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Eigenvarieties for Cuspforms Over PEL
Type Shimura Varieties With Dense
Ordinary Locus

Riccardo Brasca

Abstract. Let p > 2 be a prime and let X be a compactified PEL Shimura variety of type (A) or (C)
such that p is an unramified prime for the PEL datum and such that the ordinary locus is dense
in the reduction of X. Using the geometric approach of Andreatta, Iovita, Pilloni, and Stevens, we
define the notion of families of overconvergent locally analytic p-adic modular forms of Iwahoric
level for X. We show that the system of eigenvalues of any finite slope cuspidal eigenform of Iwahoric
level can be deformed to a family of systems of eigenvalues living over an open subset of the weight
space. To prove these results, we actually construct eigenvarieties of the expected dimension that
parameterize finite slope systems of eigenvalues appearing in the space of families of cuspidal forms.

Introduction

The main theme of this work is the theory of p-adic families of modular eigenforms
and the study of the congruences between them. This subject has become more and
more important in number theory. For example, one of the main techniques to prove
modularity results of Galois representations is to prove that a given Galois representa-
tion lives in a family of Galois representations attached to a family of p-adic modular
forms and then invoke a classicity result. To achieve these goals, it is crucial to have a
good understanding of p-adic families of modular forms.

Historically, the subject started in the seventies with the work of Serre that gave
the first example of a p-adic family of eigenforms for GL,, q: the Eisenstein family. In
the eighties Hida was able to prove that, still in the GL,,  case, any ordinary eigen-
form (of Iwahoric level) can be deformed to a family of ordinary eigenforms over the
weight space. During the nineties, Coleman was able to generalize Hida’s result to
forms that are overconvergent and of finite slope for the U-operator. The theory cul-
minated in the construction, due to Coleman and Mazur, of the eigencurve, a rigid
analytic curve living over the weight space that parameterizes finite slope overcon-
vergent eigenforms.

It is then natural to try to generalize the theory to groups different from GL,, q.
Coleman’s techniques are based on the theory of g-expansion and on the existence of
the Eisenstein family, so it seems difficult to generalize them to more general groups
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(where we can have no cusps or no Eisenstein families). There are already several other
approaches in the literature. For example in the work of Kisin and Lai for Hilbert mod-
ular forms [KLO05] (recently generalized by Mok and Tan to the Siegel-Hilbert case
[MT15]) the authors used a generalization of the Eisenstein family and constructed
the eigenvariety following Coleman and Mazur. More generally Urban used Steven’s
theory of overconvergent cohomology to show the existence of an eigenvariety for
modular symbols associated with any reductive group with discrete series [Urbll].
We also have results by Chenevier for unitary groups [Chell] and by Emerton for any
reductive group [Eme06].

In all of these constructions, the eigenvariety parametrizes systems of eigenvalues
appearing in the space of overconvergent modular forms rather than modular forms
themselves. One of the reasons for this is the lack of the notion of families of over-
convergent modular forms (while the notion of a family of systems of eigenvalues is
easily defined). In this paper, the starting point to build the eigenvariety is the defini-
tion of analytic families of overconvergent modular forms. We follow the geometric
approach recently introduced by Andreatta, Iovita, Pilloni, and Stevens in a series of
papers [AIS14,Pil13, AIP15b, AIP15a]. The basic idea is quite simple: analytically inter-
polate the sheaves w¥, where k is an integral weight, defining the sheaves w* for any
p-adic weight y. More generally, one wants to define a family of sheaves parametrized
by the weight space with the property that its pullback to a point y of the weight space
is the sheaf w*. Since we are interested in overconvergent modular forms, such a fam-
ily should be a sheaf w! over X (v) x U, where X (v) is a sufficiently small strict neigh-
bourhood of the ordinary locus of the relevant (compactified) Shimura variety and U
is an affinoid in the weight space. Then a family of modular forms parametrized by
W is simply a global section of w!. After having defined Hecke operators, the idea is
to use the abstract machinery developed by Buzzard [Buz07] (that generalizes Cole-
man’s work) to construct the eigenvariety. Unfortunately, we do not know whether
one crucial assumption in Buzzard’s work is verified by the space of families of mod-
ular forms (and we believe that in general it is not), but we are able to show that this
assumption is satisfied by cuspidal forms. Once this is done, Buzzard’s results apply
and we obtain the eigenvariety.

Let us now state more precisely the results obtained in this paper. Let K be a suffi-
ciently large finite extension of @, and let Y be a Shimura variety over K, of PEL type
and Iwahoric level, associated to a symplectic or a unitary group. We assume that
p > 2 is a prime that is unramified in the PEL datum of X and let W be the weight
space associated to Y. We denote with X a fixed smooth toroidal compactification of
Y. We assume that the ordinary locus of the reduction of a certain integral model of
X modulo the maximal ideal of Ok is dense (see [Bral3] for a case without ordinary
locus). Our main results are the following theorems.

Theorem  Let y € W be a p-adic character. There is a good notion of v-overconvergent,
w-locally analytic modular forms over X, where v and w are tuples of positive rational
numbers satisfying certain conditions. These modular forms are defined as sections of
certain sheaves w} ,, that interpolate an analytic version of the classical algebraic sheaves

wk defined for integral weights. We also have an analogous result for cuspforms. These
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spaces can be put in families over W and there is an action of a Hecke algebra T that
includes the completely continuous operator U. If F is a locally analytic overconvergent
modular eigenform of integral weight and U-slope sufficiently small with respect to the
weight (see Theorem 6.7 for a precise condition), then F comes from a classical modular
form.

Theorem  Let S;Xﬂ be the space of cuspidal forms that are v-overconvergent, w-locally
analytic, and of weight y. Let f € S;Xﬂ be a cuspidal eigenform of finite slope for the
U-operator. Then there exists an affinoid U c ‘W that contains y and such that the system
of eigenvalues associated to f can be deformed to a family of systems of eigenvalues
appearing in qufv where SZ% is the space of families of cuspforms parametrized by 1.

More precisely, there is a rigid space £,,, — W x A" that satisfies the following
properties.

(i) It is equidimensional of dimension dim(W) and the map &€,, — W is locally
finite. The fiber of €, above a point y € W parametrizes systems of eigenvalues
for the Hecke algebra T appearing in SZ‘& that are of finite slope for the U-operator.
Ifx € &y, then the inverse of the U-eigenvalue corresponding to x is m, (x ), where
7y is the induced map m,: €,,,, ~ A8, For various v and w, these constructions
are compatible. Letting v — 0 and w — oo, we obtain the global eigenvariety €.

(i) Letfe Szxﬂ be a cuspidal eigenform of finite slope for the U-operator and let x s be
the point of €, corresponding to f. Let us suppose that €, — W is unramified
at xy. Then there exists an affinoid U ¢ 'W that contains x and such that f can be
deformed to a family of finite slope eigenforms F € S:lfv

Here is a detailed description of this paper. We follow [AIP15b], our main refer-
ence.

In Section 1 we introduce the Shimura varieties X with which we work. These are
(integral models of) Shimura varieties of PEL type. At the beginning, we do not as-
sume that p is unramified in the PEL datum, but we assume that the ordinary locus
of (the reduction of) X is dense. We define Hasse invariants and some strict neigh-
borhoods X(v) of the ordinary locus. We also work with some Shimura varieties of
deeper level at p that are needed to define modular forms. In Section 2 we define
the sheaf J that is a more convenient integral model of the conormal sheaf w and
is crucial for the definition of the sheaves wX. We also introduce our weight space
and we define the so-called modular sheaf of any p-adic weight (modular forms will
be sections of these sheaves). In Section 3 we introduce various spaces of modular
forms. We do not have a Koecher principle for sections of our modular sheaves, so
we find it convenient to work with the compactified Shimura variety. In particular,
we need to assume that p is unramified in the PEL datum. Section 4 is devoted to the
definition of Hecke operators, both outside p and at p. In particular, we define the
U-operator and we show that it is a completely continuous operator on the space of
overconvergent modular forms. In Section 5 we study the space of cuspidal forms and
we construct the eigenvarieties. To use Buzzard’s machinery, we need to verify that
the space of cuspforms is projective (see Definition 5.7), and to achieve this goal we
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make some explicit computations very similar to those of [AIP15b]. The main tech-
nical point is a vanishing result about the higher direct images, projecting from the
toroidal to the minimal compactification, of the structural sheaf twisted by the ideal
defining the boundary. This result has been essentially proved in full generality by Lan
[Lan]. Knowing the projectivity of the space of cuspforms we can apply Buzzard’s re-
sults and we obtain the eigenvariety. In Section 6 we prove our classicity result. This is
a “small slope eigenforms are classical” type theorem, and its proof splits in two parts.
First of all, we show that small slope locally analytic overconvergent eigenforms are
overconvergent algebraic eigenforms. This is a representation theoretic computation
using the BGG resolution. Then we use the results of [BSP15] to prove classicity. The
above theorems follow.

Open Questions

There are at least two questions left open by this work.

« Since Corollary 5.11 holds only for cuspidal forms, we cannot apply Buzzard ma-
chinery to produce eigenvarieties that parameterize systems of eigenvalues associated
to not necessarily cuspidal modular forms. For various applications, it would be useful
to have eigenvarieties that work in general. We think that the cuspidality assumption
is necessary to apply Buzzard’s machinery in general, but we believe that our con-
struction can be used in some non-cuspidal cases, adding certain conditions on the
weight. This is the subject of the work in progress [BRI15].

