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1. Basic Notions

The scheme of abstract dynamical systems will represent repetitive
experimentation: There is a basic space of events X1 and the denumerable
product X = X'xx'xx'x... contains all possible sequences of events x =
(x,,x , . . . ) . There are projections q which give the nth member of x:

q (x) = x . A transformation T is defined over X by the equation q (Tx)=

q (x). It removes the sequence by one step, T(x ,x ,...) = (x ,x,,...)

and is known as the shift transformation. It comes as an abstraction of
the dynamical transformations of classical theories. Here it represents
the performance of 'the next1 experiment. There is a field of subsets

ACX and TA = { T X | X € A } , T A = { X | T X £ A } . A probability measure P over

X is stationary if P(T A) = P(A). If one experiment is performed at
each unit interval of time, the probability of the event A is "now" the

same as the probability of the event T A was in the preceding experi-
ment. It follows that P({x|x =i ,...,x ,=i. }) is independent of n,

so that the usual expression for stationarity as invariance of probabil-

ities in time is recovered. Sets for which T A = A are called invari-

ant. A stationary measure P is epgodia if invariant sets have measure

zero or one.

Let us now suppose that we have simple events; each x.=0 or 1 with

x.=l as "occurrence of the event at trial i". The central result of the
x
theory states for this simple situation that the limit of relative fre-
quency lim Ex./n of the event exists for almost'all sequences x. The

n-x» i
exceptions have P-measure zero. If P is ergodic the limit is the same
for almost all sequences. Both results hold also in the other direc-
tion, so that stationarity is equivalent to the existence of limits of
relative frequencies, and ergodicity to their uniqueness. Since x. =

i i •""
q (T x), with T the i-fold iteration of T, the two results can be ex-
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pressed in another terminology as follows: The time average

lim £q (T x)/n of the function q along the trajectory x exists under
n-*» i
stationarity, and is unique (independent of x) under ergodicity. The
same holds for any measurable function of x. The terminology comes from
the theory of classical dynamical systems where the state space X1 is
continuous and T is substituted by a group of mappings corresponding to
solutions of the equations of motion. Ergodicity characterizes the case
where it is possible to asymptotically identify probabilities as limit-
ing frequencies along one sequence of repetitions.

2. Probabilistic Causality

A function g over X is an invariant of motion if its value is pre-

served under the dynamics T: g(x) = g(Tx) = g(T1x) ... Equivalence

classes g [y] = {x|g(x)=y} having the same value of g, partition the
space X. If g has finitely many values, there are finitely many parts.

Next we note that time averages are invariants of stationary systems.
Intuitively, the limit over x = (x ,x ,...) does not depend on finite

segments (x ,...,x ). The time average f(x) of f over x is

i k+i - k
lim Zf(T x)/n = lim Ef(T x)/n = f(T x) so that f(x) is an invariant of
n-*» i n-*= i
motion. (Proofs of results referred to may be found in, e.g., Cornfeld,

! Fomin and Sinai 1982.)

The indicator function I of the whole space has a constant value 1
X

over X and is therefore an invariant. Invariant functions partition the
space into classes which are invariant sets as can be seen from above
definitions. If one of these sets has P-measure strictly between zero
and one, ergodicity fails. In the other direction, the indicator of an
invariant set is an invariant function. This amounts to the result that
ergodicity is equivalent to having essentially only one invariant func-
tion. Its value must be constant over state space, and other possible
invariant functions are determined by the value of the independent in-
variant. The total energy is an example for classical dynamical sys-
tems. Its counterpart in the abstract setting is the (not necessarily
uniform) ergodic P-measure over X. Time averages of indicator functions
I are invariant.' For ergodic systems these averages I equal the P-
measure P(A). For the classical case, it follows that probabilities are
determined by total energy.

