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Abstract. We study the billiard dynamics in annular tables between two eccentric circles.
As the center and the radius of the inner circle changes, a two-parameters map is defined by
the first return of trajectories to the obstacle. We obtain an increasing family of hyperbolic
sets, in the sense of the Hausdorff distance, as the radius goes to zero and the center
of the obstacle approximates the outer boundary. The dynamics on each of these sets
is conjugate to a shift with an increasing number of symbols. We also show that for
many parameters, the system presents quadratic homoclinic tangencies whose bifurcation
gives rise to elliptical islands (conservative Newhouse phenomenon). Thus, for many
parameters, we obtain the coexistence of a ‘large’ hyperbolic set with many elliptical
islands.
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1. Introduction
The billiard problem consists of the description of the free motion of a particle inside
a region of the plane called the table. The particle moves in straight lines with constant
unitary speed between the boundaries and undergoes elastic collisions at the impacts.
Conservation of energy and momentum implies the reflection law for the collisions with
the boundaries. The two-dimensional dynamics is given by the billiard map, assigning a
collision to the next one. The dynamical properties of a billiard, which are deeply related
to its shape, range from integrability to ergodicity.
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FIGURE 1. The annular table and the parameter space δ × r .

The mathematical billiards were introduced by Birkhoff [5] who showed that the motion
on elliptical tables is integrable. He also conjectured that these are the only convex billiards
with this property [22]. Birkhoff billiards, as strictly convex billiards are now called, in
general exhibit invariant curves and elliptical islands coexisting with regions of hyperbolic
behavior. A full description of the dynamics in generic convex billiards is still a challenge.
However, Sinai [25] used dispersing billiards to investigate the micro dynamics of the ideal
gas and address Boltzmann’s ergodic hypothesis. The so-called Sinai’s billiard, which is a
classical example of a dispersive billiard, was proved to be chaotic. It is now known that if
all the components of the boundary of the table are concave, the dynamics is fully chaotic,
i.e. with positive Lyapunov exponent almost everywhere, and in general can be shown
to be ergodic. So, the common idea is that billiards with concave/dispersing components
are associated to hyperbolic/random/chaotic behavior, while convex/focusing components
frequently imply some non-chaotic/elliptical behavior with regions of stability.

In this work, we study billiards in annular tables as introduced by Saitô et al in [24]. An
annular table is a closed planar region Qδ,r⊂ R2 bounded by a unitary circle γ centered
at the origin, and an inner circle α of radius r centered at a point pδ at a distance δ from
the origin. We call the exterior unitary circle the exterior boundary and the inner circle
is called the obstacle. The distance δ between the centers is called the eccentricity. The
set of parameters is the triangular region � = {(δ, r) : 0 ≤ δ < 1 and 0 < r + δ < 1} (see
Figure 1). The corresponding two-parameter family of billiard maps is denoted by Tδ,r .
As the collisions with the inner circle carry the interesting part of the dynamics, it is
meaningful to describe the dynamics through the first return to the obstacle map, denoted
by Gδ,r . Our results are stated for this first return map and, correspondingly, we refer in
this introduction to the set of collisions with the obstacle as the phase space.

It is important to have in mind that the circular billiard alone, without the inner
obstacle, is completely integrable. However, the dynamics purely generated by the inner
circle is somehow equivalent to Sinai’s billiard which is ergodic. Billiards in annular
tables may share the properties of these two classical examples and exhibit a combined
mixed dynamics. In particular, it was observed that the annular billiard undergoes very
interesting dynamical bifurcations as one varies the parameters. The dynamics ranges from
integrability (when the circles are concentric) to chaotic (when the obstacle is small and
close to the exterior boundary). Between these two extreme situations, the typical mixed
Hamiltonian dynamics appears with elliptical islands surrounded by chaotic regions. The
complexity of this dynamics, as observed numerically in [24], can be seen in Figure 2.
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FIGURE 2. Change of the dynamics with the parameters as viewed from the collisions with the external boundary
(Mout) and with the obstacle (Minn).

We have here a scenario similar to other families of conservative systems as, for
instance, the standard map [17, 20]. Among billiards we mention, on one hand, the different
types of stadiums [1, 10] and mushrooms [8] and, on the other hand, the moon [13] and
lemon [9] billiards.

More general systems of convex boundaries with inner scatters have been studied by
several authors, among whom we cite Foltin, Chen, and Bolotin [6, 11, 19]. Foltin [19]
showed that for a generic choice of convex external boundary, the system has positive
topological entropy provided the obstacle’s radius is small enough. This result was also
obtained by Chen in [11] using different techniques. In both works, the dynamics around a
specific class of periodic trajectories colliding orthogonally with the obstacle (we will refer
to these as normal periodic trajectories) is at the center of the proof. The result follows
from the fact that under certain generic conditions, the dynamics in a neighborhood of
such normal periodic orbits is conjugated to a shift. Bolotin [6] has proved that also under
generic conditions on the external boundary and for small obstacles, the system presents
hyperbolic sets around the normal periodic orbits. All these results were obtained by
perturbation of the convex boundary and apply to generic situations. They do not apply to
the annular billiard, as the circular shape of the exterior boundary is certainly not generic.
Nevertheless, we use here some similar techniques and the role of normal trajectories is
also central.

Billiards in annular tables, as they have both convex and concave components, are
examples of the so-called focusing and dispersing dynamics. It is well known that the
dynamical behavior of such systems depend on the balance of these two effects. In systems
with convex components sufficiently far apart, hyperbolicity is generated through the
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defocusing mechanism [7, 16]. This is not the situation for the annular billiard and the
standard defocusing arguments do not apply, as well as for moon and lemon billiards
[9, 13]. These three models fall in a different category of systems, where hyperbolicity
comes from other mechanisms. In this work, we show how to calibrate the distance between
the centers and the radius of the inner circle to obtain hyperbolicity in large parts of the
phase space of the annular billiard. As pointed out by previous results and numerical
experiments, this hyperbolicity occurs for large eccentricity and small obstacle, that is,
δ ≈ 1 and r ≈ 0.

Thus, if on one hand, hyperbolicity seems to come from the dispersive obstacle, on the
other hand, the convexity of the outside boundary seems to be related to stability and
Kolmogorov–Arnold–Moser phenomena. The existence of stable periodic orbits in the
annular billiard, in particular, the one of period 2, was investigated by Saitô et al [24],
while an extensive study of other periodic orbits was presented by Gouesbet et al [21]. For
small eccentricity, stable orbits of small period can be observed [3, 14]. The large island of
a period-2 trajectory which exists for r > δ is clearly visible in Figure 2 as well as a period
four and a period six. As one changes the parameters in the opposite direction by increasing
the eccentricity (and decreasing the size of the obstacle), the islands become smaller and
the orbits undergo transitions from elliptic to hyperbolic. In particular, Saitô et al point out
that the system seems to become ergodic as δ → 1 and r → 0 if one considers only the
trajectories which collide with the obstacle. In this work, we focus on this last situation and
look for hyperbolic behavior. More recently, Dettmann and Fain [15] exhibited families
of stable normal periodic orbits in the annular billiard when the obstacle is small and
near the boundary, concluding that the system cannot be ergodic for open sets of values
of parameters close to this limit. The result is obtained through an explicit construction
of suitable orbits and a direct computation of their nonlinear stability. The existence of
elliptical island follows from Birkhoff’s normal form and Moser’s twist theorem. This
is sometimes a tricky problem involving hard computations in very specific situations.
Also for small obstacles and large eccentricity, we obtain elliptical islands associated to a
bifurcation of homoclinic tangencies (Newhouse phenomenon). As far as we know, this is
the first time that this mechanism is described explicitly in billiards.

The presence of these elliptical islands gives a negative answer to the question if, as
in the case of stadium-like systems, there is a region in the parameter space where the
annular billiard is fully chaotic (that is, has positive Lyapunov exponent in a region of full
measure). It is natural to ask if there are any values of the parameters such that the chaotic
region has positive measure. This is a challenging question, as well as the question of the
size of the region occupied by islands. Another challenging question is the existence (or
not) of other dynamical elements characteristic of conservative systems such as invariant
rotational curves and Aubry–Mather sets.

The goal here is to present a global picture of the dynamics on annular billiards for large
eccentricity and small obstacle considering hyperbolic and non-hyperbolic properties. The
big picture we obtain is the following: for many values of parameters corresponding to
a small eccentric obstacle, the system presents an ‘almost dense’ hyperbolic horseshoe,
corroborating the numerical observation of ‘chaos’ in [24]. However, the constructed
hyperbolic set has zero measure and, in many cases, coexists with an also ‘almost dense’

https://doi.org/10.1017/etds.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.80


Annular billiards 3549

set of elliptical islands originated from the generic bifurcation of quadratic homoclinic
tangencies (Newhouse phenomenon).

Obtaining results for the annular billiard is somehow simplified by the fact that it is
generated by two simple dynamics where the calculations can be made explicitly. What
makes the situation more delicate is that the system is singular due to the existence of
trajectories that are tangent to the obstacle which implies a loss of regularity and of
compacity. To overcome this difficulty, in §2, after writing down the billiard map explicitly,
we describe the domain of the first return to the obstacle map Gδ,r with special attention
on the image and preimages of its boundary. Understanding the geometry of these singular
curves as the parameters (δ, r) converge to (1, 0) is crucial along this work.

The key point to obtain hyperbolicity is that through a careful analysis of the tangent
map DGδ,r as r → 0, we can identify a strong expansion direction in a certain region of
the phase space. This fact gives rise to the hyperbolicity since it allows construction of
a cone field as described in §3. These cones are preserved along orbits staying in these
regions, which motivates the search for periodic orbits. In particular, a family of normal
periodic points is at the core of the construction of a hyperbolic set and in §4, we show the
abundance of these points.

Our first result is the existence of hyperbolic sets which become ‘large’, in the sense that
they converge to the entire phase space, as the obstacle decreases in size and approaches
the external boundary.

THEOREM 1. There is an open set of parameters �0 accumulating (1, 0) and a piecewise
continuous family �0 � (δ, r) �→ �δ,r of horseshoes for the first return to the obstacle map
Gδ,r such that the maximum distance of any point of the phase space to �δ,r goes to zero
as (δ, r) → (1, 0).

The proof of the above theorem is in §5. A compact invariant set in the region of
hyperbolicity is constructed from the normal trajectories which, colliding orthogonally
with the obstacle, originate periodic points of the first return map. Using the cones
described in §3 in subsets around these periodic orbits, we construct hyperbolic invariant
sets, the horseshoes mentioned in the statement of the theorem. As a part of this
construction, we obtain a symbolic description of the dynamics in the hyperbolic set �δ,r .
We show that the map Gδ,r restricted to it is conjugated to a subshift with a number of
symbols which grows to infinity as (δ, r) → (1, 0).

Analytically, a normal orbit corresponds to the intersection of two curves in the phase
space, which is transverse in the hyperbolic region. Outside the hyperbolic region, there are
tangent normal points which turn out to be closely related to non-hyperbolicity. In the last
section, we show how tangent normal periodic points give rise to tangencies of invariant
manifolds. We are able to show that for many parameters, quadratic homoclinic tangencies
between manifolds of points in the set �δ,r appear.

THEOREM 2. There is a set �′
0 ⊂ �0 accumulating (1, 0) such that the maps Gδ,r ,

for (δ, r) ∈ �′
0, present quadratic homoclinic tangencies unfolding generically with the

parameter r.
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Unlike the general setting of quadratic tangencies in dimension 2 between invariant
one-dimensional foliations, where one has to deal with the delicate analysis of intersection
of Cantor sets [23], here the reversibility of the system plays a major role. This follows
from the fact that if a branch of a stable manifold intersects the symmetry curve, then we
automatically obtain a homoclinic point of the basic set. Thus, quadratic tangency between
a branch of a stable manifold with the symmetry curve implies quadratic homoclinic
tangency.