« Inview of Theorem 5.10 (ii), it is natural to look for some conditions that ensure
that the morphism & — W is unramified at a given x € €. A similar problem exists
already in the Siegel and Hilbert cases, see [AIP15b, Section 8.3] and the references
cited there for what is known in the GL, and GSp, cases.

Notation. If G is an abelian group and p is a prime number, we set G,, := G ®z Z,,. If
R is a commutative ring, there is an equivalence of categories between M, (R)-mod
and R-mod. We will always realize Morita’s equivalence via M ~ ey - M, where
e11 € M, (R) is the diagonal matrix that has 1 in the upper left corner and 0 on all the
other entries. In the case of a module over a product of matrix rings, we will realize
Morita’s equivalence via the product of the above functors.

We will write B,(R) c GL,(R) for the Borel subgroup of GL,(R) consisting of
upper triangular matrices. We denote with U, (R) the unipotent radical of B,,(R).

We will work with several objects that can have a + or a — as superscripts, or no
superscripts at all. If « is any symbol, the notation «* refers to any of x*, ™ or . No
ambiguity should arise.

1 PEL Type Shimura Varieties

In this section we introduce the basic objects of our work. Our main reference for
Shimura varieties of PEL type is [Lan13]. We consider a particular case of the situation
studied in Lan’s work but, until Section 5, we slightly relax the assumption on p. One
can check that the definitions and results we cite still make sense with our assumptions
on p, so we freely cite [Lan13].
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Let B be a finite-dimensional simple algebra over Q, with center F. Welet *: B — B
be a positive involution and we write Fy for the subfield of F fixed by *.

Assumption 1.1  We assume that we are in one of the following situations.

Case (A) We have [F:Fy] = 2. In this case, F is a totally imaginary extension of Fy
and B ®f, R = M, (C) (the involution is A — A").
Case (C) We have F = Fy and B ®f, R = M,,(R) with involution A ~ A’.

Letdbe [Fy: Q]andlety, ..., 74 be the various embeddings Fy — R. In Case (A),
we choose once and for all a CM-type for F, i.e., we choose 0y, ..., d; embeddings
F < C such that 0}, = 7;. In particular, Hom(F, C) = {0}, 6; } .

We fix Op, an order of B that is stable under *. Let (A, (-, -),h) be a PEL type
O p-lattice in the sense of [Lan13, Definition 1.2.1.3], with A # 0. We set V := A ®7 Q.
We obtain an algebraic group G over Spec(Z) as in [Lanl3, 1.2.1.6]. Thanks to our
assumptions, Gq is a reductive connected algebraic group over Q.

Assumption 1.2 We assume that the complex dimension of the symmetric space
associated to G is at least 2 (so Koecher’s principle holds).

We decompose
(L1) 1% ®qQ C=z V@,l ® VC,Z

in such a way that h(z) acts via multiplication by z on V¢ ; and via multiplication by
z on Vg,,. We write E for the reflex field, the finite extension of @ defined as the field
of definition of the isomorphism class of the complex B-representation V¢ ;.

We let p # 2 be a prime number, fixed from now on. We assume there is an iso-
morphism, that we fix,

(12) Og,p = [T M,(0y),

plp
where the product is over the prime ideals of O above p and O, is a finite extension
of Z,,. We choose a uniformizer element @, € O,. We assume that Op,, is a maximal
order of B, and that the restriction of (-, - ) to A, gives a perfect pairing with values
in Z,. By (1.2), we have decompositions

Vo2V, and A, =[]A,.
plp plp
Taking multiples by powers of @,, of A, we obtain a selfdual chain £, of M, (O}, )-lat-
tices of V,. The product of the £, gives £, a selfdual multichain of Op ,-lattices
in V, (see [RZ96, Chapter 3] for the definition of these notions). Let K, ¢ G(Q p)
be the stabilizer of £,. Then K}, is a parahoric subgroup. We fix H c G(ZP), a
compact open subgroup that we assume to be neat (see [Lanl3, Definition 1.4.1.8]).
We will denote with N a positive integer not divisible by p such that U (N) c X (see
[Lanl3, Remark 1.2.1.9] for the definition of U? (N)).

Remark 1.3. 'We have imposed the condition that the multichain £, comes from a
single lattice A, in such a way that, if B is unramified at p, we are in the situation of
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ot92, Lan . In this case 1S unramified over an 1S a erspecial sub-
[Kot92, Lan13]. In thi Gi ified , and K, is a hyperspecial sub
group.

We fix once and for all embeddings Q = C and i p Q- QP. We denote with P the
corresponding prime ideal of O above p and we write E for the P-adic completion
of E. We are interested in the functor

Y: locally noetherian O, -schemes — set

that assigns to S the isomorphism classes of the following data:

* an abelian scheme A/S,

e apolarization A: A — A" of degree prime to p,

* an action of Op on A/S as in [Lan13, Definition 1.3.3.1],

¢ a H-level structure in the sense of [Lanl3, Definition 1.3.7.6].

We furthermore require the usual determinant condition of Kottwitz, see [Lanl3, Def-
inition 1.3.4.1].

Remark 1.4. We have defined Y using isomorphism classes of abelian schemes, rather
than isogeny classes as is done in [RZ96,Kot92]. By [Lanl3, Proposition 1.4.3.4], these
two approaches are equivalent.

Theorem ([Kot92,§ 5], [RZ96,§ 6.9], [Lan13, Theorem 1.4.1.11 and Corollary 1.4.1.12])
The functor Y is representable by a quasi-projective scheme over Spec(Og,, ), denoted
again by Y. If B is unramified at p, then Y is smooth over Spec(Og,, ).

Assumption 1.5 We assume that the ordinary locus of the reduction modulo P of
Y is Zariski dense.

Remark 1.6. If B is unramified at p, by [Wed99, 1.6.3], the above assumption is equiv-
alent to the fact that Eyp is isomorphic to Q,, and it is automatically satisfied in Case
(©).

Let K be a number field such that the decomposition in (1.1) is defined over K and
let K be the completion of K at the prime ideal above p given by our fixed embedding
ip: Q- QP. It is a finite extension of Q, and we choose a uniformizer element @. We
freely enlarge K without any comment. We have decompositions of Og-modules

VegKzVieV, and A®QPK;A1®A2,

where A; is an O-lattice in V;. We base change Y to Ok, using the same notation. As
shown in [Pap00], Y can be not flat over Og. We are interested in admissible formal
schemes that are integrally closed in their generic fibers. Starting with Y, we perform
the following steps to obtain such a formal scheme.

e Let Y be the flat closure of Y in Y.

* Let 9) be the @-adic completion of Y. This is an admissible formal scheme over
* Let2) be the normalization of 9 in its generic fiber.

In this way ) is an admissible formal scheme and we have its generic fiber )", We
follow the notation introduced in [AIP15b, § 4.1], in particular NAdm is the category
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of admissible Og-algebras R that are integrally closed in R[1/p]. We will use freely
the fact that all our formal schemes have a nice moduli interpretation when restricted
to objects of NAdm [AIP15b, Proposition 5.2.1.1]. In particular, if the canonical sub-
group exists over R[1/p] (see below), it automatically extends to R [AIP15b, Proposi-
tion 4.1.3].

1.1 The Hasse Invariant and the Canonical Subgroup

Let (p) = [1X,(@;)¢ be the decomposition of (p) in O, and let O; be the completion
of OF, with respectto (®@;) (here @; is a fixed uniformizer of O;). We have a decompo-
sition Hom(Fp, C,) = 1%, D;, where D; is the set of embeddings Fy < C, coming
from (@;). We have Of,,, = 15, 0,. Wesetd; := [F;: Q, ], where F; := Frac(0;), so
we have |D;| = d;. We write d; = e; f;. From now on, we assume that K is big enough
to contain the image of all embeddings F < C,. In this section A will be an abelian
scheme given by the moduli problem associated to Y. We assume that A is defined
over a finite extension of Ok, so it comes from a rigid point of )"8.

Case (A) Let B be of type (A). For any i = 1,...,d, we have the B ®p,,., R 2
M, (C)-module V ®p, ., R. We can write V ®f, ., C = C" ®¢W; for an essentially

unique C-vector space W;. Moreover, W; naturally inherits a hermitian form from
dimQ(V)
2nd

V. We write (af, a;) for its signature. We have a} + a; = for all i.

Assumption 1.7 We assume that each (@;) splits completely in O, and we write
(@7) for the prime ideals of O above (@;). Moreover, if i1, i, = 1,. .., d are such that
ip 0 0;, and i, o 0;, define the same p-adic valuation, we assume a; = a; .

Remark 1.8. If p is unramified in Op and each (@;) splits in O, then the above con-
dition on the signature is equivalent to Assumption 1.5.

Remark 1.9. 'The assumption that each (®@;) splits in O is not necessary. If (®@;) is
inert, the theory is similar to case (C). We leave the details to the interested reader.

Using the obvious notation, we can rewrite the decomposition in (1.2) as
k . ~
0g,p = [1(Ma(O0F) ® M, (07)).
i=1

We can assume that the left ideal of Op,, generated by @; corresponds to the left
ideal generated by the 2k matrices M7, where M; = diag(@;,...,®;) and M7 =1
otherwise. We have a decomposition

A[p=] = }'I:(A[((@?)e")“] ® A[((@;)")~]),

where A[ ((@; )¢")*°] is canonically identified with the Cartier dual of A[ ((@])¢")*°].

