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Abstract
This article describes local normal forms of functions in noncommuting variables, up to equivalence generated
by isomorphism of noncommutative Jacobi algebras, extending singularity theory in the style of Arnold’s com-
mutative local normal forms into the noncommutative realm. This generalisation unveils many new phenomena,
including an ADE classification when the Jacobi ring has dimension zero and, by taking suitable limits, a further
ADE classification in dimension one. These are natural generalisations of the simple singularities and those with
infinite multiplicity in Arnold’s classification. We obtain normal forms away from some exceptional Type E cases.
Remarkably, these normal forms have no continuous parameters, and the key new feature is that the noncommutative
world affords larger families.

This theory has a range of immediate consequences to the birational geometry of 3-folds. The normal forms of
dimension zero are the analytic classification of smooth 3-fold flops, and one outcome of NC singularity theory is
the first list of all Type D flopping germs, generalising Reid’s famous pagoda classification of Type A, with variants
covering Type E. The normal forms of dimension one have further applications to divisorial contractions to a curve.
In addition, the general techniques also give strong evidence towards new contractibility criteria for rational curves.

1. Introduction

This article establishes a noncommutative analogue of the classical singularity theory of function germs
as set out in Arnold’s landmark paper [A2]. The fundamental components of such a theory remain: one
must (1) work with germs, or locally in some sense, (2) establish suitable notions of equivalence, (3)
determine discrete parameters to distinguish families with similar properties, (4) classify the families for
‘small’ values of the discrete parameters, (5) develop general theory for where classification is difficult,
and crucially (6) use the classification to give applications in other areas of mathematics.

We outline our noncommutative approach to components (1–3) in §1.1 below, with full details given
in §3 and §4. The first classifications of (4) are discussed in §1.2–1.3, and their proofs in §5 and §6 use the
general theory of §2–4 and Appendix A, which initiate (5). Arnold remarks [A2, 2] that the definition and
naming conventions of families may only become clear after classification, and so although we use the
ADE names throughout, it is only in §7 that their intrinsic definition is established. As for applications,
we instigate component (6) in §8, giving a classification of various rational neighbourhoods in 3-fold
birational geometry, with further applications to curve counting.
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1.1. Noncommutative singularity theory

For 𝑑 ≥ 1, consider the noncommutative formal power series ring C〈〈x〉〉 = C〈〈𝑥1, . . . , 𝑥𝑑〉〉, which is the
complete local version of the free algebra. From the perspective of this paper, the algebra C〈〈x〉〉 replaces
the commutative power series ring C[[𝑥1, . . . , 𝑥𝑑]] from classical singularity theory.

For any 𝑓 ∈ C〈〈x〉〉, it is possible to cyclically differentiate f with respect to a variable 𝑥𝑖 to obtain an
element δ𝑖 𝑓 . The collection of such elements generate a closed two-sided ideal ((δ1 𝑓 , . . . , δ𝑑 𝑓 )), the
details of which are recalled in §2.2. The resulting quotient

Jac( 𝑓 ) = C〈〈𝑥1, . . . , 𝑥𝑑〉〉
((δ1 𝑓 , . . . , δ𝑑 𝑓 ))

is called the Jacobi algebra of f, and the element f is called the potential.
We will regard f and g as being equivalent if their Jacobi algebras are isomorphic, remarking that in

the noncommutative setting, given the hidden dependence on cyclic equivalence, naive versions of the
Tjurina algebra do not exist (see 4.2). With the ring C〈〈x〉〉 fixed and the equivalence relation established,
the overarching aim of singularity theory remains: to classify all equivalence classes of potentials
satisfying numerical criteria and to develop powerful theory in the situation where classification is not
possible.

Whenever 𝑑 > 1, the algebra C〈〈x〉〉 is not noetherian, and the exponential explosion in its growth
means that factoring by only d elements often results in Jacobi algebras with pathological properties. As
in the classical case, pathologies turn out not to matter: the complexity of some singularities prevents
neither the development of a general theory nor various classification results for those which satisfy
reasonable numerical conditions.

Writing 𝔍 for the Jacobson radical of Jac( 𝑓 ), the first and natural restriction to impose on f is to
numerically constrain the growth of successive quotients of the chain of ideals

Jac( 𝑓 ) ⊇ 𝔍 ⊇ 𝔍2 ⊇ · · · .

This numerical growth, defined in 3.4, is called the 𝔍-dimension and will be written JdimJac( 𝑓 ). As
explained in 3.6, since Jac( 𝑓 ) is a factor of a complete ring, there is no reasonable Gelfand–Kirillov
dimension, and the 𝔍-dimension replaces it.

Alongside the development of a more general theory, the motivating problem is to extend Arnold-
style classification of germs [A2] into the above noncommutative setting.

Problem 1.1. For any finite ν ≥ 0, produce a small set of potentials Sν that realise every Jacobi algebra
of 𝔍-dimension ν, up to isomorphism.

Ideally, the elements of Sν would be normal forms – namely, that if 𝑓 , 𝑔 ∈ Sν with 𝑓 ≠ 𝑔, then
the resulting Jacobi algebras are not isomorphic. Building on foundational algebraic results of Iyudu–
Shkarin [IS2], in Appendix A, we show that, for small 𝔍-dimension ν, 1.1 essentially reduces to a
problem in 𝑑 ≤ 2 variables.

We will focus mainly on the situation ν ≤ 1, which is already highly nontrivial. Below, we will
observe, in the noncommutative context, exactly the same phenomena as in Arnold [A2], whereby such
precise numerical restrictions are often only motivated afterwards, by their answer and by the incredibly
rich families that they describe. The restriction ν ≤ 1 is also, happily, the condition needed for the
applications to birational geometry. We do, however, remark that it is not even clear that the set S0 is
countable, never mind S1, and there is certainly no prima facie reason why ADE should enter.

1.2. Noncommutative ADE normal forms

We now introduce the ADE families that will turn out to solve 1.1 when ν ≤ 1. The main results
regarding what precisely these families classify are stated later, in §1.3.
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Table 1. 𝔍-dimension 0 normal forms..

Type Name Normal form Conditions

A 𝐴𝑛 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

2 + 𝑦𝑛 𝑛 ≥ 2
D 𝐷𝑛,𝑚 𝑧2

1 + . . . + 𝑧
2
𝑑−2 + 𝑥𝑦

2 + 𝑥2𝑛 + 𝑥2𝑚−1 𝑛, 𝑚 ≥ 2, 𝑚 ≤ 2𝑛 − 1
𝐷𝑛,∞ 𝑧2

1 + . . . + 𝑧
2
𝑑−2 + 𝑥𝑦

2 + 𝑥2𝑛 𝑛 ≥ 2
E 𝐸6,𝑛 𝑧2

1 + . . . + 𝑧
2
𝑑−2 + 𝑥

3 + 𝑥𝑦3 + 𝑦𝑛 𝑛 ≥ 4
𝑧2

1 + . . . + 𝑧
2
𝑑−2 + 𝑥

3 +O4 (various cases)

Table 2. 𝔍-dimension 1 normal forms..

Type Name Normal form Conditions

A 𝐴∞ 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

2

D 𝐷∞,𝑚 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥𝑦

2 + 𝑥2𝑚−1 𝑚 ≥ 2
𝐷∞,∞ 𝑧2

1 + . . . + 𝑧
2
𝑑−2 + 𝑥𝑦

2

E 𝐸6,∞ 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

3 + 𝑥𝑦3

𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

3 +O4

It is a feature of singularity theory that it is often not possible to rigorously define a series until after
it has been classified. In the subsections that follow, we will use various different phenomena to explain
the ADE names of the families, but it is only after classification that one can make the moves needed to
extract this ADE information. As such, the definition of the families below follows the usual pattern of
classical singularity theory: their definition comes first, and their justification comes afterwards.

Below, we view the families with ν = 0 as the noncommutative version of simple singularities of
[A2], and we view the ν = 1 families as the ‘limit’ of the ν = 0 case, and thus the noncommutative
versions of the singularities 𝐴∞ and 𝐷∞ of [BGS].

With the above caveats, for any 𝑑 ≥ 2, consider the normal forms in Table 1. The big O notation is
explained in §1.8. It is possible to write Type D in the unified manner 𝑧2

1 + . . .+ 𝑧2
𝑑−2 +𝑥𝑦

2 +𝑥2𝑛 + ε𝑥2𝑚−1

where ε is either 0 or 1, but often it will be preferable to regard them as two distinct families, both of
Type D. In addition to the fact that Type D is larger than in the classical case, what is perhaps much
more remarkable is that in Type E, there are infinitely many cases: the family 𝐸6,𝑛 stated, together with
various other examples all of the form 𝑥3 + O4, whose expressions are more complicated and will be
optimised elsewhere [BW4].

Taking the limit 𝑛 → ∞ of the above forms gives the normal forms of Table 2, where again all are
optimised, except the very last line. The classical case admits precisely two examples – namely, the
singularities 𝐴∞ and 𝐷∞ of [BGS]. The noncommutative families are thus again larger: Type D splits
into two, there are infinitely many examples within 𝐷∞,𝑚, and Type E is no longer empty.

With the benefit of hindsight, there are two reasons why one might expect the ν = 1 case to be the
limit of ν = 0. First, on taking limits, the simple 𝐴𝑛 and 𝐷𝑛 families give rise to the germs 𝑥2 and 𝑥𝑦2,
and the noncommutative families above generalise this passage from the isolated to the non-isolated.
Second, in terms of the birational geometry of §1.7 below, contraction algebras should make sense of
the feeling that divisor-to-curve contractions are limits of infinite families of flops.

In this paper, we prove that every Jac( 𝑓 ) with JdimJac( 𝑓 ) ≤ 1 is isomorphic to a normal form in Type
A or D above, or has the general form stated for E. We remark that the precise Type E normal forms stated
– namely, 𝐸6,𝑛 and 𝐸6,∞ – are indeed genuine examples with 𝔍-dimension zero and one, respectively.
However, we refrain from describing the general case here, as we will treat all the exceptional Type E
cases together in a more technical companion paper [BW4].

We now outline our results in more detail, before describing their applications.
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1.3. Main noncommutative singularity theory results

Since constants differentiate to zero, and elements with linear terms differentiate to units, we can and
do assume that f has only quadratic and higher terms, which we write as 𝑓 ∈ C〈〈x〉〉≥2 or equivalently as
an explicit sum of its homogeneous pieces

𝑓 = 𝑓2 + 𝑓3 + 𝑓4 + . . .

Just as in the classical theory, a Splitting Lemma 4.5 identifies a coordinate system which separates
variables of the non-degenerate quadratic part from variables of a higher order potential, so that without
loss of generality,

𝑓 = 𝑥2
1 + · · · + 𝑥2

𝑟 + 𝑓≥3(𝑥𝑟+1, . . . , 𝑥𝑑),

and thus, we may turn attention to the potential 𝑓≥3 in, typically, fewer variables. The number 𝑑 − 𝑟 is
called the corank, and as in the classical case, there is a more intrinsic way of characterising it (4.3) –
namely, as

Crk( 𝑓 ) = 𝑑 − dimC
(
𝔫2 + 𝐼

𝔫2

)
, (1)

where 𝔫 = (𝑥1 . . . , 𝑥𝑑) and 𝐼 = ((δ1 𝑓 , . . . δ𝑑 𝑓 )). By the above and A.13, it turns out, in a manner
pleasantly reminiscent of classical simple singularities, that the case when JdimJac( 𝑓 ) ≤ 1 reduces to
that of two variables. We rename the variables 𝑧1, . . . , 𝑧𝑑−2, 𝑥, 𝑦 to emphasise this fact.

The following, a consequence of the Splitting Lemma together with a degree three preparation result,
then characterises commutative Jacobi algebras in two variables. These are precisely our Type A families
in §1.2. Below, we adopt the convenient abuse of notation 𝑓 � 𝑔 to mean Jac( 𝑓 ) � Jac(𝑔).

Proposition 1.2 (5.1, 5.4). If 𝑓 ∈ C〈〈x〉〉≥2, then the following hold.

1. Crk( 𝑓 ) ≤ 1 if and only if

𝑓 �

{
𝑧2

1 + . . . + 𝑧2
𝑑−2 + 𝑥2

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥2 + 𝑦𝑛 for some 𝑛 ≥ 2.

Each member of the bottom family has finite dimensional Jacobi algebra, whereas in the top case,
the algebra is infinite dimensional, with JdimJac( 𝑓 ) = 1.

2. If 𝑑 = 2 (i.e., 𝑓 ∈ C〈〈𝑥, 𝑦〉〉), then Jac( 𝑓 ) is commutative if and only if Crk( 𝑓 ) ≤ 1.

Thus, Jacobi algebras are commutative if and only if they are Type A, and so new noncommutative
invariants are needed to classify other types. The equation (1) does admit an obvious generalisation –
namely, the higher coranks defined in §4.1, where for 𝑓 ∈ C〈〈x〉〉≥3, the second corank is

Crk2( 𝑓 ) = 𝑑2 − dimC
(
𝔫3 + 𝐼

𝔫3

)
. (2)

In classifying all f with JdimJac( 𝑓 ) ≤ 1, A.13 together with 1.2 then reduces us to the case where
Crk( 𝑓 ) = 2 and Crk2( 𝑓 ) = 2, 3. The lowest case Crk2 ( 𝑓 ) = 2 turns out to be given by the Type D
families in the tables of §1.2.