As a consequence of the bifurcation of the homoclinic tangencies, the annular billiard
presents the so-called conservative Newhouse phenomenon with the appearance of many
elliptical islands. In fact, a detailed analysis of the bifurcation process enables one to use
Duarte’s theorem [18] to prove that for many values of the parameters, the annular billiard
has elliptical islands scattered across the phase space. This is the content of our third
theorem, also in §6. The last statement of the theorem strongly relies on our accurate
description of the hyperbolic sets.

THEOREM 3. There is a set �′′
0 accumulating (1, 0) such that if (δ, r) ∈ �′′

0 , then the map
Gδ,r has a set Eδ,r of generic elliptic periodic points. Moreover, the distance of any point
of the phase space to Eδ,r tends to zero as (δ, r) → (1, 0).

In short, we were able to discriminate dynamical structures that appear in the phase
space of the annular billiard (hyperbolic sets and elliptical islands) in the small and
eccentric obstacle limit. However, we do not have an estimate of the measure of the chaotic
region and, in fact, we do not even know if it is positive. Moreover, even if the elliptical
islands clearly sum up to a positive measure region, we do not know its extension. The
estimates of the size of a specific elliptical island are in general hard to produce, as they
usually involve a thorough analysis of normal forms. Moreover, concerning the islands
resulting from the Newhouse phenomenon in our case, we only know, as a general fact,
that they exist and have long period (and so small islands).

As a conclusion, we mention that there are several interesting questions concerning
annular billiards besides the (Lebesgue) measure of the chaotic region. For instance, it is
natural to ask if the closure of the union of the hyperbolic set(s) we produce and the islands
has full measure and, if not, what is its complement? Furthermore, one would like to have
a more precise description of the bifurcation set, specially the parameter set corresponding
to homoclinic or heteroclinic tangencies. There is also the question of the dynamics inside
an elliptical island, from the point of view of Zehnder’s genericity or the existence of
instability regions (in the sense of Birkhoff ) containing a hyperbolic set inside an island.
This problem is possibly related to the destruction of invariant curves for parameters near
the concentric case (although this is a very degenerate situation) or to the transition of the
stability of the orbits of period 2 (trajectories orthogonal both to the obstacle and to the
external boundary) or higher. Finally, we point out that some of the results we obtained
here are also true for generic external convex boundaries [4].

To summarize, the sketch of the paper is the following. In §2, we present the annular
billiard and the first return to the obstacle maps as well as the domain, with special
attention on the singularities. Section 3 contains the definition and properties of a cone
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field and §4 the description of normal periodic orbits. These are the ingredients to construct
a hyperbolic set and prove Theorem 1 in §5. Finally, in §6, we show how homoclinic
tangencies are produced (Theorem 2) and, as a consequence, we have the existence of
elliptical islands (Theorem 3).

2. Preliminaries
The billiard problem originally consists of a description of the free motion of a point
particle in a bounded region of the plane with elastic collisions at the boundary.
Conservation of energy and linear momentum implies the reflection law at impact. As
a conservative system with two degrees of freedom, each state is given by a point in
the region and a unitary vector which accounts for the direction of motion. After some
identifications, the time evolution is given by a three-dimensional flow [12, 19], which
in our case is defined for all time. It is usual to study the billiard dynamics through a
restriction to the Poincaré section taken at the boundary of the region. The billiard map
is then defined by the first return to boundary and thus associates to each impact, the
next one.

Given an annular region Qδ,r⊂ R2, we assume that the normal vectors point inside it.
The external circular boundary γ is parameterized by its central angle s ∈ S1 and is
oriented counterclockwise, while the inner circular obstacle α is parameterized by its
central angle ω ∈ S1, and is oriented clockwise. Here, we consider S1 ∼ (−π , π ]. As
usual, the billiard map is described by two variables: one for the position on the boundary
(s or ω) and one for the direction of the trajectory, given by the oriented angle from
the inward normal vector to the outgoing velocity (θ at the exterior boundary and β

at the obstacle). A collision with the external circle γ is then represented by a point
(s, θ) in the open cylinder Mout = S1 × (−π/2, π/2) and a collision with the obstacle
α is represented by a point (ω, β) in the closed cylinder Minn = S1 × [−π/2, π/2]. The
disconnected phase space of the billiard map T = Tδ,r is the union M = Mout ∪ Minn.
We observe that the map may be extended by considering the boundary of Mout as fixed
points. To lighten our notation, we will frequently omit the subscript δ, r that indicates the
dependence of the maps and sets on the parameters. We will also refer to the inner circle
as the obstacle and to the external circle simply as the circle or the boundary.

So, T : M → M denotes the billiard map in the annular region in general. It is well
defined and is invertible, as it is reversible with respect to the involution R(a, b) =
(a, −b), i.e. T −1 = R ◦ T ◦ R. This reversibility implies that the phase space is symmetric
with respect to the middle horizontal line. In particular, every orbit has its symmetrical
which corresponds to the same trajectory traveled in the opposite direction.

As described below, T is defined by parts: it is a piecewise diffeomorphism with a
singular set generated by the tangent collisions with the concave obstacle. Here, T is
globally C0 and piecewise C∞.

To describe T, we must distinguish between three different situations: the collisions from
the obstacle to the (external) circle, from the circle to the obstacle, and from the circle to the
circle. Any trajectory from the obstacle will hit the circle in the sequence, which implies
that T (Minn) ⊂ Mout and T −1(Minn) ⊂ Mout. A trajectory leaving the circle will hit the
obstacle if and only if |sin θ + δ sin(θ − s)| ≤ r . We introduce the sets
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FIGURE 3. M+
inn (gray) and M−

inn (white) in the complement of the whispering gallery in Mout (scaled), for r > δ,
r < δ, r � δ, r � δ ≈ 1.

T (Minn) = M+
inn = {(s, θ) : |sin θ + δ sin(θ + s)| ≤ r}, (2.1)

T −1(Minn) = M−
inn = {(s, θ) : |sin θ + δ sin(θ − s)| ≤ r},

which are topological cylinders in Mout (Figure 3).
The restriction T : Minn → M+

inn (from the obstacle to the boundary) is implicitly
given by

T (ω, β) = (s, θ) with

⎧⎪⎪⎨⎪⎪⎩
sin θ + δ sin(θ + s) = −r sin β,

ω + β = −s − θ ,

and |sin θ + δ sin(θ + s)| ≤ r .

(2.2)

Considering the trajectories leaving the exterior boundary, the restriction T : M−
inn →

Minn (from the boundary to the obstacle) is implicitly given by

T (s, θ) = (ω, β) with

⎧⎪⎪⎨⎪⎪⎩
sin θ + δ sin(θ − s) = −r sin β,

ω − β = θ − s,

where |sin θ + δ sin(θ − s)| ≤ r .

(2.3)

In the particular case of a trajectory from the boundary to the boundary without
colliding with the obstacle, the map T : Mout \ M−

inn → Mout is given by the circular
billiard map (denoted by F)

T (s, θ) = F(s, θ) = (s + π − 2θ , θ). (2.4)

The map from the exterior boundary is then clearly discontinuous on T −1(∂Minn).
The concavity of the obstacle implies the existence of unavoidable tangent collisions
corresponding to ∂Minn = {β = ±π/2}. Moreover, the map T is not differentiable on
∂Minn. The map T has then a singular set given by the curves ∂Minn ∪ T −1(∂Minn) and
the inverse T −1 has a singular set ∂Minn ∪ T (∂Minn). Out of the singular set, T is a C∞
diffeomorphism.

It is also well known that the billiard map is conservative and preserves the measure μ

given in Mout by dμ = cos θ ds dθ and in Minn by dμ = r cos βdωdβ. In the canonical
variables (tangential momentum and arc length), the Lebesgue measure dpds is preserved.
This can also be directly checked from the expressions in equations (2.2), (2.3), and (2.4)
above. The choice of the coordinate ω in Minn instead of the usual arc length is particularly
convenient as we want to use arguments with r → 0.

Trajectories leaving the exterior boundary in almost tangential directions will circulate
around without hitting the obstacle. More precisely, if a trajectory leaves the exterior
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boundary with an angle |sin θ | > δ + r , it will follow the circular billiard motion forever
with a circular caustic concentric to the boundary. The corresponding invariant region
in Mout is a cylinder foliated by invariant rotational horizontal curves, clearly visible in
Figure 2. This region is known as the whispering gallery and we denote it by Mw ⊂ Mout.
In addition to the whispering gallery, there are other trajectories from the exterior
boundary which do not hit the obstacle. They necessarily correspond to periodic orbits
in Mc

w\(M+
inn ∪ M−

inn) ⊂ Mout as any non-periodic trajectory in the circular billiard would
be dense on the caustic of radius |sin θ | < r + δ and so cannot avoid the obstacle.

However, a trajectory leaving the obstacle and hitting the boundary with |sin θ | < δ + r

will hit the obstacle again an infinite number of times. As for |sin θ | = δ + r , the only
trajectories leaving the obstacle and not returning to it occur when the orbit of a tangent
point (ω, β) = (π , ±π/2) of Minn is not periodic (the trajectory corresponds to the circular
billiard caustic of radius δ + r). So, with a possible exception of two points, every point
(ω, β) ∈ Minn has a finite return time to Minn:

ν(ω, β) = min{j ≥ 1 : T j (z) ∈ Minn}.
This will allow us to define the first return to the obstacle map

G = Minn → Minn, G(ω, β) = T ν(ω,β)(ω, β) = T ◦ Fν(ω,β)−2 ◦ T (ω, β).

So, a trajectory leaving the obstacle from (ω0, β0) will return to it at (ω1, β1) = G(ω0, β0)

after m = ν(ω0, β0) − 2 collisions with the external boundary at points (s0, θ0) =
T (ω0, β0), . . . , (sm, θ0) = Fm(s0, θ0) with (ω1, β1) = T (sm, θ0).

From the properties of the billiard map, G is a piecewise C∞ diffeomorphism. We
denote its set of singularities by S− = ∂Minn ∪ G−1(∂Minn). The singular set of G−1 is
denoted by S+ = ∂Minn ∪ G(∂Minn).

The annular billiard has two period-two trajectories, bouncing between the obstacle and
the exterior boundary with orthogonal collisions. They correspond to the fixed points of
the first return map G: (0, 0) and (π , 0). The second is always hyperbolic, while the first
one is hyperbolic if r < δ and elliptic (in fact, Moser stable) if r > δ [2, 3, 14, 24]. The
annular billiard has also many other periodic normal trajectories, as the orbits presented in
§4, which play a very important role in the dynamics and in our analysis, as in [11, 19].
The stability of some of these orbits was established in [15]. It is clear that the stability
of periodic orbits and the dynamics depend on the parameters. In particular, numerical
experiments seem to indicate that, in addition to the period-2 orbit, the other short period
elliptical orbits also loose stability as r decreases. This is one reason why, to investigate the
chaotic behavior of the annular billiard, we focus on the dynamics for small r < δ. More
precisely, we will present results on the two-parameter family of maps Gδ,r , describing
some aspects of the dynamics as (δ, r) → (1, 0).

In our strategy, the parameter dependence of some relevant subsets of the phase space is
very important. The sets M+

inn and M−
inn are contained in the cylinder Mc

w = |sin θ | ≤ r +δ,
the complement of the whispering gallery in Mout. The boundaries of these cylindrical
sets, as defined in equation (2.1), are given by the curves

∂M±
inn = |sin θ + δ sin(θ ± s)| = r ,
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which have a single point of tangency with the top and the bottom of Mc
w. For fixed δ, the

whispering gallery grows when the obstacle becomes smaller and so these sets become
thinner as r goes to 0, as we will present below (see Figure 3).

