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Summary

The fixation probability of a mutant in a subdivided population with spatially varying
environments is investigated using a finite island model. This probability is different from that in a
panmictic population if selection is intermediate to strong and migration is weak. An
approximation is used to compute the fixation probability when migration among subpopulations
is very weak. By numerically solving the two-dimensional partial differential equation for the
fixation probability in the two subpopulation case, the approximation was shown to give fairly
accurate values. With this approximation, we show in the case of two subpopulations that the
fixation probability in subdivided populations is greater than that in panmictic populations mostly.
The increase is most pronounced when the mutant is selected for in one subpopulation and is
selected against in the other subpopulation. Also it is shown that when there are two types of
environments, further subdivision of subpopulations does not cause much change of the fixation
probability in the no dominance case unless the product of the selection coefficient and the local
population size is less than one. With dominance, the effect of subdivision becomes more complex.

1. Introduction

The fixation probability of a mutant gene in a
population has been of great interest for evolutionary
study. If we regard evolution as substitutions of genes,
this process always starts from a single mutant. Rates
of evolution measured by the substitution rates of
genes are computed using the fixation probability of a
mutant gene. Let v, v and N be the mutation rate per
gamete per generation, the probability of a single
mutant ultimately reaching fixation in the population
and the population size, respectively. Then, the rate,
k, per generation of mutant substitutions in the
population is approximately expressed as (see Kimura,
1983)

k = 2Nvu.

A method to compute the fixation probability in a
random mating population was developed by Kimura
(1962) using Kolmogorov’s backward equation. For
the genic selection model, it is

_ 1—exp(—2N,s/N)

Y I " exp(—4N,5) 1

where N, and s are the effective population size and
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the selection coeflicient of the mutant gene, respect-
ively. Maruyama (1970qa) extended this result to the
case of a geographically structured population. He
showed that under genic selection the fixation prob-
ability does not depend on the population structure
and is computed by (1) using the total population size
for N in the formula. Although this result is very
general with regard to the geographical structure, this
property holds only for uniform selection. Hence, the
result can not be applied to cases where selection
coefficients differ from one subpopulation to another.

However, the situation in nature may not be so
simple and selection coefficients might differ from one
place to another. For example, the selection co-
efficients of naturally occurring alleles of the gnd locus
in chemostats in which limiting resource was glucose
are different from those in chemostats in which
limiting resource was gluconate in E. coli (Dykhuizen
& Hartl, 1980). Similar observations are made for
other loci in chemostats with different resources (Hartl
& Dykhuizen, 1984). Other observations which also
suggest different selection coefficients in varying
environments were made by Drosophila workers
(Dobzhansky & Levene, 1955; Tachida & Mukai,
1985; Takano, Kusakabe & Mukai, 1988). They
reared flies in various cultures and measured viability
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of the flies in respective environments. They found
that viability differs from one environment to another
and there is genotype-environment interaction for
viability. Although various environments in those
experiments are artificially created and thus the results
do not necessarily indicate that fitness varies from one
place to another in nature, they show the possibility of
it. Thus, it is worthwhile to examine the fixation
probability in spatially changing environments.

One interesting question in such a situation is
whether the fixation probability increases or decreases
in a spatially varying environment compared to that
in a uniform environment in which the selection
coefficients are the average of those in the varying
environment. Pollak (1966) used an approximation to
compute the fixation probability in varying environ-
ments for a haploid model. The fixation probability is
expressed as [equation (4-6) of Pollak, 1966]

1—nf .. 7K @)

N N
1—alr. gk

where z, and N, are the initial number of mutants and
the size of the ith subpopulation. #, is approximated
by e ?% where s, is the selection coefficient of the
mutant in the ith subpopulation. This shows that the
fixation probability does not depend on the migration
rate. However, he did not justify the approximation
used in the derivation of (2).

