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107.05 The final solution of a quasi-palindromic

Introduction
We consider the eighth roots of unity. They are obtained by solving the

octic . Also the primitive eighth roots of unity are obtained by
solving the eighth cyclotomic . Let us solve this cyclotomic.
From , we have . Hence the four roots of the cyclotomic
are . However, the radicals in these roots include the
imaginary unit. In general, roots with the imaginary unit included in radicals
would be inferior to ones without it. As the latter types of roots of the

cyclotomic,  are well known. Comparing these two

types of roots, we notice that the latter types are in the form of  where
,  are real. We thus introduce the concept of final roots. These are roots

which are in the form of  where ,  are real. The process of finding
these final roots is called a final solution.

x8 − 1 = 0
x4 + 1 = 0

x4 = −1 x2 = ±i
x = ± i, ± −i
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The main result of this Note is the following. The final roots of the
quartic

x4 + Bx3 + Cx2 + Dx + E = 0

where  are real with ,  and  (the quartic
with  and  is called a quasi-palindromic) are as follows:

B, C, D, E D2 = B2E B ≠ 0 E ≠ 0
D2 = B2E E ≠ 0

(i) If , thenB2 − 4C +
8D
B

≥ 0

x =
1
2 (−pk ± p2

k −
4D
B )  (k = 1,  2)

where , .p1 =
1
2 (B + B2 − 4C +

8D
B ) p2 =

1
2 (B − B2 − 4C +

8D
B )
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(ii) If , thenB2 − 4C +
8D
B

< 0

x =
−pk ± p2

k − 4qk

2
 (k = 1,  2)

where , ,

, ,

.

p1 =
B + B2 − 4C + 4t

2
p2 =

B − B2 − 4C + 4t
2

q1 =
1
2 (t + t2 −

4D2

B2 ) q2 =
1
2 (t − t2 −

4D2

B2 )
t =

C
2

−
D
B

+ (C
2

+
D
B)2

− BD

All this time, mathematicians have found several solutions of the
general quartic equation since Ferrari's discovery in 1540 (e.g. [1]). There
are old studies such as Descartes [2], Euler [3] and Lagrange [4], and recent
ones such as Christianson [5] and Yacoub–Fraidenraich [6]. Among these
solutions, we use a modified Descartes' solution of the quartic as the basis
for solving the quartic in the next section. A later section is devoted to a
well-known solution of a quasi-palindromic. In the last section, we present
the final solution of the quasi-palindromic.

A modified version of Descartes' solution
From the fundamental theorem of algebra, the general monic quartic

x4 + Bx3 + Cx2 + Dx + E = 0 (1)
with real coefficients can be factorised as

(x2 + p1x + q1) (x2 + p2x + q2) = 0 (2)
where  and  are real numbers for . We define the following
two kinds of subsidiary equations of quartic (1).

pk qk k = 1,  2

Definition 1: We say that the quadratic

(X − p1) (X − p2) = 0

is the first subsidiary equation of (1) and that the quadratic

(Y − q1) (Y − q2) = 0

is the second subsidiary equation of (1).
Equating (2) with (1), we have

p1 + p2 = B, (3)

p1p2 + q1 + q2 = C, (4)

p1q2 + p2q1 = D, (5)

q1q2 = E. (6)
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From (3) and (5),

− (q1 − q2)2 p1p2 = (D − q1B) (D − q2B) . (7)
Using (4) and (6),

p1p2 = C − (q1 + q2) (8)
and

(q1 − q2)2 = (q1 + q2)2 − 4E, (9)
respectively. It follows from (7), (8) and (9) that

(q1 + q2)3 − C (q1 + q2)2 + (BD − 4E)(q1 + q2) − B2E + 4CE − D2 = 0.
Let . Then  satisfiest = q1 + q2 t

t3 − Ct2 + (BD − 4E) t − B2E + 4CE − D2 = 0. (10)
This cubic equation is well known as the resolvent cubic and is the same as
that of Ferrari (e.g. [7]). Here it is necessary to remember that  and

 are all real numbers. Then  is restricted by some conditions. We will
mention them later in Remark 1. From (3), (8), and Vièta’s formulas, the
first subsidiary equation of (1) is

p1, p2
q1, q2 t

X2 − BX + C − t = 0.
Solving this quadratic and using the fact that  and  are exchangeable, we
find

p1 p2

p1 =
B + B2 − 4C + 4t

2
, p2 =

B − B2 − 4C + 4t
2

. (11)