If we denote the horizontal line corresponding to orbits leaving the obstacle in the
normal direction by

L0 = {(ω, β) | β = 0} ⊂ Minn, (2.5)

its image and preimage in Mout are defined by

L+
δ = T (L0) = {(s, θ) : sin θ + δ sin(θ + s) = 0}, (2.6)

L−
δ = T −1(L0) = {(s, θ) : sin θ + δ sin(θ − s) = 0}.

We notice that these sets depend only on δ, the eccentricity parameter.
It follows that the boundaries ∂M+

inn and ∂M−
inn converge as r goes to 0 respectively to

the curves L+
δ and L−

δ . Therefore, as r → 0, the subsets M±
inn become narrow cylindrical

strips that also converge to the curve L±
δ . This contraction has deep consequences on the

dynamical behavior. We also point out that the curves L+
δ and L−

δ are graphs of analytic
functions of θ converging uniformly in (−π , π), as δ → 1 to the lines 2θ ± s = 0. As for
any δ, s = ±π implies θ = 0, the limit is strongly discontinuous.

Another relevant preliminary observation is that for δ > r , the domains M+
inn and M−

inn
do not contain any horizontal line θ = constant. Moreover, in this case, the intersection
M+

inn ∩ M−
inn as two distinct connected components, each one containing one period-2

orbit, correspond to the two fixed points of the first return to the obstacle map: (0, 0)

and (π , 0) ∈ Minn.
We note again that, to make the notation lighter and the reading easier, we will drop the

subscripts δ, r of maps and sets in our proofs and computations whenever the parameters
are fixed and the dependence on them is clear.

3. Finding regions of hyperbolicity: cone fields
In this section, we will show that the annular billiard presents hyperbolicity for a wide
choice of parameters. This hyperbolicity follows from the existence of a cone field, which,
in some region of the collision with the obstacle set Minn, is strictly preserved by the first
return to the obstacle map G. As vectors in the cone are uniformly expanded, any invariant
compact set will be uniformly hyperbolic.

Defining horizontal/vertical cone fields z �→ C±(z) for z = (ω, β) ∈ int Minn by

C+(z) := {u = (u1, u2) ∈ TzM : u2.u1 ≥ 0}, (3.1)

C−(z) := {u = (u1, u2) ∈ TzM : u2.u1 ≤ 0},
we have the following theorem.

THEOREM 3.1. There is a subset �∗ ⊂ � of parameters such that for each (r , δ) ∈ �∗,
there are subsets H±

δ,r ⊂ Minn with H+
δ,r = Gδ,r (H

−
δ,r ), where:

(i) the map Gδ,r : H−
δ,r → H+

δ,r (respectively G−1
δ,r : H+

δ,r → H−
δ,r ) strictly preserves the

cone field C+(respectively C−);
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(ii) for points in H−
δ,r (respectively H+

δ,r )

‖DGδ,r‖ (respectively ‖DG−1
δ,r ‖) ≥ ρ (3.2)

with ρ → ∞ as r → 0.

As a consequence, we obtain the following corollary.

COROLLARY 3.2. If (δ, r) ∈ �∗ and � ⊂ H−
δ,r is a compact invariant set for Gδ,r then �

is a uniformly hyperbolic set for Gδ,r .

As usual, we will drop the subscript δ, r in maps and sets.
Let us consider a trajectory leaving the obstacle with (ω0, β0) ∈ Minn\S− and returning

to it with (ω1, β1) = G(ω0, β0), after m + 1 impacts with the exterior border γ given
by {(s0, θ), . . . , (sm, θ)}. A straightforward computation from equations (2.3), (2.2), and
(2.4) leads to the following expression of the derivative of the map:

DG(ω0, β0) =
(

a11 a12

a21 a22

)
= a21

(
1 1
1 1

)
+

(
ã11 ã12

0 ã22

)
, (3.3)

where

a21 = − cos θ

r cos β1

(
δ cos ϕ0

cos θ
+ δ cos ϕ1

cos θ
+ 2(m + 1)

δ cos ϕ0

cos θ

δ cos ϕ1

cos θ

)
(3.4)

and

ã11 = 1 + 2(m + 1)
δ cos ϕ0

cos θ
, (3.5)

ã22 = cos β0

cos β1

(
1 + 2(m + 1)

δ cos ϕ1

cos θ

)
,

ã12 = 1 + cos β0

cos β1
+ 2(m + 1)

(
δ cos ϕ0

cos θ
+ cos β0

cos β1

δ cos ϕ1

cos θ
− r

cos β0

cos θ

)
= ã11 + ã22 − 2r(m + 1)

cos β0

cos β1
.

Here, ϕ0 = s0 + θ = −ω0 − β0 and ϕ1 = sm − θ = −ω1 + β1 represent the angle
between the outgoing trajectory leaving the obstacle (respectively incoming back) and
the horizontal direction. It is worthwhile to note that det DG = cos β0/ cos β1.

The key observation is that as r approaches zero, the first matrix in the sum dictates
the behavior of the tangent map as long as a21 �= 0. However, it is easy to check that a21

is negative at (0, 0) and positive at (π , 0), corresponding to the 2-periodic trajectories.
However, it is clear that a21 vanishes if the trajectory paths between the obstacle and the
boundary are vertical, as ϕ0 = ϕ1 = ±π/2. These observations indicate that there is no
hope to bound a21 away from zero globally on Minn. Our strategy then is to find a subset
of parameters �∗ and a subset of phase space H−

δ,r where all the entries of the matrix DG

are non-zero and have the same sign. This will imply the preservation of the cone C+ for
G and, by reversibility, also implies the preservation of the cone C− by G−1 [27, 28].
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LEMMA 3.3. Let ζ = δ cos ϕ/cos θ . If δ2 > 1
2 and r < 1

4 (δ − δ2), then for any ϕ ∈
[0, 2π ], θ ∈ [−π/2, π/2] such that |sin θ + δ sin ϕ| ≤ r and |sin θ | ≤ δ2, we have

ζmin = δ

2

√
3

1 + δ2 < |ζ | <
√

δ = ζmax.

Moreover, ζmin > 1/2 and ζmax < 1.

Proof. If we use the coordinates x = −δ sin ϕ and y = sin θ , we have that ζ 2 =
(δ2 −x2)/(1−y2) should be bounded on the compact parallelogram {(x, y) : |y−x| ≤ r

and |y| ≤ δ2}. As ∇ζ 2 = 2/(1 − y2)(−x, ζ 2y), the origin is the only critical point inside
the domain. It is a saddle with ζ 2(0, 0) = δ2, and so minimum and maximum should be
on the boundary. Because of the symmetry of the function ζ 2, we can restrict our search
for the maximum and minimum values to the region bounded by the lines y = x + r ,
y = x − r , y = δ2, and the axes x = 0, y = 0.

The level curves of ζ 2 = k2 are the hyperbolas k2 − δ2 = k2y2 − x2 and so, corre-
sponding to ζ 2 = δ2, we have the asymptotes x2 = δ2y2. The hyperbolas with vertices
on the y axis have ζ 2 > δ2 and those with vertices on the x axis correspond to ζ 2 < δ2.
This implies that the maximum value of ζ 2 occurs on the segment of the line y =
x + r between the y axis and the asymptote x = δy, that is, between the points (0, r)

and (δr/(1 − δ), r/(1 − δ)). Moreover, at the maximum point (x∗, y∗), we have that
∇ζ 2.(1, 1) = 0 and so the maximum value ζ 2(x∗, y∗) = x∗/y∗. As x∗ = y∗ − r , it follows
that ζ 2(x∗, y∗) = 1 − r/y∗ and since r < y∗ < r/(1 − δ), we have that

ζ 2(x∗, y∗) < δ < 1.

Since the slope of the components of the boundary is 1 or 0, it is clear that no hyperbola
with ζ 2 < δ2 can have a tangency with them and so the minimum value must occur at a
vertex. Comparing the values, and using that r < 1/4(δ − δ2), it is easy to check that the
minimum value is

δ2 − (δ2 + r)2

1 − δ4 = ((δ − δ2) − r)(δ + δ2 + r)

(1 + δ2)(1 − δ2)
>

3
4

δ2

1 + δ2 >
1
4

.

Following Lemma 3.3 above, we define the horizontal strip Hδ = {(s, θ) such that
|sin θ | < δ2} ⊂ Mout and the subsets of Minn:

H−
δ,r = T −1(Hδ), H+

δ,r = T (Hδ), and H̄δ,r = H+
δ,r ∩ H−

δ,r . (3.6)

Its easy to check that G(H−
δ,r ) = H+

δ,r and R(H−
δ,r ) = H+

δ,r , and from equations (2.3) and
(2.2), we have

H±
δ,r = {(ω, β) : |δ sin(ω ∓ β) + r sin β| < δ2}. (3.7)

As noticed at the end of §2, if r < δ, the intersection of any horizontal strip in Mout

with either M+
inn or M−

inn has two distinct connected components. So, H±
δ,r ⊂ Minn also

have two connected components, one containing the point (0, 0) and the other the point
(π , 0). These components are bounded by the four curves with endpoints in ∂Minn given
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FIGURE 4. H+
δ,r ⊂ Minn for r > δ, r < δ, r � δ, r � δ ≈ 1.

by |δ sin(ω ∓ β) + r sin β| = δ2. Each of the components of Minn\H±
δ,r contains one of

the points (−π/2, 0) or (π/2, 0) (Figure 4).
Fixing δ and taking r → 0, the curves in ∂H−

δ,r\∂Minn converge to the straight lines
given by |sin(ω + β)| = δ. Thus, as (δ, r) → (1, 0), the components of Minn\H−

δ,r shrink
to the decreasing lines ω + β = ±π/2 and hence the set H−

δ,r converges, in Hausdorff
sense, to Minn. Similarly, as (δ, r) → (1, 0), the components of Minn\H+

δ,r shrink to the
lines ω − β = ±π/2, and H−

δ,r converges to Minn.

LEMMA 3.4. For δ2 > 1
2 and r < 1

4 (δ − δ2), if (ω0, β0) ∈ H−
δ,r , then |a21| ≥ 4A/

√
r ,

where A is a constant depending only on δ.

Proof. Using the notation of Lemma 3.3, we can write

a21 = − cos θ

r cos β1
(ζ0 + ζ1 + 2(m + 1)ζ0ζ1).

As (ω0, β0) ∈ H̄ and we have r < 1
4 (δ − δ2),

cos2 θ > 1 − δ4 = (1 + δ2)(1 + δ)(1 − δ) ≥ δ(1 − δ) > 4r .

For any m ≥ 0, we consider

gm(x, y) = 2(m + 1)xy + x + y

in the region D = {(x, y) : ζmin ≤ |x|, |y| ≤ ζmax}, which corresponds to four equal
squares in the plane, and we want to estimate its minimum value. Here, gm has a saddle
point at (−1/2(m + 1), −1/2(m + 1)) with gm = −1/2(m + 1). The level curves are
hyperbolas with asymptotes through the saddle point parallel to the x, y axes. There
are two distinct level curves with gm = 0, one through (0, 0) and the other through
(−1/(m + 1), −1/(m + 1)). These level curves are outside the four squares as ζmin >

1/2 and ζmax < 1, and so the minimum value should be on one of the corners. It
is easy to check that in fact the minimum occurs at the vertex closest to the point
(−1/(m + 1), −1/(m + 1)). For m = 0, it is the point (−ζmin, −ζmin), while for m ≥ 1,
it is (−ζmax, −ζmax). It follows that

|ζ0 + ζ1 + 2(m + 1)ζ0ζ1| ≥
{

2(ζmax − ζ 2
max) if m = 0,

2((m + 1)ζ 2
min − ζmin) if m ≥ 1.

