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Eigenvarieties for Cuspforms Over PEL
Type Shimura Varieties With Dense
Ordinary Locus

Riccardo Brasca

Abstract. Let p > 2 be a prime and let X be a compactiûed PEL Shimura variety of type (A) or (C)
such that p is an unramiûed prime for the PEL datum and such that the ordinary locus is dense
in the reduction of X. Using the geometric approach of Andreatta, Iovita, Pilloni, and Stevens, we
deûne the notion of families of overconvergent locally analytic p-adic modular forms of Iwahoric
level for X. We show that the system of eigenvalues of any ûnite slope cuspidal eigenform of Iwahoric
level can be deformed to a family of systems of eigenvalues living over an open subset of the weight
space. To prove these results, we actually construct eigenvarieties of the expected dimension that
parameterize ûnite slope systems of eigenvalues appearing in the space of families of cuspidal forms.

Introduction

_e main theme of this work is the theory of p-adic families of modular eigenforms
and the study of the congruences between them. _is subject has become more and
more important in number theory. For example, one of the main techniques to prove
modularity results of Galois representations is to prove that a givenGalois representa-
tion lives in a family of Galois representations attached to a family of p-adic modular
forms and then invoke a classicity result. To achieve these goals, it is crucial to have a
good understanding of p-adic families of modular forms.

Historically, the subject started in the seventies with the work of Serre that gave
the ûrst example of a p-adic family of eigenforms for GL2/Q: the Eisenstein family. In
the eighties Hida was able to prove that, still in the GL2/Q case, any ordinary eigen-
form (of Iwahoric level) can be deformed to a family of ordinary eigenforms over the
weight space. During the nineties, Coleman was able to generalize Hida’s result to
forms that are overconvergent and of ûnite slope for the U-operator. _e theory cul-
minated in the construction, due to Coleman and Mazur, of the eigencurve, a rigid
analytic curve living over the weight space that parameterizes ûnite slope overcon-
vergent eigenforms.

It is then natural to try to generalize the theory to groups diòerent from GL2/Q.
Coleman’s techniques are based on the theory of q-expansion and on the existence of
the Eisenstein family, so it seems diõcult to generalize them to more general groups
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(wherewe canhave no cusps or noEisenstein families). _ere are already several other
approaches in the literature. For example in thework ofKisin andLai forHilbertmod-
ular forms [KL05] (recently generalized by Mok and Tan to the Siegel–Hilbert case
[MT15]) the authors used a generalization of the Eisenstein family and constructed
the eigenvariety following Coleman and Mazur. More generally Urban used Steven’s
theory of overconvergent cohomology to show the existence of an eigenvariety for
modular symbols associated with any reductive group with discrete series [Urb11].
We also have results by Chenevier for unitary groups [Che11] and by Emerton for any
reductive group [Eme06].

In all of these constructions, the eigenvariety parametrizes systems of eigenvalues
appearing in the space of overconvergent modular forms rather than modular forms
themselves. One of the reasons for this is the lack of the notion of families of over-
convergent modular forms (while the notion of a family of systems of eigenvalues is
easily deûned). In this paper, the starting point to build the eigenvariety is the deûni-
tion of analytic families of overconvergent modular forms. We follow the geometric
approach recently introduced by Andreatta, Iovita, Pilloni, and Stevens in a series of
papers [AIS14,Pil13,AIP15b,AIP15a]. _e basic idea is quite simple: analytically inter-
polate the sheaves ωk , where k is an integral weight, deûning the sheaves ωχ for any
p-adic weight χ. More generally, one wants to deûne a family of sheaves parametrized
by the weight space with the property that its pullback to a point χ of the weight space
is the sheaf ωχ . Since we are interested in overconvergent modular forms, such a fam-
ily should be a sheaf ωU over X(v)×U, where X(v) is a suõciently small strict neigh-
bourhood of the ordinary locus of the relevant (compactiûed) Shimura variety andU
is an aõnoid in the weight space. _en a family of modular forms parametrized by
U is simply a global section of ωU. A�er having deûned Hecke operators, the idea is
to use the abstract machinery developed by Buzzard [Buz07] (that generalizes Cole-
man’s work) to construct the eigenvariety. Unfortunately, we do not know whether
one crucial assumption in Buzzard’s work is veriûed by the space of families of mod-
ular forms (and we believe that in general it is not), but we are able to show that this
assumption is satisûed by cuspidal forms. Once this is done, Buzzard’s results apply
and we obtain the eigenvariety.

Let us now state more precisely the results obtained in this paper. Let K be a suõ-
ciently large ûnite extension ofQp and let Y be a Shimura variety over K, of PEL type
and Iwahoric level, associated to a symplectic or a unitary group. We assume that
p > 2 is a prime that is unramiûed in the PEL datum of X and let W be the weight
space associated to Y . We denote with X a ûxed smooth toroidal compactiûcation of
Y . We assume that the ordinary locus of the reduction of a certain integral model of
X modulo the maximal ideal of OK is dense (see [Bra13] for a case without ordinary
locus). Our main results are the following theorems.

_eorem Let χ ∈W be a p-adic character. _ere is a good notion of v-overconvergent,
w-locally analytic modular forms over X, where v and w are tuples of positive rational
numbers satisfying certain conditions. _ese modular forms are deûned as sections of
certain sheaves ωχv ,w that interpolate an analytic version of the classical algebraic sheaves
ωk deûned for integral weights. We also have an analogous result for cuspforms. _ese
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spaces can be put in families over W and there is an action of a Hecke algebra T that
includes the completely continuous operator U. If F is a locally analytic overconvergent
modular eigenform of integral weight and U-slope suõciently small with respect to the
weight (see_eorem 6.7 for a precise condition), then F comes from a classical modular
form.

_eorem Let S†χv ,w be the space of cuspidal forms that are v-overconvergent, w-locally
analytic, and of weight χ. Let f ∈ S†χv ,w be a cuspidal eigenform of ûnite slope for the
U-operator. _en there exists an aõnoidU ⊂W that contains χ and such that the system
of eigenvalues associated to f can be deformed to a family of systems of eigenvalues
appearing in S†Uv ,w , where S†Uv ,w is the space of families of cuspforms parametrized by U.

More precisely, there is a rigid space Ev ,w → W ×A1,rig that satisûes the following
properties.
(i) It is equidimensional of dimension dim(W) and the map Ev ,w → W is locally

ûnite. _e ûber of Ev ,w above a point χ ∈ W parametrizes systems of eigenvalues
for the Hecke algebraT appearing in S†χv ,w that are of ûnite slope for theU-operator.
If x ∈ Ev ,w , then the inverse of theU-eigenvalue corresponding to x is π2(x), where
π2 is the induced map π2∶Ev ,w →A1,rig. For various v and w, these constructions
are compatible. Letting v → 0 and w →∞, we obtain the global eigenvariety E.

(ii) Let f ∈ S†χv ,w be a cuspidal eigenform of ûnite slope for theU-operator and let x f be
the point of Ev ,w corresponding to f . Let us suppose that Ev ,w →W is unramiûed
at x f . _en there exists an aõnoid U ⊂W that contains χ and such that f can be
deformed to a family of ûnite slope eigenforms F ∈ S†Uv ,w .

Here is a detailed description of this paper. We follow [AIP15b], our main refer-
ence.

In Section 1 we introduce the Shimura varieties X with which we work. _ese are
(integral models of) Shimura varieties of PEL type. At the beginning, we do not as-
sume that p is unramiûed in the PEL datum, but we assume that the ordinary locus
of (the reduction of) X is dense. We deûne Hasse invariants and some strict neigh-
borhoods X(v) of the ordinary locus. We also work with some Shimura varieties of
deeper level at p that are needed to deûne modular forms. In Section 2 we deûne
the sheaf F that is a more convenient integral model of the conormal sheaf ω and
is crucial for the deûnition of the sheaves ωχ . We also introduce our weight space
and we deûne the so-called modular sheaf of any p-adic weight (modular forms will
be sections of these sheaves). In Section 3 we introduce various spaces of modular
forms. We do not have a Koecher principle for sections of our modular sheaves, so
we ûnd it convenient to work with the compactiûed Shimura variety. In particular,
we need to assume that p is unramiûed in the PEL datum. Section 4 is devoted to the
deûnition of Hecke operators, both outside p and at p. In particular, we deûne the
U-operator and we show that it is a completely continuous operator on the space of
overconvergent modular forms. In Section 5 we study the space of cuspidal forms and
we construct the eigenvarieties. To use Buzzard’s machinery, we need to verify that
the space of cuspforms is projective (see Deûnition 5.7), and to achieve this goal we
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make some explicit computations very similar to those of [AIP15b]. _e main tech-
nical point is a vanishing result about the higher direct images, projecting from the
toroidal to the minimal compactiûcation, of the structural sheaf twisted by the ideal
deûning the boundary. _is result has been essentially proved in full generality by Lan
[Lan]. Knowing the projectivity of the space of cuspforms we can apply Buzzard’s re-
sults and we obtain the eigenvariety. In Section 6 we prove our classicity result. _is is
a “small slope eigenforms are classical” type theorem, and its proof splits in two parts.
First of all, we show that small slope locally analytic overconvergent eigenforms are
overconvergent algebraic eigenforms. _is is a representation theoretic computation
using the BGG resolution. _en we use the results of [BSP15] to prove classicity. _e
above theorems follow.

Open Questions

_ere are at least two questions le� open by this work.
• Since Corollary 5.11 holds only for cuspidal forms, we cannot apply Buzzardma-

chinery to produce eigenvarieties that parameterize systems of eigenvalues associated
to not necessarily cuspidalmodular forms. For various applications, it would be useful
to have eigenvarieties that work in general. We think that the cuspidality assumption
is necessary to apply Buzzard’s machinery in general, but we believe that our con-
struction can be used in some non-cuspidal cases, adding certain conditions on the
weight. _is is the subject of the work in progress [BR15].
• In view of_eorem 5.10 (ii), it is natural to look for some conditions that ensure

that the morphism E → W is unramiûed at a given x ∈ E. A similar problem exists
already in the Siegel and Hilbert cases, see [AIP15b, Section 8.3] and the references
cited there for what is known in the GL2 and GSp4 cases.

Notation. If G is an abelian group and p is a prime number, we set Gp ∶= G⊗ZZp . If
R is a commutative ring, there is an equivalence of categories between Mn(R)-mod
and R-mod. We will always realize Morita’s equivalence via M ↝ e1,1 ⋅ M, where
e1,1 ∈ Mn(R) is the diagonal matrix that has 1 in the upper le� corner and 0 on all the
other entries. In the case of a module over a product of matrix rings, we will realize
Morita’s equivalence via the product of the above functors.

We will write Bn(R) ⊂ GLn(R) for the Borel subgroup of GLn(R) consisting of
upper triangular matrices. We denote with Un(R) the unipotent radical of Bn(R).

We will work with several objects that can have a + or a − as superscripts, or no
superscripts at all. If ⋆ is any symbol, the notation ⋆± refers to any of ⋆+, ⋆− or ⋆. No
ambiguity should arise.

