
J. Fluid Mech. (2024), vol. 1001, A5, doi:10.1017/jfm.2024.1047

Kinetic modelling of rarefied gas mixtures with
disparate mass in strong non-equilibrium flows
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The simulation of rarefied gas flow based on the Boltzmann equation is challenging,
especially when the gas mixtures have disparate molecular masses. In this paper, a
computationally tractable kinetic model is proposed for monatomic gas mixtures, to mimic
the Boltzmann collision operator as closely as possible. The intra- and inter-collisions are
modelled separately using relaxation approximations, to correctly recover the relaxation
time scales that could span several orders of magnitude. The proposed kinetic model
preserves the accuracy of the Boltzmann equation in the continuum regime by recovering
four critical transport properties of a gas mixture: the shear viscosity, the thermal
conductivity, the coefficients of diffusion and the thermal diffusion. While in the rarefied
flow regimes, the kinetic model is found to be accurate when comparing its solutions
with those from the direct simulation Monte Carlo method in several representative cases
(e.g. one-dimensional normal shock wave, Fourier flow and Couette flow, two-dimensional
supersonic flow passing a cylinder and nozzle flow into a vacuum), for binary mixtures
with a wide range of mass ratios, species concentrations and different intermolecular
potentials. Pronounced separations in species properties have been observed, and the flow
characteristics of gas mixtures in shock waves are found to change as the molecular mass
ratio increases from 10 to 1000.

Key words: rarefied gas flow

1. Introduction

The dynamics of rarefied gas mixtures has long been an important issue, and one of the
particular interests lies in the non-equilibrium phenomena of disparate-mass mixtures
widely encountered in plasma physics, aerospace engineering and chip industry. For
example, during the re-entry of a vehicle into the planetary atmosphere at a significantly
high Mach number, plasma comprising ions, electrons, as well as neutral species, is formed
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between the shock and the vehicle surface, where the mass ratio between the mixture
components can be as large as 103 to 105 (Brun 2012). In the low-pressure environment of
an extreme ultraviolet (EUV) lithography system, hydrogen is commonly employed as a
clean gas to effectively inhibit the diffusion of pollutant gas molecules (e.g. hydrocarbon)
generated by photoresists, whose molecular mass is tens to hundreds times greater than
that of clean gases (Teng et al. 2023). Similar situations are also encountered in the design
of particle exhaust systems in nuclear fusion devices (Tantos et al. 2024).

In addition to the well-known rarefaction effects occurring when the mean free path of
gas molecules is comparable to the characteristic flow length, multiscale non-equilibrium
also exists temporally in rarefied gas mixtures with disparate mass. From the mesoscopic
perspective, the light molecules have a larger thermal velocity than the heavy ones,
thus leading to dispersed relaxation time scales of molecular collisions. According to
Grad (1960), the light molecules will reach equilibrium among themselves first through
intra-species collisions, then the heavy molecules reach their own equilibrium and,
finally, all the species approach the common state through inter-species collisions. The
large difference in relaxation time generates difficulties in the simulation of gas mixture
flows. The Navier–Stokes-type equations involving a common flow temperature and
approximated diffusion velocities of each species are adequate only when all these
relaxation times are much smaller than the characteristic time of gas flow (Nagnibeda
& Kustova 2009). Otherwise, the gas kinetic theory needs to be adopted to capture the
non-equilibrium behaviours (Agrawal, Singh & Ansumali 2020; Sawant, Dorschner &
Karlin 2020). Although the Boltzmann equation is rigorously established for gas mixtures
consisting of monatomic molecules at a mesoscopic level, it is practically difficult to
apply in realistic applications, due to the numerical complexity of the high-dimensional
nonlinear integral collision operator, especially for mixtures with mass disparity. Even
using the fast spectral method, the computational cost for each binary collision operator
will be increased by the square root of the mass ratio, and hence, the numerical simulation
is only conducted at a molecular mass ratio less than 36 (Wu et al. 2015b).

A well-acknowledged method for the simulations of rarefied gas flows is the direct
simulation Monte Carlo (DSMC) method (Bird 1994), which models the kinetic processes
of a collection of simulated particles. It has been proven by Wagner (1992) that the DSMC
method is equivalent to the Boltzmann equation for a monatomic gas, as the number
of simulation particles approaches infinity. Although applicable in all flow regimes, the
DSMC method is computationally costly in the simulation of flows with low Knudsen
numbers (Kn), since the cell size and time step should be smaller than the mean free
path and mean collision times of gas molecules, respectively. In a gas mixture with
disparate mass, the mean collision time of different types of collisions spans multiple
scales, thereby restricting the time step in the DSMC method to be smaller than the fastest
relaxation time and significantly decelerating the numerical evolution of the system. In
some simulation cases of collisional plasma, the electron mass is increased by three orders
of magnitude to achieve an acceptable simulation time but sacrifice the accuracy (Farbar
& Boyd 2010). In addition, the concentration of components in the gas mixture could vary
significantly in many of the realistic applications. For instance, the ultraviolet radiation
from nitric oxide is of particular interest in the flow fields surrounding hypersonic re-entry
vehicles, while the mole fraction of nitric oxide is typically less than 10−5 (Erdman
et al. 1993). Thus, the conventional DSMC method with equally weighted particles has
enormous difficulties in terms of either huge computational costs or significant statistical
noise. The differentially weighted schemes, which although solve the disparate mole
fraction problem, face conservation issues during each collision (Boyd 1996), and involve
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a process of creating and destroying fractions of particles (Alves et al. 2018). Therefore,
the multiscale feature in gas mixtures with disparate mass and concentrations makes the
DSMC method time consuming and even intractable.

Therefore, it is important to develop kinetic model equations with much-simplified
collision operators to imitate as closely as possible the behaviour of the Boltzmann
equation, and multiscale numerical methods to solve those kinetic models. For a
single-species monatomic gas, the Bhatnagar–Gross–Krook (BGK) model equation
replaces the Boltzmann collision operator with a relaxation approximation (Bhatnagar,
Gross & Krook 1954) to achieve high computational efficiency and lay the foundation
for more sophisticated models. However, the main drawback of the BGK model is the
incorrect Prandtl number produced by its single-relaxation rates for both stress and heat
flux. This issue has been addressed by the modified kinetic models, e.g. the ellipsoidal
statistical BGK (ES-BGK) model (Holway 1966; Andries et al. 2000; Mathiaud,
Mieussens & Pfeiffer 2022) and the Shakhov model (Shakhov 1968a,b), both of which
can reproduce correct shear viscosity and thermal conductivity simultaneously in the
continuum flow regime. Together with the multiscale numerical methods, these kinetic
models have found applications in many engineering problems (Liu, Zhu & Xu 2020; Su
et al. 2020a; Pfeiffer, Garmirian & Gorji 2022; Zeng, Su & Wu 2023a; Liu et al. 2024).

However, the extension of the single-species kinetic models to gas mixtures is a
non-trivial task. First, collisions between different species of molecules lead to exchanges
of momentum and energy between mixture components, exhibiting notable disparities
in relaxation times due to variations in species properties. Second, apart from the
component-specific shear viscosities and thermal conductivities, a multi-species gas also
possesses effective mixture viscosity and thermal conductivity, as well as diffusion and
thermal-diffusion coefficients that correspond to the Fick and Soret effects, respectively
(Chapman & Cowling 1970), which have to be recovered by the kinetic models in
the continuum limit. Previously proposed kinetic models using BGK approaches can
be classified into two types (Pirner 2021). One uses a single-relaxation term involving
both inter- and intra-species collisions, and the other one has a sum of collision terms
modelling each type of collision individually. For the single-relaxation models, the model
of Andries, Aoki & Perthame (2002) is the most widely applied one, which reduces
to the single-species BGK model for mechanically identical components that cannot
recover shear viscosity and thermal conductivity simultaneously. Besides, the diffusion
coefficient is not correctly captured. Later, more adjustable parameters are introduced
into the single-relaxation model by adopting ES-BGK and Shakhov-type operators, thus,
thermal conductivity (Brull 2015) and diffusion coefficients (Groppi, Monica & Spiga
2011; Todorova & Steijl 2019) can be recovered. It should be noted that, however, the
proposed models are incapable of modelling the thermally induced flow of non-Maxwell
molecules, since the thermal-diffusion effect is not reproduced, which is an important
transport phenomenon in gas mixtures (Sharipov 2024). Although the single-relaxation
models are found to be accurate for mixtures with a small mass ratio (Pfeiffer, Mirza
& Nizenkov 2021) and also easy to be extended to polyatomic gases with internal
energy (Bisi & Travaglini 2020; Todorova, White & Steijl 2020) and chemical reactions
(Groppi & Spiga 2004; Bisi, Monaco & Soares 2018), they are not able to distinguish
the multiple scales of relaxation times and different types of interactions. On the other
hand, several multi-relaxation models have been proposed (Morse 1964; Hamel 1965;
Greene 1973; Haack, Hauck & Murillo 2017; Klingenberg, Pirner & Puppo 2017; Bobylev
et al. 2018; Bisi et al. 2022), which mainly differ in the construction of the auxiliary
properties in inter-species collision terms. Because of the complexity of the collision
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operators, these models were basically derived mathematically but rarely applied to
realistic problems (Tantos, Varoutis & Day 2021; Bisi et al. 2022). More importantly, the
recovery of transport properties from the multi-relaxation models in the continuum limit is
usually overlooked, and the determination of the adjustable parameters (e.g. the multiple
relaxation times) is still an open question. It is also noted that, the models proposed by
McCormack (1973) and Kosuge (2009) replace the Boltzmann collision operator by the
use of polynomial expansions in the molecular velocity, where the model coefficients are
determined by matching the moments of the model collision operator to the Boltzmann
collision operator. The polynomial models correctly recover all the transport coefficients of
a gas mixture and show good performance in slightly to moderately non-equilibrium flows
(Ho et al. 2016; Tantos & Valougeorgis 2018), while accurate intermolecular potentials
are required when applying to realistic applications. However, as noted by Kosuge (2009)
himself, the polynomial model is not well suited for simulating strong non-equilibrium
mixture flows, where the reference velocity distributions in the collision terms may
exhibit remarkably negative values, leading to an unphysical prediction of the macroscopic
quantities.

Despite the great effort made in the past decades, establishing accurate and
computationally tractable kinetic models for gas mixtures with disparate mass is still
of significant challenge. The present work is dedicated to developing a kinetic model
based on the idea of multi-relaxation models for rarefied monatomic gas mixtures with
disparate molecular mass, which not only recovers the transport properties of a gas mixture
including shear viscosity, thermal conductivity, diffusion coefficient and thermal-diffusion
coefficients, but also correctly captures the multiscale relaxation rates of different collision
processes. More importantly, with the deterministic numerical methods and multiscale
schemes, the proposed kinetic model can be used to solve gas mixture flows with disparate
mass and mole fractions efficiently and accurately in all flow regimes.

The rest of the paper is organized as follows. In § 2 the kinetic model is proposed with
all the adjustable parameters determined by the transport properties of the gas, and the
transport coefficients and hydrodynamic equations in the continuum limit are given. In
§ 3, to make a consistent comparison to the DSMC method, the kinetic model parameters
are obtained based on the DSMC collision model. The accuracy of the proposed kinetic
model is assessed by the DSMC method in several one-dimensional and two-dimensional
problems in §§ 4 and 5, respectively, and the flow characteristics of gas mixtures with
disparate mass are discussed. Finally, conclusions are presented in § 6.

2. Kinetic model equation

The gas kinetic theory describes the status of a gaseous system in the phase space
using the velocity distribution functions, whose evolution is governed by the Boltzmann
equations when only binary collisions are considered. Because of the unaffordable
computational cost of solving the N2 number of Boltzmann operators for an N-component
gas mixture, kinetic model equations with simplified collision operators are highly
demanded. Theoretically, several requirements need to be followed in the kinetic modelling
of monatomic gas mixtures: (i) the collision terms satisfy the conservations of mass,
momentum and energy, and restore the equilibrium state for an isolated system; (ii) the
relaxation rates for different types of intermolecular interaction can be correctly captured;
(iii) all the transport properties given by the model equation are consistent with those
obtained from the Boltzmann equation in the hydrodynamic limit; (iv) the momentum
and energy exchange during inter-species collisions are close to those obtained from
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the Boltzmann equation; and (v) the kinetic model complies with the indifferentiability
principle and H-theorem.

However, it is impractical to build such an ideal kinetic model to satisfy all the
requirements with affordable computational cost. Even for a single-species gas, although
the ES-BGK model has been proven to keep the non-negativity of the velocity distribution
functions and satisfy the H-theorem (Andries et al. 2000), the Shakhov model is
found to be more accurate for many strong non-equilibrium problems due to its better
approximations of high-order moments of molecular velocity distributions (Chen, Xu
& Cai 2015; Fei et al. 2020; Yuan & Wu 2022; Park et al. 2024). Moreover, despite
the fact that the model of Andries et al. (2002) complies with the indifferentiability
principle unconditionally, it recovers only one transport coefficient and ignores the
multiple relaxation time scales.