Theorem 1.3 (6.19). Suppose that 𝑓 ∈ C〈〈x〉〉≥2 with Crk( 𝑓 ) = 2 and Crk2( 𝑓 ) = 2.
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1. Then either

𝑓 �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥𝑦2 𝐷∞,∞

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑚+1 with 𝑚 ≥ 1 𝐷∞,𝑚

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑛 with 𝑛 ≥ 2 𝐷𝑛,∞

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚+1 with 2𝑛 − 2 ≥ 𝑚 ≥ 𝑛 ≥ 2 𝐷𝑛,𝑚

𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑚+1 + 𝑥2𝑛 with 𝑛 > 𝑚 ≥ 1 𝐷𝑛,𝑚

These f all have mutually non-isomorphic Jacobi algebras.
2. Furthermore, those labelled 𝐷∞,∗ satisfy JdimJac( 𝑓 ) = 1, while those labelled 𝐷𝑛,∗ satisfy

JdimJac( 𝑓 ) = 0.
It is remarkable that all normal forms are polynomial, and even more remarkable that all coefficients

are integers. Indeed, all coefficients equal 1, and there are no continuous parameters.
The last remaining case for which JdimJac( 𝑓 ) ≤ 1 holds is when Crk( 𝑓 ) = 2 and Crk2( 𝑓 ) = 3. After

a suitable change in coordinates, all such f have the form

𝑓 � 𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑥3 + 𝑓≥4(𝑥, 𝑦)

with some extra conditions on 𝑓≥4(𝑥, 𝑦) to ensure that JdimJac( 𝑓 ) ≤ 1. We refer to these potentials as
Type E. The families described in both Types 𝐸6,𝑛 and 𝐸6,∞ in §1.2 are genuine examples. However,
there are many others; see [BW4]. Their classification depends, in a rather more subtle manner, on
naturally-defined higher coranks (see 4.9). For example, the potential 𝑥3 + 𝑥𝑦3 of Type 𝐸6,∞ has second
corank equal to 3, with all higher coranks equal to 4, while in contrast, the potentials 𝑓𝑛 of Type 𝐸6,𝑛
for 𝑛 ≥ 5 trim those coranks to

Crk2 ( 𝑓𝑛),Crk3 ( 𝑓𝑛), . . . ,Crk𝑛+6( 𝑓𝑛) = 3, 4, 4, . . . , 4, 4, 3, 3, 2, 1, 1.

In particular, Jac( 𝑓𝑛) has dimension 4(𝑛 + 3). Controlling normal forms in such situations is both
theoretically and computationally more difficult.

1.4. Intrinsically extracting ADE

It turns out that there are two, completely distinct, ways to extract ADE behaviour from the families
defined above, and thus explain the ADE naming conventions. In this section, we explain the purely
algebraic method; the birational geometry method is explained in §1.5 below.

The first method is the most surprising. Consider the six algebras defined explicitly by taking the
quotient of C〈𝑥, 𝑦〉 by one of the following six two-sided ideals:(

𝑥 + 𝑦 + 𝑧
𝑥, 𝑦, 𝑧

) (
𝑥 + 𝑦 + 𝑧

𝑥2, 𝑦2, 𝑧2

) (
𝑥 + 𝑦 + 𝑧

𝑥2, 𝑦3, 𝑧3

)
(
𝑥 + 𝑦 + 𝑧

𝑥2, 𝑦3, 𝑧4

) (
𝑥2 + 𝑦 + 𝑧
(see 7.1)

) (
𝑥 + 𝑦 + 𝑧

𝑥2, 𝑦3, 𝑧5

)
.

(3)

These have dimension 1, 4, 12, 24, 40 and 60 respectively. A presentation-free description of all six
algebras, which is conceptually more compelling, uniformly describes each in terms of the preprojective
algebra of ADE Dynkin diagrams (see §7.1).

The following result allows us to associate ADE information directly to the normal forms in §1.2
by asserting that all such Jacobi algebras generically slice to one of the six algebras in (3) above. This
is particularly striking since nothing in the definition of the families has involved any mention of only
six algebras, nor any mention of the preprojective algebra, and aside from our naming conventions, any
mention of ADE. It is not even clear that if JdimJac( 𝑓 ) ≤ 1, then Jac( 𝑓 ) admits a non-unit central
element.
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In order to consider all cases JdimJac( 𝑓 ) ≤ 1 together, below we adopt the convention that each ε𝑖
can be either 0 or 1.
Theorem 1.4 (7.7). Consider the normal forms 𝐴𝑛, 𝐷𝑛,𝑚, 𝐷𝑛,∞, 𝐸6,𝑛, 𝐴∞, 𝐷∞,𝑚, 𝐷∞,∞ and 𝐸6,∞ from
§1.2. In each case, define an element s as follows:

Type Normal form Conditions s

A 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

2 + ε1𝑦
𝑛 𝑛 ∈ N≥2 ∪ {∞} y

D 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥𝑦

2 + ε2𝑥
2𝑛 + ε3𝑥

2𝑚−1 𝑚, 𝑛 ∈ N≥2 ∪ {∞} 𝑥2

E 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

3 + 𝑥𝑦3 + ε4𝑦
𝑛 𝑛 ∈ N≥4 𝑔6,𝑛

where 𝑔6,𝑛 is defined in §7. Then the following statements hold.
1. The element s is central in Jac( 𝑓 ), and furthermore, Jac( 𝑓 )/(𝑠) is isomorphic to one of the six

algebras in (3).
2. More specifically, Jac( 𝑓 )/(𝑠) is isomorphic to the first algebra in (3) when f is in the family 𝐴∗, the

second algebra in (3) when f is in the family 𝐷∗,∗, and the third algebra in (3) when f is in the family
𝐸6,∗.

3. For any generic central element g, the quotient Jac( 𝑓 )/(𝑔) is isomorphic to the first algebra in (3)
when f is in the family 𝐴∗, and the second algebra in (3) when f is in the family 𝐷∗,∗.
Most of the content in the theorem lies within the third part since generic elements, defined in 7.4,

provide an intrinsic method of extracting the ADE information. The choice of central element 𝑔6,𝑛,
which is rather involved, works for Type 𝐸6,∗, and there is also strong evidence that generic elements
there also quotient to give the correct algebra in the sequence (3). Establishing this is computationally
much harder and will be addressed elsewhere [BW4]. We remark that all other examples we know within
Type E, but which are not explicitly stated above, also factor to one of the six algebras in (3).

In the geometric context of §1.7 below, the generic central element g of 1.4 should be thought of as
the noncommutative version of Reid’s general elephant [R2, (1.14)]. Remarkably, the above theorem
neither implies, nor is implied by, Reid’s version.

1.5. The classification of flops

The noncommutative singularity results in §1.3 have immediate applications in birational geometry.
The slogan is simple: while Arnold’s commutative normal forms classify Du Val singularities, noncom-
mutative normal forms classify compound Du Val (cDV) singularities.

The key and most remarkable special case is that the normal forms in Table 1 classify smooth 3-fold
flops [DW1, A3, JKM]. We first very briefly recall the geometric setting, where general background is
left to, for example, [KMM], before outlining the new results.

Given any crepant projective birational morphism X → Spec R, where R is complete local cDV
singularity, there is an associated contraction algebra Acon formed by considering noncommutative
deformations of the curves above the unique closed point [DW1, DW3]. This is the finest known
curve invariant associated to the contraction. When the contraction is furthermore simple – namely, the
reduced fibre above the origin is P1 and further X is smooth – then it is well known [DW1, V1] that
Acon � Jac( 𝑓 ) for some 𝑓 ∈ C〈〈𝑥, 𝑦〉〉 (see, for example, [BW1, 3.1(2)]).

Since cDV singularities are normal, necessarily JdimAcon ≤ 1, and there is a natural geometric
dichotomy. Indeed, as explained in 8.5, if Acon is a contraction algebra associated to a crepant X →
Spec R as above, then
1. JdimAcon = 0 if and only if X→ Spec R is a flop, and
2. JdimAcon = 1 if and only if X→ Spec R is a divisorial contraction to a curve.
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Figure 1. Classifying Type D flops.

The only other fact we will require is that every X → Spec R has an associated ADE type, since by
Reid’s general elephant [R2, (1.14)] a generic 𝑔 ∈ 𝔪 slices to give an ADE surface singularity R/𝑔. We
will say R has Type D if the generic slice is Type D, etc.

With this in mind, the results in §1.3 have immediate consequences. After first using the normal
forms to classify contraction algebras, the following then gives the analytic classification of length two
flops and beyond. It also gives the second, geometric, method to extract ADE information from the
normal forms in §1.2.

Theorem 1.5 (8.2, 8.9, 8.17, 8.10). With notation as above, the following hold:

1. The only contraction algebras for Type A and D flops are, up to isomorphism, the Jacobi algebras of
Type A and D potentials in Table 1.

2. All Jacobi algebras in 1.2 and 1.3 are contraction algebras.
3. (a) Type A flops are classified by Type A normal forms in Table 1.

(b) Type D flops are classified by Type D normal forms in Table 1.

Furthermore, Type E flops are classified by Type E normal forms.

In the process of establishing 1.5, we use the examples of flops given in our previous work [BW1],
together with their generalisations [vG, Ka]. While the above classifies flops using noncommutative
data, the following geometric description is perhaps more desirable.

Theorem 1.6 (8.11). There is a one-to-one correspondence between lattice points in Figure 1 and the
base singularities 0 ∈ Spec R of Type D flops, given by

(𝑛, 𝑚) ↦→ Spec
(

C[[𝑢, 𝑣, 𝑥, 𝑦]]
𝑢2 + 𝑣2𝑦 − 𝑥(𝑦2𝑛+1 + (𝑥 + ε𝑦𝑚)2)

)
,

where ε = 1 if the lattice point is contained within the shaded region, and ε = 0 otherwise.
In particular, Type D flops do not admit moduli. Furthermore, the following hold.

1. The quasi-homogeneous Type D flops are precisely those outside the shaded region, and these are
the standard Laufer family.

2. The GV invariants 𝑛1, 𝑛2 of the flopping contraction associated to a point (𝑛, 𝑚) are illustrated in
Figure 1. The ovals group together flops with the same GV invariants.
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Figure 2. List of 𝑝(𝑥) for which 𝑥𝑦2 + 𝑝(𝑥) is one of the normal forms in 𝐷𝑛,𝑚 or 𝐷𝑛,∞. The pair 𝑛1, 𝑛2
associated to each 𝑝(𝑥) describes the GV invariants of any simple flop having isomorphic contraction
algebra.

It is possible to instead index the GV invariants to the classifying potentials, which we do in Figure 2
above. Either way, the important point is that not all pairs of GV invariants 𝑛1, 𝑛2 can be realised.

Corollary 1.7 (8.13). There are no simple flopping contractions with GV invariants 5, 𝑛 with 𝑛 ≥ 2.
Similarly for 2𝑚 + 1, 𝑛 with 𝑚 ≥ 2 and 𝑛 ≠ 𝑚 − 1.

More generally, the 𝐸6,𝑛 normal forms in Table 1 predict the first ever infinite family of 𝐸6 flops,
and indeed, this family turns out to exist. Furthermore, the various other type E normal forms not stated
precisely in Table 1 both predict and classify 𝐸7 and 𝐸8 flops. Details will appear elsewhere [BW4],
with the point being that noncommutative singularity theory predicts that GV invariants are extremely
constrained.

1.6. Other cDV Applications

Our results also have applications to 3-fold divisorial contractions to a curve. While there is an extensive
literature [T2, T3, Du] on extremal (K-negative) divisorial contractions in the presence of terminal
singularities, the K-trivial case considered here is much less studied, aside from the notable [W].

In contrast to the previous section §1.5, the analogue of the Donovan–Wemyss [DW1] conjecture for
divisorial contractions to a curve remains open. A positive solution to this conjecture would immediately
imply that the normal forms in Table 2 give the full classification of 3-fold divisorial contractions to
a curve, exactly as in §1.5 where the normal forms in Table 1 classified flops. For now, while the
generalised conjecture remains open, our noncommutative normal forms still have many consequences
and give unexpected predictions.

First of all, our control of normal forms allows us to constrain possible deformations of the fibres by
classifying the contraction algebras that can arise.

Proposition 1.8 (8.21, 8.22). The only contraction algebras for Type A and 𝐷4 smooth divisor-to-curve
contractions are, up to isomorphism, the Jacobi algebras of the Type A and D potentials in Table 2.

The normal forms in Table 2, together with 1.8 and the generalised Donovan–Wemyss conjecture,
then predict the first and only infinite family of Type D divisorial contractions to a curve. None of these
have been seen before; the following realises the whole family.
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Proposition 1.9 (8.16). Consider the element of C[[𝑋,𝑌, 𝑍, 𝑇]] defined by

𝐹𝑚 �
{
𝑌 (𝑋𝑚 + 𝑌 )2 + 𝑋𝑍2 − 𝑇2 if 𝑚 ≥ 1

𝑌3 + 𝑋𝑍2 − 𝑇2 if 𝑚 = ∞

and set R𝑚 = C[[𝑋,𝑌, 𝑍, 𝑇]]/𝐹𝑚. Then the following statements hold.

1. Sing(R𝑚)red = (𝑋𝑀 + 𝑌, 𝑍, 𝑇) if 𝑚 ≥ 1, and (𝑌, 𝑍, 𝑇) if 𝑚 = ∞.
2. In either case, blowing up this locus gives rise to a crepant Type D divisorial contraction to a curve

X𝑚 → Spec R𝑚 where X𝑚 is smooth.
3. The contraction algebra of X𝑚 → Spec R𝑚 is isomorphic to Jac(𝑥𝑦2 + 𝑥2𝑚+1) when 𝑚 ≥ 1,

respectively Jac(𝑥𝑦2) when 𝑚 = ∞.

Thus, in call cases, the noncommutative forms 𝐷∞,∗ are geometrically realised by 𝐹∗. The case
𝑚 = ∞ appeared in [DW4, 2.18]; the infinite family is new.