So we have |g0| ≥ 2(
√

δ − δ) and for m ≥ 1, |gm| ≥ |g1| ≥ 2(6δ2/2(1 + δ2) −
δ
√

3/2
√

1 + δ2). If we denote
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A = min
{
(
√

δ − δ),
(

6δ2

2(1 + δ2)
− δ

√
3

2
√

1 + δ2

)}
, (3.8)

the lower bound on |a21| follows. In fact, we have g0 ≥ 2A and for m ≥ 0,

|gm| ≥ (m + 1)A.

LEMMA 3.5. For δ2 > 1
2 and r < 1

4 (δ − δ2), if (ω0, β0) ∈ H−
δ,r , then∣∣∣∣ ã11

a21

∣∣∣∣ ≤ A11
√

r ,
∣∣∣∣ ã22

a21

∣∣∣∣ ≤ A22
√

r ,
∣∣∣∣ ã12

a21

∣∣∣∣ ≤ A12
√

r ,

where the constants A11, A22, and A12 depend only on δ.

Proof. Following the notation and definitions in the proof of Lemma 3.4 above, we have∣∣∣∣ ã11

a21

∣∣∣∣ =
∣∣∣∣ r cos β1

cos θ

∣∣∣∣|fm(ζ0, ζ1)|,∣∣∣∣ ã22

a21

∣∣∣∣ =
∣∣∣∣ r cos β0

cos θ

∣∣∣∣|fm(ζ1, ζ0)|,∣∣∣∣ ã12

a21

∣∣∣∣ ≤
∣∣∣∣ ã11

a21

∣∣∣∣ +
∣∣∣∣ ã22

a21

∣∣∣∣ +
∣∣∣∣ r cos β0

cos θ

∣∣∣∣∣∣∣∣ r cos β1

cos θ

∣∣∣∣∣∣∣∣ 1
gm(ζ0, ζ1)

∣∣∣∣,
where

fm(ζ0, ζ1) = 1 + 2(m + 1)ζ0

gm(ζ0, ζ1).

If ζmin ≤ |ζi | ≤ ζmax, we have

|fm(ζ0, ζ1)| ≤ 4(m + 1)
√

δ

(m + 1)A
= 4

√
δ

A

and as 1/ cos θ <
√

r/2, it follows that∣∣∣∣ ã11

a21

∣∣∣∣ ≤ 2
√

δ

A

√
r ,

∣∣∣∣ ã22

a21

∣∣∣∣ ≤ 2
√

δ

A

√
r ,

∣∣∣∣ ã12

a21

∣∣∣∣ ≤ 4
√

δ + 1/4
A

√
r .

Proof of Theorem 3.1. With the constant A defined by equation (3.8), we consider the
continuous function:

r(δ) < min
{

1
4
(δ − δ2),

A2

(1/4 + 4
√

δ)2

}
and define the set of parameters:

�∗ = {
(δ, r) : δ2 > 1

2 and 0 < r < r(δ)
}
, (3.9)

which is has no empty interior and accumulates (1, 0) as A → 0 when δ → 1.
It is then clear that if (δ, r) ∈ �∗ and (ω, β) ∈ H−

δ,r , the matrix DG(ω, β) as given in
equation (3.3) has either positive or negative entries and so the cone field C+ is strictly
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preserved. Moreover, taking u = 1/
√

2(1, 1) ∈ C+, we have

DG(ω, β)u = a21

[(√
2√
2

)
+ 1√

2 a21

(
a11 + a12

a22

)]
with, from Lemma 3.5, e = (

√
(a11 + a12)2 + a2

22/
√

2|a21|) < K
√

r for some constant K
depending only on δ.

We have then

‖DG(ω, β)‖ ≥ ‖DG(ω, β) u‖ ≥ |a21|(2 − e) > ρ, (3.10)

where ρ is a constant depending only on δ, which can be chosen using the bound on a21

from Lemma 3.4. Moreover, ρ → ∞ as r → 0.
By reversibility, G−1 : H+

δ,r\S+ → H−
δ,r\S− preserves the cones C−, expanding vec-

tors by the rate ρ.

A closer look at the tangent map DG as given by equation (3.3) shows that as
r → 0, it strongly contracts vectors to the diagonal (1, 1) direction, while the inverse
DG−1 contracts to (−1, 1). We can use this fact to obtain more precise estimates on the
expansivity and control on the hyperbolicity. To do so, we introduce the notion of stable
and unstable curves, which play a fundamental role in our geometric arguments to exhibit
both hyperbolic and non-hyperbolic behavior in the annular billiard, as studied in §§5
and 6.

Definition 3.6. For (δ, r) ∈ �∗, let

c1 = min
(ω, β)∈H−

δ,r

a21(ω, β)

a11(ω, β)
and c2 = max

(ω, β)∈H−
δ,r

a22(ω, β)

a12(ω, β)
,

and note that c1, c2 → 1 as r → 0. A C1-curve �(t) = (ω(t), β(t)) is called unstable if
�(t) ⊂ H−

δ,r and c1 ≤ β ′(t)/ω′(t) ≤ c2, and it is called stable if �(t) ⊂ H+
δ,r and −c2 ≤

β ′(t)/ω′(t) ≤ −c1. If β ′(t) = 0, the curve is horizontal.

We summarize in the following propositions some properties of stable and unstable
curves which can be easily derived from the arguments leading to Theorem 3.1.

PROPOSITION 3.7. Let � be a C1-curve and |�| denote its length. Then, for (δ, r) ∈ �∗,
the following properties hold.
(1) If � is stable (unstable), then it is the graph ω = f (β) of a 1/c1-Lipschitz monotone

function f. Moreover, for r ≈ 0, a stable (unstable) curve is C1 close to a straight
segment of slope −1(1).

(2) If � ⊂ H−
δ,r is either an unstable or a horizontal curve, then Gδ,r (�) is unstable and

|Gδ,r (�)| ≥ ρ|L|.
(3) If � ⊂ H+

δ,r is either a stable or a horizontal curve, then G−1
δ,r (�) is stable and

|G−1
δ,r (�)| ≥ ρ|�|.

As defined by equation (3.10), the expansion rate ρ depends only on δ and goes to ∞ as
r → 0.
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FIGURE 5. Normal trajectories.

We also have the following description of the set of the singularities of G : Minn →
Minn, given by S−

inn = ∂Minn ∪ G−1(∂Minn) and its inverse.

PROPOSITION 3.8. For (δ, r) ∈ �∗, the singular set of the restriction Gδ,r : H−
δ,r → H+

δ,r
consists of segments of curves either stable or horizontal. Analogously, the singular set
of the restriction G−1

δ,r : H+
δ,r → H−

δ,r consists of segments of curves either unstable or
horizontal.

Proof. From equations (2.2), (2.3), or also from general results about the set of singu-
larities of billiards [12], the singular set consists of an union of compact arcs of C∞
curves with no other intersection than its endpoints. As the curves in ∂Minn are horizontal,
to characterize the singular set of G, we only need to analyze curves in ∂G−1(Minn).
Let us consider a smooth component of (S−

inn ∩ H−
δ,r ) ∩ ∂G−1(Minn). Any such curve is

the pre-image G−1(�) of some (horizontal) curve � ⊂ ∂Minn. Taking a sequence {�n} of
horizontal curves in H+

δ,r\S+
inn converging, in C1 topology, to the curve � as n → ∞, from

Proposition 3.7, {G−1(�n)} is a sequence of stable curves approaching G−1(�) as n → ∞.
This implies that G−1(�) is a stable curve.

4. Normal periodic points
Our strategy to obtain both hyperbolicity and non-hyperbolicity is based on the study
of the behavior of the first return to the obstacle map G in the neighborhood of some
particular periodic orbits known as normal orbits [19]. A normal periodic trajectory leaves
the obstacle α in the normal direction and, after hitting the exterior circle γ at m + 1 points
(m ≥ 1), collides with the obstacle again in the normal direction and, therefore, the same
path is traversed with reversed orientation giving rise to an orbit of period 2 for G (or
period 2(m + 2) for T), as shown in Figure 5. The two 2-periodic trajectories, one from
ω = π and the other from ω = 0, which exist for any values of the parameter, are also
normal orbits with m = 0. Both correspond to fixed points of G. There are also normal
periodic orbits with more intermediate hits on the obstacle between the two normal hits,
as well as non-periodic trajectories with only one normal hit on the obstacle. However, we
will not consider these two last kinds of normal trajectories and, unless specified, we will
use the term normal orbits (or trajectories) only to refer to the two 2-periodic trajectories
and to trajectories with exactly two (normal) impacts with the obstacle.

The annular billiard has many normal orbits and, in fact, their number increases as
r decreases. Examples of normal orbits may be constructed in the annular billiard from
trajectories leaving the obstacle in the normal direction and colliding with the external
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boundary with a rational angle θ = (p/q)π . This situation corresponds to a piece of a
trajectory in the circular billiard passing twice through the center of the obstacle. Clearly,
this construction produces a normal periodic trajectory in the annular billiard for every r
small enough (Figure 5). It is also clear that the path, and so the period of a normal orbit,
for a given δ, remains unchanged as r decreases. As r → 0, each rational θ will define
a normal orbit, implying that the number of normal (periodic) orbits tends to infinity in
this limit. The unlimited increase of the number of normal orbits is fundamental in our
arguments.

In an abuse of language, for a given δ, we will call a point (ω, 0) simply a normal
point if it corresponds to a normal orbit (with two normal hits on the obstacle) for r small
enough, even though strictly speaking, any point (ω, 0) corresponds to a trajectory leaving
the obstacle in the normal direction.

In general, as the curve L0 ⊂ Minn defined by equation (2.5) denotes the set of
orthogonal collisions with the obstacle, normal points (ω, β = 0) correspond to the
intersection L0 ∩ G−1(L0) ⊂ Minn. It follows that (s, θ) = T (ω, 0) ∈ L+

δ ∩ F−m(L−
δ ) ∈

Mout and so normal points correspond to the solutions of the system

L+
δ : sin θ − δ sin ω = 0,

F−m(L−
δ ) : sin θ − δ sin(ω − (m + 1)(π − 2θ)) = 0. (4.1)

It is worthwhile to notice that normal orbits are symmetric, in the sense that if (s, θ)

belongs to the orbit, so does the point (s, −θ).
A normal trajectory of period 2(m + 2) is specified by

{(ω0, β = 0), (s0, θ0), . . . , (sm, θm), (ω1, 0)} with sk = s0 + k(π − 2θ0) and θk = θ0,

with s0 = −θ0 − ω0, ω1 = θ0 − sm, and where ω0 and θ0 must satisfy the system in
equation (4.1) above. In particular, for any fixed m ≥ 1, this system has a solution with
θ rational, that is, a rational multiple of π . However, a solution of the above system will be
a normal orbit in the annular billiard if |sin θk + δ sin(θk − sk)| > r for 0 ≤ k < m, which
clearly is verified for any r small enough. This shows that for any δ fixed, the number of
normal periodic orbits goes to infinity as r decreases to zero.

Definition 4.1. A point (ω, 0) ∈ L0 ∩ G−1(L0) is a transverse (respectively tangent)
normal point if the intersection is transverse (respectively tangent).

Whether a normal point (ω, 0) is transverse or not depends on the intersection T (ω, 0) ∈
L+

δ ∩ F−m(L−
δ ). From equation (4.1), we have that a tangency occurs if and only if

cos θ(cos ω − cos(ω − (m + 1)(π − 2θ)) = 2(m + 1)δ cos ω cos(ω − (m + 1)(π − 2θ))

with sin ω = sin(ω − (m + 1)(π − 2θ)). (4.2)

This implies that tangencies are given by

cos ω = 0 or
δ cos ω

cos θ
= −1

m + 1
. (4.3)

It follows from Lemma 3.3 that, for (δ, r) ∈ �∗, all normal points in H−
δ,r are transverse.