Therefore, to achieve a balance between the accuracy and computational burden for a
gas mixture, we build our kinetic model using multi-relaxation operators to distinguish
different types of binary interactions. The tunable parameters in the kinetic model are
determined by recovering the transport properties in the continuum flow regime, including
viscosity, thermal conductivity, diffusion coefficients and thermal-diffusion coefficients.
Additionally, the indifferentiability principle can be satisfied in the near-equilibrium
condition, where the proposed kinetic model reduces to the Shakhov model for a mixture
with identical components. The H-theorem is not proven for the present model in this
paper.

Note that our kinetic model employs expansions of molecular thermal velocity in
the reference distribution functions and, thus, differs from the previous multi-relaxation
ES-BGK models. Also, our model is different to those proposed by McCormack (1973)
and Kosuge (2009), where polynomial expansions around the equilibrium state of the
entire mixture are adopted. Thus, they may not accurately capture the velocity distributions
of individual gas components in a mixture with substantial differences in velocity
and temperature among the species, and can result in notably negative values for the
reference velocity distributions. In contrast, our model differs in its construction of the
reference velocity distributions, which are expansions based on the equilibrium states of
species temperatures and auxiliary velocities of each respective binary collision. Thus,
the proposed model is expected to perform better in strong non-equilibrium flows; see
Appendix C for an example.

2.1. Kinetic description of monatomic gas mixture
We consider an N-components mixture of monatomic gases with the velocity distribution
functions fs(x, v, t) describing their mesoscopic states, where s indicates the species, t is
the time, x ∈ R

3 is the spatial coordinates and v ∈ R
3 is the molecular velocity. Since all

the collisions, either intra-species or inter-species, are binary, the distribution function for
species s under external force F s evolve according to the Boltzmann equation,

∂fs
∂t

+ v · ∂fs
∂x

+ F s

ms
· ∂fs
∂v︸ ︷︷ ︸

Dfs

=
N∑

r=1

Qsr( fs, fr), s = 1, 2, . . . ,N, (2.1)

where ms is the molecular mass; the left-hand side is known as the streaming term Dfs and
the right-hand side is a sum over all binary Boltzmann collision operators Qsr between
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molecules of species s and r,

Qsr( fs, fr) =
∫

R3

∫
4π

|v∗|σsr

(
|v∗|,Ω · v∗

|v∗|
)

[ fs(v′)fr(w′)− fs(v)fr(w)] dΩ dw. (2.2)

Here, σsr is the differential scattering cross-section depending on the intermolecular
potential between the two species and Ω is the unit vector of the solid angle; v and w are
the pre-collision velocities of the two molecules of species s and r, respectively. Hence,
v∗ = v − w is the relative velocity, which determines the post-collision velocities v′ and
w′ of the collision pair as

v′ = v − 2mr

ms + mr
(v∗ · Ω)Ω, w′ = w + 2ms

ms + mr
(v∗ · Ω)Ω. (2.3a,b)

The macroscopic variables of each species s, namely, the number density ns, mass
density ρs, flow velocity us, temperatures Ts, pressure tensor Ps and heat flux qs, are
obtained by taking the moments of the respective velocity distribution function fs,

ns = 〈1, fs〉, ρs = 〈ms, fs〉, ρsus = 〈msv, fs〉, 3
2 nskBTs = 〈1

2 ms|v − us|2, fs〉,
Ps = 〈ms(v − us)(v − us), fs〉, qs = 〈1

2 ms|v − us|2(v − us), fs〉,
}

(2.4)
where kB is the Boltzmann constant; and the operator 〈h, ψ〉 is defined as an integral of
hψ over the velocity space,

〈h, ψ〉 ≡
∫

R3
hψ dv. (2.5)

Then, the corresponding macroscopic quantities for the mixture, the number density n,
mass ρ, flow velocity u, temperatures T , pressure tensor P and heat flux q, are given by

n =
∑

s

〈1, fs〉 =
∑

s

ns,

ρ =
∑

s

〈ms, fs〉 =
∑

s

ρs,

ρu =
∑

s

〈msv, fs〉 =
∑

s

ρsus,

3
2

nkBT =
∑

s

〈
1
2

msc2, fs

〉
=
∑

s

3
2

nskBTs + 1
2

∑
s

ρs|us − u|2,

P =
∑

s

〈mscc, fs〉 =
∑

s

Ps +
∑

s

ρs(us − u)(us − u),

q =
∑

s

〈
1
2

msc2c, fs

〉
=
∑

s

qs +
∑

s

3
2

nskBTs(us − u)

+ 1
2

∑
s

ρs|us − u|2(us − u)+
∑

s

Ps · (us − u),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where c = v − u is the peculiar velocity with respect to the mixture velocity u, and
therefore, the diffusion velocities us − u contribute to the mixture temperature, stress and
heat flux. Note that the scalar c denotes the magnitude of the vector c, with c = |c|, and
this notation is consistently used for both the molecular velocity v and the macroscopic
velocity u throughout this paper.
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Kinetic model for rarefied gas mixtures with disparate mass

2.2. Kinetic model with multi-relaxation collision operators
The proposed kinetic model for gas mixtures adopts relaxation time approximations for
each pair of gas components individually to simplify the Boltzmann collision operator
(2.2), and thus, the evolution of distribution functions fs can be written as

Dfs =
N∑

r=1

1
τsr
(gsr − fs), s = 1, 2, . . . ,N, (2.7)

where s = r indicates a intra-species collision operator, s /= r are inter-species collisions;
τsr is the corresponding relaxation time and gsr is the reference distribution function
constructed in the form

gsr = n̂sr

(
ms

2πkBTs

)3/2

exp
(

−ms(v − ûsr)
2

2kBTs

)
×
[

1 + T̂sr − Ts

Ts

(
ms(v − ûsr)

2

2kBTs
− 3

2

)

+ 2msq̂sr · (v − ûsr)

5n̂srk2
BT̂2

s

(
ms(v − ûsr)

2

2kBT̂s
− 5

2

)]
, (2.8)

with n̂sr, T̂sr, ûsr, q̂sr being the auxiliary parameters.
Construction of the auxiliary parameters is the most crucial task in building the kinetic

model. As the essential constraints, the conservations of mass, momentum and energy have
to be guaranteed during any binary collisions. For the intra-species collision operators, the
conservations are the same as those for a single-species gas, i.e.〈

1,
1
τss
(gss − fs)

〉
= 0,

〈
msv,

1
τss
(gss − fs)

〉
= 0,

〈
1
2

msv
2,

1
τss
(gss − fs)

〉
= 0.

(2.9a–c)

Therefore, the auxiliary number density, flow velocity and temperature in intra-species
collision operators can be simply determined by the macroscopic properties of each
species as n̂ss = ns, ûss = us, T̂ss = Ts. Thus, the reference distribution function gss in
the intra-species collision term reduces to that in the Shakhov model.

The inter-species collision operators conserve the number density of each inert species,
and the total momentum and energy of the collision pairs of species s and r:〈

1,
1
τsr
(gsr − fs)

〉
= 0,

〈
1,

1
τrs
(grs − fr)

〉
= 0,〈

msv,
1
τsr
(gsr − fs)

〉
+
〈
mrv,

1
τrs
(grs − fr)

〉
= 0,〈

1
2

msv
2,

1
τsr
(gsr − fs)

〉
+
〈

1
2

mrv
2,

1
τrs
(grs − fr)

〉
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

Then, the auxiliary number density is obtained as n̂sr = ns and n̂rs = nr, while the
auxiliary velocities and temperatures ûsr, ûrs, T̂sr, T̂rs cannot be uniquely determined, but
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yield the constraints

ρs

τsr
ûsr + ρr

τrs
ûrs = ρs

τsr
us + ρr

τrs
ur,

1
τsr

[
3
2

nskB(T̂sr − Ts)+ 1
2
ρs(û2

sr − u2
s )

]
+ 1
τrs

[
3
2

nrkB(T̂rs − Tr)+ 1
2
ρr(û2

rs − u2
r )

]
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.11)

Therefore, we further impose the following assumptions to determine the auxiliary
velocities and temperatures in inter-species collision operators:

ûsr − ûrs = (1 − asr)(us − ur)− bsr(∇ln Ts + ∇ln Tr),

T̂sr − T̂rs = (1 − csr)(Ts − Tr)− dsr|us − ur|2.
}

(2.12)

Here asr = ars, bsr = −brs, csr = crs, dsr = −drs are the adjustable parameters, which
describe how rapidly the equilibrium among different gas components can be achieved
through inter-species collisions. To be specific, the assumptions imposed to determine
the auxiliary velocities and temperatures are designed to recover the correct momentum
and energy relaxation, respectively. Since the momentum relaxation is closely related
to the diffusion phenomenon, the term with parameters asr is presented to account for
the ordinary diffusion arising from concentration gradients, that is, the Fick effect. The
term with parameters bsr is introduced to encapsulate the thermal diffusion induced by
temperature gradients, known as the Soret effect. Note that, compared with those in the
literature (such as Haack et al. 2017; Bobylev et al. 2018), (2.12) gives a more general
expression for the relations between the auxiliary and macroscopic properties, by adding
the temperature gradient to phenomenologically model the thermally induced flow. Then,
combined with (2.11), the auxiliary velocities and temperatures are given by

ûsr = us − ρrτsr

ρsτrs + ρrτsr
X sr,

T̂sr = Ts − nrτsr

nsτrs + nrτsr
Ysr − ρsρrτsrτrsX sr · [X sr − 2(us − ur)]

3kB(nsτrs + nrτsr)(ρsτrs + ρrτsr)
,

⎫⎪⎪⎬⎪⎪⎭ (2.13)

with
X sr = asr(us − ur)+ bsr(∇ln Ts + ∇ln Tr),

Ysr = csr(Ts − Tr)+ dsr|us − ur|2.

}
(2.14)

In addition, the auxiliary properties q̂sr are constructed to adjust the relaxation rates of
heat fluxes as

q̂sr = (1 − Prsr)qs + γsr(qsr − qs), (2.15)

where Prsr is an effective Prandtl number giving the thermal relaxation of species s due to
collisions with species r, which reduces to Prss = 2/3 for the intra-species collisions of a
monatomic gas; qsr is defined as the heat flux of species s measured relative to auxiliary
velocity ûsr,

qsr = 〈1
2 ms|v − ûsr|2(v − ûsr), fs〉, (2.16)
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and thus, (2.15) yields q̂ss = (1 − Prss)qs for the intra-species collision term;
γsr = −γrs is a dimensionless coefficient taking into account the Dufour effects caused
by the diffusive thermal conductivity. Based on the asymptotic analysis of the Boltzmann
equation (Chapman & Cowling 1970), it is an effect inverse to thermal diffusion and,
hence, γsr is not an independent parameter but can be determined by the other adjustable
parameters, as shown in the following section.

2.3. Continuum flow limit
The multi-relaxation kinetic model equations have been constructed for a monatomic
gas mixture, which contains several adjustable parameters: relaxation rates τsr, effective
Prandtl number Prsr and the set of coefficients asr, bsr, csr, dsr, γsr used for calculating
auxiliary properties. Here, we perform the Chapman–Enskog analysis to get the asymptotic
limit of the proposed model equation and determine the relevant parameters to recover
the transport coefficients, so that the kinetic model and macroscopic fluid dynamics
are consistent in the continuum flow regime, which is the basic requirement to achieve
accurate kinetic modelling.

Without loss of generality, we consider a binary mixture of monatomic gases. The
extension to a multi-species mixture is expected to be relatively easy, due to the fact that
our kinetic model is built on each binary collision pair. Therefore, although the expressions
of the transport coefficients of the whole mixture become more complex for mixtures
with more than two components, only the properties of binary mixtures are required to
determine all the model parameters in each possible binary collision term.

In the continuum limit, when all the relaxation times are considerably smaller than the
characteristic time of the gas flow, only the species number density ns, total momentum
ρu and energy 3

2 nkBT + 1
2ρu2 are the collisional invariants. Then, the set of equations for

the conserved macroscopic variables ns,u, T can be obtained by taking momentums of
the kinetic equations (2.7) and summing over the species (s = 1, 2) for momentum and
energy equations,

∂ns

∂t
+ ∇ · (nsu)+ ∇ · (ns(us − u)) = 0,

∂

∂t
(ρu)+ ∇ · (ρuu)+ ∇ · P = n1F 1 + n2F 2,

∂

∂t

(
3
2

nkBT + 1
2
ρu2
)

+ ∇ ·
[(

3
2

nkBT + 1
2
ρu2
)

u
]

+ ∇ · (P · u)+ ∇ · q = n1F 1 · u1 + n2F 2 · u2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.17)

where us is the species macroscopic velocity defined in (2.4), P and q are the mixture
pressure tensor and heat flux, respectively, given in (2.6). To close the above set of
equations, it is necessary to find the approximations to distribution functions fs, and hence,
the properties us,P, q can be expressed as functions of the macroscopic variables ns,u, T ,
giving the constitutive relations and transport properties of the gas mixture (see the details
in Appendix A).