Here, we investigate the fixation probability of a
mutant gene in an island model with varying environ-
ments. For cases with small migration rate, we use the
approximation developed by Lande (1979, 1985) and
Slatkin (1981). First we checked the validity of the
approximation with numerical methods in the two
subpopulation case. Then using the approximation,
we find that the fixation probability increases sig-
nificantly in some cases if the environmental variability
is introduced and if the migration rate is very small,
which contradicts the conclusion drawn from (2).
Also we consider some simple cases with more than
two subpopulations using this approximation.

2. Model

We assume a diploid finite island model. There are n
subpopulations with an equal size N. At first, the
entire population is fixed with an allele 4. A mutant
allele a appears in one of the subpopulations. We are
interested in the probability of the ultimate fixation of
this gene in the entire population. We assume the
Wright-Fisher model with multiple subpopulations.
First selection operates within the gamete pool of each
subpopulation. Relative fitness of genotypes A4, Aa
and aa are 1, 1+, and 1+ 2s,, respectively, in the ith
subpopulation. Next migration occurs. A portion m
of the gamete pool of each subpopulation is exchanged
with that of the entire population. Finally, 2N genes
are sampled from the gamete pool of each sub-
population to form the next generation.
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Let x, be the frequency of the allele a in the ith
subpopulation and X be the frequency of the allele a
in the entire population. We assume that s and 1/N
are small compared to one so that we can use the
diffusion approximation. Nagylaki (1980) showed
that the process X converges weakly to a diffusion
process of the gene frequency in a panmictic popu-
lation with size N, (in our case nN) and the selection
coefficient being the average of those in the subdivided
population if N becomes large keeping the migration
rates constant. Thus, for m > 1/N, the fixation
probability is very close to that in a corresponding
panmictic population in which the selection coefficient
of the a allele is the average of selection coefficients
over the varying environments.

Next we consider a case where s5,,1/N and m are
small compared to one. Then, neglecting higher order
terms of s,,1/N and m, the first and the second
moments of the change of gene frequency, Ax,, in one
generation are

E[Ax] = s, x(1 —x)+ m(X—x,)

x,(1-x;)
2N

E[Ax,Ax] =0 (i %)).

Measuring time in unit of 2N generations, the
dynamics of the gene frequency is approximately
described by a system of stochastic differential
equations,

dx, = [x,(1 _xt)]é dB(1)
+[2Ns; x,(1 —x,)+ 2Nm(X —x /)] dt, €)

where B(f) are mutually independent Brownian
motions. Any exact analysis of this multi-dimensional
diffusion process seems very difficuit.

However, when the product Ns, is small compared
to one, the fixation probability can be obtained
approximately. As shown in Appendix, the fixation
probability is

E[(Ax)*] = 3

1

N &)

u=E[X],.,= ( Zsi>
Thus, the fixation probability in varying environments
is the same as that of a panmictic population whose
selection coeflicients are the averages over the varying
environments, if Ns, is small compared to one.

In summary, the fixation probability in varying
environments is the same as that in the corresponding
panmictic population with an uniform environment if
either migration is strong or selection is very weak.
Thus, we shall look at the cases where selection is
modest to strong and migration is weak hereafter.

3. Weak migration with modest to strong selection

If the migration rate is very small, we can use the
Markov chain approximation developed by Lande
(1979) and Slatkin (1981). They used this approxi-
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mation in their study of fixation probabilities in cases
involving dominance. In this Markov chain, a state is
defined by an n-dimensional vector whose elements
take one or zero depending on whether the ith
subpopulation is fixed with the a or A allele,
respectively. The approximation assumes that if an
allele is to be fixed in a subpopulation, it becomes so
immediately upon introduction into that subpopula-
tion. First we consider a simple case of two sub-
populations.

