , n− 1. Observe that, by the
product formula,

∏
v∈MK ,∞

n−1∏
j=1

|�(v)j (u1, . . . , un)|v =
∏

v∈MK ,∞

∏n
j=1 |uj |v

maxj (|uj |v) = H(u1, . . . , un)−[K:Q].

Using a1, . . . , an ∈ O(K)h and the definition of �(v)j , we have

|�(v)j (a1u1, . . . , anun)|v ≤ h|�(v)j (u1, . . . , un)|v
for all j and v. Therefore,

∏
v∈MK ,∞

n−1∏
j=1

|�(v)j (y)|v ≤ h(n−1)[K:Q]H(u)−[K:Q].

We assume h ≤ α(u)1−ε as we may, for otherwise, the claim is trivial. Then h ≤
H(u)(1−ε)/(n−1) and we observe that

H(�
(0)
1 (y), . . . , �(0)n−1(y)) = H(a1u1, . . . , an−1un−1)

≤ hH(u1, . . . , un−1) ≤ hH(u) ≤ H(u)2.
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Thus,

∏
v∈MK ,∞

n−1∏
j=1

|�(v)j (y)|v ≤ H(u)−ε[K:Q] ≤ H(�
(0)
1 (y), . . . , �(0)n−1(y))

−ε[K:Q]/2.

Therefore, the subspace theorem applies and it follows that (a1u1, . . . , anun) is
contained in finitely many proper subspaces of V. In what follows, we use the induction
hypothesis to show that for any proper subspace U of V, there is a constant r = r(U) > 0
such that h ≥ rα(u)1−ε holds whenever there are a1, . . . , an and u1, . . . , un that satisfy
the assumptions in the proposition with y ∈ U . We can then take the minimum of r(U)
over all subspaces U that arise through the application of the subspace theorem taking into
account all possible choices of the functionals�(v)j , of which there are finitely many. Then
the claim will hold with this minimum in the role of r.

Let now U be a proper subspace of V with y ∈ U , and let b1, . . . , bn ∈ O(K) be such
that

b1x1 + · · · + bnxn = 0

for all (x1, . . . , xn) ∈ U and not all bj are equal. We also suppose that aj �= 0 for all j,
as we may, for otherwise, we may omit the 0 coordinates, and the induction hypothesis
applies directly. We now observe that

(b1 − bn)a1u1 + · · · + (bn−1 − bn)an−1un−1 = 0

and that not all of the coefficients (bj − bn)aj vanish.
We also note that (bj − bn)aj ∈ O(K)Ch for some constant C depending on the bj .

Therefore, we are in a position to apply the induction hypothesis and conclude

Ch ≥ cα(u1, . . . , un−1)
1−ε ≥ rα(u)1−ε,

and this completes the proof.

3.3. Optimality of the exponent. We now prove the claimed optimality of Theorem 3.1.

PROPOSITION 3.3. Let notation be as in Theorem 3.1. Then there is a constantR > 0 such
that for all u = (u1, . . . , un) ∈ (O(K)×)n, there exist a1, . . . , an ∈ O(K)h not all 0 such
that

a1u1 + · · · + anun = 0

and h ≤ Rα(u).

Proof. We assume, as we may, that α(u) = H(u)1/(n−1), for otherwise, we can omit some
coordinates from u so that the identity holds.

By Dirichlet’s unit theorem, there exists λ ∈ O(K)× such that

max(|λu1|v , . . . , |λun|v) ≤ C0H(u)

for all v ∈ MK ,∞ and some C0 > 0 depending only on K. Up to replacing u by λu, which
does not affect the height, we may assume λ = 1. It follows that for all a1, . . . , an ∈
O(K)h,
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a1u1 + · · · + anun ∈ O(K)C1hH(u),

where C1 = nC0.
We observe that

c2h
[K:Q] ≤ |O(K)h| ≤ C2h

[K:Q]

for some constants c2, C2 > 0 depending only on K provided h is sufficiently large. This
means that there are at least cn2(h/2)

n[K:Q] choices for a1, . . . , an ∈ O(K)h/2 and there
are at most C2(C1hH(u))

[K:Q] possible values for a1u1 + · · · + anun.
Now we take h = R H(u)1/(n−1) for a suitably large constant R so that

cn2(h/2)
n[K:Q] > C2(C1hH(u))

[K:Q].