The Navier–Stokes-type equation for a gas mixture is then obtained by the second
approximation of fs, and the species velocities uNS

s , stress tensor PNS and heat flux qNS
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are given by

uNS
1 = u − ρ1τ21 + ρ2τ12

a12

p
ρρ1

d12 − 2b12ρ2

a12ρ
∇ln T,

uNS
2 = u + ρ1τ21 + ρ2τ12

a12

p
ρρ2

d12 + 2b12ρ1

a12ρ
∇ln T,

PNS = nkBT I − kBT
(
τ11τ12

τ11 + τ12
n1 + τ22τ21

τ22 + τ21
n2

)(
∇u + ∇uT − 2

3
∇ · uI

)
,

qNS = 5
2

kBT(n1uNS
1 + n2uNS

2 − nu)+ 2b12ρ1ρ2

ρ1τ21 + ρ2τ12
(uNS

1 − uNS
2 )

−
[(

n1

m1

τ11τ12

Pr12τ11 + Pr11τ12
+ n2

m2

τ22τ21

Pr21τ22 + Pr22τ21

)
5k2

BT
2

− 4b2
12ρ1ρ2

a12(ρ1τ21 + ρ2τ12)T

]
∇T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

where p = nkBT is the pressure, I is a 3 × 3 identity matrix and d12 is given as

d12 = ∇
(n1

n

)
+ n1n2(m2 − m1)

nρ
∇ln p − ρ1ρ2

ρp

(
F 1

m1
− F 2

m2

)
, (2.19)

which yields d12 = −d21, since ∇(n1/n) = −∇(n2/n).

2.3.1. Viscosity
The shear viscosity μ of a binary mixture can be obtained from the off-diagonal
components of the non-equilibrium stress tensor P in (2.18), which leads to

μ = kBT
(
τ11τ12

τ11 + τ12
n1 + τ22τ21

τ22 + τ21
n2

)
. (2.20)

Clearly, the mixture shear stress depends on all the relaxation times. It is known that
the dependence of species shear viscosity μs on mean collision time τss of intra-species
collisions is μs = nskBTτss. However, the relaxation time τsr(s /= r) in the kinetic model is
no longer a mean molecular collision time of inter-species interactions, but measures the
time scale approaching the reference states gsr for the component s due to the collisions
with component r. In other words, nrτsr should be smaller than nsτrs when ms < mr,
because the collisions between molecules with disparate mass have a more significant
influence on the light one than on the heavy one. For example, by considering a mixture
consisting of ions and electrons with mass mi and me, respectively, the approximated
relation between the inter-species relaxation times given in the literature is niτei/neτie =
me/mi � 1 (Bellan 2006).

Therefore, here we define

φsr = nsτss

nrτsr
, (2.21)

to quantify the ratio between the relaxation times of each intra- and inter-species collision
for species s, where φsr is only determined by the intermolecular interactions and
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Kinetic model for rarefied gas mixtures with disparate mass

temperature, but independent of the concentrations of the components. Then the mixture
viscosity (2.20) can be rewritten in the form

μ = μ1

1 + n2

n1
φ12

+ μ2

1 + n1

n2
φ21

, (2.22)

which is a linear combination of the species viscosities of the mixture components
and shares the exact same form as that given by Wilke’s mixture rule (Wilke 1950).
Nevertheless, the more accurate values of φsr can be obtained by fitting the mixture
viscosity measured experimentally.

2.3.2. Diffusion
In a gas mixture the ordinary diffusion coefficient Dsr is usually measured when the gas
mixture is uniform in temperature and pressure and without external forces acting on the
gas molecules; while the thermal diffusion with coefficient DT,sr also contributes to the
diffusion velocity when there is a temperature gradient present. In general, the mass flux
Js of the species s in a binary mixture caused by gradients of concentration, pressure and
temperature is given by (Hirschfelder, Curtiss & Bird 1954)

Js = ρs(us − u) = −n2

ρ
msmr[Dsrdsr − DT,sr∇ln T]. (2.23)

Meanwhile, the diffusion velocity in the proposed kinetic model is obtained as (2.18) from
the Chapman–Enskog method,

us − u = −ρ1τ21 + ρ2τ12

asr

p
ρ1ρ2

dsr − 2bsr

asr
∇ln T. (2.24)

Therefore, the binary diffusion coefficient D12 is

D12 = kBT
m1m2n

ρ1τ21 + ρ2τ12

a12
, (2.25)

which determines the parameter a12 = a21 when the relaxation times are known from
viscosity. Also, the thermal-diffusion coefficient DT,12, as well as the thermal-diffusion
ratio kT,12 = DT,12/D12 are obtained:

DT,12 = 2b12n1n2

a12n2 , kT,12 = 2b12ρ1ρ2

p(ρ1τ21 + ρ2τ12)
. (2.26a,b)

Thus, the parameter b12 = −b21 is adjusted to match the thermal-diffusion ratio and
recover the Soret effect in the continuum limit. The Soret effect describes mass separation
due to a temperature gradient and it may be positive or negative depending on the mass
difference and intermolecular potentials (Chapman & Cowling 1970). In general, thermal
diffusion becomes stronger in molecules with a larger mass difference and, thus, is crucial
in the modelling of gas mixtures with significant mass disparity. Meanwhile, although the
absolute value of the thermal-diffusion ratio kT,12 usually has an order of magnitude less
than 10−1 for a neutral gas mixture, it can be greatly increased in ionized gases (Chapman
1958).
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2.3.3. Thermal conductivity
In addition to the direct transfer of kinetic energy during collisions, the diffusional
migration of molecules also carries thermal energy and contributes to the heat transport
in a gas mixture, which is known as the Dufour effect. Based on the Chapman–Enskog
method, the mixture heat flux q is obtained as

q = 5
2

kBT[n1(u1 − u)+ n2(u2 − u)] + 5
2

kBTA(u1 − u2)

− 5
2

kBT
(

n1

m1

τ11τ12

Pr12τ11 + Pr11τ12
+ n2

m2

τ22τ21

Pr21τ22 + Pr22τ21
− A

2b12

a12kBT

)
kB∇T.

(2.27)

with

A = γ12

(
1

m1

τ11τ12

Pr12τ11 + Pr11τ12
+ 1

m2

τ22τ21

Pr21τ22 + Pr22τ21

)
a12ρ1ρ2

ρ1τ21 + ρ2τ12
. (2.28)

It can be seen that there are three factors contributing to the total heat flux. (i) The first
term occurs since the heat flux is measured relative to the mixture flow velocity, instead of
the species flow velocity, and thus, represents energy carried by the molecular flux in the
presence of diffusion us − u. (ii) The second term with binary diffusion velocity u1 − u2
arises as an inverse process to thermal diffusion, and has a coefficient 5

2 kBTA = nkBTkT,12
based on the asymptotic analysis of the original Boltzmann equation (Chapman & Cowling
1970), leading to

γ12 =
(

1
m1

τ11τ12

Pr12τ11 + Pr11τ12
+ 1

m2

τ22τ21

Pr21τ22 + Pr22τ21

)−1 4b12

5a12kBT
. (2.29)

(iii) The third term −κ∇T is generated by a temperature gradient, where κ is the ordinary
thermal conductivity of the mixture that is usually measured experimentally in the absence
of any diffusion velocity:

κ =
(

n1

m1

τ11τ12

Pr12τ11 + Pr11τ12
+ n2

m2

τ22τ21

Pr21τ22 + Pr22τ21

)
5k2

BT
2

− 4b2
12ρ1ρ2

a12(ρ1τ21 + ρ2τ12)T
.

(2.30)

In analogy with the parameter φsr used to measure the ratio between the relaxation times
of intra- and inter-species collisions, we also define

ϕsr = Prsr

Prss
, (2.31)

to represent the ratio of the thermal relaxation rates. Given the species thermal
conductivity κs = 5nsk2

BTτss/2msPrss, the mixture thermal conductivity (2.30) can be
rewritten in the form

κ = κ1

1 + n2

n1
φ12ϕ12

+ κ2

1 + n1

n2
φ21ϕ21

− D12k2
Tn3kB

n1n2
, (2.32)

where the last term indicates the effect of thermal diffusion on the thermal conductance
of a gas mixture. Similar to the viscosity, the values of ϕsr can be determined by matching
the mixture thermal conductivity measured at different proportions of gas components.
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Kinetic model for rarefied gas mixtures with disparate mass

2.4. Inter-species energy relaxation
We have shown that in the continuum flow limit the temperatures of different components
stay the same up to the Navier–Stokes approximation of the proposed model, when all the
relaxation times are considerably smaller than the characteristic time of gas flow. Thus,
the transport coefficients in the continuum flow limit are not affected by the parameters
csr and dsr. However, these parameters determine the auxiliary temperatures and, hence,
the energy relaxation rates between different species, which may have a significant impact
in strong non-equilibrium situations. In the kinetic modelling of a single-species gas, we
have found that having all the transport coefficients is not enough to exactly describe the
underlying relaxation processes (Li et al. 2021, 2023; Zeng, Li & Wu 2022). The same is
true for the energy relaxation during inter-species collisions of a gas mixture.

Therefore, we determine the parameters csr and dsr for calculating auxiliary temperature
by imposing that the energy exchange rates of the inter-species collision operator coincide
with that of the Boltzmann collision operator,〈

1
2

msv
2,

1
τsr
(gsr − fs)

〉
=
〈

1
2

msv
2,Qsr

〉
. (2.33)

The exchange rates of the kinetic model (left-hand side) can be calculated
straightforwardly, while that of the Boltzmann collision operator may only be explicitly
evaluated for the Maxwellian intermolecular potential,

ns

τsr

[
3
2

kB(T̂sr − Ts)+ ms

2
(ûsr − us)

2
]

= λsr
msmr

(ms + mr)2
nsnr[3kB(Tr − Ts)+ mr(ur − us)

2], (2.34)

where λsr = λrs are constants related to the integral of collision cross-sections. By
substituting the auxiliary velocity and temperature (2.13) into (2.34), we immediately get

csr = 2λsrmsmr

(ms + mr)2
(nsτrs + nrτsr),

dsr = λsrmsmr

3kB(ms + mr)2
[λsr(nrρrτ

2
sr − nsρsτ

2
rs)− 2(ρrτsr − ρsτrs)].

⎫⎪⎪⎬⎪⎪⎭ (2.35)

Note that the same form of (2.34) can be obtained for non-Maxwellian intermolecular
potentials with non-constant λsr, when it is subject to the restriction that the distribution
functions are Maxwellian at different temperatures but with small diffusion velocities
(Morse 1964). Therefore, we calculate the parameters csr and dsr using (2.35) for any
type of intermolecular potential.

Furthermore, variable λsr can be approximated by matching the momentum exchange
rates of the inter-species collision operator with that of the Boltzmann collision operator
for the Maxwellian intermolecular potential,〈

msv,
1
τsr
(gsr − fs)

〉
= 〈msv,Qsr〉, (2.36)

which leads to
nsms

τsr
(ûsr − us) = λsr

msmr

ms + mr
nsnr(ur − us). (2.37)
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Therefore, λsr can be evaluated by parameter asr as

λsr = asr(ms + mr)

ρsτrs + ρrτsr
, (2.38)

which is thus determined by the binary diffusion coefficient as given by (2.25).

2.5. Indifferentiability principle
The indifferentiability principle states that, when all the molecules are mechanically
identical (e.g. they have the same mass and scattering cross-section), the model equation
reduces to a single one by adding the distribution functions (Garzó, Santos & Brey
1989), although in reality one does not have this situation unless one uses two Boltzmann
equations to simulate single-species flow. This property holds for the Boltzmann equation
because of the bilinearity of its operators. It is however non-trivial for a model equation
to inherit since the operators constructed are usually highly nonlinear. Historically, several
kinetic models using a single-relaxation collision operator have been proven to fulfil this
principle. It should be noted that some of them require a condition that the diffusion
velocities vanish for the indifferentiable molecules, when the models contain parameters
to recover the Fick law (Brull, Pavan & Schneider 2012; Todorova & Steijl 2019).

Therefore, we also adopt the assumption that us = u for all the indifferentiable species
s, to demonstrate that our multi-relaxation model with the linearised collision operator
complies with the indifferentiability principle. Consider a gas mixture system that slightly
deviates from an equilibrium state with flow velocity u, temperature T and number density
ns of each component, the reference distribution in the linearised collision operator is given
as

glinear
sr = f eq

s

[
1 + ms(ûsr − u) · c

kBT
+ T̂sr − T

T

(
msc2

2kBT
− 3

2

)

+ 2msq̂sr · c

5nsk2
BT2

(
msc2

2kBT
− 5

2

)]
, (2.39)

with

f eq
s = ns

(
ms

2πkBT

)3/2

exp
(

−ms(v − u)2

2kBT

)
. (2.40)

For the indifferentiable molecules, we have (i) ms = m and nrτsr is constant for any s
and r due to the identical mass and scattering cross-sections, respectively; (ii) ûsr = u
based on (2.13) with the thermal-diffusion coefficient vanishing; (iii) T̂sr + T̂rs = Ts + Tr
and nT =∑ nsTs from total energy conservation (2.11) and calculation of the mixture
temperature (2.6), respectively; (iv) q̂sr = (1 − Pr)qs from (2.15). Then, the sum of the
kinetic equations over all species yields

D
( N∑

s=1

fs

)
=

N∑
s=1

N∑
r=1

1
τsr
(glinear

sr − fs)

= 1
τ

{∑
s

f eq
s

[
1 + 2m(1 − Pr)

(∑
s qs
) · c

5nk2
BT2

(
mc2

2kBT
− 5

2

)]
−

N∑
s=1

fs

}
,

(2.41)
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Kinetic model for rarefied gas mixtures with disparate mass

where τ = nrτsr/n is the overall relaxation time. Clearly, the kinetic model equation
reduces to the Shakhov model of single-species monatomic gas with the distribution
function f =∑ fs.

