THE 12C/13C RATIO IN BARIUM STARS A. JORISSEN* Institut d'Astronomie, d'Astrophysique et de Géophysique Université Libre de Bruxelles C.P.165 50, av. F. Roosevelt B-1050 Bruxelles Belgium ABSTRACT. It is suggested that the position of BaII stars with respect to normal red giants in the (log L, $^{12}\text{C}/^{13}\text{C}$) and ([C/Fe], $^{12}\text{C}/^{13}\text{C}$) diagrams supports the hypothesis that $^{13}\text{C}(\alpha,n)^{16}\text{O}$ was the neutron source responsible for the synthesis of the heavy elements now present in the BaII star envelopes. It is well known that $^{12}\text{C}/^{13}\text{C}$ is a function of luminosity in first ascent giants, as a result of the first dredge-up (e.g. Lambert, 1976). The comparison between $^{12}\text{C}/^{13}\text{C}$ in BaII stars and in normal giants should thus take this luminosity effect into account. Fig.1 sums up all the data available for normal G-K giants and subgiants, extracted from Lambert (1976), Tomkin et al. (1976) and Lambert and Ries (1981). For the stars of these samples, the luminosity is derived mainly from the CaII K-line emission width (Wilson, 1976), although some other methods are also used. Concerning BaII stars, $^{12}\text{C}/^{13}\text{C}$ and luminosity are simultaneously available for only 6 classical BaII stars. As those data are scattered in the literature, they are summarized in Table I. Luminosities of BaII stars are derived from Eggen's (1972) (R-I, M_{bol}) relation. When available, the uncertainty on the $^{12}\text{C}/^{13}\text{C}$ ratio has been drawn in Fig.1, whereas the uncertainty on $\log \text{L}/\text{L}_{\odot}$ is difficult to evaluate. Let us consider the BaII star HD16458 (=HR774), the 12 C/ 13 C ratio of which appears to fall quite inside the range of 12 C/ 13 C ratios displayed by normal giants of the same luminosity 1 . In the (12 C/ 13 C, [C/Fe]) diagram (Fig. 2), this same star is found to have a strong C-overabundance (by a factor 2 to 5) with respect to normal red giants, although 12 C/ 13 C is normal! $^{^1}$ It should be mentioned, however, that values of the order of log L/L $_{\odot}$ =2.25 to 2.65 have been proposed for that star by Böhm-Vitense et al. (1984) using spectroscopically derived gravities and effective temperatures, assuming a mass of 2.5 $\rm M_{\odot}$. ^{*}Boursier I.R.S.I.A. (Belgium). ⁵⁹³ G. Cayrel de Strobel and M. Spite (eds.), The Impact of Very High S/N Spectroscopy on Stellar Physics, 593–596. © 1988 by the IAU. Fig.1: $^{12}\text{C}/^{13}\text{C}$ vs. luminosity Fig.2: $^{12}\text{C}/^{13}\text{C}$ vs. $[\text{C/Fe}]_{\odot}$ TABLE I | Name | Sp. | M _{b o 1} | logL/L _⊙ | ¹² C/ ¹³ C | $[C/Fe]_{\odot}$ $[Fe/H]_{\odot}$ | |--------------------|--|--|--|---|--| | HD 164 | 58 K1IIIBa5 _k | 0.5 _c | 1.65 _c | 23 _{ab} | .27 _a 32 _a | | HD 464 | 07 KOIIIBa2 _k | 1.9 _c | 1.07 _c | 23 _{ab}
15 _g
21 _a
23±3 _b | .27 _a 32 _a
.35±.10 _g 30 _g
02±.04 _a .02 _a | | HD 1010 | 13 KOIIIBa5 _k | 2.1 _c | 1.01 _c | 17±8 _h
13±1 _b | +.27 ₁ 42 ₁
50±.10 _{h i} .25 _i | | HD 1167 | 13 K1IIIBa3 _k | 1.1_{cn} | 1.39 _c
1.43 _n | 20 _a
24±2 _b | $02\pm.24_a +.15_a +.30_129_1$ | | HD 1214
HD 1787 | 47 K7IIIBa5 _k
17 K4IIIBa5 _k | -1.7 _c