Using the canonical isomorphisms O; 2 OF = O7, we will consider only O;.

Case (C) Let B be of type (C). Similarly to Case (A), we can write the B ®p , R =
M, (R)-module V ® ;, R as R" @ W; for an essentially unique R-vector space W;.
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dimQ(V)
2nd

We have g; := dimg W; = . We can rewrite the decomposition in (1.2) as

k
(13) Op,p = I:IIMn(Oi)'

We can assume that under the isomorphism (1.3), the left ideal of Op , generated
by @; corresponds to the left ideal generated by the k matrices M;, where M; =
diag(@;, ..., ®;) and M; = 1 otherwise. We have a decomposition

=

A[p~]

where A[(@{")*] is endowed with a principal M,,(O;)-linear polarization.

If G is a Barsotti-Tate group defined over a finite extension of Z,, we write, as in
[AIP15b], Hdg(G) € [0,1] for the truncated valuation of any lift of the Hasse invariant
of the special fiber of G (note that Hdg(G) is denoted Ha(G) in [Farll]). We have a
function

- MA@,

1

Hdg = (Hdgi)i:@rig N [0,1]k
A (Hdg(GY)):

where Gf := ey - A[((@7)¢)*] (in Case (A), since G; is the Cartier dual of G}, we
have Hdg(G;) = Hdg(G; ), so there is no ambiguity in the notation Hdg(G?)). If
v =(v;); € [0,1]F we set

Y (v)"8 := {x € "8 such that Hdg(x); <v; forall i}.

The ordinary locus of 2)"¢ is 2)(0)"; it coincides with the tube of the ordinary locus
of the special fiber of 9). It is not empty by Assumption 1.5. If v € Q* n[0,1]¥, we have
that 2)(v)"# is a quasi-compact strict neighbourhood of ) (0)".

We are going to define, for all v € [0,1], a canonical formal model 9)(v) of
2)(v)"¢, following the approach of [Sch15, Definition I11.2.11]. Let w? be the conor-
mal sheaf of Gf (w7 will have a slightly different meaning below, but no confusion
should arise). The Hasse invariant defines a section, denoted Ha?, of det(w*)®?~! on
the reduction modulo p of ). For all i, there is a canonical isomorphism w} = w7,
and the two Hasse invariants Ha] and Ha; are identified under the corresponding
isomorphism. For this reason, we will simply write w, and Ha;.

Definition 1.10  Letv = (v;)X_, and assume that for all #, there is in Ox an element,
denoted p"i, of valuation v;. Forall j=1..., k, we defineQ) (v, . .., v;) by recursion as
the functor sending any p-adically complete flat Og-algebra S to the set of equivalence
classes of pairs (f,u), where:

o f:Spf(S) —» @(vl, convjo) (if j =1, we set@(vl, Vi) =)

* u e HO(Spf(S),det(w;)®™") is a section such that in $/p we have the equal-
ity uHa;(f) = p* € S/p, where f is the reduction of f modulo p (to be pre-
cise we should first of all consider the pullback of w; and Ha; via the morphism
@(V], ey Vj—l) d 2))

Two pairs (f,u) and f’,u’ are equivalent if f = f’ and there is some h € S such that

u' =u(l+ p'ih).
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By [Sch15, Lemma II1.2.13], we have that 2)(v) := 9 (v, ..., k) is representable
by a formal scheme: flat over Og. Moreover, one has the usual local description of
) (v). We define 9)(v) as the normalization of ) (v) in its generic fiber.

Remark 1.11. The point of the definition of 9)(v) is that using this approach, we do
not need to worry about whether the various Hasse invariants lift to characteristic 0
(and we do not choose any such lift).

Notation. For any integer n > 0, we write ¢, = 1/2p" ' if p # 3 and ¢, = 1/3" if
p = 3. Unless explicitly stated, in the sequel we will always assume that v; < ¢, for all
i, where n will be clear from the context.

We fix an integer n > 0. If A/R is an abelian scheme above ) (v ), where R € NAdm,
we have by [Farll, Théoréme 6] and [AIP15b, Proposition 4.1.3], a canonical subgroup
of Hi, c GF[p"].

Remark 1.12. In Case (A) we have H; , = (H{, )", where the orthogonal is taken with
respect to the perfect pairing given by duality.

Over K, we fix O;-linear compatible isomorphisms of étale group schemes
(0i/(@7)")P = 0:/(@7)*",
where (-)P denotes Cartier duality. In particular we will assume that K contains the
necessary roots of unity.

Lemma 1.13  We have that Hy, has rank p"4% and is stable under O;. Moreover,

locally for the étale topology on Ry, it is isomorphic to (O;/p")% . The same is true for
(Hi,)P

Proof The statement about the rank follows from [Farll, Théoréme 6] and by [Farl0,
Corollaire 10], we have that H i*’n is O;-stable. Again [Farll, Théoréme 6] implies that
Hy, is, locally for the étale topology on R, isomorphic to (Z /p" 7)% %, so we
can show that H; , is not killed by (@;)¢"~'. The dimension of G} is a7 d;, so we
have deg(G;[p"]) = na;d; (see [Farl0, § 3] for details about the degree). Moreover,
multiplication by @F on G7 is an isogeny, so for all s we have deg(G7[(@7)°]) =
v(det((@7)>*)) = sv(det((@7)*)), where (@F)**: W+ = wge is the pullback. In
particular we have deg(G*[(@%)%"']) = (e;n — 1)a;i f;. By [Farll, Théoréeme 6], we
have deg(H7,) = najd; - 1;—:11 Ha(G3[p"]), so we see that deg(G*[(@%)*"']) <
deg(H{, ) and we conclude by [Farl0, Lemme 4]. [ |

Notation. We consider the algebraic group GL® over Z, defined, in Case (A) and
Case (C), respectively, by

k k
GLY =[] Resy,/z,(GLs+ xGL,-) and GLY =[] Reso,/z, GLq, -
i=1 ! ! i=1
We also have the subgroup T defined by

k + - -
T := I Reso,z,(Gm x Gy ) and  TY =[] Reso,/z, Gi.
i=1 =1
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Note that, over K, we have that T is a split torus. We consider the Borel subgroup
BY given by the “upper triangular matrices” with unipotent radical U°.

We now introduce the needed Shimura varieties. We write ) (p")(v)"8 — Q) (v)"¢
for the finite étale covering that in Case (A) parametrizes O;-linear trivializations
Hf ®H;, = (0:/(@F)4™)% & (O;/(@;)*™)% (note that everything is in character-
istic 0 here). In Case (C) it parametrizes O;-linear trivializations H; ,, = (O;/@{")%.
There is an action of GL® (Z,) on 9 (p") (v)"8. Let Y1 (p")(v)" be the quotient
of Y(p™)(v)"8 with respect to B®(Z,). Finally, we let 9 (p")(v)"® be the quo-
tient of ) (p") (v) "8 with respect to U?(Z,,). Taking the normalization of 2)(v), we
obtain the following tower of formal schemes:

(") @) = D5 (")) = D (p") (v) = D(v).

Each of these formal schemes has a reasonable moduli space interpretation.

2 The Sheaf 5 and Modular Sheaves

2.1 The Weight Space

Our weight space is the rigid analytic variety W associated to the completed group
algebra Og [T (Z,)]]. It satisfies W(A) = Homeoni(T”(Z,), A*) for any affinoid
K-algebra A.

According to the decomposition of T, we have W = [T;(W; x W7 ) in Case (A)
and W = [T; W; in Case (C). In particular, we can write xy = (x7); forall y e W(C,).
Let w¥ > 0 be a rational number such that there is an element p*i € O of valuation
wi. We say that y;7 € W;(C,) is wi-locally analytic if y; extends to an analytic
character y7: (OF (1+ prr‘i(D(gP))“ii - C,. Ifw = (wi); and x = (x7)iW(C,), we
say that y is w-locally analytic if each y7 is wi-locally analytic. Any y € W(C,) is
w-locally analytic for some w. Moreover, let U ¢ ‘W be an affinoid associated to a
C,-algebra Aandlet xi* = (x7(';): be its universal character. Then there is a tuple of

positive rational numbers w = (w}); such each xy;* extends to an analytic character

X (07 (1+p" 0, )" — A™.

We say in this case that x}* is w-locally analytic.

Fix an integer # > 1. We have the subspace W*(n) given by those y* € W*(C )
that satisfy x; (1+p"0;) c 1+pO¢,. We define W (n) as the subspace of W#(n) given
by the characters x; such that their restriction to 1+ p" O, is obtained from a Z, -linear
morphism p"O; - pOg¢, taking composition with the p-adic logarithm and with the
p-adic exponential. If wi > 1is a rational number, we set Wi (w}) = Wi ([w}]),
where [w?] denotes the integer part of w;.

Let w = (wi); be a tuple of rational numbers. We set W(w) := [T;(W7 (w}) x
W7 (w;)) or W(w) := IT; W;(w;). By construction we have the following.

Proposition 2.1 Each W(w) is affinoid and {W(w)},, is an admissible covering of
W. Moreover, if y € W(w)(K), then x is w-analytic.
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If y € X*(T?) is a character of T, we define ' := —wq y, where wy is the longest

element of the Weyl group of GL® with respect to T”. For any w, the map y + y’
extends to an involution of W(w), denoted in the same way.