(i) Two Subpopulations

Since this case is simple, we consider a more general
situation where sizes of the first and the second
subpopulations are N, and N,, respectively, and the
migration rate from the first to the second and from
the second to the first are m, and m,, respectively. We
assume that migration is so weak that it does not
affect the fixation probability of an allele in each
subpopulation. Let u,, and wu,, be the fixation
probabilities of the a and the A alleles, respectively,
starting from a single gene in the ith subpopulation
when there is no migration. These probabilities can be
computed from eqn (1). In the low migration rate
limit, there are two ways for the a allele to be fixed in
the total population. If the mutant first appears in the
first subpopulation, the probability of its fixation in
the first subpopulation is u,,. After the fixation in the
first subpopulation, there are two possibilities for
the fate of the a allele, i.e., fixation in the second
subpopulation or loss in the first subpopulation. Since
the first subpopulation provides the a allele to the
second subpopulation at a rate of 2N,m, per
generation, the waiting time, 7,, for the first ap-
pearance of the a gene to be fixed in the second
subpopulation is distributed exponentially with a
mean 1/(2N,m,u,,). Similarly, the waiting time, 7;,
for the first appearance of the 4 gene to be fixed in the
first subpopulation is distributed exponentially with
a mean 1/(2N,m,u,,). If T, is larger than T,, the
fixation of the a allele in the second subpopulation
results. Otherwise the loss of the a allele from the first
subpopulation results. Thus, the a allele is fixed in the
second subpopulation with a probability

2Ny myuyp Uy,
2N,myu,, +2N,myu,,

if a mutant first appears in the first subpopulation. If
a mutant first appears in the second subpopulation,
the probability of the q allele being fixed in the whole
population is similarly computed to be

AN myu, u,,
2N, myu,+2N m,u,,

Since the probability of the first mutant appearing in
the first or the second subpopulation is N,/(N,+ N,)
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or N,/(N,+N,), respectively, the probability of

fixation of the a allele in the entire population starting
from a single mutant is

u_(N1N2ua1ua2)( m,
N,+N, Nimyu, +Nymyug,

ml
+N2m2uA2+Nlm1ual). ©
This is considered to be the low migration limit of the
fixation probability.

Also we can compute the average time for the
fixation of the a allele using this approximation
(Slatkin, 1981). The average time for the fixation of
the a allele given it is fixed in the whole population is
computed to be

N,
(CNymyuyo+ 2N, myu, ) (N +N,)

N,
+ .
(2N, m u +2N, myu ) (N, + N,)

M

For the derivation, consult Slatkin (1981).

In order to see the applicability of the low migration
limit approximation, we numerically computed the
fixation probability using Kolmogorov’s backward
equation. The fixation probability (p,, p,) of an allele
whose initial frequencies in the first and the second
subpopulations are p, and p,, respectively, satisfies
(see Crow & Kimura, 1970)

p(1=p) 0 py(1—p,)0%u
4N, op} 4N, dp;

ou
+ [slpl(l —Pl) +m1(p2—‘p1)]5
1

+[52p2(1 _p2)+m2(p1_‘p2)]§7u =0 (8)

with the boundary conditions

u(0,0) =0, u(1,1)=1.

The partial differential equation was numerically
solved using the Gauss—Seidel method (see for
example, Ortega & Poole, 1981). Though computa-
tions are carried out for small population sizes, the
results can be extended to cases of larger population
sizes with the same N,s, and N,m,. The reason is that
the difference is only in the initial frequencies and an
approximate linearity of the fixation probability holds
for a small initial frequency since a small number of
initial mutants do not influence their fates each other.