2.6. Dimensionless forms
Let L0, T0, n0,m0 be the reference length, temperature, number density and mass,
respectively, then the most probable speed is

vm =
√

2kBT0

m0
, (2.42)

and the reference pressure is p0 = n0kBT0. The dimensionless variables are introduced as

x̃ = x/L0, ñ = n/n0, m̃ = m/m0, T̃ = T/T0,

ṽ = v/vm, c̃ = c/vm, t̃ = vmt/L0, τ̃ = vmτ/L0,

p̃ = p/p0, q̃ = q/( p0vm), f̃s = v3
mfs/n0.

⎫⎪⎪⎬⎪⎪⎭ (2.43)

The Knudsen numbers Kns of each species s is defined as

Kns = μs(T0)

n0L0

√
π

2mskBT0
. (2.44)

It is noted that the species-specific Knudsen numbers are correlated as Knr =
Knsβ

μ
rs/
√
βm

rs , with β
μ
rs = μr(T0)/μs(T0) being the viscosity ratio at the reference

temperature and βm
rs = mr/ms the mass ratio. Therefore, the dimensionless relaxation

times can be written in terms of the Knudsen numbers,

τ̃ss = 2Kns

√
m̃s

π

T̃ωs−1
s

ñs
, τ̃sr = τ̃ssφ

−1
sr

ñs

ñr
, (2.45a,b)

where ωs is the viscosity index of species s in

μs(T) = μs(T0)

(
T
T0

)ω
s
. (2.46)

Then, the kinetic model equations are non-dimensionalised as

∂ f̃s
∂ t̃

+ ṽ · ∂ f̃s
∂ x̃

+ F̃ s

m̃s
· ∂ f̃s
∂ ṽ

=
√

π

m̃s

T̃1−ωs
s

2Kns

⎡⎣ñs(g̃ss − f̃s)+
∑
r /= s

ñrφsr(g̃sr − f̃s)

⎤⎦ , (2.47)

with the dimensionless reference velocity distribution function

g̃sr = ñsr

(
m̃s

πT̃s

)3/2

exp

(
− m̃s(ṽ − ˜̂usr)

2

T̃s

)
×
⎡⎣1 +

˜̂Tsr − T̃s

T̃s

(
m̃s(ṽ − ˜̂usr)

2

T̃s
− 3

2

)

+ 4m̃s ˜̂qsr · (ṽ − ˜̂usr)

5 ˜̂nsrT̃2
s

(
m̃s(ṽ − ˜̂usr)

2

T̃s
− 5

2

)⎤⎦ . (2.48)

It clearly shows that the strengths of intra- and inter-species collisions are indicated
by the magnitudes of ñs and ñrφsr, respectively. Therefore, in a gas mixture with a large
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disparity in concentration or mass, the intra-species collisions become dominant for the
component s with a major proportion of number density (ñs 	 ñr) or significantly heavier
mass (φsr � 1 when mr � ms).

3. Determination of parameters

Given the relationship between the model parameters and transport coefficients of the
mixtures as (2.22), (2.25), (2.26a,b) and (2.32), the adjustable parameters can be uniquely
determined by the experimentally measured properties of gas mixtures directly, without
the knowledge of any intermolecular potentials that is also constructed to approximate the
real gas properties.

Nevertheless, to validate our kinetic model in various rarefied flow problems of gas
mixtures with a wide range of mass ratios and different types of molecular interactions, we
compare the solutions of our model with DSMC results for virtual gases with well-defined
intermolecular potentials. The transport properties of a gas in DSMC simulations are
the result of the transfer of mass, momentum and energy through particle movement
and collision dynamics of corresponding collision models. Given the information of any
intermolecular potentials, the DSMC method with the variable-soft-sphere (VSS) collision
model (Koura & Matsumoto 1991) captures the viscosity and diffusion cross-sections
simultaneously by adjusting two parameters, the viscosity index ω and the angular
scattering parameter α, and thus, provides reference solutions consistent with those from
the Boltzmann equation for monatomic gases. For example, the hard-sphere molecules
have ω = 0.5 and α = 1, and the Maxwell molecules have ω = 1.0 and α = 2.14.
Therefore, to make a consistent comparison between the results from the proposed kinetic
model and the DSMC method, we determine the parameters in the model equation by
matching the transport properties of a gas mixture from the VSS model applied in the
DSMC simulations.

The transport coefficients for both simple gases and gas mixtures can be approximated
by the Chapman–Enskog solutions of the Boltzmann equation. It should be noted that,
the first approximations of the transport coefficients for non-Maxwell gases may have
differences compared with the exact values. Based on the Chapman–Enskog solutions
to higher order in Sonine polynomials (Tipton, Tompson & Loyalka 2009a,b), for a
gas mixture consisting of hard-sphere molecules, the discrepancies in mixture viscosity
and diffusion coefficient are usually limited, namely, less than 3 % for a wide range of
molecular mass, sizes and mole fractions. On the other hand, the discrepancies can be
non-negligible in thermal conductivity, that is, around 10 % in some mixtures, and even
significant for thermal-diffusion coefficients (higher than 20 %). In a binary gas mixture
of monatomic molecules, the first approximations of the transport coefficients, denoted by
[·]1, are given by (Chapman & Cowling 1970)

[μs]1 = 5kBT

8Ω(2)
s (2)

,

[κs]1 = 75k2
BT

32msΩ
(2)
s (2)

,

[D12]1 = 3E
2n(m1 + m2)

,

[kT ]1 = 5C
n1n2

n
n1S1 − n2S2

n2
1Q1 + n2

2Q2 + n1n2Q12
,

[μ]1 = n2
1R1 + n2

2R2 + n1n2R′
12

n2
1R1/[μ1]1 + n2

2R2/[μ2]1 + n1n2R12
,

[κ]1 = n2
1Q1[κ1]1 + n2

2Q2[κ2]1 + n1n2Q′
12

n2
1Q1 + n2

2Q2 + n1n2Q12
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
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Kinetic model for rarefied gas mixtures with disparate mass

where Ωs is the integral of intra-species collisions, the variables S,Q,R can be expressed
in terms of species viscosities [μs]1 and mass fraction Ms = ms/(m1 + m2),

S1 = M2
1E

[μ1]1
− M2(3(M2 − M1)+ 4M1A),

S2 = M2
2E

[μ2]1
− M1(3(M1 − M2)+ 4M2A),

Q1 = M1E
[μ1]1

(6M2
2 + 5M2

1 − 4M2
1B + 8M1M2A),

Q2 = M2E
[μ2]1

(6M2
1 + 5M2

2 − 4M2
2B + 8M2M1A),

Q12 = 3(M1 − M2)
2(5 − 4B)+ 4M1M2A(11 − 4B)+ 2M1M2E2

[μ1]1[μ2]1
,

Q′
12 = 15kBE

2(m1 + m2)

(
M1E
[μ1]1

+ M2E
[μ2]1

+ (11 − 4B − 8A)M1M2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

R1 = 2
3

+ M1A
M2

, R2 = 2
3

+ M2A
M1

,

R12 = E
2[μ1]1[μ2]1

+ 4A
3EM1M2

,

R′
12 = E

2[μ1]1
+ E

2[μ2]1
+ 2

(
2
3

− A
)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)

Here, A,B,C,E are functions of integrals Ω12 of inter-species collisions,

A = Ω
(2)
12 (2)

5Ω(1)
12 (1)

, B = 5Ω(1)
12 (2)−Ω

(1)
12 (3)

5Ω(1)
12 (1)

,

C = 2Ω(1)
12 (2)

5Ω(1)
12 (1)

− 1, E = kBT(m1 + m2)
2

8m1m2Ω
(1)
12 (1)

.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.4)

Based on the VSS collision model, the Ω integrals can be calculated as given by
Stephani, Goldstein & Varghese (2012),

Ω(2)
s (2) = 4αs

(αs + 1)(αs + 2)
π

2

(
kBT
πms

)1/2 (5
2

− ωs

)(
7
2

− ωs

)(
T0

T

)ωs−1/2

d2
s,ref ,

Ω
(1)
12 (1) = 2

α12 + 1
π

2

(
kBT

2πm12

)1/2 (5
2

− ω12

)(
T0

T

)ω12−1/2

d2
12,ref ,

Ω
(1)
12 (2) = Ω

(1)
12 (1)

(
7
2

− ω12

)
,

Ω
(1)
12 (3) = Ω

(1)
12 (1)

(
7
2

− ω12

)(
9
2

− ω12

)
,

Ω
(2)
12 (2) = 4α12

(α12 + 1)(α12 + 2)
π

2

(
kBT

2πm12

)1/2 (5
2

− ω12

)(
7
2

− ω12

)(
T0

T

)ω12−1/2

d2
12,ref ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

where m12 = m1m2/(m1 + m2) is the reduced mass; dref is the reference collision
diameter, ω is the viscosity index, α is the angular scattering parameter in the VSS
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φ21 ∝ (m2/m1)–0.59

m2/m1

Maxwell gas      d2/d1 = 1

Hard-sphere gas d2/d1 = 2

φ12 =
n1τ11
n2τ12

φ21 =
n2τ22
n1τ21

(a) (b)

Figure 1. The relaxation time ratios (a) φ12 and (b) φ21 fitted by the first approximations of the mixture
viscosities with the mass ratio m2/m1 varies from 1 to 104, for Maxwell gas mixtures with a fixed reference
diameter ratio d2/d1 = 1 and hard-sphere gas mixtures with d2/d1 = 2.

model, with subscripts s and 12 indicating the values for intra- and inter-species collisions,
respectively.

Therefore, given the collision parameters in the VSS model, the first approximations of
the transport properties of a gas mixture can be explicitly evaluated. Then the parameters
φsr measuring the ratio between relaxation times of intra- and inter-species collisions can
be obtained by following two straightforward steps.

(i) First, the mixture viscosities are calculated as a function of mole concentrations
based on (3.1)–(3.5).

(ii) Second, we find the optimized values of φ12 and φ21 in expression (2.22) by the least
square method to fit the mixture viscosities given by the first step.

Similarly, the ratio of thermal relaxation rates ϕsr can be fitted by matching the mixture
thermal conductivity using (2.32), once φsr is determined. Also, the parameters asr and
bsr are calculated based on the diffusion coefficients (2.25) and thermal-diffusion ratio
(2.26a,b), respectively.

The value of φsr = nsτss/nrτsr is not only essential to recover the shear viscosity of
the gas mixture, but also signifies the relaxation time scales of different types of binary
collisions. Then, to explore the dependence of the relaxation time ratio on mass disparity,
we obtain φsr across a wide range of mass ratios m2/m1 = 1 ∼ 104 for Maxwell gas
mixtures with a fixed reference diameter ratio d2/d1 = 1 and hard-sphere gas mixtures
with d2/d1 = 2, as shown in figure 1. It is found that for lighter species (typically smaller
in diameter), φ12 = n1τ11/n2τ12 is greater than 1 and also increases gradually with mass
ratio (figure 1a), which implies an important role of inter-species collisions with heavy gas
molecules. On the other hand, φ21 = n2τ22/n1τ21 rapidly decreases as the mass disparity
grows, and roughly scales as (m2/m1)

−0.59 when the mass ratio exceeds 20 (figure 1b).
Consequently, in a gas mixture with disparate mass, the inter-species collision term in our
kinetic model will have a negligible impact on the dynamics of the heavier species unless
its mole fraction is significantly small. Note that, knowing the relaxation time scale of each
collision term is also crucial for developing a multi-temperature hydrodynamic equation
for mixtures with disparate mass, since the corresponding constitutive relations depend
on the orders of magnitude of the inter-species relaxation rates (Bisi, Groppi & Martalò
2021).

In the present work, three types of binary gas mixtures are considered in the following
simulations: mixtures 1 and 2 consist of Maxwell gas molecules possessing identical
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Kinetic model for rarefied gas mixtures with disparate mass

Mixture Constituents m2/m1 d2/d1 ω12 α12 φ12 φ21 ϕ12 ϕ21

1 Maxwell gas 10 1 1.0 2.14 1.214 0.5154 1.035 1.779
2 1000 1 1.0 2.14 1.367 0.05754 0.999 2.259
3 Hard-sphere gas 100 2 0.5 1.0 2.955 0.1269 1.425 1.261

Table 1. The constituents of the three binary mixtures considered in the present work, and the corresponding
parameters φsr and ϕsr in the kinetic model fitted by matching the mixture viscosity and thermal conductivity
from the VSS collision model, respectively.

reference diameters and mass ratios of 10 and 1000, respectively; mixture 3 composites
hard-sphere molecules characterized by a mass ratio of 100 and a diameter ratio of 2. All
the parameters associated with inter-species collisions in the VSS model (namely, ω12,
α12 and d12) are determined simply through the arithmetic averaging of the corresponding
parameters of the individual components in each mixture. The fitting parameters φsr and
ϕsr for relaxation rate ratios are given in table 1. Due to the discrepancy by the first
approximation of mixture thermal conductivity for hard-sphere molecules as mentioned
above, we determine the values of ϕsr for mixture 3 based on the thermal conductivities
calculated from the DSMC method directly, to make a more fair comparison for model
validation. It is noteworthy that the fitted values of φsr and ϕsr for the considered mixtures
are independent of temperature, although this is generally not the case for arbitrary
mixtures containing gas molecules with different interaction potentials.