1 PEL Type Shimura Varieties

In this section we introduce the basic objects of our work. Our main reference for
Shimura varieties of PEL type is [Lan13]. We consider a particular case of the situation
studied in Lan’s work but, until Section 5, we slightly relax the assumption on p. One
can check that the deûnitions and results we cite stillmake sensewith our assumptions
on p, so we freely cite [Lan13].
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Let B be a ûnite-dimensional simple algebra overQ, with center F. We let ∗∶B → B
be a positive involution and we write F0 for the subûeld of F ûxed by ∗.

Assumption 1.1 We assume that we are in one of the following situations.
Case (A) We have [F ∶F0] = 2. In this case, F is a totally imaginary extension of F0

and B ⊗F0 R ≅ Mn(C) (the involution is A↦ Āt).
Case (C) We have F = F0 and B ⊗F0 R ≅ Mn(R) with involution A↦ At .

Let d be [F0 ∶ Q] and let τ1 , . . . , τd be the various embeddings F0 ↪ R. In Case (A),
we choose once and for all a CM-type for F, i.e., we choose σ1 , . . . , σd embeddings
F ↪ C such that σi∣F0 = τ i . In particular, Hom(F ,C) = {σi , σ̄i}i .

We ûx OB , an order of B that is stable under ∗. Let (Λ, ⟨ ⋅ , ⋅ ⟩, h) be a PEL type
OB-lattice in the sense of [Lan13, Deûnition 1.2.1.3], with Λ /= 0. We set V ∶= Λ⊗ZQ.
We obtain an algebraic group G over Spec(Z) as in [Lan13, 1.2.1.6]. _anks to our
assumptions, GQ is a reductive connected algebraic group overQ.

Assumption 1.2 We assume that the complex dimension of the symmetric space
associated to G is at least 2 (so Koecher’s principle holds).

We decompose

(1.1) V ⊗Q C ≅ VC,1 ⊕ VC,2
in such a way that h(z) acts via multiplication by z on VC,1 and via multiplication by
z on VC,2. We write E for the re�ex ûeld, the ûnite extension ofQ deûned as the ûeld
of deûnition of the isomorphism class of the complex B-representation VC,1.

We let p /= 2 be a prime number, ûxed from now on. We assume there is an iso-
morphism, that we ûx,

(1.2) OB ,p ≅ ∏
p∣p

Mn(Op),

where the product is over the prime ideals of OF above p and Op is a ûnite extension
ofZp . We choose a uniformizer element ϖp ∈ Op. We assume that OB ,p is a maximal
order of Bp and that the restriction of ⟨ ⋅ , ⋅ ⟩ to Λp gives a perfect pairing with values
in Zp . By (1.2), we have decompositions

Vp ≅ ∏
p∣p

Vp and Λp ≅ ∏
p∣p

Λp .

Takingmultiples by powers of ϖp of Λp, we obtain a selfdual chainLp ofMn(Op)-lat-
tices of Vp. _e product of the Lp gives Lp , a selfdual multichain of OB ,p-lattices
in Vp (see [RZ96, Chapter 3] for the deûnition of these notions). Let Kp ⊂ G(Qp)
be the stabilizer of Lp . _en Kp is a parahoric subgroup. We ûx H ⊂ G(Ẑp), a
compact open subgroup that we assume to be neat (see [Lan13, Deûnition 1.4.1.8]).
We will denote with N a positive integer not divisible by p such thatUp(N) ⊂H (see
[Lan13, Remark 1.2.1.9] for the deûnition of Up(N)).

Remark 1.3. We have imposed the condition that the multichain Lp comes from a
single lattice Λp in such a way that, if B is unramiûed at p, we are in the situation of
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[Kot92, Lan13]. In this case G is unramiûed over Qp and Kp is a hyperspecial sub-
group.

We ûx once and for all embeddingsQ↪ C and ip ∶Q↪ Qp . We denote with P the
corresponding prime ideal of OE above p and we write EP for the P-adic completion
of E. We are interested in the functor

Y ∶ locally noetherian OEP-schemes→ set
that assigns to S the isomorphism classes of the following data:
● an abelian scheme A/S,
● a polarization λ∶A→ A∨ of degree prime to p,
● an action of OB on A/S as in [Lan13, Deûnition 1.3.3.1],
● aH-level structure in the sense of [Lan13, Deûnition 1.3.7.6].
We furthermore require the usual determinant condition of Kottwitz, see [Lan13, Def-
inition 1.3.4.1].

Remark 1.4. We have deûned Y using isomorphism classes of abelian schemes, rather
than isogeny classes as is done in [RZ96,Kot92]. By [Lan13, Proposition 1.4.3.4], these
two approaches are equivalent.

_eorem ([Kot92, § 5], [RZ96, § 6.9], [Lan13,_eorem 1.4.1.11 and Corollary 1.4.1.12])
_e functor Y is representable by a quasi-projective scheme over Spec(OEP), denoted
again by Y. If B is unramiûed at p, then Y is smooth over Spec(OEP).

Assumption 1.5 We assume that the ordinary locus of the reduction modulo P of
Y is Zariski dense.

Remark 1.6. If B is unramiûed at p, by [Wed99, 1.6.3], the above assumption is equiv-
alent to the fact that EP is isomorphic to Qp and it is automatically satisûed in Case
(C).

Let K̃ be a number ûeld such that the decomposition in (1.1) is deûned over K̃ and
let K be the completion of K̃ at the prime ideal above p given by our ûxed embedding
ip ∶Q↪ Qp . It is a ûnite extension ofQp and we choose a uniformizer element ϖ. We
freely enlarge K without any comment. We have decompositions of OB-modules

V ⊗Q K ≅ V1 ⊕ V2 and Λ ⊗Qp K ≅ Λ1 ⊕ Λ2 ,

where Λ i is anOK-lattice inVi . We base change Y toOK , using the same notation. As
shown in [Pap00], Y can be not �at over OK . We are interested in admissible formal
schemes that are integrally closed in their generic ûbers. Starting with Y , we perform
the following steps to obtain such a formal scheme.
● Let Ỹ be the �at closure of Y in YK .
● Let Ỹ be the ϖ-adic completion of Ỹ . _is is an admissible formal scheme over

Spf(OK).
● Let Y be the normalization of Ỹ in its generic ûber.
In this wayY is an admissible formal scheme and we have its generic ûber Yrig. We
follow the notation introduced in [AIP15b, § 4.1], in particular NAdm is the category
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of admissible OK-algebras R that are integrally closed in R[1/p]. We will use freely
the fact that all our formal schemes have a nice moduli interpretation when restricted
to objects of NAdm [AIP15b, Proposition 5.2.1.1]. In particular, if the canonical sub-
group exists over R[1/p] (see below), it automatically extends to R [AIP15b, Proposi-
tion 4.1.3].

1.1 The Hasse Invariant and the Canonical Subgroup

Let (p) = ∏k
i=1(ϖ i)e i be the decomposition of (p) inOF0 and letOi be the completion

ofOF0 with respect to (ϖ i) (hereϖ i is a ûxed uniformizer ofOi). We have a decompo-
sition Hom(F0 ,Cp) = ∐k

i=1 D i , where D i is the set of embeddings F0 ↪ Cp coming
from (ϖ i). We haveOF0 ,p ≅ ∏k

i=1 Oi . We set d i ∶= [Fi ∶ Qp], where Fi ∶= Frac(Oi), so
we have ∣D i ∣ = d i . We write d i = e i f i . From now on, we assume that K is big enough
to contain the image of all embeddings F ↪ Cp . In this section A will be an abelian
scheme given by the moduli problem associated to Y . We assume that A is deûned
over a ûnite extension of OK , so it comes from a rigid point ofYrig.

Case (A) Let B be of type (A). For any i = 1, . . . , d, we have the B ⊗F0 ,τ i R ≅
Mn(C)-module V ⊗F0 ,τ i R. We can write V ⊗F0 ,τ i C ≅ Cn ⊗CWi for an essentially
unique C-vector space Wi . Moreover, Wi naturally inherits a hermitian form from
V . We write (a+i , a−i ) for its signature. We have a+i + a−i =

dimQ(V)
2nd for all i.

Assumption 1.7 We assume that each (ϖ i) splits completely in OF , and we write
(ϖ±

i ) for the prime ideals ofOF above (ϖ i). Moreover, if i1 , i2 = 1, . . . , d are such that
ip ○ σi1 and ip ○ σi2 deûne the same p-adic valuation, we assume a+i1 = a

+
i2 .

Remark 1.8. If p is unramiûed in OB and each (ϖ i) splits in OF , then the above con-
dition on the signature is equivalent to Assumption 1.5.

Remark 1.9. _e assumption that each (ϖ i) splits in OF is not necessary. If (ϖ i) is
inert, the theory is similar to case (C). We leave the details to the interested reader.

Using the obvious notation, we can rewrite the decomposition in (1.2) as

OB ,p =
k
∏
i=1

(Mn(O+
i ) ⊕Mn(O−

i )) .

We can assume that the le� ideal of OB ,p generated by ϖ+
i corresponds to the le�

ideal generated by the 2k matrices M±
j , where M+

i = diag(ϖ+
i , . . . ,ϖ+

i ) and M±
j = 1

otherwise. We have a decomposition

A[p∞] =
k
∏
i=1

(A[((ϖ+
i )e i )∞] ⊕ A[((ϖ−

i )e i )∞]) ,

where A[((ϖ−
i )e i )∞] is canonically identiûedwith the Cartier dual of A[((ϖ+

i )e i )∞].
Using the canonical isomorphisms Oi ≅ O+

i ≅ O−
i , we will consider only Oi .

Case (C) Let B be of type (C). Similarly to Case (A), we can write the B ⊗F ,τ i R ≅
Mn(R)-module V ⊗F ,τ i R asRn⊗RWi for an essentially uniqueR-vector spaceWi .
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We have a i ∶= dimRWi = dimQ(V)
2nd . We can rewrite the decomposition in (1.2) as

(1.3) OB ,p =
k
∏
i=1

Mn(Oi).

We can assume that under the isomorphism (1.3), the le� ideal of OB ,p generated
by ϖ i corresponds to the le� ideal generated by the k matrices M j , where M i =
diag(ϖ i , . . . ,ϖ i) and M j = 1 otherwise. We have a decomposition

A[p∞] =
k
∏
i=1
A[(ϖe ii )∞],

where A[(ϖe ii )∞] is endowed with a principal Mn(Oi)-linear polarization.
If G is a Barsotti–Tate group deûned over a ûnite extension of Zp , we write, as in

[AIP15b], Hdg(G) ∈ [0, 1] for the truncated valuation of any li� of the Hasse invariant
of the special ûber of G (note that Hdg(G) is denoted Ha(G) in [Far11]). We have a
function

Hdg = (Hdgi)i ∶Yrig → [0, 1]k

A↦ (Hdg(G±
i ))i

where G±
i ∶= e1,1 ⋅ A[((ϖ±

i )e i )∞] (in Case (A), since G−
i is the Cartier dual of G+

i , we
have Hdg(G+

i ) = Hdg(G−
i ), so there is no ambiguity in the notation Hdg(G±

i )). If
v = (v i)i ∈ [0, 1]k we set

Y(v)rig ∶= {x ∈Yrig such that Hdg(x)i ≤ v i for all i} .