Fixation probabilities in a subdivided population
with two environments are computed using the low
migration limit (6) and numerically solving the partial
differential equations. The number of meshes used in
the numerical computation of the partial differential
equation was 100. They are presented in Table 1.
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Table 1. Fixation probabilities in a subdivided
population with varying environments computed by
the Gauss—Seidel method and by the approximate
Jormula. Probabilities multiplied by 100 are
tabulated. Parameters are N, = N, = 50,

m; = m, = 0-0005

Case 1* Case 2* Case 3*

s At Bt At Bt At Bt

0005 054 054 080 080 032 030
001 065 065 121 122 021 017
002 101 102 225 226 018 004
003 146 146 334 330 — —
004 192 192 436 428 — —
005 238 238 533 521 @ — —

* Case 1: s, =—s5,=15; Case 2: 5, =35,5,=0; Case 3:
5, =55 =0
1t A: computed by solving the partial differential equation
(®).
B: approximation computed from (6).
0-04 — T —————rr—————rrT
—eo~—s=100I
> omk —0-5=003 |
i — ¢ -s=005
]
"§ 0-——0-—4——'0—0—0\\.‘
o, ~
£ 002 ~ o —
g .
g p— © —O0— -0 \
= e AN
001 s .
0—0—0———0—0—0__.\._.;\:‘
p
0 i st el MU
0 0-001 0-01 *

m

Fig. 1. The fixation probability when the migration rate is
changed. Values are computed by numerically solving the
partial differential equation (8). The value at m = * is for
the case with complete mixture (a panmictic population).
There are two subpopulations with equal size N = 50.
Other parameters are 5, = —s, = 5.

Three cases are considered. In Case 1, selection
coefficients have opposite signs in different environ-
ments. In Case 2 and Case 3, the mutant allele is
advantageous and disadvantageous, respectively, in
the first subpopulation and it is neutral in the second
subpopulation. For larger s (> 0-03), the probabilities
become very small in Case 3. Since it takes very long
to compute small probabilities accurately using the
Gauss—Seidel method, we have not carried out
numerical computations for larger values of s in Case
3. As shown in the table, except for the cases where
the probability is small (for larger s in Case 3), the
agreement between the low migration limit and the
values obtained by the numerical method is quite
good when the migration rate is very small.

The effect of migration was investigated in Case 1
and the result is shown in Fig. 1. From this figure, we
can see that the fixation probability is close to the low
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migration limit until the migration rate becomes 0-005
(4Nm = 1-0). In the figure, the fixation probability of
the panmictic population is plotted at m = *. As the
selection coefficient becomes larger, the approach of
the fixation probability to the value of that in a
panmictic population becomes slower if we measure
the approach by the ratio of the difference between
the fixation probabilities in the subdivided and
the panmictic population to that between the low
migration limit and the fixation probability in the
panmictic population. This is because the fixation
process within a subpopulation becomes quicker as s
becomes larger and this makes the assumption of the
weak migration approximation to be satisfied more
casily.

Since the low migration limit was shown to give
fairly accurate values for cases with small migration
rates, we will investigate the difference between
subdivided populations and panmictic populations
using this approximation. Consider a special case
where N, = Np,m; = my,and s, = —s, = s (s > 0). The
formula (6) is simplified approximately as,

— ual + ua2
4

This can be also derived by a simpler reasoning. With
a probability 1/2, the mutant appears in the first
subpopulation and it is fixed in this subpopulation
with a probability u,,. Once this state is achieved, the
fixation of the mutant is 1/2 because of the symmetry.
Thus, in this case, the fixation probability of the
mutant is u,,/4. Similarly, if the mutant appears in
the second subpopulation, the fixation probability of
the mutant is u,,/4. Hence, we obtain the above
expression. In an extreme case where Ns> 1, it is
further simplified to be

®

_ N
U= E
Note that this special case is an average neutral case
where the average selection coefficient of the mutant
geneis zero. In the neutral case, the fixation probability
is 1/4N. Comparing this with (9), we can see that
changing environments increases the fixation prob-
ability in this case. The conclusion differs from that of
Pollak (1966) which predicts that both fixation
probabilities have the same value. We will discuss this
discrepancy in the Discussion.