More generally, the rather lonely 𝐸6,∞ normal form in Table 2 predicts a divisorial contraction to a
curve of Type 𝐸6. This also turns out to exist, and details will again appear elsewhere [BW4]. In fact,
all the evidence now strongly suggests that 𝐸6,∞ is the final potential satisfying JdimJac( 𝑓 ) ≤ 1, which
gives the striking geometric prediction that divisorial contractions to a curve of Type 𝐸7 and 𝐸8 do not
exist.

1.7. Contractibility and realisation

It was conjectured in [Ka2, BW2] that in addition to being the classifying structure of contractible
curves, noncommutative deformation theory (implicit in the above) also detects which curves can be
contracted. Specifically, the conjecture asserts that a collection of crepant rational curves contracts to
a point suitably locally, without contracting a divisor, if and only if its associated noncommutative
deformation algebra is finite dimensional. This should be viewed as a wide-ranging generalisation of
celebrated work of Artin [A1] (for surfaces) and Jiménez [J].

The key test case is when the curve is irreducible. One consequence of Appendix A is that the
conjecture is very reasonable: the only open case is now that of (−3, 1) curves.

Theorem 1.10 (A.15). Let C ⊂ X be an irreducible rational curve in a smooth CY 3-fold, with NC
deformation algebra Λdef , such that NC |X ≠ (−3, 1). Then C ⊂ X contracts to a point suitably locally,
without contracting a divisor, if and only if dimC Λdef < ∞.

Another consequence of this paper is a prediction regarding realising Jacobi algebras from geometry.
We will call 𝑓 ∈ C〈〈x〉〉 geometric if it arises from geometry – that is, Jac( 𝑓 ) isomorphic to the contraction
algebra of some X→ Spec R described in §1.5. Based partly on the results in this paper, and partly on
extensive computer algebra searches using the software [BCP, DGPS], we conjecture the following.

Conjecture 1.11 (The Realisation Conjecture). Every 𝑓 ∈ C〈〈x〉〉 whose Jacobi algebra satisfies
JdimJac( 𝑓 ) ≤ 1 is geometric.

The conjecture being true would imply that every finite dimensional Jac( 𝑓 ) is symmetric [A3, 2.6],
that is HomC(Jac( 𝑓 ),C) � Jac( 𝑓 ) as bimodules, a property which itself is far from clear. In 2014, our
original expectation was that contraction algebras are a strict subset of Jacobi algebras, and the task
was to recognise them, but since then all computer searches and all papers (e.g., [D]) which have tried
to disprove the conjecture have inadvertently ended up giving more evidence for it. This paper is no
different.

Corollary 1.12 (8.18). Conjecture 1.11 is true, except possibly for the one remaining unresolved case
when 𝑓 � 𝑥3 + O4, where some further analysis is required.
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In the remaining cases, it does now seem likely that all potentials 𝑓 � 𝑥3+O4 for which JdimJac( 𝑓 ) ≤
1 are isomorphic to contraction algebras of 𝑐𝐸𝑛 singularities.

1.8. Notation and conventions

Throughout, we work over the complex numbers C, which is necessary for various statements to hold,
although any algebraically closed field of characteristic zero would suffice. In addition, we adopt the
following notation.

1. Throughout, 𝑑 ≥ 1 is fixed to be the number of variables. Set x = 𝑥1, . . . , 𝑥𝑑 , and C〈〈x〉〉 =
C〈〈𝑥1, . . . , 𝑥𝑑〉〉.

2. Vector space dimension will be written dimC𝑉 .
3. C〈〈x〉〉𝑖 or C〈x〉𝑖 will denote the vector subspace of C〈〈x〉〉 consisting of homogeneous degree i

polynomials. For a formal power series 𝑔 ∈ C〈〈x〉〉, we denote the graded (necessarily polynomial)
piece of degree i of g by 𝑔𝑖 ∈ C〈〈x〉〉𝑖 .

4. Write 𝑔<𝑑 =
∑
𝑖<𝑑 𝑔𝑖 and 𝑔>𝑑 =

∑
𝑖>𝑑 𝑔𝑖 , with natural self-documenting variations such as 𝑔≥𝑑 .

Thus, for example, 𝑔 = 𝑔3 + 𝑔4 + 𝑔≥5 is a power series with no terms in degrees 0, 1 and 2, and no
further conditions.

5. Given 𝑔, ℎ ∈ C〈〈x〉〉, write 𝑔 = ℎ + O𝑑 as a shorthand for 𝑔<𝑑 = ℎ<𝑑 .
6. The previous conventions on degree introduce one typographical difficulty – namely, the compatibility

with sequences. We will frequently work with sequences (f𝑛)𝑛≥1 of power series f𝑛 ∈ C〈〈x〉〉, and
analogously we write (f𝑛)𝑑 , (f𝑛)<𝑑 ∈ C〈x〉 and (f𝑛)>𝑑 ∈ C〈〈x〉〉 for its pieces in the indicated degrees.
To scrupulously avoid confusion, we will systematically use Greek font f𝑛 to denote the nth power
series in a sequence, and not the nth degree graded piece of a single power series.

7. The notation §𝑥.𝑦 refers to Subsection 𝑥.𝑦, (𝑛.𝑚) refers to displayed equation (𝑛.𝑚), and 𝑛.𝑚 refers
to statement 𝑛.𝑚, where the type of statement – Definition, Theorem, and so on – is usually left
unspecified.

2. Formal automorphisms

This section reviews properties of the noncommutative formal power seriesC〈〈x〉〉, and also constructions
of various automorphisms of C〈〈x〉〉, mainly following [DWZ, §2]. From the viewpoint of noncommuta-
tive singularity theory, it is the construction in §2.6 leading to 3.7(3) that will be used heavily in later
sections.

2.1. Polynomial and power series notation

As in the introduction, write C〈〈x〉〉 for formal noncommutative power series in d variables, and further
write C〈x〉 = C〈𝑥1, . . . , 𝑥𝑑〉 for the free algebra in d variables. For either 𝑓 ∈ C〈x〉 or C〈〈x〉〉, write f in
terms of its homogeneous pieces as

𝑓 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + . . . ,

and define the order of f to be ord( 𝑓 ) = min{𝑖 | 𝑓𝑖 ≠ 0}, where by convention, ord(0) = ∞. For any
𝑡 ≥ 0, set C〈〈x〉〉≥𝑡 = { 𝑓 ∈ C〈〈x〉〉 | 𝑓𝑖 = 0 if 𝑖 < 𝑡} = { 𝑓 ∈ C〈〈x〉〉 | ord( 𝑓 ) ≥ 𝑡}, and note that this
contains the zero element.
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2.2. Complete completions

To fix notation, let 𝔪 = (𝑥1, . . . , 𝑥𝑑) denote the two-sided maximal ideal of the free algebra C〈x〉. The
𝔪-adic completion of C〈x〉 is

lim←−−C〈x〉/𝔪
𝑛,

which is the set of sequences (𝑎𝑛)𝑛≥1 of 𝑎𝑛 ∈ C〈x〉/𝔪𝑛 that satisfy 𝑎𝑛+1 + 𝔪𝑛 = 𝑎𝑛 + 𝔪𝑛 for all n,
sometimes called coherent sequences.

In addition, consider the formal power series ring C〈〈x〉〉 in noncommutative variables 𝑥1, . . . , 𝑥𝑑 ,
with two-sided maximal ideal 𝔫 containing those power series with zero constant term. There is an
isomorphism

C〈〈x〉〉 � lim←−−C〈x〉/𝔪
𝑛,

which sends a formal power series f to the coherent sequence ( 𝑓<𝑛+𝔪𝑛)𝑛≥1. Below, we will freely make
this identification, and further that the following diagrams for all 𝑖 ≥ 𝑗 form an inverse limit system

C〈〈x〉〉

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

π𝑖 π 𝑗

where the map π𝑖 sends 𝑓 ↦→ 𝑓<𝑖 +𝔪𝑖 , and the horizontal map is the natural one.
Given a sequence (f𝑖)𝑖≥1 of elements of C〈〈x〉〉, and 𝑓 ∈ C〈〈x〉〉, recall the following:

• (f𝑖) converges to f if ∀ 𝑛 ≥ 1, ∃ 𝑁 such that f𝑖 − 𝑓 ∈ 𝔫𝑛 for all 𝑖 ≥ 𝑁 .
• (f𝑖) is Cauchy if ∀ 𝑛 ≥ 1, ∃ 𝑁 such that f𝑖 − f 𝑗 ∈ 𝔫𝑛 for all 𝑖, 𝑗 ≥ 𝑁 .

Taking completions of non-noetherian rings in general can be subtle. However, in the situation here,
since for all i,

𝔫𝑖 = Ker(π𝑖) = { 𝑓 ∈ C〈〈x〉〉 | 𝑓0 = . . . = 𝑓𝑖−1 = 0},

it is clear that C〈〈x〉〉 is complete with respect to its 𝔫-adic topology. That is, every Cauchy sequence in
C〈〈x〉〉 converges.

The algebra C〈〈x〉〉 is a topological algebra with basis of the topology given by the ideals {𝔫𝑖}, where
𝔫𝑖 is both open and closed. The free algebra C〈x〉 embeds as a dense subalgebra of C〈〈x〉〉, and the ideal
𝔫𝑛 is the closure of 𝔪𝑛, or equivalently, 𝔫𝑛 is the smallest closed ideal that contains all monomials
𝑥𝑎1

1 . . . 𝑥𝑎𝑑𝑑 of degree
∑𝑑
𝑘=1 𝑎𝑘 = 𝑛.

2.3. Formal automorphisms

As input, consider a sequence of algebra isomorphisms (ϕ𝑖 : C〈x〉/𝔪𝑖 → C〈x〉/𝔪𝑖)𝑖≥1 for which

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

ϕ𝑖 ϕ 𝑗 (4)

commutes for all 𝑖 ≥ 𝑗 . Then the universal property for the 𝔪-adic completion lifts these to an algebra
automorphism ϕ : C〈〈x〉〉 → C〈〈x〉〉 such that the following diagram commutes:
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C〈〈x〉〉

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

C〈〈x〉〉

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

ϕ𝑖 ϕ 𝑗

π𝑖 π 𝑗

π𝑖 π 𝑗

ϕ
(5)

The following special case will be important later. For any fixed f1, . . . , f𝑑 ∈ 𝔫2 ⊂ C〈〈x〉〉, consider the
algebra homomorphisms

φ𝑖 : C〈x〉/𝔪𝑖 → C〈x〉/𝔪𝑖

defined by sending 𝑥𝑘 +𝔪𝑖 ↦→ 𝑥𝑘 + (f𝑘 )<𝑖 +𝔪𝑖 for each 1 ≤ 𝑘 ≤ 𝑑. On the truncated finite dimensional
algebras C〈x〉/𝔪𝑖 , clearly each φ𝑖 is an algebra isomorphism, and further, since the truncation of a
truncation is itself a truncation, (4) applied to the φ𝑖 commutes. As a consequence, (5) induces an
automorphism φ : C〈〈x〉〉 → C〈〈x〉〉.

Definition 2.1. Given f1, . . . , f𝑑 ∈ 𝔫2, the above φ : C〈〈x〉〉 → C〈〈x〉〉 is called a unitriangular automor-
phism. We will abuse notation slightly and write

C〈〈x〉〉 → C〈〈x〉〉
𝑥𝑘 ↦→ 𝑥𝑘 + f𝑘

for φ, since indeed φ is induced by such morphisms on the truncations C〈x〉/𝔪𝑖 . For 𝑒 ≥ 1, we say that
φ has depth e provided that f1, . . . , f𝑑 ∈ 𝔫𝑒+1.

Lemma 2.2. With notation as above, the following statements hold.

1. A C-algebra homomorphism φ : C〈〈x〉〉 → C〈〈x〉〉 is a unitriangular automorphism of depth 𝑒 ≥ 1 if
and only if φ( 𝑓 )≤𝑒 = 𝑓≤𝑒 for every 𝑓 ∈ C〈〈x〉〉.

2. If φ and ψ are unitriangular automorphisms of C〈〈x〉〉 of depth 𝑒1 ≥ 1 and 𝑒2 ≥ 1, respectively, then
their composition ψ ◦ φ is a unitriangular automorphism, of depth min{𝑒1, 𝑒2}.

Remark 2.3. Any homomorphism φ : C〈〈x〉〉 → C〈〈x〉〉 is continuous. Indeed, φ−1 (𝔫) is the kernel of
the surjective composition

C〈〈x〉〉
φ
−→ C〈〈x〉〉 −→ C〈〈x〉〉/𝔫.

Hence, C〈〈x〉〉/φ−1 (𝔫) � C, and so φ−1 (𝔫) = 𝔫 since 𝔫 is the unique maximal ideal. In particular, in the
language of [Wa, 5.10], any algebra automorphism of C〈〈x〉〉 is automatically a topological isomorphism
since its inverse is automatically continuous.

2.4. Limits of unitriangular automorphisms

Under specific situations, it is possible to build a sequence of automorphisms φ1, φ2, . . . of C〈〈x〉〉 and
take their limit.

For this, consider any d sequences (g1
𝑖 )𝑖≥1, . . . , (g𝑑𝑖 )𝑖≥1, where each g𝑘𝑖 ∈ 𝔫𝑖+1. By 2.1, these give

rise to a sequence of unitriangular automorphisms φ1, φ2, . . . where

φ𝑖 : C〈〈x〉〉 → C〈〈x〉〉
𝑥𝑘 ↦→ 𝑥𝑘 + g𝑘𝑖 .

https://doi.org/10.1017/fmp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.2


Forum of Mathematics, Pi 13

Again, the above are induced from the corresponding maps 𝑥𝑘 + 𝔪 𝑗 ↦→ 𝑥𝑘 + (g𝑘𝑖 )< 𝑗 + 𝔪 𝑗 on the
truncations C〈x〉/𝔪 𝑗 , and where each φ𝑖 has depth i. To ease the subscripts in the notation below, we
will also write φ𝑖 for these morphisms viewed on the truncations.