2.2 The Sheaf F

Let R be in NAdm. Suppose we are given a morphism Spf(R) — ) (p")(v), so we
have an abelian scheme A — Spec(R). We write e: Spec(R) — A for the zero section.
We consider the sheaf e*qu /spec(R)" Itis an Op ®7z R-module and a locally free sheaf
of Ogpec(r)-modules of rank dimg (V') /2. By Morita’s equivalence, e* Q) /spec(R) €OT-

responds to a sheaf w and we can write, in Case (A) and Case (C), respectively,
w= é@? ®w;) and w= ﬁég,».
Let i and n be fixed. The map (see [AIP15b, § 4.2])
HT sz yo: (H7,) (Rk) > @y

respects the action of O; by functoriality. We define F7(R) as the sub O; ®7, R-mod-
ule of w7 generated by the inverse image of HT (y= yo(Rx) under the natural map,
given by pullback w; - w. . We have that J7 does not depend on .

Proposition 2.2 The sheaf J; c w7 is a locally free sheaf of O; ®7z Ogps(r)-modules

P
Vioo

n

that contains p%gf. Ifwielo,n- ], then we have a natural map
HT},: (H7,)P (Rk) > FF(R) ®r Rys

such that the induced map

2.1 (H7,)® (Rg) ®z, R~ F7 (R) ®g R,z

is an isomorphism of O; ®z, R-modules.

Proof Taking into account Lemma 1.13, the proof is similar to the one of [AIP15b,
Proposition 4.3.1]. ]

Wedefine I := @%_, (FF@TF7) or T := @5, F;. By Morita’s equivalence and Propo-
sition 2.2, it corresponds to a locally free sheaf of Op ®7 Ogpec(r)-modules contained
in e* Q) / spec(r)- Moreover, this inclusion becomes an isomorphism if we invert p.

2.3 Modular Sheaves

Let n > 1 be an integer and let

n

]

be a rational number. We begin with Case (A). For each i, there are formal schemes
fiﬁii’w'i - Y(p")(v) defined as follows. Let R be in NAdm and suppose that F7 (R)

is free. The R-points of ’jﬁiw correspond naturally to the following data:

wi*e]O,n—v,-p_l
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e an R-point of Y (p")(v),
+ afiltration Fil, F7(R) = (0 = Filo F7(R) c - ¢ Fil,= F7 (R) = IF(R)),

* trivializations Gr; Fil, ¥ (R) := Fil; F7 (R)/ Fil;_; 55 (R) = (0; ®7 R)/, such that
the following conditions hold:
- Fil; 7F(R) is a free O; ®7 R-module for each 0 < j < a7;
- Fil, % (R) corresponds, modulo p*# R and via the isomorphism in (2.1), to the
filtration on (Hj, )P (Rk) ®z R given by the trivialization of (H¥ ,)";
- the trivializations of Gr; Fil, 7 (R) are compatible, modulo p"i R and via the
isomorphism in (2.1), to the the trivializations of (H7 ).
We set TTQT]K = Hf-‘zl(ﬁfgﬁzm X ﬁ_iﬁ:w-) We leave to the reader the definition of
32, - D (p")(v) in Case (C). Let v} < v; for all i. We can repeat the above definition
to obtain a formal scheme fijiﬁ’m - Y (p")(v"). The restriction of %m to Y (p")(v")
is naturally isomorphic to D”—Q‘ﬁlm, so we can safely omit v from the notation ’J—ﬁfiﬂ.
With the obvious notation, we define a formal group ‘58 by

SE(R) = ker(T?(R) - T?(Ry)),

and we make a similar definition for %2 and 113 . We write TS, BE ,and UY for the

corresponding rigid fibers. We have a natural action of B® (ip)%g on ’.,Tﬂtﬁm over

D (p™) (v).
Let y € W(w)(K) be a character. We set X’(UO(ZP)LIE(O@P)) = 1. Since y is
w-locally analytic by Proposition 2.1, we can extend y’ to an analytic character

X':B%(Z,)%B,(0¢,) - C; .
We consider the morphism 7: J23,, - D1 (p)(v), obtained by composition.
Definition 2.3 We define the sheaf my& i= m,O535, [x'], where [x'] means that

we consider the subspace of homogeneous sections of degree y' for the action of

BO(Z ») By, We call QLXK the v-overconvergent, w-analytic integral modular sheaf
of weight y.

Proposition 2.4  We have that m;)(& is a formal Banach sheaf [AIP15b, Appendix].

Proof This is proved in exactly the same way as [AIP15b, Proposition 5.2.2.2]. W

The rigid fiber of g;xﬂ is denoted Q;Xﬂ . By definition it is the v-overconvergent,
w-analytic modular sheaf of weight y.
We can define Q;XK directly as follows. Since w; < n for all i, the natural ac-

tion of U”(Z,) on Y(p")(v)"8 induces an action of U®(Z,) on %Zg. Taking the
quotient, we obtain a rigid space ﬁ;g’o - 5 (p")(v)"8. We have an action of

T°(Z,) TE on fiﬁzg’o over V1w (p) (v)" and there is an equality

Q;Xﬂ = ﬂ?oﬁ'ﬁxg'o [x'];
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——rig, > .
where 7<: J?Zﬁ;g = Ve (p)(v)"8 is the natural morphism and we take homoge-

neous sections for the action of T (7 ) T?.

3 Modular Forms

Since we do not have a Koecher principle for sections of our modular sheaves, to
define modular forms we find it convenient to work with the compactified variety. In
particular we need the following.

Assumption 3.1 From now on we assume that p is unramified in Op; in partic-
ular p is a good prime in the sense of [Lanl3, Definition 1.4.1.1]. We also assume
[Lan13, Condition 1.4.3.10] that our O lattice (A, (-, -), h) is such that the action of
Op extends to an action of some maximal order O > Op. This is not a restriction,
see [Lanl3, Remark 1.4.3.9].

We fix once and for all a compatible choice of admissible smooth rational polyhe-
dral cone decomposition data for Y [Lanl3, Definition 6.3.3.4]. Associated with this
choice there is an arithmetic toroidal compactification Y'* of Y, (see [Lan13, Theo-
rem 6.4.1.1] for the main properties of Y*°). Let Spec(Rag) be part of the data giving
a good algebraic model for some representative of a cusp label associated to Y, as
in [Lanl3, Definition 6.3.2.5] and let R € NAdm be the p-adic completion of R,1g. We
set S := Spec(R), so we have a semiabelian scheme A — S. Let U < S be the open
subset corresponding to the unique open stratum of Spec(Rayg). In particular, A is
abelian over U. We also have a Mumford 1-motive M over U — S whose semiabelian
part will be denoted A — S. By definition, A is a semiabelian scheme with constant
toric rank and we have A[p"]  A[p"]. Here A[ p"] is finite and flat, while in general
A[p"] is not. As explained in [Strl0, Section 2.3], the approximation process needed
to construct good formal models can be performed in such a way that there is an
isomorphism M[p"] = A[p"], and we always assume that this is true. There is an
action of O on A[p"], A[p"], and M[p"]. The two arrows A[p"] < A[p"] and
M[p"] = A[p"] can be assumed to be compatible with this action.

We can now repeat the definitions of Subsection 1.1 replacing A by A, obtaining,

for all v € [0,1]%, the rigid space ) (v)'°""8 and its formal model ) (v)"".
3.1 Modular Forms

At the end of Section 1, we introduced the rigid Shimura variety 2)(p")(v)"8 and its
formal model ) (p™)(v). We have a canonical subgroup over 2)(v)"" (see, for exam-
ple, [AIP15b, Sections 3.3 and 4.1]), so we can define 2)(p™)(v)'°""8 and its formal
model Y (p")(v)'". Using the semiabelian variety over 2)(p")(v)'", we see that the
sheaf F extends to 2)(p")(v)"". The analogue of Proposition 2.2 still holds, so we
can define a space (: %m = D(p")(v)™", where w is as above. There is an action
of GLY(Z,) on Y (p")(v)'°""8, and repeating the above definitions, we obtain the
tower 9(p") ()" > Vg, (pP") (1) > D (p™) (1) ~ D(v)**". We are inter-
ested in the morphism 7:J20,, - Yr(p)(¥)*". Repeating the above definitions,
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if ¥ € W(w)(K) is a character, we then have the sheaves Q;Xﬂ = 0555 [x'] and
@ = (10)4)7 on Y1y, (p) (1)'°" and Vi (p) (1)'°""%, respectively.
Let Y2" and Y;>"*" be the analytifications of Yx and Y, respectively. Since Y

is proper, we have a natural isomorphism 2)'°>"8 = Y;°"*", and in particular there is
an open immersion Y2" < 2)'°""8. We have that Y3" is dense in 9)*°""¢.

Definition 3.2 We define the space of v-overconvergent, w-analytic modular forms
of weight y by
My = HO (D (p) (2) 7%, wl}, ).
We define the space of overconvergent locally analytic modular forms of weight y by
M= lim MM,

V=0
m—)oo

where the limit is over v and w for which there is #n such that y €¢ W(w)(K) and the
above properties are satisfied.

Definition 3.3 Let y € W(K) be any continuous character. If F is a global section
of W%, on Vi, (p) (v)'%"8, we say that F is bounded if it is bounded as a function

rig
on J2,,” Xgyterrig Y

Proposition 3.4  The natural restriction morphism
; .
My, > HY (D1 (p) (1) Xopuonsis YE™, w1,),

where Hy (—) means that we consider only bounded sections, is an isomorphism. In
particular, our definition of modular forms does not depend on the choice of the toroidal
compactification.