Outside H−
δ,r ∪ H+

δ,r , we will consider only tangent normal points given by cos ω = 0, as in
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Figure 5. As already observed in §3, this last condition implies that a21 = 0 in the tangent
map DG and so these trajectories represent an obstruction to hyperbolicity as obtained
there. In fact, we shall see that transverse normal points give rise to hyperbolicity, while
tangent normal points are related to non-hyperbolic dynamics.

We emphasize that trajectories of normal points depend only on δ (continuously) and
do not depend on r, since this variable does not intervene in the system in equation (4.1)
or equations (4.2) and (4.3). This is an important remark, as it allows us to use the limit
r → 0.

5. Hyperbolic sets around transverse normal points
In this section, we will prove Theorem 1 by exhibiting a set of parameters �0, where each
first return to the obstacle map Gδ,r has a horseshoe �δ,r . The point (δ = 1, r = 0) is
an accumulation point of the set �0 and the family of horseshoes �δ,r converges to the
entire phase space as (δ, r) → (1, 0). The construction of the horseshoes follows standard
arguments as in [26] and uses, in addition to the preservation of cones, the geometric
properties of the maps in the neighborhood of transverse normal points, which we describe
below.

Following the construction in §4, given δ ∈ [1/
√

2, 1), we can choose ωi , such that
(ωi , 0) is a transverse normal point for every r sufficiently small. We denote by Si the
closure of the connected component of Minn\S−

inn containing (ωi , 0), so all the points
in int(Si) have the same returning time ν = ν(ωi , 0). The normal trajectory of (ωi , 0) is
2ν periodic and has only two collisions with the obstacle. Since by definition, normal
trajectories have no tangential collisions with the obstacle, the billiard map T, and so the
first return map G, is a C∞ diffeomorphism in int(Si). Again, we often omit the dependence
on δ and r of the maps and sets; however, we stress that most of the properties of normal
transverse periodic orbits depend only on δ and are actually continuous on this parameter.
A key point in our geometric construction of horseshoes is that, for small r, Si and Ui =
G(Si) are essentially parallelograms with two sides in the distinct components of ∂Minn.
This geometric concept will be important in our arguments.

Definition 5.1. A compact connected set S ⊂ Minn is essentially a parallelogram if
its boundary is the union of four distinct curves that are C1 close to the sides of a
parallelogram.

Definition 5.2. A compact connected set S ⊂ Minn bounded by two disjoint stable
(unstable) curves connecting the two opposite components of ∂Minn, will be called a stable
(unstable) strip.

The expression connecting ∂Minn will be always mean connecting the two different
components of ∂Minn.

LEMMA 5.3. For each fixed eccentricity δ ∈ [1/
√

2, 1), and any normal point (ωi , 0),
with |sin ωi | < δ, there is ri such that for all r ≤ ri , the following properties hold.
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(1) Si � (ωi , 0) is a stable strip bounded by two stable curves in G−1(∂Minn) connecting
the two distinct components ∂Minn and converging in the C1 topology to the
decreasing straight line J−

i = {(ω, β) : ω + β = ωi} as r → 0.
(2) Ui � G(ωi , 0) = (ω̂i , 0) is an unstable strip bounded by two unstable curves in

G(∂Minn) connecting ∂Minn and converging in the C1 topology to the increasing
straight line J+

i = {(ω, β) : ω − β = ω̂i} as r → 0.

Proof. By reversibility, it is enough to prove property (1). The first return to the obstacle
time of (ωi , 0) is ν(ωi , 0) = mi + 2 for some integer mi ≥ 0. So, the first return map
restriction G : Si → Ui decomposes as G = T ◦ Fmi ◦ T and by definition, Si is the
connected component containing (ωi , 0) of the set Minn ∩ G−1(Minn)\(T −2(Minn) ∪
· · · ∪ T −mi−1(Minn)).

To describe Si , we consider its image T (Si) which is a subset of M+
inn ∩ F−mi (M−

inn).
If Vi denotes the connected component of M+

inn ∩ F−mi (M−
inn) containing T (ωi , 0), it is

clear that T (Si) ⊂ Vi and we have

T (Si) = Vi\(F−1(M−
inn) ∪ . . . F−mi+1(M−

inn)) ⊂ M+
inn ∩ F−mi (M−

inn) ⊂ Mout. (5.1)

As observed at the end of §2, ∂M±
inn −→

r→0
L±

δ , so for j = 0, . . . , mi , we have

Fj (∂M+
inn) −→

r→0
Fj (L+

δ ), F−j (∂M−
inn) −→

r→0
F−j (L−

δ ) in C∞ topology, (5.2)

F±j (M±
inn) −→

r→0
F±j (L±

δ ) in the Hausdorff set distance.

The set H, defined in §3, is the horizontal strip |sin θ | < δ2, so the choice |sin ωi | means
that (ωi , 0) ∈ H− for any r and so it is a transversal normal point. It follows that the
intersection L+

δ ∩ F−mi (L−
δ ) at T (ωi , 0) is also transversal. By definition, Vi ⊂ M+

inn ∩
F−mi (M−

inn), so this transversality and equation (5.2) imply that

Fj (Vi) −→
r→0

T j+1(ωi , 0) for j = 0, . . . , mi . (5.3)

However, as the first returning time is mi + 2, T mi+1(ωi , 0) ∈ M−
inn, but T j (ωi , 0) /∈ M−

inn
for j = 1, . . . , mi . From equations (5.1) and (5.3), we can choose ri small enough that if
r ≤ ri , we have Fj (Vi) ∩ M−

inn = ∅ for j = 1, . . . , mi , implying that, in fact, T (Si) = Vi .
Furthermore, the convergence of T (Si) to T (ωi , 0) in equation (5.3) and the transver-

sality of the intersection between L+
δ and F−mi (L−

δ ) at this point, together with the
convergence of ∂M+

inn to L+
δ and of F−mi (M−

inn) to F−mi (L−
δ ) in equation (5.2), imply

that for r small enough, T (Si) is essentially a parallelogram bounded by two curves in
∂M+

inn and two curves in F−mi (∂M−
inn). Hence, Si ⊂ Minn is a strip bounded by two curves

in T −1 ◦ F−mi (∂M−
inn) ⊂ G−1(∂Minn) connecting ∂Minn.

Moreover, we have that T (ωi , 0) = (s, θ) with |sin θ | < δ2, which means that
T (ωi , 0) ∈ H and clearly we can set ri such that T (Si) ⊂ H = T (H−) implying that
Si ⊂ H−. Thus, the two curves connecting ∂Minn ⊂ ∂Si are stable, since they belong to
the singular set G−1(∂Minn) ∩ H− of G, as discussed in Proposition 3.8. This proves that
Si is a stable strip.
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To prove that ∂Si → J−
i , we refer to Proposition 3.7. The two opposite stable curves

of ∂Si ⊂ Si ∩ G−1(∂Minn) converge, in the C1 topology, to straight lines of slope −1 as
r → 0. Now, consider a horizontal segment �β connecting these two curves. Its image
G(�β) ⊂ Ui connects the components of ∂Minn and |G(�β)| > ρ|�β |. However, as G(�β)

is a Lipschitz curve with a constant close to one connecting the boundaries, its length is
less than some constant close to

√
2 and so for any β, |�β | �√

2/ρ. It follows that |�β | → 0
uniformly as r → 0, implying that Si → J−

i as r → 0.

The construction of the horseshoes for G is based on sets of transverse normal points
Xδ which we describe bellow.

From the results of §4, for any arbitrary δ ∈ [1/
√

2, 1), there is a dense set of points in
H−

δ,r ∩ L0 = {(ω, 0) : |sin ω| < δ} that will give rise to transverse normal orbits as r → 0.
In this dense set of transverse normal points, we can choose a set with nδ points such that
the S1-distance between any two adjacent points is less than dδ < π − 2 arcsin δ:

Xδ = {(ω1, 0), (ω2, 0), . . . (ωnδ , 0)} ⊂ H−
δ,r . (5.4)

We observe that π − 2 arcsin δ is the length of each of the two disjoint components of the
complement L0 − H−

δ,r which are located around (ω = ±π/2, 0). By including images, we
can assume that Xδ is invariant under G. With this choice, the invariant set Xδ becomes
dense in L0 as δ → 1 and obviously nδ = #(Xδ) → ∞. It is important to notice that the
set Xδ is robust on δ and does not depend on r as long it is sufficiently small. In particular,
H−

δ,r ∩ L0 does not depend on r.

LEMMA 5.4. For each fixed δ ∈ [1/
√

2, 1), there is rδ such that for any r ∈ (0, rδ], the
map Gδ,r has a locally maximal transitive hyperbolic set �δ,r such that the following
properties hold.
(1) The restriction Gδ,r : �δ,r → �δ,r is conjugated to a subshift in the space of

sequences of nδ symbols. Moreover, nδ → ∞ as δ → 1.
(2) The set �δ,r is dδ-dense in Minn with dδ → 0 as δ → 1.
(3) For any pair r ′ �= r in (0, rδ], the set �δ,r ′ is the hyperbolic continuation of the set

�δ,r .

Proof. Given two distinct normal points (ωi , 0) and (ωj , 0) in Xδ , let (ω̂i , 0) =
G(ωi , 0) ∈ Xδ . We will investigate the intersection Ui ∩ Sj , where Ui � (ω̂i , 0) and
Sj � (ωj , 0). It follows from Lemma 5.3 that for small r, this intersection is related to
the intersection of the lines J+

i � (ω̂i , 0) and J−
j � (ωj , 0). It is obvious that J+

i ∩ J−
j

consists of a single point in the interior of Minn, unless ω̂i = ωj + π , in which case
it consists of two points in the distinct components of ∂Minn. As a consequence, if
ω̂i − ωj �= π , for r small enough, Ui ∩ Sj is essentially a parallelogram bounded by two
unstable curves in ∂Ui and two stable curves in ∂Sj .

In what follows, we consider 0 < rδ < mini=1...nδ ri , where ri is given by Lemma 5.3.
Clearly, we can also assume that rδ is small enough so that Ui effectively crosses Sj

whenever ω̂i − ωj �= π . It is also clear that by at least three points in the set Xδ , we will
always have such crossings.
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FIGURE 6. Construction of the sets Sn.

Given the set Xδ of nδ transverse normal points, let us consider � = {1, . . . , nδ}Z, the
space of sequences a = {ai}i∈Z of nδ symbols, and the shift map σ on it. We define �̃ ⊂ �

as the σ -invariant subset of sequences such that for any i ∈ Z, Uai
= G(Sai

) crosses Sai+1 .
Now, given a sequence a = {ai}i∈Z ∈ �̃, we define the sets

Sn
a =

n⋂
j=0

G−j (Saj
) and Un

a =
n⋂

j=0

Gj(Ua-(j+1)
) for n ≥ 0. (5.5)

So, Sn+1
a ⊂ Sn

a . . . ⊂ S0
a = Sa0 and Un+1

a ⊂ Un
a . . . ⊂ U0

a = Ua-1 .
We will show that each Sn

a is a stable strip bounded by stable curves in G−(n+1)(∂Minn)

connecting ∂Minn and similarly that each Un
a is an unstable strip bounded by unstable

curves in G(n+1)(∂Minn) also connecting ∂Minn. This is obviously true for S0
a = Sa0 and

U0
a = Ua-1 by Lemma 5.3. Moreover, we note that by definition, S0

a crosses U0
a and so,

when all the strips are stable or unstable, the intersections Sn
a and Un

a also cross.
We have that

S1
a = Sa0 ∩ G−1(Sa1) = G−1(G(Sa0) ∩ Sa1) = G−1(Ua0 ∩ Sa1). (5.6)

As Ua0 is a strip bounded by two unstable curves in G(∂Minn) and Sa1 is a strip bounded by
two stable curves in G−1(∂Minn), Ua0 ∩ Sa1 is essentially a parallelogram bounded by two
curves in ∂Ua0 ∩ G(∂Minn) and two curves in ∂Sa1 ∩ G−1(∂Minn). Its image under G−1

is also essentially a parallelogram, bounded by two curves in distinct components of ∂Minn

and two stable curves in G−2(∂Minn). Hence, S1
a is a stable strip in S0

a = Sa0 bounded by
two opposite curves in G−2(∂Minn). A similar argument shows that U1

a is an unstable strip
in U0

a = Ua-1 bounded by two opposite curves in G2(∂Minn) (see Figure 6).
The same construction can be applied to Sn

a for n > 1, and also for Un
a . For instance,

S2
a = Sa0 ∩ G−1(Sa1) ∩ G−2(Sa2) = S1

a ∩ G−2(Sa2) = G−2(G2(S1
a) ∩ Sa2).