_e ordinary locus ofYrig isY(0)rig; it coincides with the tube of the ordinary locus
of the special ûber ofY. It is not empty by Assumption 1.5. If v ∈ Qk ∩[0, 1]k , we have
that Y(v)rig is a quasi-compact strict neighbourhood ofY(0)rig.

We are going to deûne, for all v ∈ [0, 1]k , a canonical formal model Y(v) of
Y(v)rig, following the approach of [Sch15, Deûnition III.2.11]. Let ω±i be the conor-
mal sheaf of G±

i (ω±i will have a slightly diòerent meaning below, but no confusion
should arise). _e Hasse invariant deûnes a section, denoted Ha±i , of det(ω±i )⊗p−1 on
the reduction modulo p of Y. For all i, there is a canonical isomorphism ω+i ≅ ω−i ,
and the two Hasse invariants Ha+i and Ha−i are identiûed under the corresponding
isomorphism. For this reason, we will simply write ω i and Hai .

Deûnition 1.10 Let v = (v i)k
i=1 and assume that for all i, there is in OK an element,

denoted pv i , of valuation v i . For all j = 1 . . . , k, we deûne Ỹ(v1 , . . . , v j) by recursion as
the functor sending any p-adically complete �atOK-algebra S to the set of equivalence
classes of pairs ( f , u), where:
● f ∶ Spf(S) → Ỹ(v1 , . . . , v j−1) (if j = 1, we set Ỹ(v1 , . . . , v j−1) ∶=Y);
● u ∈ H0(Spf(S), det(ω j)⊗p−1) is a section such that in S/p we have the equal-

ity uHa j( f̄ ) = pv j ∈ S/p, where f̄ is the reduction of f modulo p (to be pre-
cise we should ûrst of all consider the pullback of ω i and Hai via the morphism
Ỹ(v1 , . . . , v j−1) →Y).

Two pairs ( f , u) and f ′ , u′ are equivalent if f = f ′ and there is some h ∈ S such that
u′ = u(1 + p1−v jh).
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By [Sch15, Lemma III.2.13], we have that Ỹ(v) ∶= Ỹ(v1 , . . . , vk) is representable
by a formal scheme: �at over OK . Moreover, one has the usual local description of
Ỹ(v). We deûneY(v) as the normalization of Ỹ(v) in its generic ûber.

Remark 1.11. _e point of the deûnition of Y(v) is that using this approach, we do
not need to worry about whether the various Hasse invariants li� to characteristic 0
(and we do not choose any such li�).

Notation. For any integer n ≥ 0, we write εn = 1/2pn−1 if p /= 3 and εn = 1/3n if
p = 3. Unless explicitly stated, in the sequel we will always assume that v i < εn for all
i, where n will be clear from the context.

We ûx an integer n ≥ 0. IfA/R is an abelian scheme aboveY(v), where R ∈ NAdm,
we have by [Far11,_éorème 6] and [AIP15b, Proposition 4.1.3], a canonical subgroup
of H±

i ,n ⊂ G±
i [pn].

Remark 1.12. In Case (A) we haveH−
i ,n = (H+

i ,n)⊥, where the orthogonal is taken with
respect to the perfect pairing given by duality.

Over K, we ûx Oi-linear compatible isomorphisms of étale group schemes

(Oi/(ϖ±
i )e in)D ≅ Oi/(ϖ±

i )e in ,
where ( ⋅ )D denotes Cartier duality. In particular we will assume that K contains the
necessary roots of unity.

Lemma 1.13 We have that H±
i ,n has rank pna±i d i and is stable under Oi . Moreover,

locally for the étale topology on RK , it is isomorphic to (Oi/pn)a±i . _e same is true for
(H±

i ,n)D.

Proof _e statement about the rank follows from [Far11,_éorème 6] and by [Far10,
Corollaire 10], we have that H±

i ,n is Oi-stable. Again [Far11, _éorème 6] implies that
H±

i ,n is, locally for the étale topology on RK , isomorphic to (Z /pn Z)a±i d i , so we
can show that H±

i ,n is not killed by (ϖ±
i )e in−1. _e dimension of G±

i is a±i d i , so we
have deg(G±

i [pn]) = na±i d i (see [Far10, § 3] for details about the degree). Moreover,
multiplication by ϖ±

i on G±
i is an isogeny, so for all s we have deg(G±

i [(ϖ±
i )s]) =

v(det((ϖ±
i )s ,∗)) = s v(det((ϖ±

i )∗)), where (ϖ±
i )s ,∗∶ωG±

i
→ ωG±

i
is the pullback. In

particular we have deg(G±
i [(ϖ±

i )e in−1]) = (e in − 1)a±i f i . By [Far11, _éorème 6], we
have deg(H±

i ,n) = na±i d i − pn
−1

p−1 Ha(G±
i [pn]), so we see that deg(G±

i [(ϖ±
i )e in−1]) <

deg(H±
i ,n) and we conclude by [Far10, Lemme 4].

Notation. We consider the algebraic group GLO over Zp deûned, in Case (A) and
Case (C), respectively, by

GLO ∶=
k
∏
i=1

ResOi/Zp(GLa+i ×GLa−i ) and GLO ∶=
k
∏
i=1

ResOi/Zp GLa i .

We also have the subgroup TO deûned by

TO ∶=
k
∏
i=1

ResOi/Zp(G
a+i
m ×Ga

−
i

m ) and TO ∶=
k
∏
i=1

ResOi/Zp G
a i
m .
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Note that, over K, we have that TO is a split torus. We consider the Borel subgroup
BO given by the “upper triangular matrices” with unipotent radical UO.

Wenow introduce the needed Shimura varieties. WewriteY(pn)(v)rig →Y(v)rig

for the ûnite étale covering that in Case (A) parametrizes Oi-linear trivializations
H+

i ,n⊕H−
i ,n ≅ (Oi/(ϖ+

i )e in)a
+
i ⊕(Oi/(ϖ−

i )e in)a
−
i (note that everything is in character-

istic 0 here). In Case (C) it parametrizesOi-linear trivializations H i ,n ≅ (Oi/ϖe ini )a i .
_ere is an action of GLO(Zp) on Y(pn)(v)rig. Let YIw(pn)(v)rig be the quotient
of Y(pn)(v)rig with respect to BO(Zp). Finally, we let YĨw(pn)(v)rig be the quo-
tient ofY(pn)(v)rig with respect to UO(Zp). Taking the normalization ofY(v), we
obtain the following tower of formal schemes:

Y(pn)(v) →YĨw(p
n)(v) →YIw(pn)(v) →Y(v).

Each of these formal schemes has a reasonable moduli space interpretation.

2 The Sheaf F and Modular Sheaves

2.1 The Weight Space

Our weight space is the rigid analytic variety W associated to the completed group
algebra OK[[TO(Zp)]]. It satisûes W(A) = Homcont(TO(Zp),A∗) for any aõnoid
K-algebra A.
According to the decomposition of TO, we haveW = ∏i(W+

i ×W−
i ) in Case (A)

andW = ∏i Wi in Case (C). In particular, we can write χ = (χ±i )i for all χ ∈W(Cp).
Let w±

i > 0 be a rational number such that there is an element pw
±
i ∈ OK of valuation

w±
i . We say that χ±i ∈ W±

i (Cp) is w±
i -locally analytic if χ±i extends to an analytic

character χ±i ∶ (O∗
i (1 + pw

±
i OCp))a

±
i → C∗p . If w = (w±

i )i and χ = (χ±i )iW(Cp), we
say that χ is w-locally analytic if each χ±i is w±

i -locally analytic. Any χ ∈ W(Cp) is
w-locally analytic for some w. Moreover, let U ⊂ W be an aõnoid associated to a
Cp-algebra A and let χunU = (χun,±

U, i )i be its universal character. _en there is a tuple of
positive rational numbersw = (w±

i )i such each χun,±U, i extends to an analytic character

χun,±
U, i ∶ (O

∗
i (1 + pw

±
i OCp))a

±
i → A∗ .

We say in this case that χunU is w-locally analytic.
Fix an integer n ≥ 1. We have the subspace W̃±

i (n) given by those χ±i ∈ W±
i (Cp)

that satisfy χ±i (1+pnOi) ⊂ 1+pOCp . WedeûneW
±
i (n) as the subspace of W̃±

i (n) given
by the characters χ±i such that their restriction to 1+pnOi is obtained from aZp-linear
morphism pnOi → pOCp taking composition with the p-adic logarithm and with the
p-adic exponential. If w±

i ≥ 1 is a rational number, we set W±
i (w±

i ) ∶= W±
i ([w±

i ]),
where [w±

i ] denotes the integer part of w±
i .

Let w = (w±
i )i be a tuple of rational numbers. We set W(w) ∶= ∏i(W+

i (w+
i ) ×

W−
i (w−

i )) or W(w) ∶= ∏i Wi(w i). By construction we have the following.

Proposition 2.1 Each W(w) is aõnoid and {W(w)}w is an admissible covering of
W. Moreover, if χ ∈W(w)(K), then χ is w-analytic.
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If χ ∈ X∗(TO) is a character of TO, we deûne χ′ ∶= −w0 χ, where w0 is the longest
element of the Weyl group of GLO with respect to TO. For any w, the map χ ↦ χ′
extends to an involution ofW(w), denoted in the same way.

2.2 The Sheaf F

Let R be in NAdm. Suppose we are given a morphism Spf(R) → Y(pn)(v), so we
have an abelian scheme A→ Spec(R). We write e∶ Spec(R) → A for the zero section.
We consider the sheaf e∗Ω1

A/ Spec(R). It is anOB ⊗Z R-module and a locally free sheaf
ofOSpec(R)-modules of rank dimQ(V)/2. ByMorita’s equivalence, e∗Ω1

A/ Spec(R) cor-
responds to a sheaf ω and we can write, in Case (A) and Case (C), respectively,

ω =
k
⊕
i=1

(ω+i ⊕ ω−i ) and ω =
k
⊕
i=1

ω i .

Let i and n be ûxed. _e map (see [AIP15b, § 4.2])

HT(H±
i ,n)

D ∶ (H±
i ,n)D(RK) → ωH±

i ,n

respects the action ofOi by functoriality. We deûneF±i (R) as the subOi⊗Zp R-mod-
ule of ω±i generated by the inverse image of HT(H±

i ,n)
D(RK) under the natural map,

given by pullback ω±i → ωH±
i ,n
. We have that F±i does not depend on n.

Proposition 2.2 _e sheaf F±i ⊂ ω±i is a locally free sheaf of Oi ⊗Z OSpf(R)-modules
that contains p

vi
p−1 ω±i . If w±

i ∈ ]0, n − v i
pn

p−1 ], then we have a natural map

HT±i ,w±i ∶ (H
±
i ,n)D(RK) → F±i (R) ⊗R Rw±i

such that the induced map

(2.1) (H±
i ,n)D(RK) ⊗Zp R → F±i (R) ⊗R Rw±i

is an isomorphism of Oi ⊗Zp R-modules.