We numerically computed fixation probabilities in
subdivided populations using the low migration limit
approximation and those in corresponding panmictic
populations in other cases and some of the results are
shown in Table 2. The selection coefficient in the
panmictic population is the average of those in the
subpopulations. Results for the case of s, = —s, are
also shown for comparison. Except for the case where
mutants are advantageous in both subpopulations
(Case F in Table 2), fixation probabilities are higher in
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Table 2. Comparison of fixation probabilities in
subdivided populations and those in corresponding
panmictic populations. Probabilities multiplied by 100
are tabulated. Population size is N = 50. Sub. and
Pan. are abbreviations for subdivided and panmictic
populations, respectively. Seven cases are: A,

S5, =—8,=8§;B,5,=-25,=5;C, 25, = —5, =5,
D,s,=s5=0,E 5 =0,5=—s;F s =5,

S, =5/2;G, 5, =—5/2,5,=—s

s = 0-0005 s = 0005 s =005

Case Sub. Pan. Sub. Pan. Sub. Pan.

0-5004
0-5127
0-4879
0-5253
0-4758
0-5381
0-4638

0-5397
0-6620
0-4035
0-8023
0-2981
0-9637
0-2183

0-5000
0-6346
0-3859
0-7890
0-2917
0-9618
0-2162

2-3793
47054
0-0333
52085
0-0003
7-2040
0-0000

0-5000
2:4858
00172
43773
0-0002
7-2257
0-0000

0-5000
0-5125
0-4877
0-5253
0-4755
0-5382
0-4636

QUMmgaOwy

subdivided populations than in corresponding pan-
mictic populations. This tendency is pronounced when
selection coefficients have different signs in different
populations. If selection coefficients have the same
sign, there is not much difference between the two
types of populations.

(ii) More than two populations

Next we consider cases with more than two sub-
populations using the low migration limit approxi-
mation. For simplicity, we assume that there are two
symmetric types of environments, 1 and 2. The
fitnesses of the allele ¢ and 4 are 1+4s and 1,
respectively, in the environment 1 and vice versa in the
environment 2. The numbers of subpopulations in the
environments 1 and 2 are K and L, respectively, and
the size of each subpopulation is N. Because of the
symmetry assumption, a state of the Markov chain
in the low migration limit is characterized by two
numbers, k and /, of the numbers of subpopulations
fixed with the ¢ allele in the environment 1 and 2,
respectively. Thus, we represent the state of the
Markov chain by a vector (k, /). First we consider the
transition rate, ¢ , ;.5 Per generation from (k, /) to
(k+1,1). For this event to happen, a fixation of the
allele @ in one of the K—k subpopulations in the
environment 1 which are previously fixed with the
allele 4 must occur. For each such subpopulation,
2Nm migrants are coming in among which (k+/)/
(K+ L) are a genes. Let u,, be the fixation probability
of a Z allele introduced into a population of size N
which is fixed with the other type allele and is in the
environment i. Then, the rate at which a fixation of
the allele a occurs in one such subpopulation is
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2Nm(k+1)u,,/(K+ L). Since there are K—k such
subpopulations,

INm(K— k) (k+1)u,,

Lk nisr,n = KiL (10)
Similarly,

Lene-1,0 = 2Nmk(K;f_zk_l) =i (11)
L. pkieny = 2Nm(E }B(Lk_*-l) s (12)
Lo, pki-ny = 2le(K_;<i__Lk_l) Haz, (13)

Probabilities to all other states are zero. Let u, ,, be
the ultimate fixation probability of the allele a in the
total population starting from the state (k,/). By
considering the fixation probabilities in the next
generation, we can show that u’s satisfy

Ug sy = (U= nwrrn = L noe—1.0— Loy oe, 1oy
= ey 1-1)) Ue 1 F e 1y et Yier1,

+ t(k, 0 (k-1,1) u(k—l, ] + t(k.l)(k, i+1) u(lc, +1)

1, k-1 Yo, 11y (14)
with the boundary condition
U0 =0 15)
Ug =1 (16)