Given this abuse of notation, for all 𝑖 ≥ 𝑗 ≥ 1, we claim that the following diagram commutes, where
if 𝑖 = 1 or 𝑗 = 1, then the corresponding vertical map is the identity.

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

φ𝑖−1◦···◦φ1 φ 𝑗−1◦···◦φ1 (6)

To see this, note that since each g𝑘𝑖 ∈ 𝔫𝑖+1, it follows (in the case 𝑖 > 𝑗) that the bottom square in the
following diagram commutes:

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

...
...

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

C〈x〉/𝔪𝑖 C〈x〉/𝔪 𝑗

φ1 φ1

φ2 φ2

φ 𝑗−1 φ 𝑗−1

φ𝑖−1◦···◦φ 𝑗 Id

Since we are abusing notation, the higher squares commute simply since the truncation of a truncation
is itself a truncation. Thus, all squares commute, establishing (6).

Setting ϑ𝑖 � φ𝑖−1 ◦ · · · ◦ φ1 : C〈x〉/𝔪𝑖 → C〈x〉/𝔪𝑖 , again with the convention that ϑ1 = Id, then
each ϑ𝑖 is an automorphism since each φ𝑡 is. Thus, (4) induces, through (5), an automorphism of C〈〈x〉〉
such that for all 𝑖 ≥ 𝑗 , the following diagram commutes.

C〈〈x〉〉 C〈〈x〉〉

C〈x〉/𝔪𝑖 C〈x〉/𝔪𝑖

∃

π𝑖 π𝑖

ϑ𝑖

(7)

Write lim←−− φ
𝑛 · · · φ1 for this induced automorphism.

Lemma 2.4. With notation and assumptions as directly above, for any 𝑓 ∈ C〈〈x〉〉, the sequence
(φ𝑛 · · · φ1 ( 𝑓 ))𝑛≥1 has limit lim←−− φ

𝑛 · · · φ1 ( 𝑓 ).

Proof. Set 𝐹 = lim←−− φ
𝑛 · · · φ1. Then it suffices to prove that for all 𝑛 ≥ 1, there exists N such that

φ𝑡 · · · φ1( 𝑓 ) − 𝐹 ( 𝑓 ) ∈ 𝔫𝑛 for all 𝑡 ≥ 𝑁 . This follows since for all 𝑖 > 𝑛,

𝐹 ( 𝑓 ) + 𝔫𝑛 (7)
= φ𝑛−1 · · · φ1 ( 𝑓 ) + 𝔫𝑛 (6)

= φ𝑖−1 · · · φ1( 𝑓 ) + 𝔫𝑛.
�
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2.5. Closure and cyclic permutation

Definition 2.5. For any subset S ⊂ C〈〈x〉〉, its closure is defined to be

S =
∞⋂
𝑖=0
(S + 𝔫𝑖).

That is, 𝑏 ∈ S if and only if for all 𝑖 ≥ 0, there exists 𝑠𝑖 ∈ S such that 𝑏 − 𝑠𝑖 ∈ 𝔫𝑖 .

Notation 2.6. For A � C〈〈x〉〉, consider {A,A}, the commutator vector space ofC〈〈x〉〉. That is, elements
of {A,A} are finite sums

𝑛∑
𝑖=1

𝜆𝑖 (𝑎𝑖𝑏𝑖 − 𝑏𝑖𝑎𝑖)

for elements 𝑎𝑖 , 𝑏𝑖 ∈ C〈〈x〉〉 and 𝜆𝑖 ∈ C. Write {{A,A}} for the closure of the commutator vector space
{A,A}. Note that {{A,A}} is only a vector space, not an ideal.

Definition 2.7. Two elements 𝑓 , 𝑔 ∈ C〈〈x〉〉 are called cyclically equivalent, or f is said to cyclically
permute to g, if 𝑓 − 𝑔 ∈ {{A,A}}. We write 𝑓 ∼ 𝑔 in this case.

Remark 2.8. This notion of cyclic equivalence applied to a pair of polynomials is finite and elementary:
it is generated over C by commutators [𝑚1, 𝑚2] of monomials 𝑚𝑖 ∈ C〈x〉. With that in mind, 2.7 is then
the natural notion for formal power series, as 𝑓 ∼ 𝑔 means precisely that 𝑓𝑑 ∼ 𝑔𝑑 in every degree d,
and no more: the closure merely handles the possibility that f and g may differ by infinitely many such
operations.

2.6. Chasing into higher degrees

The following will be one of our main techniques for producing normal forms of potentials in C〈〈x〉〉.
The basic idea is to start with a given f, then produce an infinite sequence of automorphisms which
chase terms into higher and higher degrees. Taking limits then gives a single automorphism which takes
f to the desired normal form. The subtle point is that at each stage the automorphisms in (2) below only
give the desired elements up to cyclic permutation. As such, the content in the following is that, with
care, limits interact well with cyclic permutation.

Theorem 2.9. Let 𝑓 ∈ C〈〈x〉〉, and set f1 = 𝑓 . Suppose that there exist elements f2, f3, . . . and automor-
phisms φ1, φ2, . . . such that

1. Every φ𝑖 is unitriangular, of depth of ≥ 𝑖, and
2. φ𝑖 (f𝑖) − f𝑖+1 ∈ {{A,A}} ∩ 𝔫𝑖+1, for all 𝑖 ≥ 1.

Then lim f𝑖 exists, and there exists an automorphism F such that 𝐹 ( 𝑓 ) ∼ lim f𝑖 .

Proof. The proof follows the strategy used in [DWZ, 4.7], but as the axiomatics are different here, we
give the full proof. By §2.4, there is an automorphism 𝐹 � lim←−− φ

𝑛 · · · φ1.
Since the depth of φ𝑖 is ≥ 𝑖, by 2.2(1), φ𝑖 (f𝑖) differs from f𝑖 only in degrees > 𝑖. By (2), φ𝑖 (f𝑖) differs

from f𝑖+1 only in degrees > 𝑖. Hence, f𝑖+1 differs from f𝑖 only in degrees > 𝑖, from which it easily follows
that (f𝑛) is a Cauchy sequence. Since Cauchy sequences converge in C〈〈x〉〉, the limit lim f𝑖 exists.
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Set 𝑐𝑖 = φ𝑖 (f𝑖) − f𝑖+1 ∈ {{A,A}} ∩ 𝔫𝑖+1. Since 𝑓 = f1, it is easy to see that

φ𝑛 · · · φ1( 𝑓 ) = f𝑛+1 +
𝑛∑
𝑡=1

φ𝑛 · · · φ𝑡+1 (𝑐𝑡 )

= f𝑛+1 + φ𝑛 · · · φ1

(
𝑛∑
𝑡=1
(φ𝑡 · · · φ1)−1(𝑐𝑡 )

)
, (8)

where φ𝑛 · · · φ𝑡+1 is the identity when 𝑡 = 𝑛. By 2.4, the left-hand side has limit 𝐹 ( 𝑓 ). The first part
of the right-hand side has limit lim f𝑖 , which exists by above. We next claim that the rightmost term has
limit 𝐹 (𝑔), where g is the limit of the sequence (

∑𝑛
𝑡=1 (φ𝑡 · · · φ1)−1(𝑐𝑡 ))𝑛≥1.

First, g exists, since by (2), 𝑐𝑖 ∈ 𝔫𝑖+1, and so since automorphisms preserve the maximal ideal,
(φ𝑡 · · · φ1)−1(𝑐𝑡 ) ∈ 𝔫𝑡+1 for all t. It follows easily that the sequence

(∑𝑛
𝑡=1 (φ𝑡 · · · φ1)−1(𝑐𝑡 )

)
𝑛≥1

is Cauchy, and so its limit g exists in C〈〈x〉〉. Given this, the fact that the sequence(
φ𝑛 · · · φ1 (

∑𝑛
𝑡=1 (φ𝑡 · · · φ1)−1(𝑐𝑡 ))

)
𝑛≥1 has limit 𝐹 (𝑔) follows, since for all 𝑖 > 𝑛,

𝐹 (𝑔) + 𝔫𝑛+1 = φ𝑛 · · · φ1 (π𝑛+1 (𝑔)) + 𝔫𝑛+1

(by (7))

= φ𝑛 · · · φ1

(
𝑛∑
𝑡=1
(φ𝑡 · · · φ1)−1(𝑐𝑡 ) + 𝔫𝑛+1

)
+ 𝔫𝑛+1 (since (𝜑t· · · 𝜑1)−1(ct) ∈ 𝔫t+1)

= φ𝑛 · · · φ1

(
𝑖∑
𝑡=1
(φ𝑡 · · · φ1)−1(𝑐𝑡 ) + 𝔫𝑛+1

)
+ 𝔫𝑛+1 (add zero)

= φ𝑖 · · · φ1

(
𝑖∑
𝑡=1
(φ𝑡 · · · φ1)−1(𝑐𝑡 )

)
+ 𝔫𝑛+1. (by (6))

Combining with (8) and taking limits, it follows that

𝐹 ( 𝑓 ) = lim f𝑖 + 𝐹 (𝑔). (9)

Now, it is easy to check that automorphisms preserve {{A,A}}, so each term in the sequence(
φ𝑛 · · · φ1 (

∑𝑛
𝑡=1 (φ𝑡 · · · φ1)−1(𝑐𝑡 ))

)
𝑛≥1 belongs to {{A,A}}. But since C〈〈x〉〉 is complete, every Cauchy

sequence within a closed set has limit in that closed set. It follows that the limit 𝑔 ∈ {{A,A}}. One
final application of the fact that automorphisms preserve {{A,A}} shows that 𝐹 (𝑔) ∈ {{A,A}}, and so
𝐹 ( 𝑓 ) ∼ lim f𝑖 . �

2.7. Elementary properties of closed ideals

We finish this section with some technical results on closed ideals that are used throughout §6–§8.

Notation 2.10. When I is an ideal, write ((𝐼)) for its closure (in the sense of 2.5), which is again an ideal
since the ring operations are continuous. Note that ((𝐼)) need not be finitely generated, even if I is.

For a finite set of elements S in C〈〈x〉〉, consider the closed ideal ((S)) = ((𝑠 | 𝑠 ∈ S)).

Lemma 2.11. Let S be a finite subset of elements in C〈〈x〉〉, and 𝑓1, . . . , 𝑓𝑠 ∈ C〈〈x〉〉. Then the following
statements hold.

1. (( 𝑓1, . . . , 𝑓𝑠)) = (( 𝑓1𝑢1, . . . , 𝑓𝑠𝑢𝑠)) for any units 𝑢1, . . . , 𝑢𝑠 ∈ C〈〈x〉〉.
2. (( 𝑓 + ((S)) )) = (( 𝑓 , 𝑠 | 𝑠 ∈ S))/((S)) in C〈〈x〉〉/((S)).
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3. If ψ : C〈〈x〉〉/((S)) → C〈〈x〉〉/((S)) is a topological isomorphism which sends 𝑓 + ((S)) ↦→ 𝑔 + ((S)), for
two elements 𝑓 , 𝑔 ∈ C〈〈x〉〉, then there is an induced topological isomorphism

C〈〈x〉〉
(( 𝑓 , 𝑠 | 𝑠 ∈ S))

�−→ C〈〈x〉〉
((𝑔, 𝑠 | 𝑠 ∈ S)) .

Proof. (1) (( 𝑓1, . . . , 𝑓𝑠)) is the smallest closed ideal containing all 𝑓𝑖 . Since 𝑓𝑖 = ( 𝑓𝑖𝑢𝑖)𝑢−1
𝑖 ∈

(( 𝑓1𝑢1, . . . , 𝑓𝑠𝑢𝑠)) for each i, by minimality, (( 𝑓1, . . . , 𝑓𝑠)) ⊆ (( 𝑓1𝑢1, . . . , 𝑓𝑠𝑢𝑠)). Repeating the same
argument to 𝑓𝑖𝑢𝑖 ∈ (( 𝑓1, . . . , 𝑓𝑠)), the converse inclusion also holds.

(2) Certainly, (( 𝑓 + ((S)) )) = 𝐼/((S)) for some ideal I, given it is an ideal of the quotient. This ideal
I is closed by [Wa, 5.2] since the map to the quotient is continuous, and hence, the inverse image of a
closed set is closed. This closed ideal I contains both f and S, and so (( 𝑓 , 𝑠 | 𝑠 ∈ S)) ⊆ 𝐼.

However, (( 𝑓 + ((S)) )) is the smallest closed ideal containing 𝑓 + ((S)). Setting 𝐴 = C〈〈x〉〉, 𝐽 = ((S)),
and 𝐻 = (( 𝑓 , 𝑠 | 𝑠 ∈ S)), the third isomorphism theorem for topological rings [Wa, 5.13] asserts that
there is a topological isomorphism

(𝐴/𝐽)/(𝐻/𝐽) � 𝐴/𝐻.