By equation (5.6), we have G2(S1
a) = G(Ua0 ∩ Sa1). As S1

a has two boundaries in
G−2(∂Minn), G2(S1

a) is a strip and, as the two other boundaries of S1
a are in ∂Minn, their

image under G2 are unstable curves. So, G2(S1
a) is an unstable strip in G(Sa1) = Ua1

and it must cross Sa2 implying that the intersection G2(S1
a) ∩ Sa2 is also essentially a

parallelogram with two boundaries in G2(∂Minn) and two in G−1(∂Minn). It follows that
S2

a ⊂ S1
a is a strip bounded by two stable curves in G−3(∂Minn).
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By induction, we assume that Sn−1
a is a (stable) strip bounded by stable curves in

G−n(∂Minn). The definition in equation (5.5) can be written as

Sn
a = Sa0 ∩ G−1(Sa1) . . . ∩ G−(n−2)(San−2) ∩ G−(n−1)(San-1) ∩ G−n(San)

= Sn−1
a ∩ G−n(San) = G−n(Gn(Sn−1

a ) ∩ San).

The induction hypothesis implies that Gn(Sn−1
a ) is a strip bounded by two unstable

curves in Gn(∂Minn) connecting ∂Mα . As by definition, Sn−1
a ⊂ Gn−1(San-1), we have

that Gn(Sn−1
a ) ⊂ G(San-1) = Uan-1 . It follows that Gn(Sn−1

a ) ∩ San is essentially a paral-
lelogram with two boundaries in Gn(∂Minn) and two in G−1(∂Minn), and so taking its
image under G−n, we obtain that Sn−1

a ∩ G−n(San) = Sn
a is a stable strip with boundaries

in G−(n+1)∂Minn.
Let us consider Sn

a and a horizontal segment �β connecting the two opposite stable
curves of ∂Sn

a ⊂ G−(n+1)(∂Minn). Using an argument similar to the one at the end of the
proof of Lemma 5.3, we have that the horizontal width of the strip Sn

a is bounded by |�β | �√
2/ρn → 0 as n → ∞. This convergence together with the properties of stable curves

already stated imply that for any a ∈ �̃, S∞
a = ⋂∞

n=0S
n
a is a decreasing 1/c1-Lipschitz

curve connecting ∂Minn. From reversibility, U∞
a is an increasing 1/c1-Lipschitz curve

connecting ∂Minn. Hence, each a ∈ �̃ corresponds to a unique point S∞
a ∩ U∞

a in Minn

and we can define a map h : �̃ → Minn given by h(a) = S∞
a ∩ U∞

a . Standard arguments
[26] show that h is a homeomorphism onto its image.

To obtain the hyperbolic set, we define �δ,r = h(�̃), which is a compact G-invariant set
in H−

δ,r . The preservation of cones in H−
δ,r (Corollary 3.2) implies that �δ,r is a hyperbolic

set for G. Moreover, the definition of h implies that G restricted to �δ,r is conjugated to
the shift map σ : �̃ → �̃.

For small r, the sets Si and Ui are respectively close to the lines J−
i and J+

i . The
points J−

i � J+
i = (ωi , 0) ∈ Xδ are dδ-dense in L0 and so we have a square lattice of

lines J−
i and J+

k with i, k = 1 . . . nδ , whose nodes J−
i � J+

k are dδ/
√

2-dense in Minn.
By definition, the points in �δ,r are close to the nodes in the interior of Minn and therefore
we can set rδ such that the hyperbolic set itself is dδ-dense in Minn. It is clear from
the construction that for each fixed δ and each r ∈ (0, rδ], �δ,r is a locally maximal
transitive hyperbolic set. This implies that it has a continuation in r, which in turn is locally
hyperbolic. More precisely, there is an open set V � r such that for any Gδ,r ′ with r ′ ∈ V ,
the hyperbolic set �δ,r ′ is the continuation of �δ,r . As the argument holds for any r, we
can take V = (0, rδ]. This proves item (3).

LEMMA 5.5. For any δ ∈ [1/
√

2, 1), there is a set of parameters Rδ = (δ − εδ , δ + εδ) ×
(0, rδ] ⊂ �∗ such that for any (δ, r) ∈ Rδ , the map Gδ,r has a locally maximal transitive
hyperbolic set �δ,r . Moreover, if (δ′, r ′) and (δ′′, r ′′) are in Rδ , the set �δ′′,r ′′ is the
continuation of �δ′,r ′ .

Proof. Given δ, the continuity and the transversality imply that if δ̃ ≈ δ, for each (ωi , 0) ∈
Xδ , we can find ω̃i ≈ ωi (called the continuation of ωi) such that (ω̃i , 0) is also a transverse
normal point of Gδ̃,r . In fact, there is εδ and we can adjust rδ such that if |̃δ − δ|<εδ ,
then the set Xδ̃ obtained by continuation of Xδ contains also nδ points which are normal
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transverse for any 0 < r ≤ rδ . If necessary, we can take smaller rδ and εδ to ensure that
Rδ = (δ − εδ , δ + εδ) × (0, rδ] ⊂ �∗ (as given by equation (3.9)).

Applying Lemma 5.4, we construct a locally maximal hyperbolic set �δ̄,r for any r ≤ rδ .
It is obvious that if δ′ and δ′′ are close, the square lattices obtained from Xδ′ and Xδ′′ , as in
Lemma 5.4, are close for small values of r and so are the hyperbolic sets �δ′,r and �δ′′,r .
It follows from the continuity on δ and r and the uniqueness of the hyperbolic continuation
that for any (δ′, r ′) and (δ′′, r ′′) in Rδ , the set �δ′′,r ′′ is the continuation of �δ′,r ′ .

We now proceed to a proof.

Proof of Theorem 1. We can choose a countable covering of (1/
√

2, 1) by intervals
(δk − εδk

, δk + εδk
) and take Rδk

, as defined in Lemma 5.5 and where {δk}∞0 is a strictly
increasing sequence with δ0 > 1/

√
2 and δk converging to 1 as k → ∞.

To any δ ∈ (1/
√

2, 1), we assign Rδk
by taking k as the smallest integer such that

|δ − δk|<εk . By Lemma 5.5, for each (δ, r) ∈ �0 = ⋃
k≥0 Rδk

⊂ �∗, the map G has a
hyperbolic set �δ,r . The set �0 is a connected set with non-empty interior such that the
point (δ = 1, r = 0) is in its boundary.

With the choice above, given any (δ, r) ∈ Rδk
⊂ �0, we have a piecewise continuous

family of horseshoes �δ,r where the map G is conjugated to a shift of nδk
symbols, with

nδk
→ ∞. Each horseshoe is dδk

-dense in Mα with dδk
→ 0, as δk → 1.

At this point, it is important to notice that a different choice of the set Xδ yields, in
principle, a different hyperbolic set and so we, in fact, could up with many of them.

We conclude this section with the description of the stable and unstable manifolds of
the hyperbolic set. The existence of the singularities of the map Gδ,r implies that the
global invariant manifolds of points in �δ,r are disconnected. In what follows, we describe
the properties of the connected local manifolds which will be essential in some of our
geometric arguments.

Fixing δ0 ∈ (1/
√

2, 1], let us consider, as in Lemma 5.5, the two-parameter
family of maps Gδ,r , (δ, r) ∈ Rδ0 = (δ0 − ε0, δ0 + ε0) × (0, rδ0 ] and a corresponding
two-parameter family of hyperbolic sets �δ,r .

The local stable invariant manifold of a point z ∈ �δ,r , denoted by Ws
loc(z), is defined

as the connected component of the stable manifold of z containing this point. It is clear
from the proof of Lemma 5.4 that it is a C∞ stable curve connecting the two different
components of the boundary ∂Minn. Likewise, the local unstable manifold of z ∈ �δ,r ,
denoted by Wu

loc(z), is a C∞ unstable curve connecting the different components of the
boundary ∂Minn.

Now, still for (δ, r) ∈ Rδ0 , we can consider a two-parameter family of points zδ,r ∈ �δ,r

such that any two points in this family are the continuation of each other. We refer to such
a family as a continuous family. The set of admissible sequences �̃ does not depend on
the parameters δ and r as long as they stay in Rδ0 , and it is clear from the construction
that the points of a continuous family share the same symbolic representation a in �̃.
So, given a sequence a = (a0, a1, . . .) ∈ �̃, we consider the corresponding two-parameter
family of local stable manifolds Ws

loc(zδ,r ) related to the associated two-parameter family
of points zδ,r . For each (δ, r), Ws

loc(zδ,r ) belongs to the strip Sa0 containing a normal point
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FIGURE 7. Tangent normal point (L0, G−1(L0) ⊂ Minn and L+
δ0

, F−m(L−
δ0

) ⊂ Mout).

(ω
a0
δ , 0) ∈ Xδ . Then, for δ fixed, as r → 0, the stable boundary of Sa0 , and so the local

stable manifold Ws
loc(zδ,r ), converges in C1 topology to the straight line ω + β = ω

a0
δ .

Thus, for (δ, r) ∈ Rδ0 and any fixed a ∈ �̃, we have a two-parameter family of local
stable manifolds Ws

loc(zδ,r ) converging as (δ, r) → (δ0, 0) to the decreasing line ω + β =
ω

a0
δ0

. Correspondingly, the two-parameter family Wu
loc(zδ,r ) of local unstable manifolds

converges to the increasing line ω − β = ω
a0
δ0

, as (δ, r) → (δ0, 0).

6. Conservative Newhouse phenomenon
In this section, we prove Theorems 2 and 3 by exhibiting a set of parameters in �0

and accumulating (δ = 1, r = 0) such that the first return to the obstacle map presents
quadratic homoclinic tangencies that unfold generically as the radius of the obstacle varies.
Accumulating this parameter set with homoclinic tangencies, we find another set where the
map has elliptical islands filling in the phase space as (δ, r) → (1, 0).

These phenomena originate from the bifurcation of tangent normal points, defined in §4.
As pointed out there, for δ = sin(p/q)π ≡ δ0, where 0 < p/q < 1 is any rational number,
the point (ω0 = −π/2, β0 = 0) ∈ Minn is a tangent normal point for G.

The local study of the (tangent) intersection between the horizontal line L0 and its
preimage G−1(L0) reveals that this tangency is cubic (Figure 7) and unfolds generically
as δ varies.

For values of δ ≈ δ0 and small r, the curve G−1(L0) is C1 close to a segment of the
stable manifold in the hyperbolic set �δ,r in the neighborhood of the point (−π/2, 0).
The local geometric properties of the stable manifold, inherited from the proximity of
the tangent normal point, give rise to a quadratic homoclinic tangency, which unfolds
generically as r varies. The bifurcation of the homoclinic tangency implies the appearance
of elliptical islands for nearby parameter values [18].