Since the probability of the first mutant gene appearing
in the environment 1 and the environment 2 are
K/(K+ L) and L/(K+ L), respectively, the fixation
probability of a mutant gene is

_ Kug ot Lty thg 3

K+L (17

u

We numerically solved equation (14) with the
boundary conditions (15) and (16) and computed the
fixation probability using equation (17). Some of the
results are shown in Table 3. For simplicity, cases with
an equal number of subpopulations are considered.
In order to see the effect of subdivision, the total
population size was kept constant (N, = 1000 in the
table) and effects of various levels of subdivision are
investigated. For comparison, the fixation probability
in the neutral case is also tabulated. When selection is
weak (s = 0-001), the fixation probability is close to
that in the neutral case and further subdivision does
not change the fixation probability. When selection is
strong (s = 001 and 0-02), the fixation probability
becomes much larger than that in the neutral case.
The fixation probability is almost the same in all cases
(K = 1—10 in the table). Thus, the probability in the
multi-subpopulation case can be computed using eqn
(9) in this case. For medium values of selection
coefficients (s = 0-005), intermediate behaviour is
observed. As long as the local population size is large
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Table 3. Fixation probability in an island model
computed from the low migration limit
approximation.- There are two environments. The
total population size is kept constant and it is 1000 in
the computation. The population is divided into 2K
subpopulations of equal size, K for each environment.
Selection coefficients of the mutant allele are

s, = —S$, = s and the size of a subpopulation is N.
Probabilities multiplied by 1000 are tabulated

K N s=00 5s=0001 s=0005 s=001 5s=002
1 500 0-50 0-66 2-49 495 9-80
2 250 0-50 0-61 2:46 495 9-80
4 125 0-50 0-57 2:26 492 9-80
6 833 050 0-55 1-98 479 9-79
8 625 050 0-54 1-72 4-58 9-75
10 50 0-50 0-53 1-51 4-33 9-65

(Ns > 1), the fixation probability is large compared to
that in the neutral case and further subdivision does
not cause change in the fixation probability. However,
if the subpopulation size becomes smaller, the prob-
ability becomes smaller as we further divide the
population. Eventually, the probability becomes the
same as that in the neutral case (data not shown). In
conclusion, if 4Ns is large, further subdivision of the
population does not affect the fixation probability in
this case.

4. Discussion

In the present paper, we investigated the fixation
probability of a mutant gene in spatially changing
environments. We found that the fixation probability
in a spatially varying environment is different from
that in a uniform environment in which the selection
coefficients are the average of those in the varying
environment. Specifically, if selection is fairly strong
(Ns > 1) and the migration rate is small, the fixation
probability increases as the environmental variation is
introduced in most cases. This can be typically seen in
the average neutral case where the selection coefficients
in two subpopulations have the same magnitude and
opposite signs [see (9)]. In most of the other cases, this
tendency holds although it is not as pronounced as in
the average neutral case. So we cannot compute the
fixation probability simply by assigning the average
fitness of a gene as its fitness. In many cases, the
fixation probability could be more than that computed
using the average fitness. Accordingly, the substitution
rate becomes larger in these cases.

As stated in the introduction, our observation
contradicts the result of Pollak (1966). For the average
neutral case, eqn (2) shows that the fixation probability
is the same as that of the neutral case when s is much
smaller than one. In the derivation, he approximated
a linear equation of a finite number of variables with
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that of an infinite number of variables (see p. 149 of
Pollak, 1966). Although his formula leads to the same
answer as that obtained by the diffusion method in
the single population case, this approximation has
not been justified mathematically as far as we know.
Our derivation seems intuitively correct when the
migration rate is very small and we justified the
approximation by solving the partial differential
equation for the diffusion process. Furthermore, we
obtained similar values using simulation (data not
shown). Thus, we think that his approximation used
to derive (2) is not valid and we can not use his
formula in cases with variable environments.