Dirichlet’s box principle implies that there are b, b̃ ∈ (O(K)h/2)n such that b �= b̃ and

b1u1 + · · · + bnun = b̃1u1 + · · · + b̃nun.

The claim follows by taking aj = bj − b̃j .

4. Growth of eigencharacters
Let α : Zl → Aut(N ) be a morphism from Zl to the group of automorphisms of a
compact nilmanifold N = G/�. We assume that α(z) acts ergodically on N for every
z �= 0 and estimate the growth of the eigencharacters of α acting on the abelianized Lie
algebra of G.

As in §2, we set t = g/[g, g] and identify t with some Rd so that the projection
Z� of log � in t corresponds to Zd . The representation α induces by differentiation a
representation of Zl on t which preserves Z�. We call it dtα : Zl → GL±1

d (Z), where
GL±1

d (Z) denotes the set of d × d-matrices with coefficients in Z and determinant ±1. As

Zl is abelian, such a representation is triangularizable over Q: we can decompose Q
d

as a
direct sum of subrepresentations

Q
d = ⊕χ∈X Lχ ,

where X is a (finite) set of characters χ : Zl → Q
×

, and for each χ ∈ X , the generalized
eigenspace

Lχ := {v ∈ Q
d | for all z ∈ Zl , (dtα(z)− χ(z)Id)d(v) = 0}

is non-zero. Moreover, the Galois group G = Gal(Q/Q) acting coordinate-wise on Q
d

permutes these eigenspaces according to the formula σ .Lχ = Lσ◦χ .
The assumption of ergodicity on α can be reformulated as follows.

LEMMA 4.1. (Exponential growth of eigencharacters) There exists c > 0 such that for
every χ0 ∈ X and for every z ∈ Zl \ {0},

max
χ∈G.χ0

|χ(z)| ≥ ec‖z‖.
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Proof. We recall the proof given in [10, Lemma 2.1]. Let χ0 ∈ X . We claim that the
morphism of Z-modules

ψ : Zl → R|G.χ0|, z �→ (log |χ(z)|)χ∈G.χ0

is injective with discrete image. Its R-linear extension ψ : Rl → R|G.χ0| is thus injective,
whence satisfies ‖ψ(z)‖ ≥ cχ0‖z‖ for some cχ0 > 0 and every z ∈ Zl . The lemma follows
by finiteness of X .

To prove the claim, we argue by contradiction assuming the existence of a
sequence (zi) ∈ (Zl)N of non-zero vectors such that ψ(zi) → 0. This means that
|χ(zi)| → 1 for every χ ∈ G.χ0. In particular, the associated minimal polynomials Pi =∏
χ∈G.χ0

(X − χ(zi)) ∈ Z[X] have bounded coefficients, hence belong to a finite subset
of Z[X]. Necessarily, the sequence of vectors (χ(zi))χ∈G.χ0 has a constant subsequence,
yielding some z ∈ Zl \ 0 such that |χ(z)| = 1 for every χ ∈ G.χ0. By Kronecker’s theorem
(see e.g. [2, Theorem 1.5.9]), χ0(z) is a root of unity. This contradicts the ergodicity of the
toral automorphism induced by α(z) on G/[G, G]�, whence that of α(z) on G/�.

5. Proof of exponential n-mixing
We now proceed to the proof of Theorem 1.1. Fix n ≥ 2, θ ∈ (0, 1]. Let z = (z1, . . . , zn) ∈
(Zl)n and consider some θ -Hölder functions f1, . . . , fn ∈ Hθ (N ) as well as translation
parameters g1, . . . , gn ∈ G. We begin with two observations.
• The integral at study can be rewritten as∫

N

n∏
i=1

fi(giα(zi)x) dm(x) =
∫
S
f1 ⊗ · · · ⊗ fn dmS ,

where S is an affine rational submanifold of N n, defined as the image of the
embedding

N → N n, x �→ (g1α(z1)x, . . . , gnα(zn)x).

• Equipping N n with the product Riemannian metric on N , we have

‖f1 ⊗ · · · ⊗ fn‖Hθ ≤ ‖f1‖Hθ · · · ‖fn‖Hθ .