Proof Taking into account Lemma 1.13, the proof is similar to the one of [AIP15b,
Proposition 4.3.1].

WedeûneF ∶= ⊕k
i=1(F+i ⊕F−i ) orF ∶= ⊕k

i=1 Fi . ByMorita’s equivalence andPropo-
sition 2.2, it corresponds to a locally free sheaf ofOB ⊗ZOSpec(R)-modules contained
in e∗Ω1

A/ Spec(R). Moreover, this inclusion becomes an isomorphism if we invert p.

2.3 Modular Sheaves

Let n ≥ 1 be an integer and let

w±
i ∈ ]0, n − v i

pn

p − 1
]

be a rational number. We begin with Case (A). For each i, there are formal schemes
ĨW

±

i ,w±i
→Y(pn)(v) deûned as follows. Let R be inNAdm and suppose that F±i (R)

is free. _e R-points of ĨW
±

i ,w±i
correspond naturally to the following data:
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● an R-point ofY(pn)(v),
● a ûltration Fil● F±i (R) = (0 = Fil0 F±i (R) ⊂ ⋅ ⋅ ⋅ ⊂ Fila±i F

±
i (R) = F±i (R)),

● trivializations Gr j Fil● F±i (R) ∶= Fil j F±i (R)/Fil j−1 F
±
i (R) ≅ (Oi ⊗Z R) j , such that

the following conditions hold:
– Fil j F±i (R) is a free Oi ⊗Z R-module for each 0 ≤ j ≤ a±i ;
– Fil● F±i (R) corresponds, modulo pw

±
i R and via the isomorphism in (2.1), to the

ûltration on (H±
i ,n)D(RK) ⊗Z R given by the trivialization of (H±

i ,n)D;
– the trivializations of Gr j Fil● F±i (R) are compatible, modulo pw

±
i R and via the

isomorphism in (2.1), to the the trivializations of (H±
i ,n)D.

We set ĨWw ∶= ∏k
i=1(ĨW

+

i ,w+i
× ĨW

−

i ,w−i
). We leave to the reader the deûnition of

ĨWw →Y(pn)(v) inCase (C). Let v′i ≤ v i for all i. We can repeat the above deûnition
to obtain a formal scheme ĨW

′

w →Y(pn)(v′). _e restriction of ĨWw toY(pn)(v′)
is naturally isomorphic to ĨW

′

w , so we can safely omit v from the notation ĨWw .
With the obvious notation, we deûne a formal group TO

w by

TO
w (R) ∶= ker(TO(R) → TO(Rw)),

and we make a similar deûnition for BO
w and UO

w . We write TO
w , B

O
w , and UO

w for the
corresponding rigid ûbers. We have a natural action of BO(Zp)BO

w on ĨWw over
YIw(pn)(v).

Let χ ∈ W(w)(K) be a character. We set χ′(UO(Zp)UO
w (OCp)) = 1. Since χ is

w-locally analytic by Proposition 2.1, we can extend χ′ to an analytic character

χ′∶BO(Zp)BO
w (OCp) → C∗p .

We consider the morphism π∶ ĨWw →YIw(p)(v), obtained by composition.

Deûnition 2.3 We deûne the sheaf w†χ
v ,w ∶= π∗OĨWw

[χ′], where [χ′] means that
we consider the subspace of homogeneous sections of degree χ′ for the action of
BO(Zp)Bw . We call w

†χ
v ,w the v-overconvergent, w-analytic integral modular sheaf

of weight χ.

Proposition 2.4 We have that w†χv ,w is a formal Banach sheaf [AIP15b, Appendix].

Proof _is is proved in exactly the same way as [AIP15b, Proposition 5.2.2.2].

_e rigid ûber of w†χ
v ,w is denoted ω†χv ,w . By deûnition it is the v-overconvergent,

w-analytic modular sheaf of weight χ.
We can deûne ω†χv ,w directly as follows. Since w±

i < n for all i, the natural ac-

tion of UO(Zp) onY(pn)(v)rig induces an action of UO(Zp) on ĨW
rig
w . Taking the

quotient, we obtain a rigid space ĨW
rig,◇
w → YĨw(pn)(v)rig. We have an action of

TO(Zp)TO
w on ĨW

rig,◇
w over YIw(p)(v)rig and there is an equality

ω†χv ,w = π◇∗ OĨW
rig,◇
w

[χ′],
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where π◇∶ ĨWrig,◇
w → YIw(p)(v)rig is the natural morphism and we take homoge-

neous sections for the action of TO(Zp)TO
w .

3 Modular Forms

Since we do not have a Koecher principle for sections of our modular sheaves, to
deûne modular forms we ûnd it convenient to work with the compactiûed variety. In
particular we need the following.

Assumption 3.1 From now on we assume that p is unramiûed in OB ; in partic-
ular p is a good prime in the sense of [Lan13, Deûnition 1.4.1.1]. We also assume
[Lan13, Condition 1.4.3.10] that our OB lattice (Λ, ⟨ ⋅ , ⋅ ⟩, h) is such that the action of
OB extends to an action of some maximal order O′

B ⊃ OB . _is is not a restriction,
see [Lan13, Remark 1.4.3.9].

We ûx once and for all a compatible choice of admissible smooth rational polyhe-
dral cone decomposition data for Y [Lan13, Deûnition 6.3.3.4]. Associated with this
choice there is an arithmetic toroidal compactiûcation Y tor of Y , (see [Lan13, _eo-
rem 6.4.1.1] for the main properties of Y tor). Let Spec(Ralg) be part of the data giving
a good algebraic model for some representative of a cusp label associated to Y tor, as
in [Lan13, Deûnition 6.3.2.5] and let R ∈ NAdm be the p-adic completion of Ralg. We
set S ∶= Spec(R), so we have a semiabelian scheme A → S. Let U ⊆ S be the open
subset corresponding to the unique open stratum of Spec(Ralg). In particular, A is
abelian over U . We also have a Mumford 1-motiveM over U ↪ S whose semiabelian
part will be denoted Ã → S. By deûnition, Ã is a semiabelian scheme with constant
toric rank and we have Ã[pn] ↪ A[pn]. Here Ã[pn] is ûnite and �at, while in general
A[pn] is not. As explained in [Str10, Section 2.3], the approximation process needed
to construct good formal models can be performed in such a way that there is an
isomorphism M[pn] ≅ A[pn], and we always assume that this is true. _ere is an
action of OB on A[pn], Ã[pn], and M[pn]. _e two arrows Ã[pn] ↪ A[pn] and
M[pn] ≅ A[pn] can be assumed to be compatible with this action.

We can now repeat the deûnitions of Subsection 1.1 replacing A by Ã, obtaining,
for all v ∈ [0, 1]k , the rigid spaceY(v)tor,rig and its formal model Y(v)tor.

3.1 Modular Forms

At the end of Section 1, we introduced the rigid Shimura varietyY(pn)(v)rig and its
formal modelY(pn)(v). We have a canonical subgroup overY(v)tor (see, for exam-
ple, [AIP15b, Sections 3.3 and 4.1]), so we can deûne Y(pn)(v)tor,rig and its formal
modelY(pn)(v)tor. Using the semiabelian variety overY(pn)(v)tor, we see that the
sheaf F extends to Y(pn)(v)tor. _e analogue of Proposition 2.2 still holds, so we
can deûne a space ζ ∶ ĨWw → Y(pn)(v)tor, where w is as above. _ere is an action
of GLO(Zp) on Y(pn)(v)tor,rig, and repeating the above deûnitions, we obtain the
tower Y(pn)(v)tor → YĨw(pn)(v)tor → YIw(pn)(v)tor → Y(v)tor. We are inter-
ested in the morphism π∶ ĨWw → YIw(p)(v)tor. Repeating the above deûnitions,
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if χ ∈ W(w)(K) is a character, we then have the sheaves w†χ
v ,w ∶= π∗OĨWw

[χ′] and
ω†χv ,w ∶= (w†χ

v ,w)rig on YIw(p)(v)tor andYIw(p)(v)tor,rig, respectively.
Let Y an

K and Y tor,an
K be the analytiûcations of YK and Y tor

K , respectively. Since Y tor

is proper, we have a natural isomorphism Ytor,rig ≅ Y tor,an
K , and in particular there is

an open immersion Y an
K ↪Ytor,rig. We have that Y an

K is dense in Ytor,rig.

Deûnition 3.2 We deûne the space of v-overconvergent,w-analytic modular forms
of weight χ by

M†χ
v ,w ∶= H0(YIw(p)(v)tor,rig ,ω†χv ,w).

We deûne the space of overconvergent locally analytic modular forms of weight χ by

M†χ ∶= lim
v→0
w→∞

M†χ
v ,w ,

where the limit is over v and w for which there is n such that χ ∈ W(w)(K) and the
above properties are satisûed.

Deûnition 3.3 Let χ ∈ W(K) be any continuous character. If F is a global section
of ω†χv ,w on YIw(p)(v)tor,rig, we say that F is bounded if it is bounded as a function

on ĨW
rig
w ×Ytor,rig Y an

K .

Proposition 3.4 _e natural restriction morphism

M†χ
v ,w → H0

b(YIw(p)(v)tor,rig ×Ytor,rig Y an
K ,ω†χv ,w),

where H0
b(−) means that we consider only bounded sections, is an isomorphism. In

particular, our deûnition of modular forms does not depend on the choice of the toroidal
compactiûcation.

Proof _e complement of ĨW
rig
w ×Ytor,rig Y an

K in ĨW
rig
w is a Zariski closed subset of

codimension greater than or equal to 1. By [Lüt74,_eorem 1.6] any bounded function
F on ĨW

rig
w ×Ytor,rig Y an

K extends (uniquely) to a function on ĨW
rig
w . _is extension

has the same weight as F and gives an element of M†χ
v ,w as required.

Remark 3.5. _e reason we do not need any Koecher principle in the proof of the
above proposition is that we have deûned overconvergent modular forms as sections
over a strict neighbourhood of the ordinary locus of YIw(p)(v)tor,rig that also con-
tains abelian varieties of bad reduction.

3.2 Classical Modular Forms

Fix n, v, andw as above, and assumemoreover thatw±
i > v i

p−1 . Wewrite YIw(p) for the
Shimura variety deûnedwith the samePEL data asY , but with an Iwahoric level struc-
ture at p. In Case (C), we have that YIw(p) parametrizes couples (A, (Fil●G i[p])i),
where A is an object parametrized by Y and Fil●G i[p] = (0 = Fil0 G i[p] ⊂ ⋅ ⋅ ⋅ ⊂
Fila i G i[p]) is a ûltration of G i[p] made by Oi-stable ûnite �at subgroups such that
Fil j G i[p] has rank pd i j and Fila i G i[p] is totally isotropic. In Case (A) we consider
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complete ûltrations of G+
i [p]. We consider the sheaves ω±i and ω on YIw(p) de-

ûned similarly to the above ones. _e unramiûedness assumption implies that ω±i
is a locally free Oi ⊗Zp OYIw(p)-module. We obtain the sheaf of trivializations of ω
f ∶T → YIw(p). We let GLO act on T by g ⋅ ω = ω ○ g−1, where g is a section of GLO

and ω a trivialization of ω. In this way T becomes a GLO
YIw(p)-torsor.