4. Numerical results of one-dimensional problems

In this section the accuracy of our kinetic model is assessed by the DSMC method in
a one-dimensional normal shock wave, Fourier flow and Couette flow of the binary gas
mixtures listed in table 1. We compare not only the average properties of the mixture but
also those of the individual components, which is crucial for accurately describing mixture
flows, as the different species in the mixture can vary significantly in concentration,
velocity and temperature in non-equilibrium flows.

The DSMC simulations are conducted using the open-source code SPARTA (Plimpton
et al. 2019). We use uniform spatial cells in the one-dimensional simulations, with each
cell size LDSMC

cell set to approximately 1/10 of the mean free path of the species with a larger
collision diameter. Note that for the Fourier and Couette flows with a Knudsen number
exceeding 0.1, 100 cells are used. The time step applied in the simulations is LDSMC

cell /5vlight
m ,

where vlight
m is the most probable speed of the lighter molecules. On average, we use 100

simulation particles per cell on the upstream side in normal shock wave problems, and 200
simulation particles per cell in Fourier and Couette flow simulations.

On the other hand, to reduce the computational cost of solving kinetic model equations,
the velocity distribution functions are dimensionally reduced to be quasi-one-dimensional
in velocity space for the normal shock wave and Fourier flow, by introducing functions
fs,x1 and fs,x2:

fs,x1 =
∫

R2
fs dvy dvz, fs,x2 =

∫
R2
(v2

y + v2
z )fs dvy dvz. (4.1a,b)

1001 A5-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1047


Q. Li, J. Zeng and L. Wu

Similarly, fs can be reduced to be quasi-two-dimensional in velocity space for the Couette
flow, by introducing functions fs,xy1 and fs,xy2:

fs,xy1 =
∫

R1
fs dvz, fs,xy2 =

∫
R1
v2

z fs dvz. (4.2a,b)

The macroscopic variables are then calculated by taking moments of the reduced
distribution functions. The kinetic model equations are solved by the discretized velocity
method (Zeng et al. 2023b; Liu et al. 2024; Zeng, Li & Wu 2024). A finite difference
method with a second-order upwind scheme is adopted in the numerical implementation,
where we use the forward Euler scheme for the time derivative and apply implicit treatment
to the convection term and distribution functions in the collision term. Non-uniform spatial
grids are employed, with mesh refinement applied around the centre of the shock waves
and in the vicinity of the solid walls in Fourier and Couette flows. Since the thermal
velocity of the lighter gas can be much higher than that of the heavier one by the square root
of the mass ratio, the individual velocity space of each component is used with different
truncations and discretization. Note that the model equation for each species is concerned
only with its own velocity distribution function, thus eliminating the need for interpolation
within the velocity space in the numerical scheme implementation.

4.1. Normal shock wave
We investigate the structure of normal shock waves under various free-stream conditions.
The conditions are defined by the species mole fraction χs in the upstream, as well as
the Mach number (Ma) calculated based on the speed of sound vmix = √

5kBTu/3mmix in
the upstream, where Tu is the upstream temperature and mmix =∑msχs is the averaged
mass of the mixture. Given the upstream conditions, the macroscopic quantities at the
downstream end are determined by the classical Rankine–Hugoniot relation. The mass
of the lighter species (denoted as species 1), the mixture number density nu and the
temperature Tu of the upstream flow are taken as reference values, namely, m0 = m1,
n0 = nu, T0 = Tu. The characteristic length L0 is set equal to the mean free path of the
lighter species in the upstream flow, thus leading to Kn1 = 1.

The numerical investigations of normal shock wave structures in gas mixtures based on
the Boltzmann equation and the DSMC method have been conducted in the literature,
taking into account various intermolecular interactions, including hard-sphere and ab
initio potentials. We validate the proposed kinetic model by comparing its results with
existing published data (Kosuge, Aoki & Takata 2001; Raines 2002; Sharipov & Dias
2018), as given in Appendix B. This comparison not only demonstrates the accuracy of
our model but also highlights its applicability in accommodating diverse intermolecular
potentials. Furthermore, we apply both the proposed kinetic model and the model of
Kosuge (2009) to simulate a weak and a strong shock wave with Ma = 2 and 10,
respectively. The comparative analysis with DSMC simulations indicates that both models
can accurately capture the structure of the weak shock wave, while our model outperforms
the Kosuge model in modelling strong non-equilibrium shock waves, as detailed in
Appendix C.

We then simulate the binary mixtures with large mass ratios (up to 1000) to determine
the limits of our kinetic model. The simulation domain [−Lx, Lx] is selected to ensure
that the upstream and downstream are in equilibrium states, and then the specific values
of Lx are chosen as 40L0, 500L0, 30L0 for mixtures 1, 2 and 3, respectively, due to the
significant differences in the properties of these gas mixtures and the upstream conditions.
Numerical results of both the kinetic model and the DSMC method are compared in
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Kinetic model for rarefied gas mixtures with disparate mass

figures 2–4 for mixtures 1, 2 and 3, respectively. We present the normalized values
for number density, flow velocity, temperature and dimensionless heat flux for each
species and also the mixture, under the specified conditions with different concentrations
χ1 = 0.1, 0.5, 0.9 and Ma = 3, 4, 5. For mixtures 1 and 2 consisting of Maxwell gases,
excellent agreements between the results of our kinetic model and the DSMC method are
achieved (figures 2 and 3), even when the mass ratio is as high as 1000. For mixture
3 consisting of hard-sphere molecules, the number density and velocity of the lighter
species predicted by the kinetic model deviate from DSMC results, when the mole fraction
of the lighter species is small (χ1 = 0.1; see figures 4a and 4d). However, the average
properties of the mixture remain highly accurate, since the lighter species, due to its low
concentration, has a minimal impact on the overall behaviour of the mixture. Generally,
three reasons may contribute to the possible deviation predicted by the kinetic model for
mixtures consisting of non-Maxwell gases: (i) the parameters csr and dsr accounting for
the energy relaxation are derived approximately for non-Maxwell molecules; (ii) the term
with parameter bsr is designed to capture the correct thermal-diffusion phenomena in the
continuum limit, and thus, may have a discrepancy in strong non-equilibrium cases; (iii)
the velocity-dependent collision frequency for non-Maxwell molecules is not recovered in
the BGK-type operators (Yuan & Wu 2022). Nevertheless, as shown in figure 4, the kinetic
model gives good overall agreement with DSMC simulations for hard-sphere gas mixtures.
Therefore, the agreement suggests that the kinetic model can predict accurate results for
realistic molecular models, whose behaviour usually lies between that of hard-sphere and
Maxwell molecules.

Although the shock waves in mixtures with large mass ratios (e.g. 32.8 for
Helium–Xenon) have been studied in the literature, and have shown unique characteristics
absent in those composed of similar gas molecules. The shock structures can be
significantly altered by substantial mass disparity. By comparing the shock structures in
a wide range of mass ratios and species concentrations, the following features can be
observed and correctly captured by our kinetic model.

(i) The shock wave thickness of a gas mixture is markedly thicker than that of a pure
gas, especially when the mass ratio is large, as the mixture viscosity and diffusivity
become stronger and the relaxation between components gets slower. For example,
as shown in figure 3, the Maxwell gas mixture with a mass ratio of 1000 and
diameter ratio of 1 form a significantly large transition zone from the upstream to
the downstream, which spans several hundreds of the molecular mean free path.

(ii) In mixture 1 with a mass ratio of 10 (moderate mass difference), a pronounced
temperature overshoot of the heavy species (higher than the downstream
temperature) is observed when the heavier gas has only a small proportion
(figure 2i), which has been shown in the literature from kinetic modelling (Bird
1968; Kosuge et al. 2001; Sharipov & Dias 2018) and hydrodynamic equations
(Schmidt, Seiler & Wörner 1984). However, when the mass ratio increases to
1000, the temperature overshoot gradually vanishes when χ1 = 0.9. As illustrated
in figure 3, a comparable or even larger proportion of the heavier gas is required for
the temperature overshoot to occur.

(iii) Flow velocity undershoot of the lighter gas happens in a mixture with a large mass
ratio (100 and 1000) and a small proportion of lighter species (χ1 = 0.1) (figures 3d
and 4d), which confirms the phenomena predicted by the multi-temperature
hydrodynamic equations on weak shock (Goldman & Sirovich 1969). In these

1001 A5-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1047


Q. Li, J. Zeng and L. Wu

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

0

–2

–4

–6

–8

–10
–20 –10 0 10 –20 –10 0 10 –20 0 20

–20 –10 0 10 –20 –10 0 10 –20 0 20

–20 –10 0 10 –20 –10 0 10 –20 0 20

–20 –10 0 10 –20 –10 0 10 –20 0 20

1.0

0.8

0.6

0.4

0.2

0

0

–5

–10

–15

0

–5

–10

–15

–20

1.0

0.8

0.6

0.4

0.2

0

x/L0

q/
n 0

k B
T 0

v
m

(T
 –

 T
u)

/(
T d

 –
 T

u)
(u

 –
 u

d)
/(

u u
 –

 u
d)

(n
 –

 n
u)

/(
n d

 –
 n

u)

x/L0 x/L0

Maxwell molecules

m2/m1 = 10

Ma = 5

d2/d1 = 1

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9

χ1 = 0.1 χ1 = 0.5 χ1 = 0.9

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Species 1

Kinetic model

DSMC

Species 2 Mixture

Figure 2. Comparisons of the normalized (a–c) number density, (d–f ) flow velocity, (g–i) temperature and
( j–l) dimensionless heat flux of the gas mixture between the kinetic model (lines) and the DSMC method
(symbols) for the normal shock wave at Ma = 5. The binary mixture consists of Maxwell molecules with a
mass ratio m2/m1 = 10, a diameter ratio d2/d1 = 1 and the mole fraction of light species χ1 = 0.1, 0.5, 0.9.
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Figure 3. Comparisons of the normalized (a–c) number density, (d–f ) flow velocity, (g–i) temperature and
( j–l) dimensionless heat flux of the gas mixture between the kinetic model (lines) and the DSMC method
(symbols) for the normal shock wave at Ma = 3. The binary mixture consists of Maxwell molecules with a
mass ratio m2/m1 = 1000, a diameter ratio d2/d1 = 1 and the mole fraction of light species χ1 = 0.1, 0.5, 0.9.
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Figure 4. Comparisons of the normalized (a–c) number density, (d–f ) flow velocity, (g–i) temperature and
( j–l) dimensionless heat flux of the gas mixture between the kinetic model (lines) and the DSMC method
(symbols) for the normal shock wave at Ma = 4. The binary mixture consists of hard-sphere molecules with a
mass ratio m2/m1 = 100, a diameter ratio d2/d1 = 2 and the mole fraction of light species χ1 = 0.1, 0.5, 0.9.
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Kinetic model for rarefied gas mixtures with disparate mass

situations, the lighter gas decelerates to a velocity lower than that of the downstream
flow, and thus, is compressed to a density above the downstream one.

(iv) A two-stage shock structure with distinct gradients of the mixture properties can
be observed. In mixture 1 with a mass ratio of 10 and a large concentration of
light species (χ1 = 0.9), as shown in the third column of figure 2, the properties
of the shock exhibit a very steep change on the upstream side, while followed by a
sudden change in the form of a long tail downstream. This phenomenon happened
in a mixture with a moderate mass difference in experiments of Helium–Xenon
(Gmurczyk, Tarczynski & Walenta 1979) and found by hydrodynamic equations
(Ruyev, Fedorov & Fomin 2002). However, when the mass ratio becomes
significantly large in mixtures 2 and 3 (figures 3 and 4), this phenomenon disappears.
On the contrary, the two-stage shock structure with an opposite trend occurs when
there is only a small proportion of light species in the mixture (χ1 = 0.1). This
structure consists of a smooth change in gas properties on the upstream side followed
by a sudden and dramatic change on the downstream side.

4.2. Planar Fourier flow
A stationary rarefied mixture confined between two infinite parallel plates located at x = 0
and x = L0 is considered. The surfaces of the plates have different temperatures Tw =
T0 ±�T , and reflect the gas molecules in a fully diffuse way. The Knudsen number is
determined in terms of the averaged number density of the mixture n0, the temperature
T0 and the distance between the two plates L0. A variety of cases were considered for
the mixtures with different mole fractions χs, temperature difference �T and Knudsen
numbers, while a selection of the representative results is shown in figures 5 and 6. It can
be seen that the solutions given by the kinetic model agree well with the DSMC results.