By  and (6), the second subsidiary equation isq1 + q2 = t

Y2 − tY + E = 0.
Using (5), the roots of this quadratic are

q1 =
t + t2 − 4E

2
,  q2 =

t − t2 − 4E
2

, (12)

and quartic (1) has the roots

x =
−pk ± p2

k − 4qk

2
 (k = 1,  2) . (13)

Note that the signs of the radicals in (12) are + for  and − for . In fact,
(11) and (12) provide (5). However, (11) and ,

 provide

q1 q2
q1 = 1

2 (t − t2 − 4E)
q2 = 1

2 (t + t2 − 4E)
p1q2 + p2q1 = Bt − D.

Remark 1: Since  and  are real for , we find from (11) and (12)
that the root  of resolvent (10) satisfies

pk qk k = 1,  2
t = q1 + q2

B2 − 4C + 4t ≥ 0,  t2 − 4E ≥ 0. (14)
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If , then roots (13) are real. In this case, let
, .

p2
k − 4qk ≥ 0

u = 1
2 (−pk ± p2

k − 4qk) v = 0
If , then roots (13) are imaginary. In this case, let
and . In both cases, the roots are  where ,
are real.

p2
k − 4qk < 0 u = −1

2pk
v = ±1

2 4qk − p2
k x = u + vi u v

A well-known solution of a quasi-palindromic
We consider the quartic  with  and

, which is called a quasi-palindromic. If , then we have .
x4 + Bx3 + Cx2 + Dx + E = 0 D2 = B2E

E ≠ 0 B ≠ 0 D ≠ 0

Proposition 1: The resolvent of the quasi-palindromic 

x4 + Bx3 + Cx2 + Dx + E = 0

with  has three rootsB ≠ 0

t1 =
2D
B

,  t2, t3 =
C
2

−
D
B

± (C
2

+
D
B)2

− BD.

Proof: Since , the resolvent of the quasi-palindromic isE =
D2

B2

t3 − Ct2 + (BD −
4D2

B2 ) t − 2D2 +
4CD2

B2
= 0. (15)

This can be factorised as

(t −
2D
B ) (t2 + (2D

B
− C) t + BD −

2CD
B ) = 0.

Finding zeros of the above quadratic polynomial, we obtain the conclusion.

For the sake of simplicity, we choose . Then the quasi-

palindromic has roots

t1 =
2D
B

x =
1
2 (−pk ± p2

k −
4D
B )  (k = 1,  2) (16)

where

p1 =
1
2 (B + B2 − 4C +

8D
B ),  p2 =

1
2 (B − B2 − 4C +

8D
B ).

The final solution of a quasi-palindromic
We consider the three roots of resolvent (10). Let  be a root of the

resolvent. Then it is not always true that  satisfies (14). If  satisfies (14),
roots (13) of quartic (1) are in the form of  where ,  are real.

t
t t
u + vi u v
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Definition 2: If the roots of an equation are in the form of  where ,
are real, we say that they are the final roots of the equation. The process of
finding these final roots is called the final solution of the equation.

u + vi u v

Roots (16) in the previous section are well known. However, they are

not necessarily final. In fact, if , they are final because

. If , they are not final.

B2 − 4C +
8D
B

≥ 0

(2D
B )2

− 4E = 0 B2 − 4C +
8D
B

< 0

We consider the case . In this case, the roots of

resolvent (15) are all real. If  and  are imaginary, each root of the
resolvent does not satisfy (14). This fact contradicts Remark 1. Also

because . Now, let us find a root  of resolvent (15) satisfying

(14). In the following, we examine . First,

B2 − 4C +
8D
B

< 0

t2 t3
t2 > 0

C
2

−
D
B

> 0 t

t2 =
C
2

−
D
B

+ (C
2

+
D
B)2

− BD

B2 − 4C + 4t2 = B2 − 2C −
4D
B

+ 4 (C
2

+
D
B)2

− BD.