Let us next suppose that ergodicity fails for P. Further, let there
for the sake of simplicity be only one additional independent invariant
of motion f with a finite range of values y.,...,y, . The components
-1 Ik

f [y.] = A. of the corresponding partition of X are invariant sets. We

assume further that they each have positive measure P(A.). As there are

no further invariants, each of the A. determines a measure P.(B)=P(B A.)

over X. It is ergodic over A.. Writing P(A.) = a., total probability
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gives the representation P(B) = Ea.p.(B). Our simplifying assumptions
i x 1

have led to a special case of a result which in general terms states
that every stationary measure has a unique decomposition into ergodic
parts (see my 1982).

A causal factor is for us something with which a difference can be
made in the performance of an experiment. It may be the case that ex-
periments can be so prepared that there is only one possible result.
For classical dynamical systems, this would be accomplished by finding
as many independent invariants of motion as there are degrees of freedom
in the system under consideration, let us say n. Now, fixing n values
of suitable quantities as initial conditions, the result is unique. In
general, this would not be the case. The system has a high n (i.e., a
complete description is very complex), whereas the number of independent
invariants k is much less than n. We have seen that if the experimental
arrangement remains unaltered, stationarity may be assumed. Repetitive
experimentation leads in this way to stable statistical behaviour, at
least asymptotically if not faster. Only, it varies from trajectory to
trajectory. A determination of that behaviour is only possible, as a
prediction from theory and initial data, if it is known what values ob-
tain for the invariants of motion. That is, if we have a complete set
of invariants f.,...,f , with fixed values, knowledge of the trajectory

x is not needed for the calculation of statistical laws. More gen-
erally, all properties of a system are identified as functions f over X.
If f is invariant, its value f(x) is determined from f (x),...,f (x)

'which are complete in exactly this sense. In the other direction, by
controlling the values of a complete set of invariants, we are able to
determine and control the statistical laws that obtain for our experi-
mental arrangement. Therefore, probabilistic causality - causing events
to occur with a given statistical law - requires the identification of
the relevant causal factors as invariants of motion that form a complete
set. This is, of course, a highly ideal result. It tells how statisti-
cal analysis would proceed if we were as competent in general experimen-
tal situations as we are in a handful of examples from physics. We
would determine the permanent, invariant features of the arrangement,
and the dynamics would single out a statistical law which is preserved
under the dynamics. No additional gathering of data would be needed.
In applications, we would prepare the system so that it produces those
of its possible statistical patterns we most want it to produce. Inci-
dentally, the above also gives us a notion of probabilistic explanation
in the sense of explanation of a probabilistic law, from values of in-
variants obtaining in the situation and from the dynamical law.

3. Randomization and Mixtures

If {P } _ is. a family of probability measures over X, any convex

combination Ea.P. with a.>0 and Ea.=l and each P. in {P } is again a
. l i i— .1 l s s£S

probability measure over X. In the most general formulation there is a
measure F over the arbitrary index set S, and mixtures have the form
P(A) = / P (A)dF. Feller (1971, pp. 53 - 58) has suggested that forming

S s
a mixture over a suitable'parameter may be described probabilistically
as randomization. Our above notion of causal factors is applicable
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here. For simplicity, let us assume that there is a parameter X£A such
that each P is ergodic, and a measure m over A, so that mixtures are of

the form J.P (A)dm(X). Obviously, X takes here over the task of invari-
A A

ants of motion.

Suppose now that we fix the value of X. P is a statistical law of
A

the component of X corresponding to the given X. If the value of X is
fixed but unknown, we will be able to identify P. asymptotically from

A

data. It will be instructive to think of a slightly different situation
in which the events occur also simultaneously, not only sequentially.
Instead of one "test item", we have a great number of them tested simul-
taneously. This will form a "population". It is investigated how this
population can be stratified according to its statistical properties.
In repetition, each item gives a sequence of results: x =(x ,x , . . . ) ,

1 !x !2
X2='X2 'X2 ' - • • ) ' • • • Conditions prevailing for test item number i are

summarized in some value X. of X. Now, if it is our aim to obtain sta-
tistical data from the whole population, X must be varied from experiment
to experiment. Moreover, each value of X has to be weighted by the pro-
portion of test items that are characterized by that value of X. The
result is statistical data from the whole population, randomized with
respect to properties between which X discriminates. In an ideal situ-
ation, it is known what causal factors X. there are. Randomization of
experiments will be perfect.