We write YIw(p) for the formal completion of YIw(p) along its special ûber. We
have open immersionsYIw(p)(v)rig ↪YIw(p)rig ↪ YIw(p)anK . By the main result of
[Str10] we have a toroidal compactiûcation YIw(p)tor of YIw(p) (which we can choose
in a way that is compatible with the choice we made for Y tor) and everything we just
said extends to YIw(p)tor. LetYIw(p)tor be the formal completion of YIw(p)tor along
its special ûber. _e rigid spaceYIw(p)(v)tor,rig is an open subspace ofYIw(p)tor,rig,
but the special ûber of YIw(p)tor is not the same as the special ûber of the space
YIw(p)(v)tor deûned above. In the sequel we will work only with the generic ûber of
YIw(p)tor, so this is not a problem.

Let X∗(TO)+ be the cone of dominant weights with respect to BO. _is cone is
stable under χ ↦ χ′. Let χ ∈ X∗(TO) be a weight. Recall that d i = [O±

i ∶ Qp]. In Case
(A) we can identify χ with a tuple of integers in∏k

i=1∏d i
s=1(Z

a+i ×Za
−
i ). We have that

χ = (k±i ,s , j) is dominant if and only if, for each i = i , . . . , k and each s = 1, . . . , d i ,
we have k+i ,s ,1 ≥ k+i ,s ,2 ≥ ⋅ ⋅ ⋅ ≥ k+i ,s ,a+i and k−i ,s ,1 ≥ k−i ,s ,2 ≥ ⋅ ⋅ ⋅ ≥ k−i ,s ,a−i . In Case (C) we
can identify χ with a tuple of integers in ∏k

i=1∏d i
s=1Z

a i . We have that χ = (k i ,s , j) is
dominant if and only if for each i = i , . . . , k and each s = 1, . . . , d i we have

k i ,s ,1 ≥ k i ,s ,2 ≥ ⋅ ⋅ ⋅ ≥ k i ,s ,a i .

We have thatT extends to the toroidal compactiûcation, and if χ is a dominant weight,
then the space of classical modular forms of weight χ and Iwahoric level is by deûni-
tion Mχ ∶= H0(YIw(p)tor,rig ,ωχ), where ωχ is the subsheaf of f∗T given by homoge-
neous sections, for the action of BOYIw(p), of degree χ

′. Note that the action of GLO on
T induces an action of GLO on ωχ .

_e natural inclusion F ↪ ωY(pn)(v) is generically an isomorphism and gives an
open immersion

ĨW
rig
w ↪ (TanK /UO

YIw(p)tor,anK
)
Y(pn)(v)tor,rig .

Taking the quotient by UO(Zp), we obtain an open immersion

(3.1) ĨW
rig,◇
w ↪ (TanK /UO

YIw(p)tor,anK
)
YĨw(pn)(v)tor,rig .

Proposition 3.6 _e composition of the open immersion (3.1) with the natural mor-
phism

(TanK /UO
YIw(p)tor,anK

)
YĨw(pn)(v)tor,rig → (TanK /UO

YIw(p)tor,anK
)
YIw(p)(v)tor,rig

remains an open immersion. In particular, if χ is a dominant weight, we have a natural
injective morphism Mχ ↪M†χ

v ,w .
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Proof We prove the proposition in Case (A) and we leave Case (C) to the reader.
We have a decomposition

ĨW
rig,◇
w =

k
∏
i=1

( ĨW+,rig,◇
i ,w × ĨW

−,rig,◇
i ,w )

and a corresponding decomposition of TanK /UO
YIw(p)tor,anK

. It is enough to prove the
proposition for the map

ĨW
±,rig,◇
i ,w →(T±,ani ,K /(ResOi/Zp Ua±i )YIw(p)tor,anK

)
YIw(p)(v)tor,rig

.

_is is done explicitly as in [AIP15b, Proposition 5.3.1].

From now on, given n and v, we will always assume that any w ∈ Qk satisûes the
condition in Subsection 2.3.

4 Hecke Operators

Wewill writeY(v) forY(v)tor,rig×Ytor,rigY an
K and similarly for other objects. To deûne

Hecke operators we work over YIw(p)(v). _is is enough, since all the operators we
are going to deûne send bounded functions to bounded functions, see Proposition 3.4.

4.1 Hecke Operators Outside p

Recall that N is a ûxed positive integer not divisible by p such thatUp(N) ⊂H, where
H is the level of our Shimura variety outside p. Let l be a prime that does not divide
Np. Let A1 and A2 be two abelian schemes given by the moduli problem of YIw(p)K .
An isogeny f ∶→ f2 is an l -isogeny if the following conditions are satisûed:
● f is O-linear and its degree is a power of l ;
● the pullback of the polarization of A2 is a multiple of the polarization of A1;
● the pullback of the �ag of A2[p] is the �ag of A1[p].
Let f ∶→ A2 be an l-isogeny. We choose two symplectic OB , l -linear isomorphisms
Tl(A i) ≅ Λ l , for i = 1, 2, and an isomorphism Zl(1) ≅ Zl . In this way f deûnes an
element γ ∈ G(Ql)∩EndOB , l (Λ l)×Q∗

l . _e deûnition of γ depends on the choice of
the above isomorphisms, but the double class G(Zl)γG(Zl) depends only on f , and
is called the type of the l-isogeny f .

We ûx a double class G(Zl)γG(Zl) as above. Let Cγ ⇉ YIw(p)K be the moduli
space that classiûes l-isogenies f ∶A1 → A2 of type G(Zl)γG(Zl), where A1 and
A2 are abelian schemes (with additional structure) classiûed by YIw(p)K . _e arrow
p j ∶ γ → YIw(p)K sends f ∶A1 → A2 to A j . Both p1 and p2 are ûnite and étale.

We ûx n and w as in the previous section. Let Cγ(pn) be the pullback, using
p1, of Cγ to Y(pn)K . If f ∶A1 → A2 is an isogeny parametrized by Cγ(pn), we can
transport via f the trivializations of the canonical subgroups of A1 to trivializations
of the canonical subgroups of A2. In particular we have two ûnite étale morphisms
p1 , p2∶Cγ(pn) ⇉ Y(pn)K . We write f ∶A → A′ for the universal isogeny above
Cγ(pn).

Let Cγ(pn)(v) be Cγ(pn)an ×p1 Y(pn)(v). Over Cγ(pn)(v), the pullback
f ∗∶ωA′ → ωA
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induces a morphism f ∗∶ p∗2F → p∗1 F. By Proposition 2.2, we have that

f ∗∶ p∗2F∣Y(pn)(v)
∼Ð→ p∗1 F∣Y(pn)(v)

is an isomorphism. _is gives a BO(Zp)BO
w -equivariant isomorphism

f ∗∶ p∗2 ĨWw ∣Y(pn)(v)
∼Ð→ p∗1 ĨWw ∣Y(pn)(v) .

We thus obtain a morphism

(4.1) H0(Y(pn)(v),OĨWw
)

p∗2Ð→ H0(Cγ(pn)(v), p∗2OĨWw
)

( f ∗)−1,rig

Ð→ H0(Cγ(pn)(v), p∗1 OĨWw
)

Tr prig
1ÐÐÐ→ H0(Y(pn)(v),OĨWw

).

Deûnition 4.1 Let χ ∈W(w)(K) be a character. We deûne the operator Tγ ∶M†χ
v ,w →

M†χ
v ,w from the composition deûned in (4.1) considering bounded and homogeneous

sections for the action of BO(Zp)BOw of degree χ′. We obtain an operator

Tγ ∶M†χ →M†χ .

Since p is unramiûed in B, the operator Tγ for various γ and l commute. We letTNp

be the restricted tensor product of the algebras

Z[G(Zl)/(G(Ql) ∩ EndOB , l (Λ l) ×Q∗
l )/G(Zl)],

for l a primewith (l ,Np) = 1. We have deûned an action ofTNp onM†χ
v ,w and onM†χ .

4.2 Hecke Operators at p

In this subsectionwe ûx an index i = 1, . . . , k. _e operators we are going to deûnewill
act as the identity outside the i-th component. We assume that v satisûes v i < p−2

2p−2
and that w is as above.

4.2.1 The Operator U±
i ,a±i

We start by deûning an operator U±
i ,a±i

= U+
i ,a+i

= U−
i ,a−i

in Case (A) and an op-
erator Ui ,a i in Case (C) (this notation will be clear later on). In Case (A), let
p1 , p2∶C(v)±i ,a±i ⇉ YIw(p)(v) be the moduli space that classiûes couples (A, L±i )
where A is an abelian scheme classiûed by YIw(p)(v) and L±i ⊂ G±

i [(ϖ±
i )e i ] is a û-

nite and �at subgroup, stable under Oi , and such that G±
i [(ϖ±

i )e i ] = H±
i ,1 ⊕ L±i (note

that L+i ↦ L+,⊥i gives a canonical isomorphism between C+i ,a+i and C
−
i ,a−i

). In Case
(C) we make a similar deûnition, adding the condition that L i is totally isotropic for
the polarization of G i . By Lemma 1.13, any L±i as above is étale locally isomorphic
to (Oi/(ϖ±

i )e i )a
±
i . _e arrow p1∶C±i ,a±i → YIw(p)(v) forgets L±i , and p2 is deûned

taking the quotient (via Morita’s equivalence) by L+i ⊕ L−i or by L i . _e map p1 is û-
nite and étale. By [Far11, Proposition 16], we have that p2 gives a morphism, denoted
again p2∶C(v)±i ,a±i → YIw(p)(v′), where v′ = (v′)i is deûned by v′j = v j if j /= i and
v′i = v i/p.
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We write C(pn)(v)±i ,a±i for the pullback, using p1, of C(v)±i ,a±i to Y(pn)(v). We
have two natural morphisms p1∶C(pn)(v)±i ,a±i → Y(pn)(v) and p2∶C(pn)(v)±i ,a±i →
Y(pn)(v′). Moreover, over C(pn)(v)±i ,a±i , we have an isomorphism f ∗∶ p∗2Frig ∼Ð→
p∗1 Frig and a BO(Zp)BO

w -equivariant isomorphism (that is the identity outside the
i-th component)

f ∗∶ p∗2 ĨW
rig
w ∣Y(pn)(v′)

→ p∗1 ĨW
rig
w ∣Y(pn)(v)

.

We thus obtain a morphism

H0(Y(pn)(v′),OĨWw
)

p∗2Ð→ H0(C(pn)(v)±i ,a±i , p
∗
2OĨWw

)

( f ∗)−1

Ð→ H0(C(pn)(v)±i ,a±i , p
∗
1 OĨWw

)
Tr prig

1Ð→ H0(Y(pn)(v),O
ĨW

rig
w
).

Taking the composition, we get, for any χ ∈W(w), an operator

Ũ
±

i ,a±i
∶M†χ

v′ ,w →M†χ
v ,w .