-1.4 _c | 2.53 _c
2.41 _c | 8 _g
8 _g | .00±.10 _g .05 _g
.13±.10 _g 18 _g | References: a) Sneden et al., 1981; b) Tomkin and Lambert, 1979; c) Eggen, 1972; g) Smith, 1984; h) Harris et al., 1985; i) Williams, 1975; k) Lü et al., 1983; l) Kovacs, 1985; n) Dominy and Lambert, 1983. In order to understand how this paradoxical situation can be accounted for, let us consider the contamination of a giant star convective envelope by material having undergone a s-type of processing by neutrons liberated by either $^{13}\text{C}(\alpha,n)^{16}\text{O}$ or $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$. The value of $^{12}\text{C}/^{13}\text{C}$ after such a mixing, referred to as the final $(^{12}\text{C}/^{13}\text{C})_F$ ratio, is given by $$(^{12}C/^{13}C)_F = [(1-g)^{12}C_I + g^{12}C_P]/[(1-g)^{13}C_I + g^{13}C_P],$$ (1) where g denotes the dilution factor of the s-processed material (abundances by number with subscripts P) into the envelope (abundances by number before contamination with subscripts I). Two special cases are of interest: (i) if $$(^{12}C/^{13}C)_p = (^{12}C/^{13}C)_I$$, then $(^{12}C/^{13}C)_F = (^{12}C/^{13}C)_I$, (2) whatever the total C abundance could be. (ii) if the contaminating material is essentially devoid of ^{13}C (i.e. $^{13}\text{C}_\text{P}~\approx~0),$ then, assuming 1-g $\approx~1,$ $$(^{12}C/^{13}C)_F \approx (^{12}C/^{13}C)_I \times (^{12}C_F/^{12}C_I).$$ (2') Case (ii) is relevant if the contaminating material has been processed by 22 Ne $(\alpha,n)^{25}$ Mg, since the 13 C abundance is very low in typical Heburning environments and $^{12}C(n,\gamma)^{13}C(n,\gamma)^{14}C$ does not favor the production of ¹³C. Assuming further that the envelope composition before contamination is representative of normal red giants, we conclude that the 12C/13C ratio now observed in Ball stars should be that of red giants scaled by the overabundance of carbon (^{12}C) if ²²Ne(α ,n)²⁵Mg is the active neutron source, as indicated by Eq.(2'). Fig.3: $(^{12}C/^{13}C)_p$ in the processed material as a function of the neutron exposure for the following sets of the parameters describing the operation of the $^{13}C(\alpha,n)^{16}O$ neutron source: describing the operation of the ${}^{**}\text{C}(\alpha,n)$ -0 neutron source 110: $T=1\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=10$., $\vartheta_{ing}=0$; 111: $T=1\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=10$., $\vartheta_{ing}=0$, ${}^{12}\text{C}/^4\text{He}(0)=1$.; 214: $T=2\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=1$., $\vartheta_{ing}=10$ $\vartheta_{\alpha}({}^{13}\text{C})$; 215: $T=2\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=1$., $\vartheta_{ing}=100$ $\vartheta_{\alpha}({}^{13}\text{C})$; 300: $T=3\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=20$., $\vartheta_{ing}=0$; 320: $T=3\times10^8\text{K}$, ${}^{12}\text{C}/p(0)=5$., $\vartheta_{ing}=0$., with $\rho=500$ g/cm³ and ${}^{12}\text{C}/^4\text{He}(0)=1/3$ (except for case 111). θ_{ing} is the proton ingestion timescale and $\theta_{co}(^{13}\text{C})$ is the ^{13}C lifetime for α -captures. The two horizontal fines labelled R.G. border the domain $5 \le 12 C/13 C \le 30$ characterizing red giant values. Notwithstanding their scarcity and uncertainties, the observational data appear to favor the situation described by Eq.