The temperatures of the components in mixture 1 (m2/m1 = 10) stay close when Kn
is up to 1 (figures 5a–5f ), while pronounced temperature separation and concentration
variation can be observed for mixture 2 (m2/m1 = 1000) when Kn = 0.1 (figures 5g–5l).
It is noteworthy that all these Maxwell molecules under consideration have the same size
of mean free path, due to their identical diameter and interaction potential. However,
the inter-species relaxation is much slower for the gases with disparate mass, although
the spatial Knudsen number is the same. In other words, the mixtures with larger mass
ratios may exhibit significant non-equilibrium phenomena even at small Kn, and hence,
shrink the applicable range of the hydrodynamic description of the mixtures. The same
observation has been found in a previous work solving the linearised Boltzmann equation
and McCormack model (Ho et al. 2016).

Unlike Maxwell gas mixtures, where the thermal-diffusion effect is absent, mixtures of
hard-sphere molecules have a significant thermal-diffusion effect. As shown in figure 6
(Kn1 = 0.1 and �T = 0.8T0), although the temperature of the two species remains the
same, the concentration ratio between components varies across the domain due to
the temperature gradient, and the heavy gas molecules tend to concentrate in the cold
region. Meanwhile, the highly nonlinear feature arising from the pronounced temperature
difference between the two plates is accurately captured. We also solve the kinetic
model without the thermal-diffusion effect by setting parameter b12 = 0 (other transport
properties and relaxation rates remain unchanged), corresponding results are shown in
figure 6 by black lines. Clearly, the species separation phenomenon cannot be reproduced,
thus leading to an incorrect prediction of concentration and, hence, the heat flux of each
species.
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Figure 5. Comparisons of the normalized number density (first column), dimensionless temperature (second
column) and heat flux (third column) of the gas mixture between the kinetic model (lines) and the DSMC
method (symbols) for the planar Fourier flow with �T = 0.2T0. The binary mixture consists of Maxwell
molecules with a diameter ratio d2/d1 = 1 and the mole fraction of light species χ1 = 0.5. Each row belongs to
a specific flow condition: (a–c) mixture 1 (m2/m1 = 10), Kn1 = 0.1; (d–f ) mixture 1, Kn1 = 1; (g–i) mixture
2 (m2/m1 = 1000), Kn1 = 0.1; ( j–l) mixture 2, Kn1 = 1.
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Figure 6. Comparisons of the normalized number density (a,d), dimensionless temperature (b,e) and heat flux
(c, f ) of the gas mixture between the kinetic model (lines) and the DSMC method (symbols) for the Fourier
flow, when Kn1 = 0.1 and �T = 0.8T0. The binary mixture consists of hard-sphere molecules with a mass
ratio m2/m1 = 100, a diameter ratio d2/d1 = 2 and the mole fraction of light species χ1 = 0.1 (a–c) and 0.9
(d–f ). The black lines are the kinetic model solutions without thermal-diffusion effects (b12 = 0).

Additionally, we also compare our kinetic model with the DSMC results reported by
Strapasson & Sharipov (2014), where the heat transfer in a He–Ar mixture confined
between two parallel plates are investigated across a wide range of Knudsen numbers.
Figure 7 presents the dimensionless heat flux q∗ for a He–Ar mixture with hard-sphere
molecules as functions of the rarefaction parameter δ ranging from 0.01 to 40, for various
mole fractions of helium χHe = 0.25, 0.5, 0.75, and temperature differences between
two plates �T/T0 = 0.1, 0.75. The maximum relative error, observed in the moderate
rarefaction regime, is consistently below 2.8 %. Note that the rarefaction parameter δ is
related to the Knudsen number through the equation

Kns =
√

πμs

2μmix

√
mmix

ms

1
δ
, (4.3)

where μmix is the viscosity of the mixture. The dimensionless heat flux q∗ is defined as

q∗ = q
p0

√
mmix

2kBT0

T0

�T
. (4.4)

4.3. Planar Couette flow
The Couette flow shares the same configuration as that of the Fourier flow, but the
temperatures of both plates are kept the same at T0, and the lower and upper plates
move along the y direction with velocity u1,y = −vw and u2,y = vw, respectively, where
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Figure 7. Comparison of the dimensionless heat flux between the kinetic model (lines) and the DSMC
method (symbols) (Strapasson & Sharipov 2014) for He–Ar mixture with hard-sphere molecules at rarefaction
parameter δ ranging from 0.01 to 40, with mole fractions χHe = 0.25, 0.5, 0.75 and temperature differences
between the two plates �T/T0 = 0.1, 0.75. The corresponding parameters in the kinetic model fitted by
matching the mixture viscosity and thermal conductivity are φ12 = 2.149, φ21 = 0.3775, ϕ12 = 1.373, ϕ21 =
1.642.

vw = √
2kBT0/mmix. Due to the symmetry, only half of the domain (L0/2 ≤ x2 ≤ L0) is

used in the simulations.
The simulation results of our kinetic model and the DSMC method are shown in figure 8

for the three mixtures with χ1 = 0.5, when Kn1 = 1 for mixture 1 and Kn1 = 0.1 for
the others. Good agreements are found for all the macroscopic properties. We analyse
the mixture shear stress predicted by two methods across various mole fractions χ1 and
Knudsen numbers Kn1 (table 2). Note that the actual plate’s velocities vary significantly
for mixtures with different mass ratios and mole fractions, and the boundary velocity is
supersonic or even hypersonic for the heavier species, but subsonic for lighter gas in most
cases (exclude the one for mixture 1 with χ1 = 0.9). Nevertheless, the maximum relative
error of shear stress in all the considered cases remains below 3.2 %. It should be noted
that the moderate rarefaction level extends to a wider range of Knudsen numbers for a
mixture with a larger mass difference, because of the presence of multiscale species Kn and
relaxation times of inter-species collisions. Importantly, the data demonstrate a consistent
level of accuracy for our kinetic model, regardless of variations in the mass ratio of the gas
species.

5. Numerical results for two-dimensional problems

In this section the kinetic model is further applied to solve two-dimensional mixture flows,
that is, a supersonic mixture passing a circular cylinder and a gas mixture flowing through a
nozzle. Also, the results are compared with the DSMC simulations to evaluate the accuracy
of our kinetic model.

In the two-dimensional DSMC simulations, we utilize orthogonal grids with refinement
in areas of high gas density, ensuring that the cell size does not exceed one-third of the
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Figure 8. Comparisons of the (a–c) normalized number density and dimensionless (d–f ) flow velocity, (g–i)
temperature and ( j–l) heat flux between the kinetic model (lines) and the DSMC method (symbols) for the
Couette flow with the mole fraction of light species χ1 = 0.5, when Kn1 = 1 (mixture 1 in the first column)
and 0.1 (mixture 2 in the second column and mixture 3 in the third column).

local mean free path of the species with the larger collision diameter. The time step is
calculated as the minimum cell size divided by 5vlight

m . Each cell contains 50 simulation
particles on average.

The discretized velocity method (Zeng et al. 2023b; Liu et al. 2024; Zeng et al. 2024)
is applied to solve the model equation that is reduced to be quasi-two-dimensional in
velocity space using (4.2a,b). The spatial domains simulated in all the following cases
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Maxwell gas Hard-sphere gas

m2/m1 10 1000 100

χ1 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Kn1 = 0.1 0.224 0.223 0.216 0.233 0.281 0.289 0.600 0.074 0.110
(0.1 %) (0.6 %) (1.7 %) (0.2 %) (0.9 %) (3.2 %) (1.4 %) (1.7 %) (2.9 %)

1 0.782 0.731 0.706 0.781 0.692 0.411 0.397 0.425 0.449
(1.7 %) (2.3 %) (3.0 %) (1.5 %) (1.1 %) (3.2 %) (1.3 %) (1.6 %) (3.2 %)

10 1.058 0.963 0.952 1.035 0.809 0.450 0.904 0.787 0.626
(0.2 %) (0.7 %) (0.3 %) (0.2 %) (0.1 %) (0.0 %) (0.0 %) (0.1 %) (2.8 %)

Table 2. The dimensionless shear stress Pxy/n0kBT0 of the mixture calculated by the kinetic model equation
for the Couette flow, with the mole fraction χ1 = 0.1, 0.5, 0.9 and Kn1 = 0.1, 1, 10. The values in parentheses
are the relative errors between the results given by the kinetic model and the DSMC method.

are discretized by structured quadrilateral meshes with refinement near the surfaces, and
the grid size is maintained smaller than the local mean free path of the gas molecules, to
ensure a reliable solution of the kinetic model equation. The finite volume method is used
in the numerical implementation, where the convention fluxes are evaluated implicitly by
the lower-upper symmetric Gauss-Seidel technique, and the collision terms are calculated
with the Venkata limiter. Further details on the numerical scheme implementation solving
the kinetic equation of gas mixtures are available in Zeng et al. (2024).

5.1. Supersonic flow around a circular cylinder
We consider the supersonic gas flow with density n0 at Ma∞ = 3 passing a cylinder
with diameter L0. The temperatures of both the free stream and isothermal surfaces of
the cylinder are maintained at T0. The Knudsen number of the lighter species in the
free stream is Kn1 = 0.5. Based on the diameter ratio of the mixtures’ components, the
Knudsen number of the heavier species in mixtures 1 and 2 is Kn2 = 0.5 as well, while
that in mixture 3 of hard-sphere molecules is Kn2 = 0.125. Besides, the mole fraction
considered in this problem is χ1 = 0.5 for all mixtures. The simulations are conducted
only in the upper half-domain [−L, L] × [0, L] due to symmetry, with L/L0 = 6, 12, 10
for mixtures 1, 2 and 3, respectively.

The detailed flow fields about species number density and flow velocity of the
surrounding gas are presented in figure 9 for the gas mixture with a mass ratio of 1000,
where the result given by our kinetic model matches the DSMC data well. Figure 10
compares kinetic model results of the windward side number density, flow velocity,
temperature and heat flux along the stagnation line with those solved by the DSMC
method, and the overall agreement is very good.

Despite having the same free-stream flow velocity that exceeds the sound speed of
the mixture, individual species in a gas mixture with disparate mass experience vastly
different flow characteristics. This is due to their distinct species Mach numbers Ma∞,s,
which are defined based on their own individual sound speeds

√
5kBT0/3ms. For instance,

Ma∞,1 = 0.13 and Ma∞,2 = 4.24 for the mixture shown in figure 9. Therefore, the
lighter component forms a subsonic flow field and exhibits significantly less compression
compared with the heavier species. As shown by the density profiles in figure 10 for the
mixture with a mass ratio of 1000, the number density of the heavier gas gets nearly 10
times that of the lighter one near the stagnation point.
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Figure 9. Comparisons of the dimensionless (a) number density and (b) flow velocity between the results of
the kinetic model (black lines) and the DSMC method (background contours) for a supersonic mixture flow
passing a cylinder, when the mole fraction of the free stream is χ1 = 0.5, Ma∞ = 3 and Kn1 = 0.5. The binary
mixture consists of Maxwell molecules with a mass ratio m2/m1 = 1000 and a diameter ratio d2/d1 = 1.

The overall properties of the shock are mainly determined by the heavier species,
because of its higher number density and molecular mass, as long as the components’ mole
fractions in the free stream are comparable. However, it is found that, as the mass ratio
changes from 10 to 1000 for mixtures 1 and 2, the thickness of the shock wave and the peak
values of the mixture temperature increase only slightly (10 %). Comparatively, mixture 3
has a thinner shock structure since its effective Knudsen number is lower (Kn2 = Kn1/4).
Note that the actual free-stream velocities of the mixtures vary significantly due to the
distinct average mixture mass, though Ma∞ keeps constant.

Figure 11 shows the pressure and heat flux along the surface of the cylinder. The
pressure predicted by the kinetic model matches the DSMC results very well, while the
heat fluxes given by the two methods have a 6 % relative difference around the windward
side stagnation region for mixture 3 consisting of hard-sphere molecules. Interestingly, the
forces acting on the object are found to be very close in the three types of mixtures, despite
the disparity in average mixture mass, and even the intermolecular potential. Particularly,
for the flow of mixtures 1 and 2, the aerodynamic forces are nearly the same and, hence,
roughly independent of the mass ratio, which is the only different dimensionless variable
in the two flows. Also, the force is found to be insensitive to the intermolecular potential
and molecular diameter ratio (mixture 3). On the other hand, the values of heat flux on
the surface are not only inversely scaled by the square root of the mass ratio, but also
significantly influenced by the intermolecular potential and molecular diameter ratio.

5.2. Nozzle flow
Our kinetic model is applied to simulate a two-dimensional rarefied gas mixture flowing
through a nozzle into the vacuum. The structure of the nozzle is shown in figure 12, which
has a straight channel with width L0, a converging section shrinking the width to L0/2
at the throat and a diverging section. At the inlet of the nozzle (x = 0), the flow was
assumed to be considerably subsonic Main = 0.05 with Maxwellian velocity distributions
at temperature T0. The gas molecules are reflected on the cold walls of the nozzle
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Figure 10. Comparisons of the dimensionless (a–c) number density, (d–f ) flow velocity in the x direction,
(g–i) temperature and ( j–l) heat flux in the x direction, along the windward side stagnation line between the
results of the kinetic model and the DSMC method for a supersonic mixture flow passing a cylinder, when the
mole fraction of the free stream is χ1 = 0.5, Ma∞ = 3 and Kn1 = 0.5. The first, second and third columns
correspond to mixture 1, 2 and 3, respectively.