Our observation can be compared to those made
for the fixation probability in temporally changing
environments. If the average selection coefficient is
zero or positive, the fixation probability of a mutant
gene increases as the environmental variation is
increased in many cases (Ohta, 1972; Jensen, 1973;
Karlin & Levikson, 1974 ; Takahata, Ishii & Matsuda,
1975). However, we can construct a simple model in
which this is not true (Karlin & Levikson, 1974).
Thus, we cannot state generally that environmental
variation increases the fixation probability.

We have considered only the island model without
dominance thus far. However, the same method can
be applied to investigate other models. We considered
some of them and results are shown in Table 4. For
comparison, we also tabulated the case of the island
model with no dominance.

In the linear stepping stone model (Maruyama,
19705) with the left half in the first environment and
the right half in the second environment, we can index
the states of the Markov chain by a vector (i, ), where
i and j are the left- and the right-most subpopulations,
respectively, in which the mutant allele is fixed. The
equation for the fixation probability in this Markov
chain was solved in a similar way as in the previous
section. Compared to the island model, the effect of
subdivision is smaller (Table 4). This is because the
left half and the right half are behaving like a single
population, respectively. If the environment changes
alternately, the behaviour will be different. Slatkin
(1981) observed that changes of the migration pattern
do not affect the fixation probability in the uniform
selection case if migration is symmetric. Our result
shows that when environmental variation is intro-
duced, this invariant property no longer holds.

We also considered cases with dominance. The
method explained in the previous section uses fixation
probabilities in a single population to compute the
transition rate [see eqns (10)—+(13)]. Thus, we can use
the same method to compute the fixation probability
by just replacing u,,’s for the no dominance case with
those for dominance cases. To make the selection
scheme for two alleles symmetric, we computed the
fixation probability when the favourable allele in each
environment is dominant or recessive. The behaviour
is quite different from that in the no dominance case.
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Table 4. Fixation probability in various models
computed from the low migration limit
approximation. There are two environments. The
total population size is kept constant and it is 1000 in
the computation. The population is divided into 2K
subpopulations of equal size, K for each environment.
Selection coefficients of the mutant allele are

5, = —s, = 001 and the size of a subpopulation is N.
Probabilities multiplied by 1000 are tabulated

No dominance
Dominant Recessive

K N Island Stepping stone Island Island
1 500 495 495 9-54 1-26
2 250 495 495 9-24 1-78
4 125 492 494 8:36 2-49
6 833 479 493 7-35 291
8 625 458 491 6-50 311

10 S0 433 489 5-80 316

wFr————p 17T

10°

103

Average fixation time X m

Fig. 2. The average time for fixation in the two
subpopulation case when 4Ns is changed. The values are
computed using (18). The average time multiplied by the
migration rate m is plotted.

When the favourable allele is dominant, the fixation
probability decreases as subdivision proceeds. How-
ever, when the favourable allele is recessive, it increases
as subdivision proceeds. Thus, the effect of subdivision
becomes complex if dominance is introduced.

If we increase s, the fixation probability becomes
large in the average neutral case [see (9)]. However,
there is a practical limit for this increase because the
average time for the fixation of a mutant given the
mutant is fixed in the whole population becomes very
large. In a symmetric case where N, =N, =N,
m; =m, =m and s, = —s, = s > 0, the average time
for fixation becomes [see (7)]

exp (4Ns)—1

16 Nms (18)

somsses tha cemanll PR | o Tau s wralarntine
ignoring uic siiidn SCCONG [Cimi. Numcrical cvaluations

of this formula are shown in Fig. 2. The average time
for fixation multiplied by the migration rate m is
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plotted. The average fixation time increases very
quickly as the selection coefficient increases. Recall
that the fixation probability is increased with the
introduction of environmental variability when the
migration rate is very small (Nm < 1). Thus, we
should multiply the values shown in Fig. 2 by a large
value. This means that for larger 4Ns the average
fixation time becomes very long, i.e., the population
stays polymorphic for very long time. However, the
environments may change over long periods of time
and thus equation (9) would no longer hold. Thus, our
conclusion that the fixation probability increases in
spatially changing environments has a practical
implication for evolutionary theory when selection is
intermediate, say, when 4Ns is less than 10.