These observations reduce Theorem 1.1 to showing that the submanifold S is
δ-equidistributed with respect to Hθ (N n) for some δ < C/N(z)η, where N(z) =
exp(min1≤i �=j≤n‖zi − zj‖) and C, η > 0 are constants allowed to depend on the initial
data (G, �, α, n, θ) or possibly related structures, but not on z nor the gi .

Denote by L > 0 the constant associated to the product nilmanifold N n and θ as
in Proposition 2.1. Let δ ∈ (0, 1/2) be such that S is not δ-equidistributed in N n. By
Proposition 2.1, there exists q = (q1, . . . , qn) ∈ (Zd)n such that

0 < ‖q‖ <
(

1
δ

)L
and 〈q, dtα(z)t〉 = 0,

where for ω ∈ t, we set dtα(z)ω = (dtα(z1)ω, . . . , dtα(zn)ω) ∈ tn, and recall that dtα(z)
is the projection of the differential of α(z) to t. Taking Q-linear combinations of the above
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equality, we get for every ω ∈ Q
d
,

〈q, dtα(z)ω〉 = 0. (1)

Let us choose once and for all a basis βχ of each generalized eigenspace Lχ for χ ∈ X

whose vectors have algebraic integer coefficients and such that dtα(Zl ) is represented by
upper-triangular matrices. As the Lχ span Q

d
and q is non-zero, there must exist χ0 ∈ X

such that 〈qi , Lχ0〉 �= {0} for some i ∈ {1, . . . , n}. We let ω0 be the first element of the
basis βχ0 such that 〈qi , ω0〉 �= 0 for some i. We can then write for every i,

〈qi , dtα(zi)ω0〉 = χ0(zi)〈qi , ω0〉
and equation (1) with ω = ω0 yields

n∑
i=1

χ0(zi)〈qi , ω0〉 = 0.

We let K be the number field generated by the coefficients of the vectors belonging
to the basis (βχ )χ∈X . For every i, we then have 〈qi , ω0〉 ∈ O(K) and χ0(zi) ∈ O(K)×
(eigenvalues of the matrix dtα(zi) ∈ GL±1

d (Z) are algebraic units, and the relation
dtα(zi)ω0 = χ0(zi)w0 forces χ0(zi) to be in K). Fix ε ∈ (0, 1) arbitrarily. Theorem 3.1
yields a constant r > 0 depending only on (K , n, ε) such that, for some i0 ∈ {1, . . . , n}
and some Galois automorphism σ ∈ G,

|〈qi0 , σ(ω0)〉| ≥ rα(u)1−ε, (2)

where u = (χ0(z1), . . . , χ0(zn)). The exponential growth of eigencharacters presented in
Lemma 4.1 yields a lower bound on α(u):

α(u) ≥ min
1≤i �=j≤n(H(χ0(zi), χ0(zj )))

1/(n−1)

= min
1≤i �=j≤n

∏
v∈MK ,∞

max(|χ0(zi − zj )|v , 1)1/((n−1)[K:Q])

≥ min
1≤i �=j≤n exp

(
c‖zi − zj‖

(n− 1)[K : Q]

)
.

Plugging this lower bound into equation (2) and using the Cauchy–Schwarz inequality,
we get

‖q‖ ≥ rc1 exp
(

c(1 − ε)

(n− 1)[K : Q]
min

1≤i �=j≤n‖zi − zj‖
)

,

where c1 = minσ∈G ‖σ(ω0)‖−1 only depends on our choice of (βχ )χ∈X . Recalling that
δ−L > ‖q‖, we obtain that

δ < rc1N(z)
−η, where η := c(1 − ε)

(n− 1)[K : Q]L
.

To sum up the above discussion, we have proven that for any z ∈ (Zl )n satisfying
rc1N(z)

−η < 1/2, the submanifold S of N n is rc1N(z)
−η-equidistributed for Hθ (N n).
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It follows that for all z ∈ (Zl )n and all f1, . . . , fn ∈ Hθ (N ), g1, . . . , gn ∈ G, we have∣∣∣∣
∫
N

n∏
i=1

fi(giα(zi)x) dm(x)−
n∏
i=1

∫
N
fi(x) dm(x)

∣∣∣∣ ≤ 4rc1

N(z)η

n∏
i=1

‖fi‖Hθ

and this concludes the proof. (The constant 4 on the right is needed to get a valid statement
when rc1N(z)

−η ≥ 1/2.)
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