(Tw = T0/2) with complete thermal accommodation, and then go through the outlet
(x = 3L0) into the vacuum. The Knudsen number, defined in terms of the gas properties at
the inlet, is Kn1 = 0.1 for lighter species for all the mixtures.

We consider a very small proportion of lighter molecules (χ1 = 0.05) mixed with
heavier ones for mixture 2 and a half-half mix (χ1 = 0.5) of hard-sphere molecules for
mixture 3. Figure 12 shows the species number density and local Mach number distribution
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Figure 11. Comparisons of the dimensionless (a–c) pressure and (d–f ) heat flux along the surface of the
cylinder between the results of the kinetic model and the DSMC method for the mixtures, when the mole
fraction of the free stream is χ1 = 0.5, Ma∞ = 3 and Kn1 = 0.5. Here px and py denote the pressures exerted
on the surface along the x and y directions, respectively. The angle is measured from the windward to the
leeward side. The first, second and third columns correspond to mixture 1, 2 and 3, respectively.

in the nozzle solved by the kinetic model and the DSMC method. Also, figure 13 shows the
density, temperature and heat flux along the centreline of the nozzle. The good accuracy
of our model equation is demonstrated.

It is found that, when a gas mixture with disparate mass flows through a nozzle, the
density and temperatures of each component do not experience remarkable separation
across the nozzle. However, the species velocities at the outlet become noticeably different.
As illustrated in figures 13(a) and 13(d), mixture 2, having a mass ratio of 1000,
exhibits an outlet velocity for the lighter species that is 20 times higher than that of the
heavier one; similarly, mixture 3 shows a velocity ratio of 3.7 between its lighter and
heavier components. Consequently, the significant diffusion velocities make a noticeable
contribution to the total heat flux of the mixture, particularly in the diverging section of
the nozzle, where the heat flux due to conductance becomes negligible. On the other hand,
the two components achieve close values of species Mach number Mas,local calculated
using their respective local sound speeds, as plotted in figures 12(b) and 12(d), which
also indicates similar degrees of compression of the disparate species flowing through the
nozzle. Meanwhile, the relatively higher Mas,local of the heavier components primarily
arises from inter-species collisions with lighter molecules, which accelerate the heavier
ones.

We also calculate the flow rate of individual components passing through the nozzle
outlet, as plotted in figure 14. The molecular number flux is found to be comparable for
the mixture components, while the heavier species will hence dominate the mass flow rate
due to its much higher molecular mass. Compared with DSMC results, the mass flow rate
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Figure 12. The dimensionless (a,c) number density and (b,d) local Mach number solved by the kinetic model
(black lines) and the DSMC method (background contours) for a gas mixture flowing through a nozzle, when
Kn1 = 0.1 at the inlet. The inlet mole fraction is χ1 = 0.05 for mixture 2 (a,b) and χ1 = 0.5 for mixture 3
(c,d).

predicted by the kinetic model yields less than 1.7 % relative difference for all the species
in mixture 2 and 3.2 % relative difference for those in mixture 3.

6. Conclusions

In summary, we have proposed a new kinetic model for monatomic gas mixtures, which
can describe the dynamics of rarefied gas flow with disparate molecular mass, and reduce
to the Shakhov model for a single-species gas when the components are mechanically
identical and the diffuse velocity vanishes. The tunable parameters in the kinetic model
are uniquely determined by the transport properties of the gas mixture, and thus, the shear
viscosity, thermal conductivity, diffusion coefficient and thermal-diffusion coefficients
can be recovered by the model equation in the continuum limit.

The accuracy of the proposed models has been assessed by comparing with DSMC
simulations for various binary gas mixture flows in representative problems, including
the one-dimensional Fourier flow, Couette flow and normal shock waves, as well as the
two-dimensional supersonic flow passing a cylinder and nozzle flow into a vacuum. A
wide range of mass ratios, species concentrations and different intermolecular potentials
have been considered. The kinetic model demonstrates its high accuracy not only for
predicting the average mixture properties but also for capturing the individual flow fields
of components.

The proposed kinetic model benefits from the following features that enable its
applicability in the modelling of a rarefied gas mixture with disparate mass.
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(i) The model equation is constructed using a sum of relaxation operators imitating each
type of binary collision individually; thus, it can correctly capture the multiscale
relaxation rates inherent in different collision processes. We reveal the dependence
of the inter-species relaxation time scales on mass difference, which differ for the
lighter and heavier components by orders of magnitude in a mixture with disparate
mass.

(ii) All the transport coefficients can be recovered simultaneously by the kinetic model
in the continuum limit. Particularly, the model goes beyond previous BGK-type
models by incorporating the thermal-diffusion effect for mixtures composed of
non-Maxwell gases. The concentration variation is correctly captured by our
model in simulating the Fourier flow of hard-sphere gas mixtures. Therefore, the
kinetic model can be applied to investigate the gas separation processes driven by
temperature gradients, such as those occurring in a Knudsen compressor (Takata,
Sugimoto & Kosuge 2007).

(iii) More importantly, the model equation exhibits minimal loss of accuracy when the
components’ mass ratio increases from 10 to 1000, when compared with the original
Boltzmann equation. This remarkable consistency suggests the accuracy of the
kinetic model for the gas mixtures with even larger mass disparities, and particularly,
its potential extension to the kinetic modelling of plasmas.

Gas mixtures with disparate mass possess substantial velocity and temperature
non-equilibrium due to significantly slow inter-species relaxations, thus forming the
following unique flow characteristics, which are most evident in supersonic mixture
flows.

(i) Previous observations of temperature overshoots and two-stage structures in normal
shock waves are found at low concentrations of the heavier gas in mixtures with
moderate mass ratios. However, mixtures with significant mass disparity exhibit
these phenomena under different conditions (figures 3 and 4). Specifically, the
temperature overshoot occurs when the heavier molecules are present in equal
and even lower amounts compared with the lighter molecules. Additionally, the
shock wave displays a reversed two-stage structure, characterized by a smooth
and expansive upstream region followed by a steep change in properties on the
downstream side.

(ii) The supersonic mixture around an object leads to the coexistence of a subsonic
lighter gas flow and a super/hypersonic heavier gas flow, hence posing a dramatic
temperature difference between the components. Interestingly, the aerodynamic
force acting on the cylinder is found to be independent of the mass ratio and
insensitive to the intermolecular potential, while the heat transfer to the cylinder
can be significantly affected by these factors.

Last but not least, a gas mixture with disparate mass usually exhibits multiscale
features both spatially and temporally, as well as significant concentration differences
between its components. These characteristics bring unaffordable computational costs
when solving the Boltzmann equation or conducting DSMC simulations in such mixture
flows. On the other hand, the deterministic numerical methods with multiscale schemes
that solve the kinetic equations have shown their excellent performance in multiscale
problems. For example, the general synthetic iterative scheme developed in recent years
can asymptotically preserve the Navier–Stokes equation in the continuum limit (thus
removing the constraint on the spatial cell size), and find the steady-state solution of a
kinetic equation within dozens of iterations at any Knudsen number (Su et al. 2020a; Su,
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Zhu & Wu 2020b; Liu et al. 2024). Therefore, with the computationally tractable kinetic
model proposed here and the multiscale numerical methods, the gas mixture flows with
disparate mass can be accurately and efficiently solved, leading to promising engineering
applications, e.g. the particle exhaust system in nuclear fusion devices (Tantos et al. 2024)
and the gas dynamics locker in EUV lithography (Teng et al. 2023).

It is crucial to recognize that the model is equally applicable to time-dependent
scenarios, given that it accurately captures the relaxation rates of stress, energy and heat
flux during intra- and inter-species collisions. Then the multiscale numerical scheme can
also be applied to solve the unsteady gas flows (Zeng et al. 2023a). This method stands
out as particularly beneficial when contrasted with the DSMC method, which can become
excessively time consuming in handling time-dependent conditions of gas mixtures with
disparate mass. On the other hand, the proposed kinetic model is solely applicable to
dilute gas mixtures, where only binary collisions are considered. In the case of dense
gas mixtures, the proposed model can be further extended to dense gas mixtures with
additional collision terms describing non-local collision effects, based on our previous
work in modelling dense gas flow for a single-species gas (Wu, Zhang & Reese 2015c).
Thus, it is expected to have broad implications, potentially solving complex phenomena
such as the kinetic processes within non-equilibrium plasmas in inertial confinement
fusion. Additionally, although the model is currently designed for monatomic gases, with
our experience in the kinetic modelling of single species with internal degrees of freedom
(Wu et al. 2015a; Li et al. 2021, 2023), the kinetic models for multi-species gas mixtures
with internal degrees of freedom are expected to be established in the near future.
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Appendix A. Chapman–Enskog analysis of kinetic model equation

The transport coefficients and macroscopic equations given by our kinetic model (2.7) in
the continuum flow limit can be obtained by the Chapman–Enskog method (Chapman &
Cowling 1970), where the distribution functions fs are expansions in the form of an infinite
series,

fs = f (0)s + f (1)s + f (2)s + · · · , s = 1, 2. (A1)

The conserved macroscopic properties ns,u, T remain unexpanded and, thus, are
determined only by f (0)s , while the other quantities h, including macroscopic variables
and auxiliary properties, are also expanded as

h = h(0) + h(1) + h(2) + · · · . (A2)
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Substituting the expansions into the model (2.7), the zero-order distribution functions
f (0)s are given by the solution of the kinetic equations,

D(0)f1 = 1

τ
(0)
11

(g(0)11 − f (0)1 )+ 1

τ
(0)
12

(g(0)12 − f (0)1 ),

D(0)f2 = 1

τ
(0)
21

(g(0)21 − f (0)2 )+ 1

τ
(0)
22

(g(0)22 − f (0)2 ),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A3)

where D(0)fs = 0 and the reference distribution functions gsr(s, r = 1, 2), which depend
on auxiliary properties, are expanded around the Maxwellian distribution of the conserved
macroscopic variables ns,u, T ,

g(0)sr = ns

(
ms

2πkBT

)3/2

exp
(

− msc2

2kBT

)
, s, r = 1, 2,

g(1)sr = g(0)sr

[
msû

(1)
sr · c

kBT
+ T̂(1)sr

T

(
msc2

2kBT
− 3

2

)
+ 2msq̂

(1)
sr · c

5nsk2
BT2

(
msc2

2kBT
− 5

2

)]
, s, r = 1, 2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A4)

where c = v − u is the peculiar velocity with respect to the mixture velocity u. Therefore,
the first approximation to fs = f (0)s gives the local equilibrium state of each species with
the common flow velocity u and temperature T ,

f (0)s = ns

(
ms

2πkBT

)3/2

exp
(

−ms(v − u)2

2kBT

)
, s = 1, 2. (A5)

Then, the zero-order macroscopic properties can be obtained by taking respective
moments of f (0)s ,

u(0)s = u, T(0)s = 0, P(0) = nkBT I, q(0) = 0, s = 1, 2, (A6a–d)

where I is the identity matrix. Meanwhile, the zero-order auxiliary parameters are also
obtained from (2.13) as û(0)12 = û(0)21 = u, T̂(0)12 = T̂(0)21 = T .

To the second approximation of the distribution function fs = f (0)s + f (1)s , the first-order
correction f (1)s is solved from the kinetic equations,

D(1)f1 = 1

τ
(0)
11

(g(1)11 − f (1)1 )+ 1

τ
(0)
12

(g(1)12 − f (1)1 ),

D(1)f2 = 1

τ
(0)
21

(g(1)21 − f (1)2 )+ 1

τ
(0)
22

(g(1)22 − f (1)2 ),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A7)

where D(1)fs can be explicitly evaluated as

D(1)fs = ∂f (0)s

∂t
+ v · ∂f (0)s

∂x
+ F s

ms
· ∂f (0)s

∂v

= f (0)s

[(
msc2

2kBT
− 5

2

)
c · ∇ ln T + n

ns
dsr · c + ms

kBT

(
cc − 1

3
c2I

)
: ∇u

]
,

s = 1, 2, r /= s. (A8)
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Here, dsr (s /= r) represents the diffusive driving force

d12 = −d21 = ρ1ρ2

ρp

[(∇p1

ρ1
− ∇p2

ρ2

)
−
(

F 1

m1
− F 2

m2

)]
. (A9)

Therefore, the first-order correction of the distribution function is obtained,

f (1)s = 1

τ
(0)
s1 + τ

(0)
s2

(τ
(0)
s2 g(1)s1 + τ

(0)
s1 g(1)s2 − τ

(0)
s1 τ

(0)
s2 D(1)fs), s = 1, 2. (A10)

Substituting the second approximation to fs into the definition of diffusion velocity,
stress tensor and heat flux, the transport terms as functions of the gradients of the
macroscopic properties can be calculated according to (2.4) and (2.6).