In the case of weak migration, we used a Markov
chain approximation which was developed by Lande
(1979) and Slatkin (1981). This approximation is
similar to those used by Gillespie (1983), Walsh
(1985), Li (1987), Zeng, Tachida & Cockerham (1989),
Tachida (1990) and Takahata (1990) for cases of weak
mutation or weak gene conversion in finite popula-
tions. These approximations were used heuristically
and they propose a mathematical conjecture that
some diffusion processes associated with population
genetics converge to Markov chains in the weak
mutation, the weak gene conversion or the weak
migration limit. This conjecture provides us with a
new type of limit theorem for the theory of stochastic
processes since a jump process appears as a limit of
stochastic processes with continuous paths (diffusion
processes). lizuka & Ogura (1991) have proved the
conjecture for the one-dimensional case (see also
Ogura, 1989). The proof of this conjecture seems to be
difficult in general cases such as ours with more than
one dimension. However, at least in the parameter
range used in our study, the agreement between the
approximation and the numerical solution to the
partial differential equation is pretty good.
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Appendix

First note that the fixation probability u is computed
from the mean of X at t =00 as

E[X]p, =ux1+(1-u)x0 =u (A1)

since fixation or loss of the allele @ occurs with
probability one. The moment equations can be derived
from (4) using the Ito’s formula and taking expecta-
tions (see Karlin & Taylor, 1981),

P _ 5, Fle (1~ x)) + ME(X—x) (A2
dLCEIXﬂ =28, E[x{(1 —x)]+2ME[x(X —x)]
+ Ex,(1 —x)} (A3)
BV _ s, B (1 = 501+ 5, ELxyx(1 )]
+ ME[x,(X—x) +x(X—x,)], (A 4)

where S, = 2Ns, and M = 2Nm. The initial conditions
are

1 1
E[xt]n-o = N’ E[xﬂn-o = N E[xtle\:-o = 0.

Since these equations are not closed by themselves, we
can not solve them in general. In order to compute the
first moment, we need the second moments and to get
these, third moments are necessary. However, if we
assume that S,’s are of the order of ¢ (¢ < 1), the third
moments in the latter two equations can be truncated
approximately and we can obtain the first moments
with an error of the order of €2, In fact, from (A 2), the
dynamics of E[X] is described by

EX]_ L5 5 B —x)).

dt n. (AS)

Integrating both sides from ¢ = 0 to 7 = 0o, we obtain

) =125 [ -l A0

0 2nN’
To get the left-hand side with an error of the order of
¢® or less, it is necessary to compute f7 E[x(1—x)]dt
with an error of the order of ¢ or less. From equations
(A 2(A 4), it can be shown that this amounts to
computing the quantity under neutrality. Maruyama
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Fixation probability

(1972) has shown that under neutrality the total
number of heterozygotes which appeared in the
population is invariant in any geographical structures
and it is 2N, if the total population size is constant.
Randomizing the subpopulation in which the mutant
first appeared, the total number of the heterozygotes
which appeared in one subpopulation becomes
2N, /n = 2N. Since the integral is the total number of
heterozygotes which appeared in one subpopulation
divided by 2N, the integral is calculated to be 1/(2N)

https://doi.org/10.1017/50016672300029992 Published online by Cambridge University Press

251

noting that we measure time in units of 2N generations.
Thus, we obtain

u= E[X]|z=oo = (%é Si) .

+—2nN' (A7)

This means that if selection is very weak, so that 2N,
is much smaller than one, the fixation probability is
the same as that in a uniform panmictic population
where the selection coefficient of the a allele is the
average of those in varying environments.
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