(2) rather than that corresponding to Eq.(2'). This speaks against the 22 Ne(α ,n) 25 Mg neutron source, which cannot account for the mixing case with $(^{12}C/^{13}C)_F = (^{12}C/^{13}C)_I$, and thus for Eq.(2). It now remains to evaluate the virtues of $^{13}C(\alpha,n)^{16}O$ in that respect. Fig.3 displays the $(^{12}\text{C}/^{13}\text{C})_p$ ratio in the processed material during the nucleosynthesis event as a function of the neutron exposure φ at 30 keV, for various sets of the parameters describing the operation of the $^{13}C(\alpha,n)^{16}O$ neutron source. That neutron source operates when protons are ingested (with a timescale ϑ_{ing}) into a 4 He- and 12 C-rich layer [characterized by the initial 12 C/ 4 He(0) and 12 C/p(0) ratios; see Jorissen and Arnould, 1986, for more details about the parametrization], as a result of the chain $^{12}\text{C}(p,\gamma)^{13}\text{N}(\beta^+)^{13}\text{C}(\alpha,n)^{16}\text{O}$. It can be seen that many $(^{12}\text{C}/^{13}\text{C})_p$ curves cross the $5 \leq (^{12}\text{C}/^{13}\text{C})_1 \leq 30$ domain, characterizing normal red giant envelopes. Thus, a freeze out of the matter processed at $\varphi < \varphi_{\text{max}}$ before complete ^{13}C burning is just what is needed in order to keep $(^{12}\text{C}/^{13}\text{C})_p$ in a range typical for normal red giants. The curve corresponding to case 211 does not even require such a freeze out. Mixing of such a processed material in a giant envelope then keeps the $^{12}\text{C}/^{13}\text{C}$ ratio close to its initial value. In conclusion, the method presented here could be useful for identifying the operation of the $^{13}\text{C}(\alpha,n)^{16}\text{O}$ neutron source in BaII stars, but the scatter in $^{12}\text{C}/^{13}\text{C}$, the uncertainties affecting the luminosity as well as the difficulty of distinguishing first ascent giants from core-He burning giants make it difficult to draw a definite conclusion. ## **REFERENCES:** Böhm-Vitense, E., Nemec, J., Proffitt, Ch.: 1984, Astrophys.J. 278, 726. Dominy, J.F., Lambert, D.L.: 1983, *Astrophys.J.*270, 180. Eggen, O.J.: 1972, *Mon. Notices Roy. Astron. Soc.*159, 403. Harris, M.J., Lambert D.L., Smith, V.V.: 1985, Astrophys.J.292, 620. Jorissen, A., Arnould, M.: 1987, in Advances in Nuclear Astrophysics, eds. E. Vangioni-Flam, J. Audouze, M. Cassé, J.P. Chièze and J. Tran Thanh Van (Gif sur Yvette: Frontières), p. 419. Kovacs, N.: 1985, Astron. Astrophys. 150, 232. Lambert, D.L.: 1976, Mém. Soc. Roy. Sc. Liège IX, 6e Série, p.405. Lambert, D.L., Ries, L.M.: 1981, *Astrophys. J.* 248, 228. Lü, P.K., Dawson, D.W., Upgren, A.R., Weis, E.W.: 1983, *Astrophys.J.*52, 169. Smith, V.V.: 1984, Astron. Astrophys. 132, 326. Sneden, C., Lambert, D.L., Pilachowski, C.A.: 1981, Astrophys.J.247, 1052. Tomkin, J., Luck, R.E., Lambert, D.L.: 1976, Astrophys. J. 210, 694. Tomkin, J., Lambert D.L.: 1979, *Astrophys.J.*227, 209. Williams, P.M.: 1975, Monthly Notices Roy. Astron. Soc. 170, 343. Wilson, O.C.: 1976, Astrophys. J. 205, 823.