We deûneU±
i ,a±i

∶= ( 1
p )

d i a+i a
−
i Ũ

±

i ,a±i
in Case (A) andUi ,a i ∶= ( 1

p )
di ai (ai+1)

2 Ũi ,a i in Case
(C) (these are the normalization factors of [BSP15]). We will use the same symbols
to denote the composition with M†χ

v ,w ↪M†χ
v′ ,w . _e operators U±

i ,a±i
∶M†χ →M†χ are

completely continuous.

4.2.2 The Operators U±
i , j

In addition to the various assumptions we made above, we assume in this subsection
that v satisûes v i < p−2

2p2−p . We explain the construction in Case (A), and we leave Case

(C) to the reader. Let w±
i = (w±,r ,s

i )1≤s≤r≤a±i be a
a±i (a

±
i +1)
2 -tuple of rational numbers

such that w±,r ,s
i ∈ ] v i

p−1 , n − v i
pn

p−1 ]. We moreover assume that w±,r+1,s
i ≥ w±,r ,s

i and

w±,r ,s+1
i ≤ w±,r ,s

i . We deûne ĨW
±

i ,w±i
→ Y(pn)(v) as follows. Let R be in NAdm and

suppose thatF±i (R) is free. _e R-points of ĨW
±

i ,w±i
correspond to the following data:

● an R-point ofY(pn)(v),
● a ûltration Fil● F±i (R) = (0 = Fil0 F±i (R) ⊂ ⋅ ⋅ ⋅ ⊂ Fila±i F

±
i (R) = F±i (R)),

● trivializations ωr
i ∶Grr Fil● F±i (R)

∼Ð→ (Oi ⊗Z R)r such that the following conditions
hold:
– Filr F±i (R) is a free Oi ⊗Z R-module for each 0 ≤ r ≤ a±i ;
– let e1 , . . . , ea±i be the R-points of (H±

i ,n)D deûned by the given isomorphism

(H±
i ,n)DK ≅ (Oi/pn)a±i and set w ∶= n − v i

pn

p−1 . We require that the equality ωr
i =

∑r≥s ar ,s HT±i ,w(ek4) holds in Filr F±i (R)/(Filr−1 F
±
i (R) + pw), where ar ,s ∈ R

are such that ar ,s ∈ pw
±,r ,s
i R if r > s and (ar ,r − 1) ∈ pw

±,r ,r
i R.

If w±,r ,s
i = w±

i are all equal, the deûnition of ĨW
±

i ,w±i
is exactly the same as the deûni-

tion of ĨW
±

i ,w±i
. All the constructions done for ĨW

±

i ,w±i
generalize to ĨW

±

i ,w±i
and we
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use the corresponding notation. For example ĨW
±

i ,w±i
extends toY(pn)(v)tor and we

have ĨWw → Y(pn)(v)tor or ĨW
rig,◇
w → YIw(p)(v)tor,rig (here we ûx a tuple w i as

above for each i). Looking at the proof of Proposition 3.6, one sees that the condition
w±,r ,s

i ∈ ] v i
p−1 , n − v i

pn

p−1 ] implies that the natural map

ĨW
rig
w → (TanK /UO

YIw(p)tor,anK
)
YIw(p)(v)tor,rig

is an open immersion. If χ ∈ W(w), we can deûne as above the sheaf w†χ
v ,w and its

rigid ûber ω†χv ,w .
We now ûx 1 ≤ j < a±i and we deûne the operator U±

i , j . Let p1 , p2∶C(v)±i , j ⇉
YIw(p)(v) be the moduli space that classiûes couples (A, L±i ) where A is an abelian
scheme classiûed by YIw(p)(v) and L±i ⊂ G±

i [p2] is a ûnite and �at subgroup, stable
underOi , and such thatG±

i [p] = Fil j H±
i ,1⊕L±i [p]. _e arrow p1∶C(v)±i , j → YIw(p)(v)

forgets L±i , and p2 is deûned taking the quotient (via Morita’s equivalence) by L+i ⊕L−i
(by [AIP15b, Proposition 6.2.2.1], the image of (A, L±i ) by p2 lies in YIw(p)(v)). Let
f ∶A→ A′ be the universal isogeny over C(v)±i , j . It gives a BO(Zp)BO

w isomorphism

f ∗∶ p∗2(TanK /UO
YIw(p)tor,anK

)
∣YIw(p)(v)

∼Ð→ p∗1 (TanK /UO
YIw(p)tor,anK

)
∣YIw(p)(v)

.

Let w±
i = (w±,r ,s

i )r ,s be a tuple as above with the additional condition that w±,r ,k
i <

n − 2 − v i
pn

p−1 . We deûne a tuple w±
i
′ = (w′

i
±,r ,s)r ,s by

w′
i
±,r ,s =

⎧⎪⎪⎨⎪⎪⎩

w±,r ,s
i + 1 if r ≥ j + 1 and s ≤ j,

w±,r ,s
i otherwise.

Starting with w, we deûne w′ modifying only the i-th component w±
i . It follows that

we have the spaces ĨW
rig
w and ĨW

rig
w′ and both are open subsets of TanK /UO

YIw(p)tor,anK
.

_e proof of [AIP15b, Proposition 6.2.2.2] also works in our case, so we have

( f ∗)−1p∗1 ( ĨW
rig
w )

∣YIw(p)(v)
⊂ p∗2( ĨW

rig
w′ ) ∣YIw(p)(v)

.

For χ ∈ W(w)(K), we can now deûne an operator U±
i , j ∶M

†χ
v ,w′ → M†χ

v ,w using the
composition

H0(YIw(p)(v),ω†χv ,w′)
p∗2Ð→ H0(C(v)±i , j , p∗2ω

†χ
v ,w′)

( f ∗)−1

Ð→ H0(C(v)±i , j , p∗1 ω
†χ
v ,w)

Tr prig
1Ð→ H0(YIw(p)(v),ω†χv ,w).

We also have operators U±
i , j ∶M

†χ
v ,w →M†χ

v ,w and U±
i , j ∶M†χ →M†χ .

4.2.3 The U-operator

We work in Case (A); Case (C) is similar. We ûx n. From now on, we will always
assume that the following conditions are satisûed. Let v be such that the above in-
equalities hold and let w be such that w±

i ∈ ] v i
p−1 , n − 1 − a±i ].
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Let us ûx i = 1, . . . , k. We set v′i ∶= v i/p and v′j ∶= v j if j /= i, w±,r ,s
j ∶= w±

j for all r, s
and for all j, w′

i
±,r ,s ∶= r − s + w±

i and w′
j
±,r ,s ∶= w±

i if j /= i, and for the rest we use

the above notations. _e product Ui ∶= U±
i ,a±i

×∏a±i −1
j=1 (U+

i , j ×U−
i , j) gives an operator

Ui ∶M†χ
v′ ,w′ → M†χ

v ,w = M†χ
v ,w . We denote with the same symbol the composition of

Ui with the natural restriction M†χ
v ,w = M†χ

v ,w → M†χ
v′ ,w′ , obtaining Ui ∶M†χ

v ,w → M†χ
v ,w .

Taking the product of the Ui we obtain the compact operators

U∶M†χ
v ,w →M†χ

v ,w and U∶M†χ →M†χ .

Remark 4.2. Usually one deûnes the U-operator using only the operators U±
i ,a±i

that
improve the degree of overconvergence. _e reasons for also including the operators
U±

i , j is that they improve analyticity, and this will be needed to prove classicity in
Section 6.

We let Up be the free Z-algebra generated by the Hecke operators at p and let
T ∶= TNp ⊗Z Up . We simply call T the Hecke algebra. It acts on all the spaces we
have deûned.

4.3 Families

Let U ⊂ W be an aõnoid associated to the algebra A ∶= OU(U). _ere is w such
that U ⊂ W(w), and we ûx one such. We write χunU ∶TO(Zp) → A∗ for the universal
character over U. Let v and n be as usual.

Proposition 4.3 _ere is a Banach sheaf ω†χ
un
U

v ,w onYIw(p)(v)tor,rig ×U such that, for
any χ ∈ U(K), the ûber of ω†χ

un
U

v ,w atYIw(p)(v)tor,rig ×{χ} is canonically isomorphic to
ω†χv ,w . On the global sections of ω†χ

un
U

v ,w , there is an action of the Hecke operators deûned
above.

Proof We have a morphism π1 × id∶ ĨW◇,rig
w ×U→YIw(p)(v)tor,rig ×U. On

(π1 × id)∗OĨW
◇,rig
w ×U

there is an action of BO(Zp)Bw , and we deûne ω†χ
un

v ,w taking sections homogeneous
of degree (χunU )′. _e deûnitions given above of the Hecke operators work in families
without problems.

Deûnition 4.4 We deûne M†U
v ,w ∶= H0(YIw(p)(v)tor,rig ×U,ω†χ

un
U

v ,w ). It is the space
of families of v-overconvergentw-locally analytic modular forms parametrized byU.
We set M†U ∶= limv→0,w→∞M†U

v ,w . It is the space of overconvergent locally analytic
modular forms parametrized by U.

We have an action of the Hecke operators on bothM†U
v ,w andM†U. _e U-operator

on M†U is completely continuous. We have that M†U
v ,w is a Banach A-module.
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Remark 4.5. Let χ ∈ U(K). _en we have a natural specialization map M†U
v ,w →M†χ

v ,w .
We do not know whether this map is surjective or not (but see Corollary 5.9 below
for the cuspidal case).

Remark 4.6. We can deûne a formal model W andW(w) ofW andW(w). If U ⊂
W(w) is aõne, we have an analogue of Proposition 4.3, obtaining the formal Banach
sheafw†χunU

v ,w on YIw(p)(v)tor × U.

5 Cuspidal Forms and Eigenvarieties

5.1 The Minimal Compactifications

Recall that in Section 3 we have ûxed a compatible choice of admissible smooth ra-
tional polyhedral cone decomposition data for Y . _is choice gives the toroidal com-
pactiûcation Y tor of Y . We also have theminimal compactiûcation Ymin and a proper
morphism ξ∶Y tor → Ymin, (see [Lan13, _eorem 7.2.4.1] for the main properties of
Ymin). _e sheaves ω i extend to the minimal compactiûcation and the Hasse invari-
ants give sections Hai of det(ω i)⊗p−1 on the special ûber of Ymin. We then obtain
a function Hdg∶Ymin,rig → [0, 1]k , and so the rigid spaceY(v)min,rig and its formal
model Y(v)min are deûned.

Let Spec(Ralg) be part of the data giving a good algebraicmodel as in the beginning
of Section 3. In particular we have the semiabelian schemes A → Spec(R) and Ã →
Spec(R). Since the formal completions of A and Ã along the closed stratum of S =
Spec(Ralg) are isomorphic, we have an isomorphism of locally free sheaves over S

e∗AΩ1
A/S ≅ e∗ÃΩ

1
Ã/S ,

where eA and eÃ are the corresponding zero sections. Hasse invariants are compatible
with respect to the induced isomorphisms, so ξ gives a morphism

ξ(v)∶Y(v)tor →Y(v)min .

We will write D for both the boundary of Y tor and the boundary ofY(v)tor. We then
have the following.

_eorem 5.1 ([Lan, _eorem 8.2.1.2]) We have Rq ξ∗OY tor(−D) = 0 if q ≥ 1.