Proof The complement of %Eg Xgyorrig Y i %Eg is a Zariski closed subset of
codimension greater than or equal to 1. By [Liit74, Theorem 1.6] any bounded function
F on ﬁﬁ;g Xqurrg Y extends (uniquely) to a function on ’j‘ﬂvﬁxg. This extension

has the same weight as F and gives an element of M;X& as required. ]

Remark 3.5. The reason we do not need any Koecher principle in the proof of the
above proposition is that we have defined overconvergent modular forms as sections
over a strict neighbourhood of the ordinary locus of Q)1 (p) (v)*""8 that also con-
tains abelian varieties of bad reduction.

3.2 Classical Modular Forms

Fix n, v, and w as above, and assume moreover that wi > # We write Y, (p) for the
Shimura variety defined with the same PEL data as Y, but with an Iwahoric level struc-
ture at p. In Case (C), we have that Yr,,(p) parametrizes couples (4, (Fils G;[p]):),
where A is an object parametrized by Y and Fil, G;[p] = (0 = Fily G;[p] c --- c
Fil,, G;[p]) is a filtration of G;[p] made by O;-stable finite flat subgroups such that
Fil; G;[p] has rank p%i/ and Fil,, G;[p] is totally isotropic. In Case (A) we consider
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complete filtrations of G [p]. We consider the sheaves w? and w on Y (p) de-
fined similarly to the above ones. The unramifiedness assumption implies that w7
is a locally free O; ®z, Oy, (,)-module. We obtain the sheaf of trivializations of w
f:T - Yiu(p). Welet GL® acton T by g- @ = w o g”', where g is a section of GL°
and w a trivialization of w. In this way T becomes a GL%W( p)-torsor.

We write Q1 (p) for the formal completion of Yy, (p) along its special fiber. We
have open immersions Y, (p) ()8 = V1w (p)"8 = Yiw(p)%. By the main result of
[Str10] we have a toroidal compactification Yy, (p)'" of Y, (p) (which we can choose
in a way that is compatible with the choice we made for Y'°") and everything we just
said extends to Yr,, (p)™". Let Y1 ()" be the formal completion of Yy, (p)*" along
its special fiber. The rigid space Q)1 (p) (v)'°""# is an open subspace of Y1 ( p) "8,
but the special fiber of Y, (p)™" is not the same as the special fiber of the space
Diw(p)(v)'°" defined above. In the sequel we will work only with the generic fiber of
V1w (p)'®, so this is not a problem.

Let X*(T”)* be the cone of dominant weights with respect to BY. This cone is
stable under y ~ y'. Let y € X*(T?) be a weight. Recall that d; = [07: Q,]. In Case
(A) we can identify y with a tuple of integers in [T~ [T% 1(Z“' x Z% ). We have that

= (ki,,;) is dominant if and only if, for each i = i,...,k and each s = 1,...,d;,
wehaveklslzklsz_ >k+sa+andk1512klsz_ -2k, ,-. In Case (C) we
can identify y with a tuple of integers in [T, [T%, Z*. We have that x = (kiys,;j) is
dominant if and only if for each i = 4,...,kand each s = 1,...,d; we have

ki,s,l 2 ki,s,Z 22 ki,s,ﬂi'

We have that T extends to the toroidal compactification, and if y is a dominant weight,
then the space of classical modular forms of weight y and Iwahoric level is by defini-
tion MX := H* (Y1, (p)'°""8, w*), where w* is the subsheaf of f, T given by homoge-
neous sections, for the action of BY +(p)> of degree . Note that the action of GLY on
T induces an action of GL® on wX.

Th.e natura}l inclusion F = wg, (,n)(,) is generically an isomorphism and gives an
open immersion

~ar an
jml > (T /UYI (p);?m)z)(p Ap—

Taking the quotient by U° (Z,,), we obtain an open immersion

—rig,o an
(3.0 3w, = (TR/ VY, (p)?'a")m,w@ ") (v)torsis®

Proposition 3.6  The composition of the open immersion (3.1) with the natural mor-
phism

(TR /05y ) sy pmyoynms > (TR VY yran) gy g yone

remains an open immersion. In particular, if y is a dominant weight, we have a natural
N ) 7
injective morphism M¥ - M,%,
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Proof We prove the proposition in Case (A) and we leave Case (C) to the reader.
We have a decomposition

—rig,o k = +,rig, o ;—v—,rig,o
0, =11(320,, x3W,, )
w i w w
and a corresponding decomposition of T§"/ U(;I (pyoen- It is enough to prove the
wiP)k
proposition for the map
—aHHrig, o ,
Jmi,ﬂ —)( “Tii,l?n/(ResOi/ Zy Uai* ) Yiw (p)i" ) V1 (p) (v)torrie”
This is done explicitly as in [AIP15b, Proposition 5.3.1]. ]

From now on, given n and v, we will always assume that any w € Q satisfies the
condition in Subsection 2.3.

4 Hecke Operators

We will write Y (v) for 2) (v) """ 8 x g torig Y2 and similarly for other objects. To define
Hecke operators we work over Y1, (p)(v). This is enough, since all the operators we
are going to define send bounded functions to bounded functions, see Proposition 3.4.

4.1 Hecke Operators Outside p

Recall that N is a fixed positive integer not divisible by p such that UP (N') c 3, where
J is the level of our Shimura variety outside p. Let I be a prime that does not divide
Np. Let A; and A, be two abelian schemes given by the moduli problem of Yy, (p)«-
An isogeny f:— f, is an [-isogeny if the following conditions are satisfied:

* fis O-linear and its degree is a power of [;

¢ the pullback of the polarization of A, is a multiple of the polarization of A;;

o the pullback of the flag of A,[p] is the flag of A;[p].

Let f:— A, be an [-isogeny. We choose two symplectic Op ;-linear isomorphisms
T;(A;) = Ay, for i = 1,2, and an isomorphism Z;(1) = Z,;. In this way f defines an
element y € G(Q;) nEndp,, (A7) x Q] . The definition of y depends on the choice of
the above isomorphisms, but the double class G(Z;)yG(Z;) depends only on f, and
is called the type of the I-isogeny f.

We fix a double class G(Z;)yG(Z;) as above. Let C, = Y (p)x be the moduli
space that classifies I-isogenies f:A; — A; of type G(Z;)yG(Z,), where A; and
A are abelian schemes (with additional structure) classified by Y1, (p)k. The arrow
Pjy = Yiw(p)k sends f:A; - A, to A;. Both p; and p; are finite and étale.

We fix n and w as in the previous section. Let C,(p") be the pullback, using
p1, of C, to Y(p")k. If f:A; - A, is an isogeny parametrized by C,(p"), we can
transport via f the trivializations of the canonical subgroups of A; to trivializations
of the canonical subgroups of A,. In particular we have two finite étale morphisms
P p2:Cy(p") 3 Y(p")k. We write f:A — A’ for the universal isogeny above
Gy (p").

yLet Cy(p")(v) be C,(p")*™ xp, Y(p")(v). Over C,(p")(v), the pullback

ffrwy > w,
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induces a morphism f*: p;F — p{F. By Proposition 2.2, we have that
F 3T = P

is an isomorphism. This gives a BY (Z P)%g -equivariant isomorphism

f P29 Wy = LTIy

We thus obtain a morphism

(4D (M), 05,) > HC (p") (1), p3 053,
VO @ () @) i Og,) T HOW(") (), O, ).

Definition 4.1 Let y € W(w)(K) be a character. We define the operator T,: M;Xﬂ -
M;Xﬂ from the composition defined in (4.1) considering bounded and homogeneous
sections for the action of B (Z,) BE of degree y'. We obtain an operator

T,: M — M™x,

Since p is unramified in B, the operator T, for various y and I commute. We let TN?
be the restricted tensor product of the algebras

Z[G(Z1)[(G(Q) nEndo,, (A1) x Q\G(Z))],

for [ a prime with (I, Np) = 1. We have defined an action of T*? on M;Xﬂ and on M'X.

4.2 Hecke Operators at p

In this subsection we fixanindex i = 1, .. ., k. The operators we are going to define will
act as the identity outside the i-th component. We assume that v satisfies v; < 21;%22

and that w is as above.
4.2.1 The Operator U7 .

We start by defining an operator U7 . = U] . = U; - in Case (A) and an op-
erator U; ,, in Case (C) (this notation will be clear later on). In Case (A), let
P p2:C(¥)7 s 3 Ynw(p)(v) be the moduli space that classifies couples (A, L7)
where A is an abelian scheme classified by Yw(p)(v) and LT c GF[(@F)% ] is a fi-
nite and flat subgroup, stable under O;, and such that G¥[(@7)*] = Hy, ® L} (note
that L] ~ L]** gives a canonical isomorphism between C; . and C; ). In Case
(C) we make a similar definition, adding the condition that Liis totally i'sotropic for
the polarization of G;. By Lemma 1.13, any L} as above is étale locally isomorphic
to (O,-/((Dii)e")“ii. The arrow p;:C; . — Yre(p)(v) forgets LF, and p; is defined
taking the quotient (via Morita’s equi\;alence) by LT ® L; or by L;. The map p; is fi-
nite and étale. By [Farll, Proposition 16], we have that p, gives a morphism, denoted
again PZ:B(K)ii,aii = Y (p)(v'), where v = (v'); is defined by v} = v; if j # i and

vi=vi/p.
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We write C(p")(v); ,+ for the pullback, using pi, of C(v)} o 10 Y(p")(v). We
have two natural morphlsms p1:C(p" )(v)fcui = Y(p")(v) and pz C(p")(v);7 .
Y(p")(v"). Moreover, over C(p")(v)F

p;Fri8 and a B (Zp)%g -equivariant isomorphism (that is the identity outside the
i-th component)

fats We have an isomorphism f*: p3F™8 —

S*:p3 Wy, = PP,

1Y (™)) Pryopmy

We thus obtain a morphism

HO(Y(p")(r'), O, ) 2 HY(C(p") (1)} 022 P3Oy, )

(") (1)7 00 P O5,) > HO(H(P")(0), O

Taking the composition, we get, for any y € W(w), an operator

U,ai MM,

W

diatar ~ diaj(a;+)
We define Uii,ai* = ( %) i Uiaii in Case (A)and U, ,, := ( %) * Ui, inCase
(C) (these are the normalization factors of [BSP15]). We will use the same symbols
to denote the composition with MTX > MTX The operators U . M — M are

completely continuous.