In particular, 𝐴/𝐻 is Hausdorff since H is closed in A, by [Wa, 5.7(1)] applied to A. This being the case,
𝐻/𝐽 is closed in 𝐴/𝐽, by [Wa, 5.7(1)] applied to 𝐴/𝐽. Hence, (( 𝑓 , 𝑠 | 𝑠 ∈ S))/((S)) is a closed ideal,
which clearly contains 𝑓 + ((S)). By minimality, (( 𝑓 + ((S)) )) = 𝐼/((S)) ⊆ (( 𝑓 , 𝑠 | 𝑠 ∈ S))/((S)), and thus,
𝐼 ⊆ (( 𝑓 , 𝑠 | 𝑠 ∈ S)). Combining inclusions, the required equality holds.

(3) Since ψ is a continuous isomorphism, the closed ideal generated by 𝑓 + ((S)) corresponds to the
closed ideal generated by 𝑔 + ((S)). Thus, there is a topological isomorphism

C〈〈x〉〉/((S))
(( 𝑓 + ((S)) )) −→

C〈〈x〉〉/((S))
((𝑔 + ((S)) )) .

Now by (2), we have (( 𝑓 + ((S)) )) = (( 𝑓 , 𝑠 | 𝑠 ∈ S))/((S)), and likewise for g. The statement follows by
the third isomorphism theorem for topological rings [Wa, 5.13]. �

3. Jacobi algebras

3.1. Differentiation

Consider the C-linear maps 𝜕𝑖 : C〈〈x〉〉 → C〈〈x〉〉 which simply ‘strike off’ the leftmost 𝑥𝑖 of each
monomial – in other words, act on monomials via the rule

𝜕𝑖 (𝑚) =
{
𝑛 if 𝑚 = 𝑥𝑖𝑛

0 otherwise.
(10)

The C-linear cyclic symmetrisation map cyc: C〈〈x〉〉 → C〈〈x〉〉 on monomials sends

𝑥𝑖1 . . . 𝑥𝑖𝑡 ↦→
𝑡∑
𝑗=1

𝑥𝑖 𝑗 𝑥𝑖 𝑗+1 . . . 𝑥𝑖𝑡 · 𝑥𝑖1 . . . 𝑥𝑖 𝑗−1 .

Combining these two gives the cyclic derivatives. These are theC-linear maps δ𝑖 : C〈〈x〉〉 → C〈〈x〉〉 which
on monomials send

𝑥𝑖1 . . . 𝑥𝑖𝑡 ↦→ 𝜕𝑖 cyc(𝑥𝑖1 . . . 𝑥𝑖𝑡 ) =
𝑡∑
𝑗=1

𝜕𝑖 (𝑥𝑖 𝑗 𝑥𝑖 𝑗+1 . . . 𝑥𝑖𝑡 · 𝑥𝑖1 . . . 𝑥𝑖 𝑗−1 ). (11)
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Definition 3.1. For 𝑓 ∈ C〈〈x〉〉, the Jacobi algebra is defined to be

Jac( 𝑓 ) = C〈〈x〉〉
((δ1 𝑓 , . . . , δ𝑑 𝑓 ))

,

where ((δ1 𝑓 , . . . , δ𝑑 𝑓 )) � ((δ 𝑓 )) is the closure of the two-sided ideal (δ1 𝑓 , . . . , δ𝑑 𝑓 ).
In general, the quotient of a complete topological ring by a closed ideal is always separated, but it

need not be complete.
Notation 3.2. For any ring R, write 𝔍(𝑅) for its Jacobson radical. If I is any ideal of R contained in
𝔍(𝑅), then 𝔍(𝑅/𝐼) = 𝔍(𝑅)/𝐼 (see, for example, [L1, 4.6]).
1. It is clear that 𝔍(C〈〈x〉〉) = 𝔫. If 𝑓 ∈ C〈〈x〉〉≥2, then ((δ 𝑓 )) is contained in 𝔫, and so 𝔍(Jac( 𝑓 )) =
𝔫/((δ 𝑓 )), and furthermore, 𝔍(Jac(𝔣))𝑛 =

(
𝔫𝑛 + ((δ 𝑓 ))

)
/((δ 𝑓 )) for 𝑛 ≥ 2.

2. The topology onC〈〈x〉〉 is an ideal topology generated by powers of 𝔫, so the natural quotient topology
on the quotient Jac( 𝑓 ) is induced by powers of the image of 𝔫 in the quotient [Wa, 5.5]. Thus, by (1),
provided 𝑓 ∈ C〈〈x〉〉≥2, then the topology on bothC〈〈x〉〉 and Jac( 𝑓 ) is the radical-adic topology. Since
((δ 𝑓 )) is closed, Jac( 𝑓 ) is Hausdorff [Wa, 5.7(1)]. Under extra assumptions, it is also complete; see
8.4(3).

Remark 3.3. A (polynomial or) power series 𝑓 =
∑

𝑓𝑖 ∈ C〈〈x〉〉 is called cyclically symmetric if
cyc( 𝑓𝑖) = 𝑖 𝑓𝑖 for each graded piece, 𝑓𝑖 ∈ C〈x〉. It is possible to phrase the whole paper using only
cyclically symmetric potentials; however, this becomes notationally unmanageable in §4–§6 since the
property of being cyclically symmetric is not preserved under change variables. Thus, from the viewpoint
of noncommutative singularity theory, it is much more natural to work with plain old elements of C〈〈x〉〉.
There are times when passing to cyclically symmetric potentials is convenient, but this is confined
entirely to §A.2.

3.2. Dimension

Being a quotient of formal noncommutative power series, determining which dimension to use for
Jac( 𝑓 ) is a subtle point.
Definition 3.4. For 𝑓 ∈ C〈〈x〉〉≥2, we say that Jac( 𝑓 ) has polynomial growth (with respect to 𝔍) if there
exist 𝑐, 𝑟 ∈ R such that dim Jac( 𝑓 )/𝔍𝑛 ≤ 𝑐𝑛𝑟 for all 𝑛 ∈ N. In the case that Jac( 𝑓 ) has polynomial
growth, then the 𝔍-dimension of Jac( 𝑓 ) is the degree of that growth, precisely,

JdimJac( 𝑓 ) � inf {𝑟 ∈ R≥0 | for some 𝑐 ∈ R, dim Jac( 𝑓 )/𝔍𝑛 ≤ 𝑐𝑛𝑟 for every 𝑛 ∈ N} ,

and JdimJac( 𝑓 ) = ∞ otherwise.
The𝔍-dimension is analogous to the usual dimension of a commutative noetherian local ring (𝐴,𝔪),

defined as the degree of the characteristic polynomial 𝜒𝔪 (𝑛) = ℓ(𝐴/𝔪𝑛), where, in that context, the
dimension is necessarily an integer [AM, 11.4, 11.14].
Lemma 3.5. If JdimJac( 𝑓 ) ≤ 1, then either JdimJac( 𝑓 ) = 0 or JdimJac( 𝑓 ) = 1.
Proof. Certainly, Jac( 𝑓 )/𝔍𝑛+1 � Jac( 𝑓 )/𝔍𝑛 for all 𝑛 ≥ 1, with equality if and only if 𝔍𝑛+1 = 𝔍𝑛. If
each such map has nontrivial kernel, then dim Jac( 𝑓 )/𝔍𝑛 ≥ 𝑛, and so JdimJac( 𝑓 ) ≥ 1. Otherwise, by
Nakayama’s Lemma, 𝔍𝑛 = 0 for some n; hence, 𝔫𝑛 ⊂ ((δ 𝑓 )), and so dimC Jac( 𝑓 ) ≤ dimC〈〈x〉〉/𝔫𝑛 =
2𝑛 − 1 and JdimJac( 𝑓 ) = 0. �

Remark 3.6. The 𝔍-dimension is used throughout since it is better suited to the complete local situation
than the GK dimension [KL]. Indeed, it is well known that the GK dimension does not behave well
with respect to completions. For example, GKdimC[[𝑥]] = ∞, whereas JdimC[[𝑥]] = 1. Compare [AB,
§3.4] and, in particular, [AB, §5.6]. Furthermore, JdimJac( 𝑓 ) = 0 if and only if dimC Jac( 𝑓 ) < ∞, a
property which does not hold for GK dimension since Jac( 𝑓 ) is not finitely generated.
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3.3. Equivalences and isomorphisms

In what follows, recognising and producing isomorphisms of Jacobi algebras will be key. The following
techniques will be used extensively. The first is trivial but worth recording since it gives great flexibility
in proofs; the second two are more substantial with Part (2) being [DWZ, 3.7], and Part (3) following
from (2), together with 2.9. Recall the notation 𝑓 ∼ 𝑔 from 2.7.

Summary 3.7. Suppose that 𝑓 ∈ C〈〈x〉〉.

1. If f cyclically permutes to g, so 𝑓 ∼ 𝑔, then Jac( 𝑓 ) � Jac(𝑔).
2. If φ ∈ AutC〈〈x〉〉, then Jac( 𝑓 ) � Jac(𝑔), where 𝑔 = φ( 𝑓 ).
3. Set f1 = 𝑓 . If there exist f2, f3, . . . and automorphisms φ1, φ2, . . . such that

(a) every φ𝑖 is unitriangular of depth of ≥ 𝑖, and
(b) φ𝑖 (f𝑖) − f𝑖+1 ∈ {{A,A}} ∩ 𝔫𝑖+1, for all 𝑖 ≥ 1,

then the sequence (f𝑖)𝑖≥1 converges and Jac( 𝑓 ) � Jac(𝑔) where 𝑔 = lim f𝑖 .

Lemma 3.8. Let 𝑓 ∈ C〈〈x〉〉, and 𝑚 ∈ C〈〈x〉〉 be a monomial. Then the following hold.

1. cyc(𝑚) ∼ deg(𝑚)𝑚.
2. If f contains 𝜆𝑚, then 𝑓 ∼ 𝑓 + 𝜆

(
1

deg𝑚 cyc(𝑚) − 𝑚
)
.

3. Let h be the sum of terms of f whose monomials appear in cyc(𝑚). Then

𝑓 ∼ 𝑓 − ℎ + α cyc(𝑚) ∼ 𝑓 − ℎ + α deg(𝑚) 𝑚,

for some α ∈ C.

Proof. Writing 𝑚 = 𝑚1𝑚2 . . . 𝑚𝑟 , where each 𝑚𝑖 is a variable 𝑥 𝑗 (𝑖) , we have

𝑟𝑚 − cyc(𝑚) = (𝑟 − 1)𝑚1 . . . 𝑚𝑟 − 𝑚2 . . . 𝑚𝑟𝑚1

− 𝑚3 . . . 𝑚𝑟𝑚1𝑚2 − · · · − 𝑚𝑟𝑚1 . . . 𝑚𝑟−1

= [𝑚1, 𝑚2 . . . 𝑚𝑟 ] + [𝑚1𝑚2, 𝑚3 . . . 𝑚𝑟 ] + · · · + [𝑚1 . . . 𝑚𝑟−1, 𝑚𝑟 ],

and (1) follows. (2) follows at once from (1). The final claim (3) follows by applying (2) to each monomial
of h in turn. �

Below, it will be convenient to work with the following three equivalence relations.

Definition 3.9. For elements 𝑓 , 𝑔 ∈ C〈〈x〉〉, (recall and) define

1. 𝑓 ∼ 𝑔 if 𝑓 − 𝑔 ∈ {{C〈〈x〉〉,C〈〈x〉〉}} (see 2.7).
2. 𝑓 � 𝑔 if there is an equality of ideals ((δ1 𝑓 , . . . , δ𝑑 𝑓 )) = ((δ1𝑔, . . . , δ𝑑𝑔)).
3. 𝑓 � 𝑔 if there is an isomorphism of algebras Jac( 𝑓 ) � Jac(𝑔).

Clearly, 𝑓 ∼ 𝑔 implies 𝑓 � 𝑔 implies 𝑓 � 𝑔, but the converse implications do not hold. The relation
∼ is additive by definition, but � is not: 𝑥2 + 𝑦3 � 𝑥2 + 2𝑦3 but 𝑥2 � 𝑥2 + 𝑦3.

The Jacobi isomorphism relation � is the equivalence relation that we will classify up to, but the
others help understand the structure of the various arguments. For example, by 2.9, the symmetrisation
relation∼ behaves well in limits. It appears to permit creation from the void, in the sense that 0 ∼ 𝑥𝑦−𝑦𝑥,
but of course, this form has all derivatives zero, so does not contribute to Jacobi ideals. The relation �
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is useful for cancelling high order terms in potentials (see, for example, the proof of 6.5), whereas � is
most suited to, and is often a by-product of, analytic changes in coordinates.

4. NC singularity theory 101

4.1. Corank and the Splitting Lemma

The closed vector subspace of commutators {{C〈〈x〉〉,C〈〈x〉〉}} generates the much larger closed ideal
of commutators, and the quotient of C〈〈x〉〉 by this ideal is the ring of commutative power series
C[[𝑥1, . . . , 𝑥𝑑]]. The quotient, or ‘abelianisation’, map C〈〈x〉〉 → C[[𝑥1, . . . , 𝑥𝑑]] written 𝑔 ↦→ 𝑔ab simply
takes the expression for g to the same expression in the commutative ring.

Lemma 4.1. With notation as above, the following hold:

1. The abelianisation map C〈〈x〉〉 → C[[𝑥1, . . . , 𝑥𝑑]] is continuous and surjective.
2. For any 𝑓 ∈ C〈〈x〉〉, the map 𝑓 ↦→ 𝑓 ab descends to a surjection

Jac( 𝑓 ) � C[[𝑥1, . . . , 𝑥𝑑]]
((𝜕 𝑓 ab/𝜕𝑥𝑖 | 𝑖 = 1, . . . , 𝑛))

. (12)

Proof. (1) At the level of ideals, 𝔫𝑘 � 𝔫𝑘ab for every 𝑘 ≥ 0, since abelianisation is a ring homomorphism
mapping each 𝑥𝑖 to 𝑥𝑖 .