Notation. Let m be the maximal ideal of OK . If ⋆ is an object deûned over OK , we let
⋆n be the reduction of ⋆modulo mn .

Corollary 5.2 We have Rq ξ(v)∗OY(v)tor(−D) = 0 if q ≥ 1.

Proof Arguing as in [AIP15b, Proposition 8.2.1.2], we have that the description of
the formal ûbers of ξ(v) is the same as the description given in [Lan, Section 8.2].
Hence, to prove the corollary one can repeat the proof of [Lan, _eorem 8.2.1.2].

Let η(v) be the composition Y(pn)(v)tor → Y(v)tor → Y(v)min and let ρ(v) be
the ûrst morphism. We will still write D for its inverse image under η(v).

Proposition 5.3 We have Rq η(v)∗OY(pn)(v)tor(−D) = 0 if q ≥ 1.
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Proof _is can be proved by the same arguments used in [Lan13, Section 8.2]. To
do this, we need to describe the local charts of Y(pn)(v)tor similarly to the one of
Y(v)tor. Over the rigid ûber Y(pn)(v)tor,rig we know that such a description exists.
We can now argue as in [AIP15b, Proposition 8.2.1.3] to extend this description to
Y(pn)(v)tor.

5.2 A Dévissage

Let W(w)○ be the rigid open unit disk of dimension dim(TO
w ). As in [AIP15b, Sec-

tion 2.2], we have an analytic universal character

χun,○∶TO
w (Zp) → OW(w)○(W(w)○)∗ .

We set W(w)○ ∶= Spf(OK[[X1 , . . . , Xdim(TO
w )

]]), a formal model of W(w)○. Using
the construct of [AIP15b, Section 2.2], we see that the character χun,○ is induced by a
formal universal character, denoted in the same way,

χun,○∶TO
w (Zp) → OW(w)○(W(w)○)∗ .

Recall that we have the morphism ζ ∶ ĨWw →Y(pn)(v)tor. _e torus TO
w acts on this

space, so, if χ○ ∈W(w)○(K), we can deûne the sheaves on Y(pn)(v)tor

w†χ○
v ,w ∶= ζ∗OĨWw

[χ○′].

As in Remark 4.6, if U○ ⊂W(w)○ is aõne with the associated character χunU○ , we have
the familyw†χunU○

v ,w . It is a sheaf on Y(pn)(v)tor × U.

Remark 5.4. If χ ∈ W(w)(K), then we have its image χ○ ∈ W(w)○(K) and we can
recover w†χ

v ,w from w
†χ○
v ,w projecting to YIw(p)(v)tor and taking homogeneous sec-

tions of degree χ′ for the action of BO(Zp)BO
w . Equivalently, one can project w†χ○

v ,w

to YIw(p)(v)tor, twist the action of BO(Zp)BO
w by −χ′, and ûnally take invariant

sections for the action of BO(Z /pn Z). A similar remark holds for families.

We recall that ⋆n means the reduction modulo mn of ⋆, where m is the maximal
ideal of OK .

Proposition 5.5 Let χ○ ∈ W(w)○(K) be a character. _en w
†χ○

v ,w ,1 is an inductive
limit of coherent sheaves that are an extension of the trivial sheaf. In particular, w†χ

○
v ,w

is a small formal Banach sheaf (see [AIP15b, Deûnition A.1.2.1] for the deûnition of a
small formal Banach sheaf). If U○ ⊂W(w)○ is aõne, a similar result holds for w†χ

un
U○

v ,w .

Proof We prove the proposition for w
†χ○
v ,w ; the proof for w

†χunU○
v ,w is similar. Using

the decompositions ĨWw = ∏k
i=1(ĨW

+

i ,w+i
× ĨW

−

i ,w−i
) and ĨWw = ∏k

i=1 ĨWi ,w i in
Case (A) and in Case (C), respectively, we can prove the proposition for the sheaf
G ∶= ζ±i ,∗OĨW

±
i ,w±i

[χ′], where ζ±i ∶ ĨW
±

i ,w±i
→ Y(pn)(v)tor is the natural morphism.

One can give a completely explicit description of the sections of G, as in [AIP15b,
Subsections 8.1.5 and 8.1.6]. _e proof is then identical to the one of [AIP15b, Corol-
lar 8.1.6.2].
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Recall the morphism η(v)∶Y(pn)(v)tor →Y(v)min.

Proposition 5.6 For any χ○ ∈W(w)○(K) and any aõne U○ ⊂W(w)○ we have that
η(v)∗(w†χ

○
v ,w(−D)) and (η(v × id))∗(w†χ

un
U○

v ,w (−D)) are small formal Banach sheaves.

Proof We prove the statement for η(v)∗(w†χ○
v ,w(−D)); the case of families is simi-

lar. We use the notation of the proof of Proposition 5.5. It is enough to prove the
proposition for η(v)∗(G(−D)). Let s ≥ 1 be an integer and consider the commutative
diagram

Y(pn)(v)tor
s−1

i //

η(v)s−1

��

Y(pn)(v)tor
s

η(v)s
��

Y(v)min
s−1

j // Y(v)min
s

where i and j are the natural closed immersions. Using Proposition 5.3 and [AIP15b,
Proposition A.1.3.1], we see that it is enough to prove that

j∗(η(v)s ,∗G(−D)s) = η(v)s−1.∗G(−D)s−1 .

Similarly to G1, we can write Gs ≅ limÐ→_ jGs , j , where each Gs , j is a coherent sheaf.
Since taking direct images commutes with direct limits, we can prove the statement
for Gs , j . From now on, all the sheaves will be considered as sheaves overY(pn)(v)tor

s .
It is enough to prove that R1 η(v)s ,∗ ker(Gs , j → Gs−1, j) = 0. We have (see [AIP15b,
Section 8.1.6] and the proof of Proposition 5.5) ker(Gs , j → Gs−1, j) ≅ G1, j ; in particular
we need to show that R1 η(v)s ,∗G1, j = 0. By Proposition 5.5, we know that G1, j is an
extension of the trivial sheaf, so we can conclude by Proposition 5.3.

5.3 Projectivity of the Space of Cuspidal Forms

We ûx U○ ⊂W(w)○, an aõne with rigid ûber U○ = Spm(A○) and χ○ ∈ U○(K). Let us
consider the modules SU

○
v ,w and Sχ

○
v ,w deûned by

SU
○

v ,w ∶= H0(Y(pn)(v)tor × U○ ,w†χunU○
v ,w (−D))[p−1]

and

Sχ
○

v ,w ∶= H0(Y(pn)(v)tor ,w†χ○
v ,w(−D))[p−1].

Let B be any aõnoid K-algebra and let M be a Banach B-module. We recall the fol-
lowing deûnition due to Buzzard in [Buz07].

Deûnition 5.7 We say that M is projective if there is a Banach B-module N such
that M ⊕ N is potentially orthonormalizable.

Proposition 5.8 _e Banach module SU
○

v ,w is a projective A○-module. Moreover, the
natural specialization morphism SU

○
v ,w → Sχ

○
v ,w is surjective.
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Proof Taking the v i ’s all equal, we can assume that Y(v)min,rig is an aõnoid. Since
(η(v× id))∗(w†χunU○

v ,w (−D)) is a small Banach sheaf by Proposition 5.6, the proposition
is proved exactly as [AIP15b, Corollary 8.2.3.2].

Corollary 5.9 Let U = Spm(A) ⊂ W be an aõnoid and let χ ∈ U(K). _e Banach
module S†Uv ,w is a projective A-module. Moreover, the natural specialization morphism
S†Uv ,w → S†χv ,w is surjective.

Proof Let Spf(A○) be a formal model of U○, the image of U in W(w)rig, and let
SU

○
v ,w be as above. Let χun and χun,○ be the characters associated to U and U○. By

Remark 5.4, we have

S†Uv ,w = (SU
○

v ,w ⊗A○A(−χun,○
′
))B

O
(Z /pn Z) .

In particular, by Proposition 5.8, we have that S†Uv ,w is a direct factor of a projective
A-module and hence it is projective. An analogous equality holds for S†χv ,w and the
specialization morphism SU

○
v ,w → Sχ

○
v ,w is surjective by Proposition 5.6. Since taking

invariants with respect to a ûnite group is an exact functor on the category ofQp-vec-
tor spaces, the morphism S†Uv ,w → S†χv ,w is surjective as required.

5.4 The Eigenvariety

Let Z(v ,w) ⊆ W(w) × A1,rig be the spectral variety associated to the U-operator
acting on S†W(w)v ,w .

_eorem 5.10 _ere is a rigid space Ev ,w equipped with a ûnite morphism Ev ,w →
Z(v ,w) that satisûes the following properties.
(i) It is equidimensional of dimension rk(TO). _e ûber of Ev ,w above a point χ ∈

W(w) parametrizes systems of eigenvalues for the Hecke algebra T appearing in
S†χv ,w that are of ûnite slope for the U-operator. If x ∈ Ev ,w , then the inverse of the
U-eigenvalue corresponding to x is π2(x), where π2 is the inducedmap π2∶Ev ,w →
A1,rig. For various v and w, these construction are compatible. Letting v → 0 and
w →∞, we obtain the global eigenvariety E.

(ii) Let f ∈ S†χv ,w be a cuspidal eigenform of ûnite slope for the U-operator and let x f
be the point of Ev ,w corresponding to f . Let us suppose that Ev ,w → W(w) is
unramiûed at x f . _en there exists an aõnoid U ⊂ W(w) that contains χ and
such that f can be deformed to a family of ûnite slope eigenforms F ∈ S†Uv ,w .

Proof By Corollary 5.9 all the assumptions of [Buz07] are satisûed. We can then use
Buzzard’s machinery to construct the eigenvariety. _is gives Ev ,w and (i) follows. (ii)
is an automatic consequence of the way we constructed the eigenvariety, see [AIP15b,
Proposition 8.1.2.6].

Corollary 5.11 Let f ∈ S†χv ,w be a cuspidal eigenform of ûnite slope for theU-operator.
_en there exists an aõnoid U ⊂ W(w) that contains χ and such that the system of
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eigenvalues associated with f can be deformed to a family of systems of eigenvalues
appearing in S†Uv ,w .

6 Classicity Results

In this section we prove certain classicity results for our modular forms. Since the
results of [Jon11] hold in general, there are no conceptual diõculties to generalize
[AIP15b] to our setting, so we will sometimes only sketch the arguments.

Recall that at the endof Section 1wedeûned the algebraic groupGLOwithmaximal
split torus TO. We also have the Borel subgroup BO with unipotent radical UO.

Let χ ∈ X∗(TO)+ be a (classical) dominant weight that we see as a character of BO

trivial on UO. We set

Vχ ∶= { f ∶GLO →A1 ∣ morphisms of schemes such that, for all Zp -algebras R,
we have f (gb) = χ(b) f (g) for all (g , b) ∈ (GLO ×BO)(R)} .