In the lemmas leading to the proof of the two theorems, we will focus on the
neighborhood of the orbit of the tangent normal point and consider two parameter families
of maps Gδ,r with (δ, r) ∈ Rδ0 for different values of δ0. The choice of the set

Rδ0 = (δ0 − ε0, δ0 + ε0) × (0, r0] ⊂ �0,

as defined in Lemma 5.5, assures the existence of a continuous family of hyperbolic sets
�δ,r . Eventually, we will need to take smaller values of the constants ε0 and r0.

We begin by investigating the bifurcation in δ of the tangent normal point of some δ0.
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LEMMA 6.1. For δ = δ0 = sin(p/q)π , the point (ω0 = −π/2, β0 = 0) ∈ L0 ∩ G−1
δ0,r (L

0)

is a cubic tangency unfolding into three transverse intersections when δ > δ0 and small
fixed r.

Proof. Assuming that the tangent normal point has return time ν(−π/2, 0) = m + 2, the
first return to the obstacle map Gδ0,r , in the connected component of Minn\S−

inn containing
it, decomposes as Gδ0,r = T ◦ Fm ◦ T , where T = Tδ0,r . If δ is close to δ0 we have the
same return time and so the same decomposition for Gδ,r . Moreover, in this neighborhood,
the maps are C∞.

We will describe the bifurcation of L0 ∩ G−1(L0) by looking at the bifurcation of its
image (s0, θ0) in L+

δ ∩ F−m(L−
δ ) ⊂ Mout. From the definition of the curves L±

δ and the
map F, the points in F−m(L−

δ ) ∩ L+
δ correspond to the solutions (s, θ) of the system in

equation (4.1) for each δ and any r sufficiently small. For simplicity, we describe the case of
odd m (the even case is similar). Introducing the variable ϕ = s + θ = −ω and including
the dependence on the parameter δ, the system is written as

L+
δ : A(ϕ, θ ; δ) = sin θ + δ sin ϕ = 0, (6.1)

F−m(L−
δ ) : B(ϕ, θ ; δ) = sin θ + δ sin(ϕ − 2(m + 1)θ) = 0. (6.2)

This system has at least a solution (ϕ0, θ0; δ0) = (π/2, −p/qπ ; sin((p/q)π)), which
corresponds to the image of the tangent normal point (ω0, β0) = (−π/2, 0) since

A(ϕ0, β0; δ0) = sin
(

− p

q
π

)
+ sin

(
p

q
π

)
sin

π

2
= 0,

B(ϕ0, β0; δ0) = sin
(

− p

q
π

)
+ sin

(
p

q
π

)
sin

(
π

2
+ 2(m + 1)

p

q
π

)
= 0,

when (m + 1)p/q is an integer.
Using equation (6.1), we eliminate the variable θ to rewrite equation (6.2) as

sin ϕ − sin(ϕ + 2(m + 1) arcsin(δ sin ϕ)) = 0. (6.3)

Defining ϕ = π/2 + �ϕ and δ = δ0 + �δ, we rewrite the above equation as

cos(�ϕ) − cos(�ϕ + 2(m + 1) arcsin((δ0 + �δ) cos �ϕ)) = 0. (6.4)

For small 0 ∼ �ϕ � �δ and keeping only lower order terms, we have

arcsin
((

sin
p

q
π + �δ

)
(cos �ϕ)

)
∼ p

q
π + 1

cos(p/q)π
�δ − 1

2
sin(p/q)π

cos(p/q)π
(�ϕ)2 + · · · .

Using the above approximation and the fact that 2(m + 1)p/q is an even integer, equation
(6.4) can be written as

cos(�ϕ) − cos
(

�ϕ + m + 1
cos(p/q)π

(
2�δ − sin

(
p

q
π

)
(�ϕ)2 + · · ·

))
= 0.

Now, as cos(a) − cos(a + b) = 2 sin(a + b/2) sin(b/2), and keeping track of the higher
order terms, we write equation (6.4) as
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FIGURE 8. The unfolding of the cubic tangency in Minn (top) and Mout (bottom).

m + 1
cos(p/q)π

(
�ϕ + m + 1

cos(p/q)π
�δ

) (
2�δ − sin

(
p

q
π

)
�ϕ)2

)
+ · · · = 0. (6.5)

This expression explicitly shows the cubic bifurcation, as we have three solutions if �δ > 0
and only one if �δ ≤ 0.

So, given δ close to δ0, we have a normal point given by ϕ ∼ ϕ0 − (m + 1)/

cos β0(δ − δ0) and, for δ > δ0, we have two other normal points given by
ϕ ∼ ϕ0 ± 2/δ0(δ − δ0). More precisely, for each solution ϕ, the normal point is given
by θ = arcsin(δ sin ϕ) and s = ϕ − θ . Moreover, if δ �= δ0, these normal points are
transverse. This shows that (ω0, β0) = (−π/2, 0) ∈ L0 ∩ G−1(L0) ⊂ Minn is a cubic
tangent normal point for δ = δ0 that unfolds generically in this parameter, as illustrated in
Figure 8.

We will look at the set S̃δ0,r which is the closure of the connected component of
Minn\S−

inn containing the tangent normal point (ω0, β0) = (−π/2, 0). We observe that
the definition of S̃δ0,r is the same as the sets Sδ,r introduced in the previous section for
transverse normal points in Xδ and therefore they share some properties.

From Lemma 6.1 above and its proof, it is clear that if δ is close to δ0, the (transverse)
normal points appearing in the bifurcation process (one for δ < δ0 or three for δ > δ0)
are close to (−π/2, 0), the tangent point for δ0. Since the boundaries of the connected
components of Minn\S−

inn vary continuously with δ and r, we can adjust the set of
parameters Rδ0 by choosing ε0 and r0 small enough such that for any (δ, r) ∈ Rδ0 ,
these normal points are in the connected component of Minn\S−

inn containing the point
(−π/2, 0). However, due to constructions that will intervene later, we will eventually
need to take smaller ε0 and r0. These components are denoted by S̃δ,r and their images
Ũδ,r = G(S̃δ,r ) ⊂ Minn\S+

inn. It is worthwhile to remember that all points in the same
connected component have the same returning time characterized by m.
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FIGURE 9. The sets S̃ (top) and T (S̃) (bottom) for r < δ and r ≈ 0 (also zoomed-in).

In what follows, we describe the set S̃δ0,r for an arbitrary r ≤ r0 (as usual, we will drop
the subscripts in sets and maps when the identification is obvious). We stress that r0 is to
be chosen small enough that all the arguments and the description below apply even for
different values of δ.

Since the initial observations in the proof of Lemma 5.3 do not rely on transversality of
the normal point, they also apply here. For δ = δ0, the point (ω0, β0) = (−π/2, 0) ∈ S̃δ0,r

is a tangent normal point with return to the obstacle time m + 2. As noticed in the proof
of Lemma 5.3, for r small enough, the image T (S̃δ0,r ) ⊂ Mout is the connected component
of M+

inn ∩ F−m(M−
inn) containing the point (ω0, β0) = T (−π/2, 0) ∈ L+

δ0
∩ F−m(L−

δ0
).

Moreover, the curves in ∂M+
inn are C1 close to L+

δ0
, while the curves in F−m(∂M−

inn) are C1

close to the curve F−m(L−
δ0

). As L+
δ0

and F−m(L−
δ0

) are in fact topologically transverse, for
small r, the boundary of T (S̃δ0,r ) contains two curves belonging to different components of
F−m(∂M−

inn) with endpoints in ∂M+
inn. Hence, S̃δ0,r is a strip bounded by two curves in the

singular set G−1
δ0,r (∂Minn) connecting the two components of ∂Minn. This can be observed

in Figure 9.
The description above implies that T (S̃δ0,r ) converges to the point T (−π/2, 0) ∈

M+
inn\Hδ0 as r → 0. So, for r small enough, the set T (S̃δ0,r ) itself is contained in M+

inn\Hδ0 ,
which implies that S̃δ0,r ⊂ Minn\H−

δ0,r .
Even though S̃δ0,r is a strip, it may not be essentially a parallelogram as its boundaries

may not be stable curves. However, the connected component of Minn\H−
δ0,r containing

S̃δ0,r is a stable strip when r ∼ 0, since the two curves of ∂H−
δ0,r connecting ∂Minn are

uniformly C1 close to the lines |sin(ω + β)| = δ0.
Analogous properties can be derived for the set Ũδ0,r � (π/2, 0) = G(−π/2, 0). For

small r, Ũδ0,r ⊂ Minn\H+
δ0,r is a strip bounded by two curves in different components of

G(∂Minn) connecting ∂Minn. Although Ũδ0,r is not an unstable strip, it is contained in the
unstable strip Minn\H+

δ0,r .
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FIGURE 10. Schematic representation of the geometric construction in the proof of Lemma 6.2 (|sin(ω + β)| = δ

(dotted line), |sin(ω − β)| = δ (solid line), |sin(ω − β)| ≥ δ (gray region)).

As we have a continuous dependence of maps and sets on (δ, r) ∈ Rδ0 , the properties
described above for δ = δ0 hold for all sets S̃δ,r and Ũδ,r for any (δ, r) ∈ Rδ0 as long as ε0

and r0 are properly chosen.
The geometric conditions stated below will provide the technical tools to prove the

existence of homoclinic tangencies, as they ultimately will relate the behavior of segments
of the stable manifold to the curve G−1(L0) in the neighborhood S̃ of the tangent normal
point.

LEMMA 6.2. We can choose ε0 and r0 such that for any (δ, r) ∈ Rδ0 , the local stable
manifold of any point in the corresponding hyperbolic set �δ,r has a component connecting
the two curves in ∂Ũδ,r ∩ Gδ,r (∂Minn). Moreover, this component does not intersect the
line L0.

Proof. From §5, if (δ, r) ∈ Rδ0 , the local stable manifold of any point in �δ,r is a stable
curve inside H−

δ,r and connecting the two components of ∂Minn. Moreover, for small r, the
boundary ∂H−

δ,r is close to the straight decreasing lines |sin(ω + β)| = δ and so the local
stable manifolds are inside the region |sin(ω + β)| < δ.

It is clear that for δ close to δ0 and small r, the boundary ∂H−
δ,r belongs to a small tubular

neighborhood of the lines |sin(ω + β)| = δ0. Thus, we can take smaller ε0 and r0 so that
for any (δ, r) ∈ Rδ0 , the set �δ,r and its local stable foliation are contained in the interior
of the two strips defined by |sin(ω + β)| < δ0.

However, the boundary ∂H+
δ,r is close to the lines |sin(ω − β)| = δ0 and again, we can

adjust ε0 and r0 such that the set Ũδ,r ⊂ Minn\H+
δ,r is in the interior of the narrow strip

defined by sin(ω − β) > δ0 containing (π/2, 0) for any (δ, r) ∈ Rδ0 . We note that this
strip is crossed by the two decreasing strips |sin(ω + β)| < δ0 (see Figure 10).

This implies that the local manifolds must cross the strip sin(ω − β) ≥ δ0 and the strip
Ũδ,r which is inside it. In particular, any local stable manifold of �δ,r must have an arc
connecting the two components of ∂Ũδ,r ∩ G(∂Minn).

Finally, we observe that the set L0 ∩ Ũδ,r belongs to the intersection between the strips
|sin(ω + β)| > δ0 and |sin(ω − β)| > δ0. As any local stable manifold belongs to the
region |sin(ω + β)| < δ0, we have that its intersection with Ũδ,r is disjoint from L0.