The first-order correction of the species velocity u(1)s is

u(1)1 = 1
n1

∫
vf (1)1 dv = τ

(0)
12

τ
(0)
11 + τ

(0)
12

u(1)1 + τ
(0)
11

τ
(0)
11 + τ

(0)
12

û(1)12 − τ
(0)
11 τ

(0)
12

τ
(0)
11 + τ

(0)
12

p
ρ1

d12,

u(1)2 = 1
n2

∫
vf (1)2 dv = τ

(0)
21

τ
(0)
22 + τ

(0)
21

u(1)2 + τ
(0)
22

τ
(0)
21 + τ

(0)
21

û(1)21 + τ
(0)
22 τ

(0)
21

τ
(0)
22 + τ

(0)
21

p
ρ2

d12,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A11)

where û12 and û21 are given by (2.13) and (2.14). Considering that the mixture velocity
u is unexpanded, which gives a constraint ρ1u(1)1 + ρ2u(1)2 = 0, the first-order species
velocities are obtained:

u(1)1 = −ρ1τ
(0)
21 + ρ2τ

(0)
12

a12

p
ρρ1

d12 − 2b12ρ2

a12ρ
∇ln T,

u(1)2 = −ρ1τ
(0)
21 + ρ2τ

(0)
12

a12

p
ρρ2

d21 − 2b21ρ1

a12ρ
∇ln T.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A12)

Similarly, the first-order correction of the species temperature T(1)s is calculated based
on (2.4) and the auxiliary properties (2.13) and (2.14),

T + T(1)s = 2
3nskB

∫
1
2

ms(v − us)
2( f (0)s + f (1)s ) dv

= (T + T(1)s )+ τ
(0)
ss

τ
(0)
ss + τ

(0)
sr

nrτ
(0)
sr

nsτ
(0)
rs + nrτ

(0)
sr

csr(T(1)r − T(1)s )

+ O(Kn2), s /= r. (A13)

Since the mixture temperature T is unexpanded, the constraint n1T(1)1 + n2T(1)2 = 0 needs
to be satisfied by ignoring the higher-order terms. It is found that the first-order correction
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of the species temperature vanishes, i.e.

T(1)1 = T(1)2 = 0. (A14)

The first-order correction of the mixture stress tensor P(1) is calculated based on (2.6),

P(1) =
∫

m1ccf (1)1 dv +
∫

m2ccf (1)2 dv

= −kBT

(
τ
(0)
11 τ

(0)
12

τ
(0)
11 + τ

(0)
12

n1 + τ
(0)
22 τ

(0)
21

τ
(0)
22 + τ

(0)
21

n2

)(
∇u + ∇uT − 2

3
∇ · uI

)
. (A15)

The first-order correction of the species heat fluxes q(1)s and q(1)sr are

q(1)s =
∫

1
2

ms(v − us)
2(v − us)( f (0)s + f (1)s ) dv

= τ
(0)
sr

τ
(0)
ss + τ

(0)
sr

q̂(1)ss + τ
(0)
ss

τ
(0)
ss + τ

(0)
sr

q̂(1)sr − τ
(0)
ss τ

(0)
sr

τ
(0)
ss + τ

(0)
sr

5kBT
2ms

n1kB∇T + O(Kn2), (A16)

q(1)sr =
∫

1
2

ms(v − ûsr)
2(v − ûsr)( f (0)s + f (1)s ) dv

= τ
(0)
sr

τ
(0)
ss + τ

(0)
sr

q̂(1)ss + τ
(0)
ss

τ
(0)
ss + τ

(0)
sr

q̂(1)sr − τ (0)sr
5kBT
2ms

pdsr

− τ
(0)
ss τ

(0)
sr

τ
(0)
ss τ

(0)
sr

5kBT
2ms

n1kB∇T + O(Kn2), s /= r, (A17)

where the auxiliary heat fluxes q̂ss, q̂sr are constructed as (2.15), and thus, we have

q(1)s = − τ
(0)
ss τ

(0)
sr

Prsrτ
(0)
ss + Prssτ

(0)
sr

5kBT
2ms

(γsrpdsr + nskB∇T), s /= r. (A18)

Then the first-order correction of the mixture heat flux is

q(1) =
∫

1
2

m1c2cf (1)1 dv +
∫

1
2

m2c2cf (1)2 dv

= q(1)1 + q(1)2 + 5
2

kBT(n1u(1)1 + n2u(1)2 )+ O(Kn2),

= 5
2

kBT(n1u(1)1 + n2u(1)2 )

−
(

n1

m1

τ
(0)
11 τ

(0)
12

Pr12τ
(0)
11 + Pr11τ

(0)
12

+ n2

m2

τ
(0)
22 τ

(0)
21

Pr21τ
(0)
22 + Pr22τ

(0)
21

)
5kBT

2
kB∇T

+ γ12

(
1

m1

τ
(0)
11 τ

(0)
12

Pr12τ
(0)
11 + Pr11τ

(0)
12

+ 1
m2

τ
(0)
22 τ

(0)
21

Pr21τ
(0)
22 + Pr22τ

(0)
21

)
5kBT

2

× ρ1ρ2

ρ1τ
(0)
21 + ρ2τ

(0)
12

[a12(u
(1)
1 − u(1)2 )+ 2b12∇ln T] + O(Kn2). (A19)
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Appendix B. Validation by results from literature

The numerical analysis of normal shock waves in gas mixtures has been conducted
based on the Boltzmann equation and the DSMC method in the literature, considering
different intermolecular interactions such as hard-sphere and ab initio potentials. To
demonstrate the reliability of our kinetic model, we compare its predictions against
previously published data.

Kosuge et al. (2001) and Raines (2002) simulated the shock wave structure within gas
mixtures composed of hard-sphere molecules by solving the Boltzmann equation, where
the mass ratio ranges from 2 to 10. The same problem is revisited by our kinetic model,
with the model parameters φsr and ϕsr being calibrated to align with the viscosity and
thermal conductivity of the mixture as detailed in § 3:

when
m2

m1
= 2 : φ12 = 1.031, φ21 = 0.9345, ϕ12 = 1.057, ϕ21 = 1.081,

when
m2

m1
= 10 : φ12 = 1.090, φ21 = 0.6230, ϕ12 = 1.495, ϕ21 = 1.701.

⎫⎪⎬⎪⎭ (B1)

Figures 15(a)–15(c) illustrate the shock structure of a hard-sphere gas mixture with a
mass ratio of 2 at Ma = 3. The results from our kinetic model are in close agreement
with the Boltzmann equation solutions provided by Kosuge et al. (2001). There is a slight
discrepancy in the temperature profiles predicted by the kinetic model on the upstream side
of the shock wave compared with the Boltzmann equation solutions. This deviation arises
from the omission of the velocity dependency of the relaxation time for non-Maxwell
molecules in the BGK-type operators (Yuan & Wu 2022). It can be seen that the separation
of mixture components is relatively small due to the small mass ratio.

Figures 15(d)–15( f ) present the results of a gas mixture with a mass ratio of 10 at Ma =
2. The results of our kinetic model are in excellent agreement with the Boltzmann equation
solutions (Raines 2002). Meanwhile, the deviation between the model predictions and the
Boltzmann equations on the upstream side becomes negligible, primarily attributed to the
thicker shock structure resulting from the larger mass ratio.

Additionally, we validate the accuracy of our kinetic model by comparing the results
reported by Sharipov & Dias (2018), where the normal shock wave propagating through
a He–Ar mixture is modelled by the DSMC method based on ab initio intermolecular
potentials. The parameters within our kinetic model are determined to recover the transport
properties of helium, argon and their mixtures, which are calculated through Ω integrals
according to the detailed potentials as reported by Bich, Hellmann & Vogel (2007), Vogel
et al. (2010) and Sharipov & Benites (2015). Therefore, we obtain the model parameters
φsr and ϕsr by fitting the viscosity and thermal conductivity of the mixture across a
temperature spectrum ranging from 250 to 2800 K:

φ12 = −3.389 × 10−8T2 + 1.974 × 10−4T + 1.993,

φ21 = 0.369 exp(−2.77 × 10−5T)− 0.1643 exp(−0.006164T),

ϕ12 = 2.83
φ12

, ϕ21 = 0.36
φ12

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B2)

Here T represents the temperature of the mixture and is measured in the unit of degrees
Kelvin.

Numerical simulations are conducted for a shock wave at Ma = 5 with an upstream
temperature of 300 K. As depicted in figure 16, we present a comparison of the
normalized profiles for number density, flow velocity and temperature for each species

1001 A5-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1047


Q. Li, J. Zeng and L. Wu

(a) (b) (c)

(d ) (e) ( f )

0.8

1.0

0.6

0.4

0.2

0

0.8

1.0

0.6

0.4

0.2

0

0.8

1.0

0.6

0.4

0.2

0

Kinetic model

Species 1 Species 2

Boltzmann equation (Kosuge et al. 2001)

Boltzmann equation (Raines 2002)

–10 –5 0

x/L0

5 10–10 –5 0

x/L0

5 10–10

–6 –4 –2 0 2 4 –6 –4 –2 0 2 4 –6 –4 –2 0 2 4

–5 0

x/L0

5 10

(n
 –

 n
u)

/
(n

d –
 n

u)

0.8

1.0

0.6

0.4

0.2

0

(n
 –

 n
u)

/
(n

d –
 n

u)

(u
 –

 u
u)

/
(u

d –
 u

u)

0.8

1.0

0.6

0.4

0.2

0

(u
 –

 u
u)

/
(u

d –
 u

u)

(T
 –

 T
u)

/
(T

d –
 T

u)

0.8

1.0

0.6

0.4

0.2

0

(T
 –

 T
u)

/
(T

d –
 T

u)

Hard-sphere molecules

m2/m1 = 2

d2/d1 = 1

χ1 = 0.5 χ1 = 0.5 χ1 = 0.5

χ1 = 0.5 χ1 = 0.5 χ1 = 0.5

Ma = 3

Hard-sphere molecules

m2/m1 = 10

d2/d1 = 1

Ma = 2

Figure 15. Comparisons of the normalized (a) number density, (b) flow velocity and (c) temperature of the gas
mixture between the kinetic model (solid lines), the DSMC method and the Boltzmann equation (Kosuge et al.
2001; Raines 2002) for the normal shock wave at Ma = 2 and 3. The binary mixture consists of hard-sphere
molecules with a mass ratio m2/m1 = 2 and 10, diameter ratio d2/d1 = 1 and the mole fraction of light species
χ1 = 0.5.

between the results of our kinetic model and DSMC simulations (Sharipov & Dias 2018).
This comparison is made across various concentrations of the mixture, with χHe =
0.25, 0.5, 0.75. The results clearly demonstrate that the proposed kinetic model is capable
of accurately replicating the shock wave structure of He–Ar mixtures, even when
accounting for the intricate ab initio intermolecular potentials.

Appendix C. Comparison with Kosuge model

The model of Kosuge (2009) was formulated for the nonlinear Boltzmann equation for
gas mixtures, employing a similar methodology to that applied in the construction of
the McCormack (1973) model. The Kosuge model exhibits excellent performance in the
cases of weakly non-equilibrium flows. However, it predicts unphysical behaviour in the
macroscopic quantities in a strong non-equilibrium condensation problem of a vapour–gas
mixture (Kosuge 2009).

We undertake calculations of shock wave structures using both our model and the
Kosuge model, and compare against the DSMC method. These calculations are performed
for mixtures composed of hard-sphere molecules with a mass ratio of 10 and a diameter
ratio of 1, with the model parameters given in Appendix B. As shown in figure 17, at
a mixture Mach number of 2, where the lighter species remains subsonic due to its
comparatively higher speed of sound, both models demonstrate remarkable accuracy.
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Figure 16. Comparisons of the normalized (a–c) number density, (d–f ) flow velocity and (g–i) temperature of
the gas mixture between the kinetic model (lines) and the DSMC method (symbols) for the normal shock wave
at Ma = 5. The binary mixture consists of He–Ar molecules with ab initio potentials, and the mole fraction
χHe = 0.25, 0.5, 0.75. Note that the reference length employed in the present work differs from the DSMC
method in Sharipov & Dias (2018).

However, with an increase in the Mach number, the predictions for density and velocity
by the Kosuge model start to exhibit unphysical behaviour. Specifically, at a Mach number
of 10, the Kosuge model predicts an exaggerated overshoot of shock wave velocity in the
upstream region, accompanied by a significantly lower density than its upstream value.
As previously noted in Kosuge (2009), the emergence of remarkably negative values
of the velocity distribution functions leads to unphysical behaviour at the level of the
macroscopic quantities. In contrast, our model still yields good results under this strong
non-equilibrium condition.
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Figure 17. Comparisons of the normalized (a,d) number density, (b,e) flow velocity and (c, f ) temperature
of the gas mixture between the proposed kinetic model, the Kosuge (2009) model and the DSMC method
for the normal shock wave at Ma = 2 (first row) and Ma = 10 (second row). The binary mixture consists of
hard-sphere molecules with a mass ratio m2/m1 = 10, diameter ratio d2/d1 = 1 and the mole fraction of light
species χ1 = 0.5.
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