_ere is a le� action of GLO on Vχ given by (g ⋅ f )(x) = f (g−1x).
Recall the sheaf ωχ on YIw(p) of classical modular forms. We have the toroidal

compactiûcation YIw(p)tor of YIw(p) deûned in [Str10]. We will work only with the
generic ûber YIw(p)tor,rig of its formal completion YIw(p)tor. We have that

YIw(p)(v)tor,rig

is an open subspace ofYIw(p)tor,rig. Clearly ωχ extends to a sheaf on YIw(p)tor.
We have the following.

Proposition 6.1 For the étale topology on YIw(p)tor,rig, the sheaf ωχ is locally isomor-
phic to Vχ′ ,K . _is isomorphism respects the action of GLO.

We write BO,op and UO,op for the opposite subgroups of BO and UO, respectively.
Let IO be the Iwahori subgroup of GLO(Zp) given by matrices that are “upper trian-
gular”modulo p (recall thatwe are in the unramiûed case, so p is a uniformizer of each
Oi) and let NO,op be the subgroup of UO,op(Zp) given by those matrices that reduce
to the identity modulo p. We have an isomorphism of groups NO,op ×BO(Zp) → IO

given by Iwahori decomposition.
We use the following identiûcation, in Cases (A) and (C), respectively.

NO,op =
k
∏
i=1

( pO
a+i (a

+
i −1)
2

i × pO
a−i (a

−
i −1)
2

i ) ⊂
k
∏
i=1

(A
a+i (a

+
i −1)
2 ,rig ×A

a−i (a
−
i −1)
2 ,rig) ,

NO,op =
k
∏
i=1

pO
ai (ai−1)

2
i ⊂

k
∏
i=1
A

ai (ai−1)
2 ,rig .
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Given w, a tuple of positive real numbers as in the deûnition ofW(w), we deûne in
Case (A) and (C,) respectively

NO,op
w ∶= ⋃

(x±i )∈N
O,op

k
∏
i=1

(B(x+i , p−w
+
i ) × B(x−i , p−w

−
i )) ,

NO,op
w ∶= ⋃

(x i)∈NO,op

k
∏
i=1
B(x i , p−w i ),

where B(x , p−w) is the ball of center x and radius p−w .
We say that a function f ∶NO,op → K is w-analytic if it is the restriction of an

analytic function f ∶NO,op
w → K. Note that the extension of f , if it exists, is necessarily

unique. We write Fw−an(NO,op ,K) for the set of w-analytic functions. If w±
i = 1 for

all i and f is w-analytic, we simply say that f is analytic and we write Fan(NO,op ,K)
for the set of analytic functions. A function is locally analytic if it is w-analytic for
some w and we write Floc-an(NO,op ,K) for the set of locally analytic functions.

Now let χ ∈W(w)(K) be a w-analytic character. We set

Vw−an
χ ∶= { f ∶ IO → K ∣ f (ib) = χ(b) f (i) for all (i , b) ∈ IO ×BO

and f
∣NO,op

w
∈ Fw−an(NO,op ,K)} .

_e deûnition of the spaces V an
χ and V loc-an

χ is similar. _ey are all representations of
IO via (i ⋆ f )(x) = f (xi).

We have the following proposition.

Proposition 6.2 Locally for the étale topology on YIw(p)tor,rig, the sheaf ω†χv ,w is
isomorphic to Vw−an

χ′ . _is isomorphism respects the action of IO.

If χ is a classical dominant weight, there is an obvious inclusion Vχ ↪ Vw−an
χ and

we have the following proposition (see [AIP15b, Proposition 5.3.4]).

Proposition 6.3 _e open immersion of Proposition 3.6 induces an inclusion of
sheaves

ωχ
∣YIw(p)tor,rig

↪ ω†χv ,w .

For the étale topology on YIw(p)tor,rig, this inclusion is locally isomorphic to Vχ′ ↪
Vw−an
χ′ .

6.1 The BGG Resolution and a Classicity Result

_e goal of this subsection is to characterize the image of the inclusion Vχ ↪ V loc-an
χ .

LetW be theWeyl group of GLO and let glO and hO be the Lie algebras of GLO and
TO, respectively. Let Φ ⊂ X∗(TO) be the set of roots of glO. We have a decomposition
glO = hO ⊕⊕α∈Φ glOα . Let Φ+ ⊆ Φ be the set of positive roots given by the choice of
BO and let α ∈ Φ+. We ûx an element 0 /= eα ∈ glOα . _ere is an element fα ∈ glO−α
that we ûx once and for all, such that ⟨eα , fα , hα⟩ is isomorphic to sl2 via eα ↦ ( 0 1

0 0 ) ,
fα ↦ ( 0 0

1 0 ), and hα ↦ ( 1 0
0 −1 ), where hα ∶= [eα , fα]. We denote by sα ∈ W the
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re�ection χ ↦ χ − ⟨χ, α∨⟩α, where χ ∈ X∗(TO) and α∨ is the coroot associated to
α. _e pairing ⟨ ⋅ , ⋅ ⟩∶X∗(TO) × X∗(TO) → Z is the natural one. Given w ∈ W and
χ ∈ X∗(TO), we set w ● χ ∶= w(χ + ρ) − ρ, where ρ is half of the sum of the positive
roots.

Now let χ ∈ X∗(TO)+ be a dominant weight. By the results of [Jon11] there is an
exact sequence

(6.1) 0→ Vχ → V an
χ → ⊕

α∈Φ+
V an

sα●χ

where the ûrst map is the natural inclusion and the second one is given by the maps
Θα ∶V an

χ → V an
sα●χ deûned as follows. Recall the action of IO on V an

χ given by
(i ⋆ f )(x) = f (xi). It induces, by diòerentiation, an action of the universal en-
veloping algebra U(glO) on V an

χ . We set Θα( f ) ∶= f ⟨χ,α
∨
⟩+1

α ⋆ f . We now ûx an
index i = 1, . . . , k. Let 1 ≤ j < a±i . We write d±i , j ∈ GLO(Qp) for the element whose
components are the identity matrix except the i±-th one, that is, the matrix

(p−1Ida±i − j 0
0 Id j

) .

If χ ∈ X∗(TO)+ is a dominant weight, there is an operator δ±i , j on Vχ deûned by the
formula (δ±i , j ⋅ f )(x) = f (d±i , jx(d±i , j)−1).

Now let χ ∈ W(w) be a w-analytic character. Take f ∈ Vw−an
χ and i ∈ IO. By the

existence of the Iwahori decomposition, there are b ∈ BO(Zp) and n ∈ NO,op such
that i = nb. We deûne an operator δ±i , j on Vw−an

χ via the formula

(δ±i , j ⋅ f )(i) = f (d±i , jn(d±i , j)−1b).

Taking restriction to NO,op, we can identify Vw−an
χ with Fw−an(NO,op ,K), and under

this identiûcation the operator∏ j δ±i , j increases the radius of analyticity in the i±-th
direction.

We now use the notation of Subsection 4.2.2 and we explain the relation between
the operators U±

i , j and δ±i , j . We have the following proposition (see [AIP15b, Propo-
sition 6.2.3.1]).

Proposition 6.4 Let x , y ∈ YIw(p)(v)rig such that y ∈ p2(p−1
1 (x)). We ûx χ ∈

W(w), a w-analytic character. _en there is a commutative diagram whose vertical
arrows are isomorphisms

(ω†χv ,w)y
( f ∗)−1

// (ω†χv ,w)x

Vw−an
χ′

δ±i , j //

≀

OO

Vw−an
χ′

≀

OO

Let ν = (ν±i , j)i , j be a tuple of positive real numbers such that we have

ν ∈
k
∏
i=1

(Ra
+
i −1 ×Ra

−
i −1) and ν ∈

k
∏
i=1
Ra i−1
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in Case (A) and Case (C), respectively. Given χ ∈ W(w), we write Vw−an,<ν
χ for the

intersection of the generalized eigenspace where each δ±i , j acts with eigenvalues of
valuation smaller than ν±i , j . (Here for a given i, we take j in the range 1, . . . , a±i − 1.)

Proposition 6.5 Let χ ∈ X∗(TO)+ be a classical dominant weight. We can write
χ = (k±i ,s , j)i ,s , j as in Subsection 3.2. For each i = 1, . . . , k and for each j = 1, . . . , a±i − 1,
we set ν±i ,a±i − j ∶= inf s{k±i ,s , j − k i ,s , j+1 + 1}. We then have Vw−an,<ν

χ ⊂ Vχ .

Proof We can ûx an index i and work only in the “i-th component”. Taking the base
change of all objects toO±

i (that makes everything split) and using the exact sequence
(6.1), the proof is completely analogous to that of [AIP15b, Proposition 2.5.1].

6.2 Classicity at the Level of Sheaves

Let χ = (k±i ,s , j)i ,s , j ∈ X∗(TO)+. We now give a characterization of the image of the
inclusion ωχ

∣YIw(p)tor,rig
↪ ω†χv ,w of Proposition 6.3.

We can construct a “relative version” over YIw(p)(v)tor,rig of the exact sequence
(6.1). Using then Propositions 6.1, 6.2, and 6.3, we obtain the exact sequence of sheaves
on YIw(p)(v)tor,rig

0→ ωχ
∣YIw(p)tor,rig

→ ω†χv ,w → ⊕
α∈Φ+

ω†sα●χv ,w .

Let ν = (ν±i , j)i , j be a tuple of positive real numbers such that ν ∈ ∏k
i=1(Ra

+
i ×Ra−i )

in Case (A) and ν ∈ ∏k
i=1R

a i in Case (C). In Case (A) we assume that for each i =
1, . . . , k, we have ν+i ,a+i = ν−i ,a−i . _is is a natural condition since U+

i ,a+i
= U−

i ,a−i
. We can

then write ν±i ,a±i ∶= ν+i ,a+i = ν−i ,a−i .
We deûne M†χ,<ν

v ,w to be the intersection of the generalized eigenspaces where each
U±

i , j acts with eigenvalues of valuation smaller than ν±i , j . (_e diòerence with the
above situation is that we add the condition that the U±

i ,a±i
-operator acts with ûnite

slope.)
We now suppose that for each i and for each j = 1, . . . , a±i , we have ν±a±i − j =

inf s{k±i ,s , j − k i ,s , j+1 + 1}. As in [AIP15b, Proposition 7.3.1] we have the following.

Proposition 6.6 We have the inclusion M†χ,<ν
v ,w ⊂ H0(YIw(p)(v)tor,rig ,ωχ).

6.3 The Classicity Theorem

Let χ = (k±i ,s , j)i ,s , j ∈ X∗(TO)+ be a classical dominant weight.

_eorem 6.7 Let ν be as in Proposition 6.6. Moreover, we assume that for each i =
1, . . . , k, we have

ν±i ,a±i = inf
1≤s≤d i

(k+i ,s ,a+i + k−i ,s ,a−i ) − d ia+i a−i
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and

ν i ,a i = inf
1≤s≤d i

k i ,s ,a i −
d ia i(a i + 1)

2

in Case (A) and Case (C), respectively. _en we have an inclusion M†χ,<ν
v ,w ⊂ Mχ . Hence

any locally analytic overconvergent modular form in M†χ,<ν
v ,w is classical.

Proof Using Proposition 6.5, this follows by the main results of [BSP15].
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