(2) Since (δ𝑖 𝑓 )ab = 𝜕 𝑓 ab/𝜕𝑥𝑖 , where 𝜕/𝜕𝑥𝑖 is the usual differentiation of commutative functions,
surjectivity at the level of (unclosed) Jacobian ideals follows. Since the abelianisation map is continuous
and surjective by (1), this passes to their closures, as claimed. �

Below, we will consider

Jac( 𝑓 )ab �
C[[𝑥1, . . . , 𝑥𝑑]]

((𝜕 𝑓 ab/𝜕𝑥𝑖 | 𝑖 = 1, . . . , 𝑛))
=

C[[𝑥1, . . . , 𝑥𝑑]]
(𝜕 𝑓 ab/𝜕𝑥𝑖 | 𝑖 = 1, . . . , 𝑛)

,

where, since C[[𝑥1, . . . , 𝑥𝑑]] is commutative noetherian, all ideals are closed [M1, 8.1(1)].

Remark 4.2. In classical singularity theory, for 𝑔 ∈ C[[𝑥1, . . . , 𝑥𝑑]], both the Milnor algebra
C[[𝑥1, . . . , 𝑥𝑑]]/(δ1𝑔, . . . , δ𝑑𝑔) and the Tjurina algebra C[[𝑥1, . . . , 𝑥𝑑]]/(𝑔, δ1𝑔, . . . , δ𝑑𝑔) are defined
and play a major role. In the noncommutative setting, the analogous Tjurina algebra is not well defined
on ∼ classes. For example, the potentials 0 ∼ 𝑥𝑦 − 𝑦𝑥 determine the same Jacobi algebra, but their
naively defined Tjurina algebras are C〈〈𝑥, 𝑦〉〉 and C[[𝑥, 𝑦]], respectively. To have any hope of classify-
ing elements in the completed free algebra, some identification is required, and for us, identifying ∼
classes is essential for applications. Compare [HZ], where the lack of a noncommutative Tjurina algebra
motivates the use of Hochschild classes to generalise Saito’s theorem on homogeneous potentials.

Definition 4.3. For 𝑓 ∈ C〈〈x〉〉≥2, the corank of f is defined to be

Crk( 𝑓 ) = dimC
(
𝔍

𝔍2

)
,

where 𝔍 is the Jacobson radical of Jac( 𝑓 ).

Remark 4.4. Clearly, 0 ≤ Crk( 𝑓 ) ≤ 𝑑. Since 𝔍/𝔍2 � (𝔫 + 𝐼)/(𝔫2 + 𝐼), where 𝐼 = ((δ 𝑓 )), the exactness
of the sequence of C〈〈x〉〉/𝔫 = C-vector spaces

0 −→ 𝔫2 + 𝐼

𝔫2 −→ 𝔫

𝔫2 −→
𝔫 + 𝐼

𝔫2 + 𝐼
−→ 0
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shows that Crk( 𝑓 ) = 𝑑−dimC
(
𝔫2+𝐼
𝔫2

)
, so that the corank is determined by the linear conditions imposed

by derivatives and is therefore uniquely determined by 𝑓2.

Theorem 4.5 (Splitting Lemma). Let 𝑓 ∈ C〈〈x〉〉. Then 𝑓 � 𝑥2
1 + · · · + 𝑥2

𝑟 + 𝑔 for some 𝑔 ∈
C〈〈𝑥𝑟+1, . . . , 𝑥𝑑〉〉≥3, where 𝑑 − 𝑟 = Crk( 𝑓 ). In particular,

Jac( 𝑓 ) � C〈〈𝑥𝑟+1, . . . , 𝑥𝑑〉〉
((δ𝑥𝑟+1𝑔, . . . , δ𝑥𝑑𝑔))

.

Proof. This is [DWZ, 4.5] for the d-loop quiver. Since ord 𝑔 ≥ 3, the derivatives of g impose no linear
conditions, so necessarily, 𝑑 − 𝑟 = Crk( 𝑓 ). �

4.2. Golod–Shafarevich–Vinberg

The classical approach to growth of algebras comes from the Golod–Shafarevich theorem [GS], adapted
by Vinberg [V3] to power series; see also [E2]. This result constrains f to achieve JdimJac( 𝑓 ) < ∞,
and we develop a stronger version in 4.7 adapted to Jacobi algebras.

Theorem 4.6 (Golod–Shafarevich, Vinberg). Let 𝐼 = (𝑔1, . . . , 𝑔𝑠) ⊂ C〈〈x〉〉 be an ideal, set 𝑟𝑖 = ord 𝑔𝑖
for each 𝑖 = 1, . . . , 𝑠, and write ℎ = 1 − 𝑑𝑡 + 𝑡𝑟1 + · · · + 𝑡𝑟𝑠 ∈ R[[𝑡]]. If the coefficients of (1 − 𝑡)/ℎ are
nonnegative, then dimC C〈〈x〉〉/((𝐼)) = ∞.

In most cases where the result applies, one can in fact show exponential growth. The Golod–
Shafarevich–Vinberg estimates readily show that JdimC〈〈x〉〉/((𝑔1, . . . , 𝑔𝑑)) = ∞ in the following cases:

1. 𝑑 = 2 with either 𝑟1 ≥ 3, 𝑟2 ≥ 8, or 𝑟1 ≥ 4, 𝑟2 ≥ 5.
2. 𝑑 = 3 with either 𝑟1 ≥ 2, 𝑟2, 𝑟3 ≥ 3, or 𝑟1 = 𝑟2 = 2, 𝑟3 ≥ 5.
3. 𝑑 ≥ 4 with 𝑟𝑖 ≥ 2 for every i.

For example, in the case 𝑑 = 4, it is sufficient to observe the exponential growth of

(1 − 𝑡) (1 − 4𝑡 + 4𝑡2)−1 = (1 − 𝑡) (1 + 4𝑡 + 12𝑡2 + 32𝑡3 + 80𝑡4 + . . . + (1 + 𝑘)2𝑘 𝑡𝑘 + . . .)
= 1 + 3𝑡 + 8𝑡2 + 20𝑡3 + 48𝑡4 + . . . + (2 + 𝑘)2𝑘−1𝑡𝑘 + . . .

as this bounds the growth of the algebra from below in the case of an order 3 potential with four order
2 derivatives.

Setting aside quadratic terms by the Splitting Lemma, this then puts constraints on the motivating
problem 1.1. Indeed, if 𝑓 ∈ C〈〈x〉〉≥3 and JdimJac( 𝑓 ) < ∞, then either

1. 𝑑 = 2, ord 𝑓 ≤ 5 and 𝑓≤5 � ℓ5 for a linear form ℓ = ℓ(𝑥1, 𝑥2), or
2. 𝑑 = 3, ord 𝑓 = 3, and 𝑓3 � ℓ3 for a linear form ℓ = ℓ(𝑥1, 𝑥2, 𝑥3).

It turns out that these estimates can be substantially improved, but this requires much more work.
Iyudu and collaborators [ISm, IS2] introduce several new ideas that exploit the Jacobi structure; in
Appendix A, we extend their techniques into the power series context and establish the following. Recall
that x = 𝑥1, . . . , 𝑥𝑑 .

Theorem 4.7 (A.13). Suppose that 𝑑 = 2 and 𝑘 ≥ 4, or 𝑑 ≥ 3 and 𝑘 ≥ 3. If 𝑓 ∈ C〈〈x〉〉 has order k, then
JdimJac( 𝑓 ) ≥ 3.

Remark 4.8. Together with the Splitting Lemma, the above 4.7 reduces the classification of those f
satisfying JdimJac( 𝑓 ) ≤ 1 to the case of two variables (𝑑 = 2).
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4.3. Higher coranks

Higher-degree versions of the corank exist and contain more detailed information about Jacobi algebras.

Definition 4.9. Let 𝑓 ∈ C〈〈x〉〉≥2. For 𝑚 ≥ 1, the mth corank of f is defined to be

Crk𝑚( 𝑓 ) = dimC
(
𝔍𝑚

𝔍𝑚+1

)
,

where 𝔍 is the Jacobson radical of Jac( 𝑓 ). We also define Crk0 ( 𝑓 ) = dimC Jac( 𝑓 )/𝔍 = 1 and note that
Crk1( 𝑓 ) = Crk( 𝑓 ).

Remark 4.10. Since 𝔍𝑚/𝔍𝑚+1 � (𝔫𝑚 + 𝐼)/(𝔫𝑚+1 + 𝐼), the exactness of the sequence of C〈〈x〉〉/𝔫 = C-
vector spaces

0 → 𝔫𝑚 ∩ 𝐼

𝔫𝑚+1 ∩ 𝐼
�
(𝔫𝑚 ∩ 𝐼) + 𝔫𝑚+1

𝔫𝑚+1 → 𝔫𝑚

𝔫𝑚+1 →
𝔫𝑚 + 𝐼

𝔫𝑚+1 + 𝐼
→ 0

shows that Crk𝑚( 𝑓 ) = 𝑑𝑚 − dimC
(
𝔫𝑚∩𝐼
𝔫𝑚+1∩𝐼

)
; compare [V3, (4)]. Thus, the mth corank is determined by

the conditions imposed on the leading terms of elements of the Jacobian ideal of order exactly m. In
particular, 0 ≤ Crk𝑚( 𝑓 ) ≤ 𝑑𝑚. If ord( 𝑓 ) ≥ 𝑚 + 1, then

(𝔫𝑚 ∩ 𝐼) + 𝔫𝑚+1

𝔫𝑚+1 �
𝔫𝑚+1 + 𝐼

𝔫𝑚+1 ,

matching (1), (2) and 4.4.
By definition, the 𝔍-dimension is the growth of the sum of coranks. Calculating the mth corank is

not necessarily straightforward: essentially, it amounts to calculating a Gröbner basis of the Jacobian
ideal with a local monomial order to at least order m.

To study Jacobi algebras Jac( 𝑓 ) of 𝔍-dimension ≤ 1, 4.7 constrains the number of variables to 𝑑 ≤ 2
and 𝑘 = ord( 𝑓 ) ≤ 3. The corank controls the rank of 𝑓2. The main case is when 𝑓2 = 0, when it is clear
that 2 ≤ Crk2 ( 𝑓 ) ≤ 4. The two derivatives δ𝑥 𝑓3 and δ𝑦 𝑓3 are linearly independent when Crk2( 𝑓 ) = 2,
and they are dependent when Crk2 ( 𝑓 ) = 3. The case Crk2( 𝑓 ) = 4 holds only when 𝑓3 = 0, which is
ruled out by 4.7.

This provides a numerical characterisation of the ADE types. The first Type A case is when Crk( 𝑓 ) =
0, in which case Jac( 𝑓 ) � C. In addition to this, if 𝑓 ∈ C〈〈x〉〉 has JdimJac( 𝑓 ) ≤ 1, we say f has Type
A, D or E according to the following table.

Type Crk( 𝑓 ) Crk2 ( 𝑓 )

A 1 ≤ 1
D 2 2
E 2 3

The higher coranks provide much more detail. In Type A, they provide enough information to classify
up to isomorphism; however, in Type D, this is not true.

Example 4.11. Consider the families 𝐷𝑛,∞ and 𝐷𝑛,𝑚 from the introduction. The higher coranks are
given by the following table.
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Type f Conditions Crk𝑖 ( 𝑓 ) , 𝑖 = 0, 1, . . .

𝐷𝑛,∞ 𝑥𝑦2 + 𝑥2𝑛 𝑛 ≥ 2 1,

2𝑛−1︷����︸︸����︷
2, . . . , 2,

2𝑛−2︷����︸︸����︷
1, . . . , 1

𝐷𝑛,𝑚 𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚+1 2𝑛 − 2 ≥ 𝑚 ≥ 𝑛 ≥ 2

𝐷𝑛,𝑚 𝑥𝑦2 + 𝑥2𝑚+1 + 𝑥2𝑛 𝑛 > 𝑚 ≥ 1 1,

2𝑛−1︷����︸︸����︷
2, . . . , 2,

2𝑚−1︷����︸︸����︷
1, . . . , 1

In particular, dimC Jac( 𝑓 ) = 6𝑛 − 3 in the first families, which is independent of m, while
dimC Jac( 𝑓 ) = 4𝑛 + 2𝑚 − 2 in the final family.

4.4. Linear changes in coordinates and discriminants

In light of 4.8, from §6 onwards, we work in two noncommuting variables x and y.
The following is an immediate consequence of the Splitting Lemma and abelianisation.

Lemma 4.12. Let 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2 with 𝑓2 = 𝑎𝑥2 + 𝑏1𝑥𝑦 + 𝑏2𝑦𝑥 + 𝑐𝑦2 � 0. Set 𝑏 = 𝑏1 + 𝑏2 and consider
the discriminant Δ = 𝑏2 − 4𝑎𝑐. Then 𝑓 � 𝑔, for some 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥2 with

𝑔2 =

{
𝑥2 + 𝑦2 if Δ ≠ 0
𝑥2 if Δ = 0.

As for the quadratic forms above, up to ∼ we may commute variables appearing in cubic forms
in C〈〈𝑥, 𝑦〉〉, and we use this to simplify the statement of the following lemma, writing 𝑏𝑥2𝑦 rather
than 𝑏1𝑥

2𝑦 + 𝑏2𝑥𝑦𝑥 + . . . , and so on. Note that, in general, cyclic equivalence no longer simulates
commutativity in higher degree, as 𝑥𝑦𝑥𝑦 � 𝑥2𝑦2.