The strategy of the following lemma is to obtain points of quadratic tangency between a
stable manifold Ws

δ,r and the horizontal line L0, for a set of parameters. The symmetry of

https://doi.org/10.1017/etds.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.80


Annular billiards 3573

the phase space implies that these points also correspond to tangencies between stable and
unstable manifolds, since the image of the stable manifold of a point by the involution is
the unstable manifold, it is symmetric. Thus, we actually have heteroclinic tangencies.
Considering the stable manifold of symmetric periodic points produces homoclinic
quadratic tangencies that unfold generically in r. By unfolding a quadratic tangency, we
mean that if Ws

δ,r∗ is tangent to L0, for r < r∗, Ws
δ,r ∩ L0 = ∅ and for r > r∗, Ws

δ,r ∩ L0

has two distinct points (or the other way around).

LEMMA 6.3. Let δ0 = sin((p/q)π), and zδ,r ∈ �δ,r be a two-parameter continuous family
of symmetric periodic points for (δ, r) ∈ Rδ0 . Then, there is a curve of parameters � ⊂ Rδ0

such that if (δ, r) ∈ �, the stable and unstable manifolds of the point zδ,r have a quadratic
tangency which unfolds generically by fixing δ and varying r.

Proof. For (δ, r) ∈ Rδ0 , let Wδ,r = Ws
loc(zδ,r ) be the local stable manifold of the symmet-

ric periodic point zδ,r . The curves Wδ,r connect the two components of ∂Minn and converge
in the C1 topology, as (δ, r) → (δ0, 0), to the line ω + β = ωδ0 where (ωδ0 , 0) ∈ L0 is a
transverse normal point. By Lemma 6.2, we have that Wδ,r ∩ Ũδ,r is an arc connecting the
two curves of ∂Ũδ,r ∩ Gδ,r (∂Minn). Moreover, this arc does not intersect L0. Its inverse
image G−1

δ,r (Wδ,r ) is a curve in S̃δ,r connecting ∂Minn and so intersects L0. We will show
that for a curve � of parameters in Rδ0 , this intersection is a quadratic homoclinic tangency
unfolding generically in the parameter r (as usual, we are dropping some subscripts).

The idea of the proof is to repeat the construction of Lemma 6.1 including the effect
of varying r in the neighborhood of the cubic tangency. To obtain the unfolding of the
tangency we observe, as in the proof of Lemma 6.1, that points in G−1(Wδ,r ) ∩ S̃δ,r ∩ L0

correspond to the intersection

T (G−1(Wδ,r ) ∩ L0) = F−m ◦ T −1(Wδ,r ) ∩ T (L0) = F−m ◦ T −1(Wδ,r ) ∩ L+
δ . (6.6)

As for (δ, r) close to (δ0, 0), Wδ,r is close to the line ω + β = ωδ0 , and there is a smooth
function ε(β; δ, r) such that Wδ,r can be written as

ω + β = ωδ0 + ε(β; δ, r) where ε(β; δ, r) → 0 as (δ, r) → (δ0, 0).

The preimage T −1(Wδ,r ) ⊂ Mout is a curve connecting ∂M−
inn defined by

sin θ + δ sin(θ − s) = −r sin β,

2β = θ − s + ωδ0 + ε(β; δ, r),

and F−m ◦ T −1(Wδ,r ) ⊂ Mout is written as

sin θ + δ sin(ϕ − 2(m + 1)θ) = −r D(ϕ, θ ; δ, r),

where ϕ = s + θ and

D(ϕ, θ ; δ, r) = sin
(

ωδ0 + ε(β; δ, r) + ϕ − 2(m + 1)θ + mπ

2

)
.
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FIGURE 11. Bifurcation of homoclinic tangency. (L0, G−1(L0), and Ws for δ = δ0 and δ > δ0 with three different
values of r.)

So the intersection L+
δ ∩ F−m ◦ T −1(Wδ,r ) is a solution of the following system, whose

left-hand side is the same as the one considered in Lemma 6.1 (equations (6.1) and (6.2)).

A(ϕ, θ ; δ) = sin θ + δ sin ϕ = 0,

B(ϕ, θ ; δ) = sin θ + δ sin(ϕ − 2(m + 1)θ) = −r D(ϕ, θ ; δ, r). (6.7)

At lower order, equation (6.7) is equivalent to the following cubic equation, which should
be compared to equation (6.5):

m + 1
cos(p/q)π

(
�ϕ + m + 1

cos(p/q)π
�δ

) (
2�δ − sin

p

q
π�ϕ2

)
+ · · · = −rD0, (6.8)

where, using that ε(0; δ0, 0) = 0,

D0 = D

(
π

2
, −p

q
π , δ0, 0

)
= sin

(
ωδ0 + π/2

2
− (m + 1)

p

q
π + m

π

2

)
.

It is important to notice that, according to Lemma 6.2, the function D cannot be 0
in the neighborhood considered here, since D = 0 would imply the existence of a point
L0 ∩ Wδ,r in Ũδ,r . In particular, D0 �= 0.

We can conclude that for δ close to δ0 and r small, the curves G−1(Wδ,r ), in the
neighborhood of (−π/2, 0), are essentially translations of the curve G−1(L0).

For each δ, we can adjust this translation to produce the unfolding of a quadratic
tangency between the stable manifold and the horizontal symmetry line, as in Figure 11.

In fact, a quadratic tangency occurs if a solution of equation (6.8) also satisfies

2�δ − δ0�ϕ2 − 2δ0 ϕ

(
�ϕ + m + 1

cos(p/q)π
�δ

)
= 0.

Solving this equation and equation (6.8) for �δ and r, we obtain, at lower order,

δ ≈ δ0 + 3
2

δ0

(
ϕ − π

2

)2

, (6.9)

r ≈ 2
(m + 1) tan(p/q)π

−D0

(
ϕ − π

2

)3

.

The two equations above define a curve � in the parameter set, approaching the point
(δ0, 0) from δ > δ0, along which the curve G−1(Wδ,r ) and the line L0 have a quadratic
tangency unfolding generically with r. As Wδ,r is constructed from the stable manifold of
symmetric periodic points, these tangencies are in fact homoclinic.
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At this point, it is worthwhile to notice that families constructed from different
symmetric periodic points will give rise to different homoclinic tangency curves also
abutting (δ0, 0).

Before proceeding to the proof of Theorems 2 and 3, we will show that symmetric
periodic points indeed exist in the hyperbolic set. To this end, we refer to the construction
of the set �δ,r with fixed parameters (δ, r) ∈ �0. This construction is based on the
strips Si and Ui for i = 1, . . . , nδ associated to the transverse normal points in Xδ

(Lemma 5.5), where a point in �δ,r is specified by its symbolic representation, which is a
sequence a ∈ �̃ ⊂ � = {1, . . . , nδ}Z. Let us consider a set of strips Sa0 , Sa2 , . . . Sak

with
ai ∈ {1, . . . , nδ} and such that Uai

= G(Sai
) crosses Sai+1 . This is equivalent to saying

that the word [a0 . . . ak] appears in some sequence a ∈ �̃.
The horizontal curve Uak

∩ L0 connects the two components of G(∂Minn) ∩ Uak
.

It follows from the properties of stable and unstable strips that the preimage λk =
G−1(Uak

∩ L0) ⊂ Sak
is a stable curve connecting the two components of ∂Minn ∩ Sak

.
Thus, λk ∩ Uak−1 is a stable curve connecting the two components of G(∂Minn) ∩ Uak−1

and hence λk−1 = G−1(λk ∩ Uak−1) is a stable curve in Sak−1 connecting ∂Minn. Iterating
this construction, we define, for j = 0, . . . , k, the stable curves λk−j ⊂ Sak−j

∩ G−j (L0)

each of which connects ∂Minn. Thus, the unstable curve λ0 ⊂ ⋂k
j=0 G−j (Saj

) intersects
transversally the horizontal curve L0 ∩ Sa0 . Since λ0 ∈ G−k−1(L0), the intersection
z = λ0 ∩ L0 ⊂ Sa0 is a symmetric periodic point having [a0 . . . ak] in its symbolic
representation.

It is clear that this construction produces a continuous two-parameter family of
symmetric periodic points zδ,r ∈ L0 ∩ G−k−1

δ,r (L0) for (δ, r) ∈ Rδ∗ for some δ∗.
From Lemma 6.3, the following proof is obtained.

Proof of Theorem 2. To each δκ = sin κπ , with κ a rational number in ( 1
4 , 1

2 ), there is a
set Rκ = (δκ − εκ , δκ + εκ) × (0, rκ ] ∈ �0 where Lemmas 5.5, 6.2 and 6.3 hold.

For a fixed arbitrary δκ as above, we can pick a family of symmetric periodic points
in the hyperbolic set �δκ ,r to obtain, by Lemma 6.3, a curve � ⊂ Rκ of homoclinic
tangencies.

We define R′
κ ⊂ Rκ as the the union of the curves such that Gδ,r with (δ, r) ∈ R′

κ

unfolds generically a quadratic homoclinic tangency. It is worth mentioning that, from
equation (6.9), R′

κ is contained in δ > δκ and abutts (δκ , 0).
The set {δκ = sin(κπ) with κ ∈ ( 1

4 , 1
2 ) ∩ Q} is dense in (1/

√
2, 1) and the set �′

0 =⋃
κ R′

κ accumulates the point (1, 0). This concludes the proof of the theorem.

Remark 6.4. Each continuous two-parameter family of symmetric periodic points in �δ,r

corresponds to a tangency curve �. The union of these curves in each Rk is a set
of tangency bifurcations with an intricate geometric structure that we do not intend to
describe here.

We close this section with the proof of our third theorem.

Proof of Theorem 3. Consider a set of parameters Rκ , as in the proof of Theorem 2.
Let Eκ be the subset of all pairs (i, j) ∈ {1, . . . , nδκ }2 such that Ui = G(Si) crosses Sj .
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For (δ, r) ∈ Rκ , as in §5, the strips S1, . . . Snδκ
are associated to the hyperbolic set. In

particular, �δ,r ⊂ ⋃
(i,j)∈Eκ

Ui ∩ Sj .
The existence of elliptic periodic points follows from a homoclinic bifurcation associ-

ated to a continuous family of specifically chosen symmetric periodic points yδ,r ∈ �δ,r .
The points yδ,r are constructed from a given admissible word [a0 . . . am] ∈ {1, . . . , nδκ }k ,
as explained earlier.

We can choose a word [a0 . . . am] containing every admissible sequence of two
symbols of the form [aiaj ]. The orbit of the resulting point yδ,r visits all the components
Ui ∩ Sj with (i, j) ∈ Eκ , spreading over the hyperbolic set. This also implies that as
(δ, r) → (1, 0), the orbit of yδ,r tends to fill the entire phase space. More precisely, the
maximum distance of points of phase space to the union point of the orbit of yδ,r goes to 0
as (δ, r) → (1, 0).

Fixing δ∗ ∈ (δκ , δκ + εκ), we consider the one-parameter family of maps Gδ∗,r and the
related family of symmetric periodic points yδ∗,r with r ∈ (0, rκ ]. From Lemma 6.3, there
is r∗ such that the invariant manifolds of yδ∗,r∗ have a quadratic homoclinic tangency
unfolding generically in the parameter r. From Duarte’s result [18], there is a subset
I ⊂ (0, rκ ] accumulating r∗, such that for every r ∈ I , the closure of the generic elliptic
periodic points of Gδ∗,r contains the orbit of yδ∗,r .

Thus, in each Rκ , there is a subset of parameters R′′
κ for which the map Gδ,r has a set Eδ,r

of generic elliptic periodic points. Clearly, R′′
κ accumulates the set R′

κ where homoclinic
tangencies do exist.

Finally, the set of parameters �′′
0 = ⋃

κ R′′
κ ⊂ �0 accumulates (1, 0). For each (δ, r) ∈

�′′
0, the set of generic elliptic points Eδ,r accumulates the orbit of symmetric periodic points

yδ,r . This fact, together with the properties of the orbit of yδ,r , implies that the maximum
distance of points in the phase space to the set Eδ,r also goes to zero as (δ, r)→ (1, 0).
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