4.2.2 The Operators U;;

In addition to the Various assumptions we made above, we assume in this subsection
that v satisfies v; < . We explain the construction in Case (A), and we leave Case

2p2
(C) to the reader. Let Wi = (w;"")1<4c,<q+ bea w-mple of rational numbers

such that wi™* € ]

n
r+1,s > +,7,8

TN vi%]. We moreover assume that w3 > w"* and

w2 < WP We define %ifi - Qj(p”)(v) as follows. Let R be in NAdm and

suppose that F¥ (R) is free. The R-points of JQB e correspond to the following data:
* an R-point of Y(p")(v),
* afiltration Fil, 57 (R) = (0 = Filo F7(R) < --- ¢ Fil,= F7(R) = F7(R)),
* trivializations w’: Gr, Fil, F%(R) — (O; ®7 R)" such that the following conditions
hold:
- Fil, 7 (R) is a free O; ®z R-module for each 0 < r < a7;
- let ey,..., e, be the R-points of (H, ) defined by the given isomorphism
(Hf, )R = (0;/p")% and setw := n - v,«;%nl. We require that the equality w} =
Y rss ar,s HT7, (ex4) holds in Fil, F; (R)/(Fil,_; FF (R) + p"), where a, 5 € R
are such that a, ; € p“"i’mR ifr>sand (a,,-1) ¢ pwii""R.

If wi™* = wi are all equal, the definition of JQU we is exactly the same as the defini-

tion of JQIT, wt- All the constructions done for UQU, w+ generalize to JQB = and we
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——
use the corresponding notation. For example JU; = extends to Q) (p") (v)"*" and we

—_— ——Tri ’<> . s
have 3205 — Y (p")(v)"" or jﬁﬂ%g = V1w (p) (v)'°""8 (here we fix a tuple w' as
above for each i). Looking at the proof of Proposition 3.6, one sees that the condition

+,7,8

wi e ]ﬁ, n-—v; If ;] implies that the natural map

ot an
W5 - (T /UYIW(P);,,“)%(p)(v)wmg

is an open immersion. If y € W(w), we can define as above the sheaf m w and its

rigid fiber w

We now ﬁx 1 < j < af and we define the operator Uj;. Let p1, p2:C(v)i; 3
Y1w(p)(v) be the moduli space that classifies couples (A, Li) where A is an abelian
scheme classified by Y1, (p)(v) and L¥ c G¥[p?] is a finite and flat subgroup, stable
under O;, and such that G [ p] = Fil; H;,@L;[p]. Thearrow pi: C(v)7; = Y (p)(v)
forgets L7, and p, is defined taking the quotient (via Morita’s equivalence) by LT @ L}
(by [AIP15b, Proposition 6.2.2.1], the image of (A, L) by pz lies in Y1 (p)(v)). Let
f:A — A’ be the universal isogeny over C(v)} ;. It gives a B (Zp)%9 isomorphism

(7% /UYI (p)mn)lylw(m(v) pr (T /UYIw(p)mran)‘wa(P)(V)
k

Let wi = (wi 7%, s be a tuple as above with the additional condition that wi"™* <

/:!:,Y,S)

n-2- v, -. We define a tuple w; = (w] rs bY

1
1 W:{:,V,S

i

a1y wP™ +1 ifr>j+lands<j,
otherwise.

Starting with w, we define w mod1fy1ng only the i-th component w7 . It follows that
we have the spaces JQH— and fiﬂﬂf/ and both are open subsets of T%"/ UY W (p)rn-
The proof of [AIP15b, Proposmon 6.2.2.2] also works in our case, so we have

~r1g “g
(f* )7'p ( )|y (») (v )CpZ(jQII )l‘él (P (@)’

For y € W(w)(K), we can now define an operator Uj;: MTL - MTX using the
composition

H (U () (1), 1) 2 HOC()E . prel,)
N Tr p}®
H'(CWippie) — B Un(p)(v) o).
We also have operators U7 ;: M;XE - M;XE and U7 ;: MY - MTx,

4.2.3 The U-operator

We work in Case (A); Case (C) is similar. We fix #n. From now on, we will always
assume that the following conditions are satisfied. Let v be such that the above in-
equalities hold and let w be such that w¥ € ]P n—1-af].
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Letusfixi=1,....k. Wesetv;:=v;/pand v} :=v;if j # i, wji’” =wi forallr,s
and for all j, w}™"™ = r — s + w¥ andw’i” = wi if j # i, and for the rest we use
the above notations. The product U; := U} at X H i1 (U U ;) gives an operator
U;: Mifcw, - MY = M}%,. We denote with the same symbol the composition of

U; with the natural restriction M}% MTX - Mv, > obtaining Uy: ME, - MY,
Taking the product of the U; we obtaln the compact operators

U:MA, - M, and UM - M7

Remark 4.2. Usually one defines the U-operator using only the operators U7 . that
improve the degree of overconvergence. The reasons for also including the operators
Uy, is that they improve analyticity, and this will be needed to prove classicity in
Sectlon 6.

We let U, be the free Z-algebra generated by the Hecke operators at p and let
T := TN? ®7 U,. We simply call T the Hecke algebra. It acts on all the spaces we
have defined.

4.3 Families

Let U ¢ ‘W be an affinoid associated to the algebra A := Oy (U). There is w such
that U ¢ W(w), and we fix one such. We write xi*:T”(Z,) — A* for the universal
character over U. Let v and # be as usual.

Proposition 4.3  There is a Banach sheafw,,x‘}} on Y (p) ()18 x U such that, for
any x € W(K), the fiber ofwzxv},‘ at Q)Iw(p) (v)torrie x { y} is canonically isomorphic to

wv w- On the global sections of w,,)ﬂ}f

above.

there is an action of the Hecke operators defined

Proof We have a morphism 7; x id: %E’rig x U = Yy (p)(v) "8 x U. On
(ﬂl X id)*o?ﬁj;},rigxu

there is an action of BY(Z,) B,,, and we define a)IXW taking sections homogeneous

of degree (xi")’. The definitions given above of the Hecke operators work in families
without problems. ]

Definition 4.4 We define MY, := H* (Y1 (p) (v) """ x U, w!A0). Tt is the space
of families of v-overconvergent w-locally analytic modular forms parametrized by U.
We set MY := 1lim, 0,000 M;uﬂ It is the space of overconvergent locally analytic
modular forms parametrized by U.

We have an action of the Hecke operators on both MTu and M™. The U-operator

on M™ is completely continuous. We have that M wisa a Banach A-module.
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Remark 4.5. Let y € U(K). Then we have a natural specialization map Mzuﬂ - M;Xm .
We do not know whether this map is surjective or not (but see Corollary 5.9 below
for the cuspidal case).

Remark 4.6. We can define a formal model 20 and 20(w) of W and W(w). If il c

2 (w) is affine, we have an analogue of Proposition 4.3, obtaining the formal Banach
sheatfmzf‘ﬂu on Y (p) (v)*r x SL.

5 Cuspidal Forms and Eigenvarieties

5.1 The Minimal Compactifications

Recall that in Section 3 we have fixed a compatible choice of admissible smooth ra-
tional polyhedral cone decomposition data for Y. This choice gives the toroidal com-
pactification Y'°* of Y. We also have the minimal compactification Y™™ and a proper
morphism & YT — Y™i® (see [Lanl3, Theorem 7.2.4.1] for the main properties of
Y™in) The sheaves w; extend to the minimal compactification and the Hasse invari-
ants give sections Ha; of det(w;)®?~! on the special fiber of Y™, We then obtain
a function Hdg: ™8 — [0,1]%, and so the rigid space ) (v)™™*8 and its formal
model Q) (v)™™ are defined.

Let Spec(R,1g) be part of the data giving a good algebraic model as in the begim}ing
of Section 3. In particular we have the semiabelian schemes A — Spec(R) and A —
Spec(R). Since the formal completions of A and A along the closed stratum of S =
Spec(Rayg) are isomorphic, we have an isomorphism of locally free sheaves over S

1

* 1 ~ ¥
eAQA/S :eAQA/S,

where e4 and ez are the corresponding zero sections. Hasse invariants are compatible
with respect to the induced isomorphisms, so & gives a morphism

EW: @) > Y(v)™"
We will write D for both the boundary of Y'°" and the boundary of 2)(v)'°". We then
have the following.