Lemma 4.13. [I] Let 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3 with 𝑓3 ∼ 𝑎𝑥3 + 𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3 for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ C, not all
zero. Let Δ = −27𝑎2𝑑2 + 18𝑎𝑏𝑐𝑑 − 4𝑎𝑐3 − 4𝑏3𝑑 + 𝑏2𝑐2 ∈ C be the cubic discriminant. Then 𝑓 � 𝑔, for
some 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥3 with

𝑔3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥3 + 𝑦3 if Δ ≠ 0

𝑥2𝑦 if Δ = 0 and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎(𝑏2 − 3𝑎𝑐) ≠ 0 or
(𝑐2 − 3𝑏𝑑)𝑑 ≠ 0 or
𝑎 = 𝑑 = 0

𝑥3 otherwise.

Thus, these three leading cubic normal forms are characterised by whether 𝑓 ab
3 has three, two or one

distinct factors, respectively.

Proof. Consider the linear automorphism of C[𝑥, 𝑦]

𝑥 ↦→ α𝑥 + β𝑦, 𝑦 ↦→ γ𝑥 + δ𝑦 for α, β, γ, δ ∈ C (13)

that maps ( 𝑓3)ab ∈ C[𝑥, 𝑦] to one of the normal forms 𝑥3 + 𝑦3, 𝑥𝑦2 or 𝑥3. The choice of normal form
is determined by the cubic determinant. The additional conditions on the coefficients in the statement
are simply that 𝑝 ≠ 0 in the depressed form after completing the cube 𝑥3 + 𝑝𝑥𝑦2 + 𝑞𝑦3, in which
Δ = −4𝑝3 − 27𝑞2, and accounting for the fact that 𝑎 = 0 or 𝑑 = 0 or both are possible.

Let φ be the linear automorphism of C〈〈𝑥, 𝑦〉〉 defined by the same formula (13) and 𝑔3 ∈ C〈〈𝑥, 𝑦〉〉
be the corresponding cubic normal form. Then φ( 𝑓3) ∼ 𝑔3, although they are not equal, so φ( 𝑓 ) ∼
𝑔3 + φ( 𝑓≥4). Thus 𝑓 � φ( 𝑓 ) � 𝑔3 + φ( 𝑓≥4), as claimed. �
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5. Type A and commutativity

This section considers the most elementary situation – namely, 𝑓 ∈ C〈〈x〉〉≥2 with large quadratic part.
Normal forms are established in §5.1. Together with the linear coordinate changes from §4.4, this proves
in §5.2 that for any 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2, the algebra Jac( 𝑓 ) is commutative if and only if f has corank at
most 1. This fact is used in later sections.

5.1. Normal forms of Type A

It is notationally convenient to identify 𝑦 = 𝑥𝑑 and work in the ring C〈〈x〉〉 = C〈〈𝑥1, . . . , 𝑥𝑑−1, 𝑦〉〉.

Theorem 5.1. If 𝑓 ∈ C〈〈x〉〉≥2 with Crk( 𝑓 ) ≤ 1, then there is a unique polynomial g of the form
𝑔 = 𝑥2

1 + · · · + 𝑥2
𝑑−1 + ε𝑦

𝑛 for some 𝑛 ≥ 2 and ε ∈ {0, 1} such that 𝑓 � 𝑔.

1. If ε = 1, then Jac( 𝑓 ) is commutative with dimC Jac( 𝑓 ) = 𝑛 − 1.
2. If ε = 0, then Jac( 𝑓 ) is commutative with JdimJac( 𝑓 ) = 1.

Proof. By the Splitting Lemma 4.5, there is f ∈ C〈〈𝑥1, . . . , 𝑥𝑑−1, 𝑦〉〉 with 𝑓 � f and either

f =

{
𝑥2

1 + · · · + 𝑥2
𝑑−1 + 𝑦2 if Crk( 𝑓 ) = 0

𝑥2
1 + · · · + 𝑥2

𝑑−1 + 𝑞(𝑦) if Crk( 𝑓 ) = 1

for some 𝑞 ∈ C[[𝑦]] with ord(𝑞) ≥ 3.
If q is zero, we are done, else after pulling out the lowest term, we can write 𝑞 = 𝑦𝑛u for some u =

𝑐𝑛 + 𝑐𝑛+1𝑦 + . . . ∈ C[[𝑦]] with 𝑐𝑛 ≠ 0. The homomorphism C〈〈𝑥1, . . . , 𝑥𝑑−1, 𝑦〉〉 → C〈〈𝑥1, . . . , 𝑥𝑑−1, 𝑦〉〉
which sends 𝑥𝑘 ↦→ 𝑥𝑘 and 𝑦 ↦→ 𝑦 𝑛

√
u is an automorphism. Since 𝑛

√
u is a power series only in y, it

commutes with y, and so this automorphism sends
∑

𝑥2
𝑖 + 𝑦𝑛 to

∑
𝑥2
𝑖 + 𝑦𝑛u = f. Hence, Jac(

∑
𝑥2
𝑖 + 𝑦𝑛) �

Jac(f) � Jac( 𝑓 ), as required.
Parts (1)–(2) are obvious since Jac(

∑
𝑥2
𝑖 + 𝑦𝑛) � C[[𝑦]]/(𝑦𝑛−1) and Jac(

∑
𝑥2
𝑖 ) � C[[𝑦]], and

uniqueness then follows since
∑

𝑥2
𝑖 + 𝑦𝑛1 �

∑
𝑥2
𝑖 + 𝑦𝑛2 if and only if 𝑛1 = 𝑛2. �

Recall from the introduction our geometric applications in the setting of cDV singularities. These
correspond to Jacobi algebras in two noncommutating variables, so we set 𝑑 = 2 and write the variables
as 𝑥, 𝑦.

Corollary 5.2. Every Jac( 𝑓 ), where 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2 with 𝑓2 ≠ 0, is geometric.

Proof. Consider R = C[[𝑥, 𝑦, 𝑧]] 1
2 (1,1,0) and its unique crepant resolution X → Spec R. This has

contraction algebra C[[𝑦]] � Jac(𝑥2), realising the second case in 5.1. Moreover, by [DW1, 3.10], the
Type 𝐴 m-Pagoda flop (with 𝑚 ≥ 1) has contraction algebraC[[𝑦]]/𝑦𝑚 � Jac(𝑥2+ 𝑦𝑚+1), which realises
the infinite family in 5.1. �

Example 5.3. Consider 𝑓 = 𝑥2 + 2
3 (𝑥𝑦

2 + 𝑦𝑥𝑦 + 𝑦2𝑥) ∈ C〈〈𝑥, 𝑦〉〉. This has 3-dimensional Jacobi algebra

Jac( 𝑓 ) � C〈〈𝑥, 𝑦〉〉/((𝑥 + 𝑦2, 𝑥𝑦 + 𝑦𝑥)) � C[𝑦]/𝑦3,

so by 5.1 or Reid’s Pagoda [R2], f gives the same Jacobi algebra as 𝑔 = 𝑥2+𝑦4. Commutatively, one would
see this by completing the square, but that automorphism does not work directly in the noncommutative
context: 𝑥 ↦→ 𝑥 − 2

3 𝑦
2 gives 𝑓 ↦→ 𝑥2 + 2

3 𝑦𝑥𝑦 −
8
9 𝑦

4, and we cannot attack the 𝑦𝑥𝑦 term by coordinate
changes that preserve 𝑓2 = 𝑥2. But 𝑓 ∼ 𝑥2 + 𝑥𝑦2 + 𝑦2𝑥, which then allows us to complete the square (and
a scalar on y) to conclude. This exemplifies the way ∼ helps to navigate the Jacobi isomorphism classes.
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5.2. Commutativity

The following characterisation of commutative Jacobi algebras in 𝑑 = 2 variables will be used later.

Proposition 5.4. 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2, then Jac( 𝑓 ) is commutative if and only if Crk( 𝑓 ) ≤ 1.

Proof. (⇐) is clear from 5.1. For (⇒), we prove the contrapositive. If Crk( 𝑓 ) �≤ 1, then 𝑓2 = 0, and
we need to prove that Jac( 𝑓 ) is not commutative. For this, it suffices to exhibit a factor that is not
commutative. By 4.13, without loss of generality, we can assume that f equals

𝑥3 + 𝑦3 + O4, 𝑥𝑦2 + O4, 𝑥3 + O4 or O4.

Write M3 for the set of all noncommutative monomials of degree 3, and then factor by the ideal
((δ𝑥 𝑓 , δ𝑦 𝑓 ,M3))/((δ𝑥 𝑓 , δ𝑦 𝑓 )) in Jac( 𝑓 ). But in the four cases above, by differentiating then using the
third isomorphism theorem, it follows that Jac( 𝑓 ) is one of

C〈〈𝑥, 𝑦〉〉
((𝑥2, 𝑦2,M3))

,
C〈〈𝑥, 𝑦〉〉

((𝑦2, 𝑥𝑦 + 𝑦𝑥,M3))
,
C〈〈𝑥, 𝑦〉〉
((𝑥2,M3))

, or
C〈〈𝑥, 𝑦〉〉
((M3))

.

None of these factors is commutative, and so Jac( 𝑓 ) is not commutative. �

6. Type D normal forms

This section considers the next case – namely, those 𝑓 ∈ C〈〈x〉〉≥2 with Crk( 𝑓 ) = 2 and Crk2( 𝑓 ) = 2.
Reducing to two variables by the Splitting Lemma 4.5, the assumption Crk2( 𝑓 ) = 2 is then equivalent
to the first two cases in 4.13 – namely, those 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3 with 𝑓3 ≠ 0 for which 𝑓 ab

3 has either two or
three distinct linear factors. Full normal forms are obtained in both situations and are then merged into
a unified form in §6.4. These are the Type D normal forms in the tables in §1.2.

Throughout this section, it will be convenient to adopt the following language.

Definition 6.1. We say that a monomial 𝑚 ∈ C〈〈𝑥, 𝑦〉〉 contains 𝑥2 if 𝑚 ∼ 𝑛𝑥2 for some monomial n, else
m does not contain 𝑥2. Similarly, an element 𝑓 ∈ C〈〈𝑥, 𝑦〉〉 contains 𝑥2 if for some (nonzero) term 𝜆𝑚 of
f, the monomial m contains 𝑥2, else f does not contain 𝑥2. We also use the analogous expressions for 𝑦2.

6.1. Abelianized cubic with three factors

This subsection considers the case of 4.13 where 𝑓 ab
3 has three distinct factors – that is, 𝑓 � 𝑥3 + 𝑦3 +O4

– and in 6.5 and 6.7 provides two different, but equivalent, normal forms.
Recall from 2.2(1) that a unitriangular automorphism φ of C〈〈x〉〉 has depth 𝑒 ≥ 1 if and only if

φ( 𝑓 )≤𝑒 = 𝑓≤𝑒 for all 𝑓 ∈ C〈〈x〉〉.

Lemma 6.2. Fix 𝑡 ≥ 4, and let 𝑓 = 𝑥3 + 𝑦3 + 𝑓4 + · · · + 𝑓𝑡 + O𝑡+1. For any ℎ1, ℎ2 ∈ C〈〈𝑥, 𝑦〉〉 with
ord(ℎ𝑖) ≥ 𝑡 − 2, there is a unitriangular automorphism ψ of depth ≥ 𝑡 − 3 such that

ψ ( 𝑓 ) ∼ 𝑥3 + 𝑦3 + 𝑓4 + · · · + 𝑓𝑡−1 +
(
𝑓𝑡 − ℎ1𝑥

2 − ℎ2𝑦
2
)
+ O𝑡+1

and ψ ( 𝑓 ) − (𝑥3 + 𝑦3 + 𝑓4 + · · · + 𝑓𝑡−1) ∈ 𝔫𝑡 .

Proof. Consider the unitriangular automorphism ψ which sends 𝑥 ↦→ 𝑥 − 1
3 ℎ1, 𝑦 ↦→ 𝑦− 1

3 ℎ2. The result
follows since

ψ (𝑥3 + 𝑦3) ∼ 𝑥3 − ℎ1𝑥
2 + 1

3 ℎ
2
1𝑥 −

1
27 ℎ

3
1 + 𝑦3 − ℎ2𝑦

2 + 1
3 ℎ

2
2𝑦 −

1
27 ℎ

3
2,

and ψ (𝑚) ≡ 𝑚 mod 𝔫𝑡+1 whenever deg(𝑚) ≥ 4. �
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With the preparatory lemma in place, the strategy is to first find a standard power series form of each
potential, and then distill that down to a polynomial normal form.

Proposition 6.3. Suppose that 𝑓 = 𝑓3+O4 where 𝑓 ab
3 has three distinct factors. Then 𝑓 � 𝑥3+𝑦3+ 𝑝(𝑥𝑦)

for some power series 𝑝(𝑧) ∈ C[[𝑧]] with ord(𝑝) ≥ 2.

Recall the Conventions 1.8 on denoting graded pieces of sequence elements: we denote sequence
elements f𝑛 ∈ C〈〈𝑥, 𝑦〉〉 in Greek font, and we write (f𝑛)𝑡 for its degree t piece, and (f𝑛)<𝑡 and (f𝑛)>𝑡 for
sub- and super-degree t portions, respectively.

Proof. We construct a sequence of power series f1, f2, . . . and unitriangular automorphisms φ1, φ2, . . .
inductively, with each f𝑡 having the form of the target power series 𝑥3 + 𝑦3 + 𝑝(𝑥𝑦) in small degree.
Summary 3.7(3) then constructs f = lim f𝑖 of the required form with Jac( 𝑓 ) � Jac(f).