When , we obtain . When

, we find

B2 − 2C −
4D
B

> 0 B2 − 4C + 4t2 > 0

B2 − 2C −
4D
B

≤ 0

16 ((C
2

+
D
B)2

− BD) − (−B2 + 2C +
4D
B )2

= B2 (−B2 + 4C −
8D
B ) > 0.

Therefore,  holds. In addition,B2 − 4C + 4t2 > 0

t2
2 − 4E = t2

2 −
4D2

B2
= (t2 +

2D
B ) (t2 −

2D
B ) .

When , we obtain  from . When , we findBD > 0 t2 +
2D
B

> 0 t2 > 0 BD < 0

t2 +
2D
B

=
C
2

+
D
B

+ (C
2

+
D
B)2

− BD >
C
2

+
D
B

+ |C2 +
D
B | ≥ 0.

Also,

t2 −
2D
B

=
C
2

−
3D
B

+ (C
2

+
D
B)2

− BD.
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When , we obtain . When  and

, we find

C
2

−
3D
B

> 0 t2 −
2D
B

> 0
C
2

−
3D
B

≤ 0

BD > 0

(C
2

+
D
B)2

− BD − (−C
2

+
3D
B )2

=
D
B (−B2 + 4C −

8D
B ) > 0.

Therefore,  holds. When , we have

from .  From the above, in any case  satisfies (14). Thus we obtain
the final solution.

t2 −
2D
B

> 0 BD < 0 t2 −
2D
B

> 0

t2 > 0 t2

Theorem 1: The final roots of the quasi-palindromic

x4 + Bx3 + Cx2 + Dx + E = 0
with  are as follows:B ≠ 0

(i) If , thenB2 − 4C +
8D
B

≥ 0

x =
1
2 (−pk ± p2

k −
4D
B )  (k = 1,  2)

where ,  .p1 =
1
2 (B + B2 − 4C +

8D
B ) p2 =

1
2 (B − B2 − 4C +

8D
B )

(ii) If , thenB2 − 4C +
8D
B

< 0

x =
−pk ± p2

k − 4qk

2
 (k = 1,  2)

where , ,

, ,

.

p1 = 1
2 (B + B2 − 4C + 4t) p2 = 1

2 (B − B2 − 4C + 4t)

q1 =
1
2 (t + t2 −

4D2

B2 ) q2 =
1
2 (t − t2 −

4D2

B2 )
t =

C
2

−
D
B

+ (C
2

+
D
B)2

− BD

At the end of this Note, we make the following remark.

Remark 2: When all the roots of the quasi-palindromic in Theorem 1 are
real, the three roots  ) of resolvent (15) satisfytk (k = 1, 2, 3

B2 − 4C + 4tk ≥ 0,  t2
k − 4E ≥ 0.

Hence, in that case it does not matter which of the roots of the resolvent we
choose because each one provides the final roots of the quasi-palindromic.
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107.06 Proving inequalities via definite integration: a visual
approach

Fascination with inequalities has encouraged numerous visual proofs. It
is quite interesting to see and feel the beauty. There are several techniques to
do these proofs logically. Definite integration of one variable is seemed to
be a greater tool in this case. Geometrically, definite integration means area
under a given curve. So, basically it will assign a number. If we use different
curves in the same region then it will give us different numerical
expressions and we can compare between them. We can use this tool in such
a way that it will give us the required expression for an inequality. Also, it
will give us a clear visual representation in order to prove our claims. In this
Note, we provide another area argument on the general inequality (see [1])

e ≤ A < B ⇒ AB > BA

and also two visual proofs of two different inequalities using area under the
curves.

Inequality 1
The constants  and  have encouraged numerous visual proofs of the

inequality  (see [2]). In [3], Gallant provided the most general proof
for which this inequality is a consequence, showing that when ,
we have ; he used slopes of secant lines connecting the origin to
points on the curve . We provide an alternate visual proof for this
general inequality.

e π
πe < eπ

e ≤ A < B
AB > BA

y = ln (x)
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