Theorem 5.1 ([Lan, Theorem 8.2.1.2]) We have R1&,0yw:(-D) =0ifg > L

Notation. Let m be the maximal ideal of Ok. If * is an object defined over Ok, we let
*,, be the reduction of * modulo m”.

Corollary 5.2 We have R1{(v). Oy (,yer(-D) = 0if g > 1.

Proof Arguing as in [AIP15b, Proposition 8.2.1.2], we have that the description of
the formal fibers of £(v) is the same as the description given in [Lan, Section 8.2].
Hence, to prove the corollary one can repeat the proof of [Lan, Theorem 8.2.1.2]. W

Let #7(v) be the composition 2)(p™)(v)'*" = Y (v)'" - Y(v)™™ and let p(v) be
the first morphism. We will still write D for its inverse image under #7(v).

Proposition 5.3  We have R 1(v).Og(pny(yyer (=D) = 0if g > 1.

https://doi.org/10.4153/CJM-2015-052-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-052-2

1248 R. Brasca

Proof This can be proved by the same arguments used in [Lanl3, Section 8.2]. To
do this, we need to describe the local charts of ) (p")(v)'" similarly to the one of
2 (v)'". Over the rigid fiber Y (p™)(v)"""'8 we know that such a description exists.
We can now argue as in [AIP15b, Proposition 8.2.1.3] to extend this description to

9(p") (). u
5.2 A Dévissage

Let W(w)° be the rigid open unit disk of dimension dim (T ). As in [AIP15b, Sec-
tion 2.2], we have an analytic universal character

Xun’o:TE(Zp) = Oy(ye (W(w)°)*
We set W(w)° = Spf(Ox[[Xis ..., Xgim(ro)]])> a formal model of W(w)°. Using
the construct of [AIP15b, Section 2.2], we see that the character y"™° is induced by a
formal universal character, denoted in the same way,

X T (Zp) = Oan(wye (W(w)°)*

Recall that we have the morphism ¢: 327,, — 2)(p")(v)'". The torus Ti acts on this
space, so, if x° € W(w)°(K), we can define the sheaves on ) (p")(v)""

it = 05, [X°']-
As in Remark 4.6, if 41° ¢ 20(w)° is affine with the associated character x5, we have
the family o mTX‘“’ It is a sheaf on Y (p") (v)'" x 4L

Remark 5.4. If y € W(W)(K) then we have its image x° € W(w)°(K) and we can
recover "Uv w from mv w projecting to Y (p)(v)*" and taking homogeneous sec-
tions of degree x’ for the action of B®(Z,)BY. Equivalently, one can project Qz,ﬂ
to D (p) (v)™", twist the action of BO(ZP)%V? by -y, and finally take invariant
sections for the action of BO(Z /p" Z). A similar remark holds for families.

We recall that x,, means the reduction modulo m” of x, where m is the maximal
ideal of O.

Proposition 5.5 Let x° € W(w)°(K) be a character. Then m w1 IS an mductzve
limit of coherent sheaves that are an extension of the trivial sheaf. In particular, mv W
is a small formal Banach sheaf (see [AIP15b, Definition A.1.2.1] for the definition of a

small formal Banach sheaf). If $1° c 20(w)°® is affine, a similar result holds for to m”‘”.

Proof We prove the proposition for mv ws the proof for vaw’

the decompositions J20,, = ,‘:I(JQI],‘,W X JQIL’W?) and 398, = [1+, 3, in
Case (A) and in Case (C), respectively, we can prO\;e the proposition for the sheaf
§:=(5,0 Sa, L [X'], where (F: mi, we = (") (v )t* is the natural morphism.
One can give d completely explicit descrlptlon of the sections of G, as in [AIP15b,

Subsections 8.1.5 and 8.1.6]. The proof is then identical to the one of [AIP15b, Corol-
lar 8.1.6.2]. u

is similar. Using
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Recall the morphism #(v):2)(p") (v)'" - P (v)™".

Proposition 5.6  For any x° € W(w)°(K) and any affine 41° c 20(w)° we have that
n(g)*(mgﬂ(—D)) and (n(v x id))*(mg(f (=D)) are small formal Banach sheaves.

Proof We prove the statement for #(v).( myﬂ (=D)); the case of families is simi-
lar. We use the notation of the proof of Proposition 5.5. It is enough to prove the
proposition for 77(v)«(G(=D)). Lets > 1 be an integer and consider the commutative
diagram

D(p") (V) —=D(P") (1)

iﬂ(")s—l ln(V)s

Y()mp — = Y(v)M"

where i and j are the natural closed immersions. Using Proposition 5.3 and [AIP15b,
Proposition A.1.3.1], we see that it is enough to prove that

J (1(¥)s+G(=D)s) = 7(¥)s-1.4G(~D)s-1.

Similarly to G;, we can write G, 2 li_n)l_jgs, j» where each G ; is a coherent sheaf.
Since taking direct images commutes with direct limits, we can prove the statement
for G, ;. From now on, all the sheaves will be considered as sheaves over 2) (p" ) (v):°".
It is enough to prove that R n(v);,. ker(Gs,; = Gs-1,j) = 0. We have (see [AIP15b,
Section 8.1.6] and the proof of Proposition 5.5) ker(9s,; = Gs-1,j) = 91,5 in particular
we need to show that R! 1(v)s,»51,; = 0. By Proposition 5.5, we know that Gy ; is an
extension of the trivial sheaf, so we can conclude by Proposition 5.3. ]

5.3 Projectivity of the Space of Cuspidal Forms
We fix 4° ¢ (w)°, an affine with rigid fiber U° = Spm(A°) and x° € U°(K). Let us
consider the modules Sgﬂ and S} ,, defined by
° r o TXio -
Sy = HU(D (") ()" x 1,1, 5 (-D)) [p7']
and
St = HOD(p") (1) w0l (D)) [p7'].

Let B be any affinoid K-algebra and let M be a Banach B-module. We recall the fol-
lowing definition due to Buzzard in [Buz07].

Definition 5.7 We say that M is projective if there is a Banach B-module N such
that M @ N is potentially orthonormalizable.

Proposition 5.8  The Banach module S},L; is a projective A°-module. Moreover, the

o 5
natural specialization morphism S},{W — S¥ , is surjective.
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Proof Taking the v;’s all equal, we can assume that 2)(v)™™8 is an affinoid. Since

(n(vxid)).( ng" (=D)) is a small Banach sheaf by Proposition 5.6, the proposition
is proved exactly as [AIP15b, Corollary 8.2.3.2]. ]

Corollary 5.9 Let U = Spm(A) c W be an affinoid and let y € UW(K). The Banach
module S;IL is a projective A-module. Moreover, the natural specialization morphism

Syﬁ, - SZ‘K is surjective.

Proof Let Spf(A°) be a formal model of U°, the image of U in 20(w)"8, and let
Sgﬂ be as above. Let x"" and x"™° be the characters associated to U and U°. By
Remark 5.4, we have

SIT;EV _ (Sy;, ®A0A(_Xun,o'))Bo(Z/P" Z)‘

u

In particular, by Proposition 5.8, we have that S;ﬂ

is a direct factor of a projective
A-module and hence it is projective. An analogous equality holds for S;Xﬂ and the

specialization morphism S}f)w — S} ,, is surjective by Proposition 5.6. Since taking
invariants with respect to a finite group is an exact functor on the category of Q ,-vec-

tor spaces, the morphism S;uﬂ - S;XK is surjective as required. ]
5.4 The Eigenvariety

Let Z(v,w) € W(w) x A" be the spectral variety associated to the U-operator
TW(w)

actingon S, ,,

Theorem 5.10  ‘There is a rigid space €, equipped with a finite morphism &, ,, —

2(v, w) that satisfies the following properties. o

(i) It is equidimensional of dimension rk(T®). The fiber of &Ey,w above a point x €
W(w) parametrizes systems of eigenvalues for the Hecke algebra T appearing in
S, that are of finite slope for the U-operator. If x € €, ,,, then the inverse of the
U-eigenvalue corresponding to x is 5 (x ), where 1, is the induced map m,: Eyw =
AY"8, For various v and w, these construction are compatible. Lettingv — 0 and
w — oo, we obtain the global eigenvariety E.

(ii) Let f € SZ& be a cuspidal eigenform of finite slope for the U-operator and let x
be the point of £,,,, corresponding to f. Let us suppose that €, , — W(w) is
unramified at xf.i Then there exists an affinoid U ¢ 'W(w) that contains y and
such that f can be deformed to a family of finite slope eigenforms F € Sﬁ,

Proof By Corollary 5.9 all the assumptions of [Buz07] are satisfied. We can then use
Buzzard’s machinery to construct the eigenvariety. This gives &, ,, and (i) follows. (ii)
is an automatic consequence of the way we constructed the eigenvariety, see [AIP15b,
Proposition 8.1.2.6]. u

Corollary 5.11 Let f € Sz‘K be a cuspidal eigenform of finite slope for the U-operator.
Then there exists an affinoid W ¢ W(w) that contains y and such that the system of
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eigenvalues associated with f can be deformed to a family of systems of eigenvalues
appearing in Sf,qfv

6 Classicity Results

In this section we prove certain classicity results for our modular forms. Since the
results of [Jonll] hold in general, there are no conceptual difficulties to generalize
[AIPI5b] to our setting, so we will sometimes only sketch the arguments.

Recall that at the end of Section 1 we defined the algebraic group GL® with maximal
split torus T”. We also have the Borel subgroup B® with unipotent radical U®.