Let us first distinguish between randomized and "one-component" rep-
etitions. In the former, the value of X is chosen according to m each
time a repetition is made. The effect is that the statistical prop-
erties of the population as a whole are identifiable through time aver-
ages. Here the population and variation of X are real. In the second
case, one randomization is performed, after which the chosen component
remains. It follows that only that component's P is identified. Sta-

A

tistical properties of other components do not become manifest. A second
distinction is made between cases in which the initial randomization is
real and those in which it is fictive.

Let us now stipulate that causal independence is violated if the per-
formance of a repetitive experiment changes the experimental arrangement
of further experiments. Simple examples are offered by drawings from
finite urns without replacement. A contrary case certainly obtains if
events with space-like separation are considered.

According to above distinctions, there are at least three different
ways of tossing bent coins. Everything is supposed discrete for sim-
plicity. Each bent coin has some probability X. of landing heads. This

is represented by an urn of black and white balls with proportion X. of

white balls. Our three cases appear as follows: 1. There is a bag of

urns such that each urn i with probability X. appears in a definite pro-

portion a.. Randomized experimentation consists of first drawing an

urn, then drawing a ball, and replacing both. This procedure is re-
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peated. The probability of "heads" (with white for heads) is, from to-
tal probability, Ea.A^ Successive events are probabilistically inde-

i
pendent, and the limit of time average of "heads" equals the total pro-
portion of white balls, as if the walls of the urns went broke. 2. Only
one randomization is made. If it gives urn i, probability of heads is
X., with independent repetitions. If the urn cannot be identified, the

probability is 2a. X. and successive events are probabilistically depend-
i

ent. In the latter, X. is however asymptotically identifiable from

data. 3. There is only one urn of unknown composition. Uncertainty is
represented by weights a. for the different possible compositions (ratios

of white balls) X.. Probability of heads on first toss is Sa.X. and

successive events are, as above, dependent. Typically, given X., one

assumes independence, and this makes the mixture probabilities exchange-
able. If the urn is not identified or if there is only one urn, suc-
cessive events are probabilistically dependent, whereas the composition
of the urn remains identical. Causal independence is not violated.

The reader will have noticed that de Finetti's notion of exchange-
ability fits well into the above. In fact, the notions of section 1.
above are a general way of putting these matters, with exchangeability
as a special case of stationarity, independence a special case of ergo-
dicity, and de Finetti's representation theorem a special case of the
ergodic decomposition theorem, de Finetti wants to argue that the ob-
jective probabilities (X. above) are fictive entities, and indeed reduc-
ible to the subjective ones (the mixtures Xa.A. above). For us, the in-
terpretation is rather the reverse: the mixtures determine a unique set
of weights for the X.. The a. are either weights in a randomized ex-
periment, or else fictive entities. Probabilistic dependence reflects
the fact that we have not identified the limit of time average X..

4. Note on Applications in Physics

Under another nomenclature, our causal factor X above appears as a
hidden variable in foundations of quantum theory. If the distribution
of X is ergodic, there cannot be any causal factors that X would bear.
Such a theory would simply reproduce the statistical laws of quantum
theory. Therefore, there should exist functions invariant with respect
to P , that is, causal factors affecting the statistics of quantum ex-

A
periments. (Such an approach was attempted in the early sixties by
Daneri, Loinger.and Prosperi as is well known.) However, the curious
correlations of some quantum experiments cannot be explained as effects
of such causal factors. This is excluded since even an ergodic P, is

A
not permitted by Bell's inequality, much less mixtures that would fac-
torize the ergodic measure.
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