Let y € X*(T9)* be a (classical) dominant weight that we see as a character of B®
trivial on U®. We set

Vy = { f:GLY - A! | morphisms of schemes such that, for all Z,, -algebras R,
we have f(gb) = x(b)f(g) forall (g,b) € (GL® x Bo)(R)}.

There is a left action of GL® on V, given by (g- f)(x) = f(g " x).

Recall the sheaf w* on Yy, (p) of classical modular forms. We have the toroidal
compactification Yy, (p)*" of Yy, (p) defined in [Strl0]. We will work only with the
generic fiber Yy, (p)'°""8 of its formal completion Y1, (p)*". We have that

Ve (p) (1)1

is an open subspace of Y1, (p) "8, Clearly w* extends to a sheaf on Yy, (p)™".
We have the following.

Proposition 6.1  For the étale topology on Yy, (p)'°""8, the sheaf wX is locally isomor-
phic to Vi k. This isomorphism respects the action of GLO.

We write BY>°P and U"°P for the opposite subgroups of B® and U?, respectively.
Let 19 be the Iwahori subgroup of GL® (Z ») given by matrices that are “upper trian-
gular” modulo p (recall that we are in the unramified case, so p is a uniformizer of each
;) and let N©>°P be the subgroup of U%°P(Z,) given by those matrices that reduce
to the identity modulo p. We have an isomorphism of groups N%-°P x BY(Z,,) — 1°
given by Iwahori decomposition.

We use the following identification, in Cases (A) and (C), respectively.

a; (a; -1

0 k af (af v @Dk, afaron RO
NOP=T1(p0; = xpo; * ) cII(A 3 "Ex A0,
i=1

i=1

ai(a;-1) k a;(a;-1) .
- 5= ri

O,0p _ k 3
N = [T pO, c[TA
i=1

g
i .
i=1
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Given w, a tuple of positive real numbers as in the definition of W(w), we define in
Case (A) and (C,) respectively

k . -
Ny®:= U TI(B(xfp™ ) xB(xi,p™)),

+ 0,0p i=1
(x¥)eNOsep !

NgP= U TIBGrp ™),
- (xi)eNO-0p i=1
where B(x, p~™") is the ball of center x and radius p~™".

We say that a function f:N9°P - K is w-analytic if it is the restriction of an
analytic function f: Nﬁ’op — K. Note that the extension of f, if it exists, is necessarily
unique. We write F¥~27 (NP, K) for the set of w-analytic functions. If w¥ = 1 for
all i and f is w-analytic, we simply say that f is analytic and we write 72" (N-°P, K)
for the set of analytic functions. A function is locally analytic if it is w-analytic for
some w and we write F1°2" (N9:°P_ K) for the set of locally analytic functions.

Now let y € W(w)(K) be a w-analytic character. We set

Vi = {19 - K| £(ib) = x(b)f(i) forall (i,b) e I° x B®
and f{ o € Fran (N9 K)}.

The definition of the spaces V" and V;"C'a“ is similar. They are all representations of

19 via (i * f)(x) = f(xi).

We have the following proposition.

Proposition 6.2  Locally for the étale topology on Y1y (p)'°""8, the sheaf szﬂ is
isomorphic to me,fan. This isomorphism respects the action of 1°.

If x is a classical dominant weight, there is an obvious inclusion V, = V;**" and
we have the following proposition (see [AIP15b, Proposition 5.3.4]).

Proposition 6.3  The open immersion of Proposition 3.6 induces an inclusion of
sheaves
X X
ng}lw(p)lor,rig - QK’K.
For the étale topology on Y (p)'°""8, this inclusion is locally isomorphic to V,y —
Vﬂ,—an
X

6.1 The BGG Resolution and a Classicity Result

The goal of this subsection is to characterize the image of the inclusion V, — V;OC'*‘“.

Let W be the Weyl group of GL® and let gI° and h© be the Lie algebras of GL® and
T, respectively. Let & c X* (T?) be the set of roots of gl®. We havea decomposition
g[O =% @ B0 g[S. Let ®* < O be the set of positive roots given by the choice of
BY and let a € ®*. We fix an element 0 # e, € gIJ. There is an element f, € gl°,

that we fix once and for all, such that (eq, fo, ha) is isomorphic to sl viaeq = (5 §),
fo = (99), and hy = (%), where hy = [eq, fa]. We denote by s, € W the
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reflection y + y — (), «")a, where y € X*(T%) and «" is the coroot associated to
a. The pairing (-, - ): X*(T?) x X, (TY) - Z is the natural one. Given w ¢ W and
x € X*(T9), we set we y := w(y + p) — p, where p is half of the sum of the positive
roots.

Now let y € X* (TO)+ be a dominant weight. By the results of [Jonll] there is an
exact sequence
(6.1) 0 V= Vit > @ Vi,
where the first map is the natural inclusion and the second one is given by the maps
Ou: V" — VI, defined as follows. Recall the action of 1° on Vy" given by
(i x f)(x) = f(xi). It induces, by differentiation, an action of the universal en-
veloping algebra U(gl”) on Vi We set ©4(f) = féx’“v)ﬂ * f. We now fix an
index i =1,...,k Let1< j<aj. Wewrited;; € GLO(QP) for the element whose
components are the identity matrix except the i*-th one, that is, the matrix

pldgs; 0
0 Id; )

If y € X*(T?)* is a dominant weight, there is an operator &7 on Vy defined by the
formula (67 - f)(x) :f(df,jx(dﬁj)‘l).

Now let y € W(w) be a w-analytic character. Take f € V;* *" and i € I°. By the
existence of the Iwahori decomposition, there are b € B® (Zp) and n € N©P such
that i = nb. We define an operator §7; on Vi~ " via the formula

(87 H(@) = f(dijn(di;)7'b).

Taking restriction to N“"°P, we can identify V" *" with 572" (N®"°P, K), and under
this identification the operator []; 6} ; increases the radius of analyticity in the i*-th
direction.

We now use the notation of Subsection 4.2.2 and we explain the relation between
the operators Uj ; and 67 ;. We have the following proposition (see [AIP15b, Propo-
sition 6.2.3.1]).

Proposition 6.4 Let x,y € Dne(p)(v)"8 such that y € p,(py'(x)). Wefix y €
W(w), a w-analytic character. Then there is a commutative diagram whose vertical
arrows are isomorphisms

ik
(Q;Xm y (Q;Xﬂ)x

Letv = (v;;)i,; be a tuple of positive real numbers such that we have

ko, _ k
ve[I[(R% ' xR*%™") and ve[[R%™!
i=1

i=1
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w—an,<y

in Case (A) and Case (C), respectively. Given y € W(w), we write V,~ for the
intersection of the generalized eigenspace where each 47 ; acts with elgenvalues of
valuation smaller than v ;. (Here for a given i, we take j in the range 1,...,a; - 1)

Proposition 6.5 Let y € X*(T°)* be a classical dominant weight. We can write
x = (ki j),- s,j as in Subsection 3.2. Foreach i =1,...,k and foreach j=1,...,af -1,

ki, j+1 +1}. We then have V- c V.

w—an,<y
we set vy . =inf,{kf

i,5,j
Proof We can fix an index i and work only in the “i-th component”. Taking the base
change of all objects to OF (that makes everything split) and using the exact sequence
(6.1), the proof is completely analogous to that of [AIP15b, Proposition 2.5.1]. ]

6.2 Classicity at the Level of Sheaves

Let x = (ki )isj € X*(T?)*. We now give a characterization of the image of the

inclusion w Q;Xﬂ of Proposition 6.3.

Z1 D (p)torrie
We can construct a “relative version” over 9, (p)(v)'*°""8 of the exact sequence

(6.1). Using then Propositions 6.1, 6.2, and 6.3, we obtain the exact sequence of sheaves

on Yy (p)(v)**rre

0— WX 5 @ wls=x,

X
. —_
Doy (pyrorris " Lyw Dy w

Let v = (v{;):,; be a tuple of positive real numbers such that v € 15, (RY x R4 )

in Case (A) and v € Hi‘ L R% in Case (C). In Case (A) we assume that for each i =
., k, we have vl*a+ =V o . This is a natural condition since Uzaf' =U; ,-. Wecan

4 —
then write Vi,a,,i = Viar = Via
We define MT,X;VQ to be the intersection of the generalized eigenspaces where each
U, acts with eigenvalues of valuation smaller than v; ;. (The difference with the

above situation is that we add the condition that the U i o -Operator acts with finite

slope.)
We now suppose that for each i and for each j = 1,...,a7, we have v;. =
inf {k7, g ki, j+1 +1}. As in [AIP15b, Proposition 7.3.1] we have the following.

Proposition 6.6  We have the inclusion Mm’<v c H' (Y (p) (v)torrie, wX).

6.3 The Classicity Theorem
Let y = (kii,s’j),-,s,j € X*(T9)* be a classical dominant weight.

Theorem 6.7 Let v be as in Proposition 6.6. Moreover, we assume that for each i =
.» k, we have

Vige = inf (k]

i 1<s<d;

_ . -
++ ki,s,a;) —d;aja;

1sa
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and

d,-ai(ai + 1)
Vi, = Inf ki 4 — ————=
1<s<d; 2

in Case (A) and Case (C), respectively. Then we have an inclusion MZIX c M*. Hence

any locally analytic overconvergent modular form in MZ(IK is classical.
Proof Using Proposition 6.5, this follows by the main results of [BSP15]. ]
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