By 4.13, 𝑓 � 𝑔, where 𝑔3 = 𝑥3 + 𝑦3. After grouping together terms containing 𝑥2 or 𝑦2 and cyclically
permuting, we may write

𝑔 ∼ 𝑥3 + 𝑦3 + h2 · 𝑥2 + h′2 · 𝑦
2 + μ4 (𝑥𝑦)2 + O5

for h2, h′2 ∈ C〈〈𝑥, 𝑦〉〉2 and μ4 ∈ C.
Hence, we begin the induction by setting

f1 = 𝑥3 + 𝑦3 + h2 · 𝑥2 + h′2 · 𝑦
2 + μ4 (𝑥𝑦)2 + 𝑔≥5

and note that f1 ∼ 𝑔 � 𝑓 . Thus, f1 is in the desired form in degrees ≤ 3 and has its degree 4 piece
prepared in standard form for further analysis.

For the inductive step more generally, we may suppose that f𝑡 ∈ C〈〈𝑥, 𝑦〉〉 has been constructed of the
form

f𝑡 =
(
𝑥3 + 𝑦3 + p𝑡+2 (𝑥𝑦)

)
+

(
h𝑡+1 · 𝑥2 + h′𝑡+1 · 𝑦

2 + μ𝑡+3 (𝑥𝑦) �(𝑡+3)/2� ) + O𝑡+4

with p3 = 0 and by convention μ𝑡+3 = 0 for even t, where

1. (f𝑡 )≤𝑡+2 = 𝑥3 + 𝑦3 + p𝑡+2 (𝑥𝑦), for some polynomial p𝑡+2 ∈ C[𝑧]≥2 of degree ≤ (𝑡 + 2)/2, where the
polynomials p3, . . . , p𝑡+2 satisfy p𝑖+1 = p𝑖 for even i and p𝑖+1 − p𝑖 = μ𝑖+1𝑧

(𝑖+1)/2 for odd i, and
2. (f𝑡 )𝑡+3 = h𝑡+1 ·𝑥2+h′𝑡+1 · 𝑦

2+μ𝑡+3 (𝑥𝑦) �(𝑡+3)/2� for some homogeneous forms h𝑡+1, h′𝑡+1 of degree 𝑡+1.

Applying 6.2 with ℎ1 = h𝑡+1 and ℎ2 = h′𝑡+1, there exists a unitriangular φ𝑡 of depth ≥ 𝑡 such that

φ𝑡 (f𝑡 ) ∼
(
𝑥3 + 𝑦3 + p𝑡+2(𝑥𝑦)

)
+ μ𝑡+3 (𝑥𝑦) �(𝑡+3)/2� + O𝑡+4.

In degree 𝑡 + 4, again grouping together the terms containing 𝑥2 or 𝑦2 and cyclically permuting, we may
write

φ𝑡 (f𝑡 )𝑡+4 ∼ h𝑡+2 · 𝑥2 + h′𝑡+2 · 𝑦
2 + μ𝑡+4 (𝑥𝑦) �(𝑡+4)/2�

for homogeneous forms h𝑡+2, h′𝑡+2 of degree 𝑡 + 2 and some μ𝑡+4 ∈ C, where again μ𝑡+4 = 0 for odd t.
Thus, after setting p𝑡+3 (𝑥𝑦) = p𝑡+2 (𝑥𝑦) + μ𝑡+3 (𝑥𝑦) �(𝑡+3)/2� , define

f𝑡+1 = 𝑥3 + 𝑦3 + p𝑡+3(𝑥𝑦) +
(
h𝑡+2 · 𝑥2 + h′𝑡+2 · 𝑦

2 + μ𝑡+4 (𝑥𝑦) �(𝑡+4)/2� ) + φ𝑡 (f𝑡 )≥𝑡+5.

Note that φ𝑡 (f𝑡 ) ∼ f𝑡+1, and φ𝑡 (f𝑡 ) − f𝑡+1 ∈ 𝔫𝑡+3 ⊂ 𝔫𝑡+1 using the last statement of 6.2.
Thus, we have constructed a sequence of power series f1, f2, . . . and unitriangular automorphisms

φ1, φ2, . . . to which 3.7(3) applies. For 𝑠 ≥ 3, either s is even, in which case p𝑠+1 = p𝑠 , or s is
odd, in which case p𝑠+1 = p𝑠 + μ𝑠+1𝑧

(𝑠+1)/2; thus, it is clear that 𝑝 � lim p𝑠 =
∑∞
𝑠=2 μ2𝑠𝑧

𝑠. Further,
f = lim f𝑖 = 𝑥3 + 𝑦3 + 𝑝(𝑥𝑦) since the difference (f𝑖 − (𝑥3 + 𝑦3 + 𝑝(𝑥𝑦)))𝑖≥1 converges to zero.

It follows from 3.7(3) that Jac( 𝑓 ) � Jac(𝑥3 + 𝑦3 + 𝑝(𝑥𝑦)), as required. �
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The next step is to replace the power series 𝑝(𝑥𝑦) by its leading term, without changing the Jacobi
algebra.

Lemma 6.4. If 𝑓 = 𝑥3 + 𝑦3 + 𝑝(𝑥𝑦) ∈ C〈〈𝑥, 𝑦〉〉 for some 0 ≠ 𝑝(𝑧) ∈ C[[𝑧]] for which 𝑠 = ord(𝑝) ≥ 2,
then the following statements hold.

1. 𝑦𝑥2, 𝑥𝑦2 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )).
2. 𝑥2𝑦, 𝑦2𝑥 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )).
3. (𝑥𝑦)𝑠𝑥, (𝑦𝑥)𝑠𝑦 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )).

Proof. (1) Write 𝐽 𝑓 = (δ𝑥 𝑓 , δ𝑦 𝑓 ), so that ((δ𝑥 𝑓 , δ𝑦 𝑓 )) is the closure of 𝐽 𝑓 . Differentiating and pulling
out the lowest terms, write

δ𝑥 𝑓 = 3𝑥2 + 𝑦(𝑥𝑦)𝑠−1𝑞(𝑥𝑦) and δ𝑦 𝑓 = 3𝑦2 + 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1𝑥 (14)

for some 𝑞 = 𝜆0+𝜆1𝑧+𝜆2𝑧
2+· · · ∈ C[[𝑧]] with 𝜆0 ≠ 0. Writing 𝐴 ≡ 𝐵 for 𝐴−𝐵 ∈ 𝐽 𝑓 , then in particular,

𝑥2 ≡ − 1
3 𝑦(𝑥𝑦)

𝑠−1𝑞(𝑥𝑦) and 𝑦2 ≡ − 1
3𝑞(𝑥𝑦) (𝑥𝑦)

𝑠−1𝑥. (15)

Substituting for 𝑥2 or 𝑦2 at each step, we see that

𝑦 · 𝑥2 ≡ −1
3 𝑦2 · (𝑥𝑦)𝑠−1𝑞(𝑥𝑦) ∈ 𝔫2𝑠

≡ +1
32 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1𝑥 · (𝑥𝑦)𝑠−1𝑞(𝑥𝑦)

= +1
32 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1 · 𝑥2 · 𝑦(𝑥𝑦)𝑠−2𝑞(𝑥𝑦) ∈ 𝔫4𝑠−3

≡ −1
33 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1 · 𝑦(𝑥𝑦)𝑠−1𝑞(𝑥𝑦) · 𝑦(𝑥𝑦)𝑠−2𝑞(𝑥𝑦)

= −1
33 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−2𝑥 · 𝑦2 · (𝑥𝑦)𝑠−1𝑞(𝑥𝑦)𝑦(𝑥𝑦)𝑠−2𝑞(𝑥𝑦) ∈ 𝔫6𝑠−6

= . . .

At each substitution, the resulting power series has order 2𝑠 − 3 ≥ 1 higher than the previous one.
It follows from the above that for all 𝑡 ≥ 2𝑠, there exists 𝑛𝑡 ∈ 𝔫𝑡 such that 𝑦𝑥2 − 𝑛𝑡 ∈ 𝐽 𝑓 . Hence,
𝑦𝑥2 ∈

⋂
𝑡≥2𝑠 (𝐽 𝑓 + 𝔫𝑡 ), which is precisely the closure ((δ𝑥 𝑓 , δ𝑦 𝑓 )). By symmetry in x and y, the

analogous statement 𝑥𝑦2 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )) also follows.
(2) This follows in an analogous way: start by writing

δ𝑥 𝑓 = 3𝑥2 + 𝑟 (𝑦𝑥) (𝑦𝑥)𝑠−1𝑦 and δ𝑦 𝑓 = 3𝑦2 + 𝑥(𝑦𝑥)𝑠−1𝑟 (𝑦𝑥).

Then consider 𝑥2 · 𝑦 ≡ −1
3 𝑟 (𝑦𝑥) (𝑦𝑥)𝑠−1𝑦2, etc.

(3) Now write 𝐴 ≡ 𝐵 for 𝐴 − 𝐵 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )). Separating off the lowest term of 𝑞(𝑥𝑦) in (14), we
may write

δ𝑦 𝑓 = 3𝑦2 + 𝜆0(𝑥𝑦)𝑠−1𝑥 + (𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠−1𝑥,

and so 𝜆0(𝑥𝑦)𝑠−1𝑥 ≡ −3𝑦2 − (𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠−1𝑥 where 𝑞(𝑥𝑦) − 𝜆0 ∈ 𝔫2. Then

𝜆0(𝑥𝑦)𝑠𝑥 =
(
𝜆0(𝑥𝑦)𝑠−1𝑥

)
𝑦𝑥

≡
(
−3𝑦2 − (𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠−1𝑥

)
(𝑦𝑥)

= −3𝑦 · 𝑦2 · 𝑥 − (𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠𝑥
≡ 𝑦 · 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1𝑥 · 𝑥 − (𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠𝑥 (by (15))

≡ −(𝑞(𝑥𝑦) − 𝜆0) (𝑥𝑦)𝑠𝑥 (yx2 ≡ 0 by(1))
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The 𝜆0(𝑥𝑦)𝑠𝑥 on each side cancel, showing that 𝑞(𝑥𝑦) (𝑥𝑦)𝑠𝑥 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )). Since 𝑞(𝑥𝑦) is a
unit, it follows that (𝑥𝑦)𝑠𝑥 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )). Again, appealing to symmetry in x and y proves the final
statement. �

Proposition 6.5. Suppose that 𝑓 = 𝑥3 + 𝑦3 + 𝑝(𝑥𝑦), where 𝑝(𝑧) ∈ C[[𝑧]] with 𝑠 = ord(𝑝) ≥ 2. Then

𝑓 �

{
𝑥3 + 𝑦3 when 𝑝 = 0
𝑥3 + 𝑦3 + (𝑥𝑦)𝑠 when 𝑝 ≠ 0.

Furthermore,

1. JdimJac( 𝑓 ) ≤ 1, with equality if and only if 𝑝 = 0.
2. If 𝑝 ≠ 0, then dimC Jac( 𝑓 ) = 4𝑠, and dimC Jac( 𝑓 )ab = 4.

Therefore, the expressions 𝑥3 + 𝑦3 + (𝑥𝑦)𝑠 with 𝑠 ∈ Z≥2 ∪ {∞} form a set of normal forms.

Proof. For the first statement, if 𝑝 = 0, we are done, so suppose 𝑝 ≠ 0. Continuing the notation in the
proof of 6.4 above, after differentiating and pulling out the lowest terms, we may write

δ𝑥 𝑓 = 3𝑥2 + 𝑦(𝑥𝑦)𝑠−1𝑞(𝑥𝑦) and δ𝑦 𝑓 = 3𝑦2 + 𝑞(𝑥𝑦) (𝑥𝑦)𝑠−1𝑥 (16)

for some 𝑞 = 𝜆0 +𝜆1𝑧 +𝜆2𝑧
2 + · · · ∈ C[[𝑧]] with 𝜆0 ≠ 0. Set 𝑔 = 𝑥3 + 𝑦3 + (𝜆0/𝑠) (𝑥𝑦)𝑠 . Now 6.4 applies

equally well to both f and g; hence, both (𝑥𝑦)𝑠𝑥 and (𝑦𝑥)𝑠𝑦 belong to both the Jacobi ideals associated
to f and g. Consequently,

((δ𝑥 𝑓 , δ𝑦 𝑓 )) = ((δ𝑥 𝑓 , δ𝑦 𝑓 , (𝑥𝑦)𝑠𝑥, (𝑦𝑥)𝑠𝑦))
= ((δ𝑥𝑔, δ𝑦𝑔, (𝑥𝑦)𝑠𝑥, (𝑦𝑥)𝑠𝑦)) (cancel higher terms from 𝛿xf and 𝛿yf )
= ((δ𝑥𝑔, δ𝑦𝑔)).

It follows that 𝑓 � 𝑔. The coordinate change 𝑥 ↦→ 𝑎𝑥, 𝑦 ↦→ 𝑎𝑦 for 𝑎 = 2𝑠−3
√
𝑠/𝜆0 then normalises the

constant factor 𝜆0/𝑠 ≠ 0, as required.
(1) Consider the case 𝑝 = 0. As in 3.2, if 𝔍 is the Jacobson radical of Jac( 𝑓 ), then

𝔍𝑑

𝔍𝑑+1 =
𝔫𝑑 + ((𝑥2, 𝑦2))
𝔫𝑑+1 + ((𝑥2, 𝑦2))

.

This is always a two-dimensional vector space since if d is even, it has basis (𝑥𝑦)𝑑/2 and (𝑦𝑥)𝑑/2, while
if d is odd, it has basis 𝑥(𝑦𝑥) (𝑑−1)/2 and 𝑦(𝑥𝑦) (𝑑−1)/2. It follows that Jac( 𝑓 ) is an infinite-dimensional
C-algebra, with JdimJac( 𝑓 ) = 1.

When 𝑝 ≠ 0, 6.4 shows at once that Jac( 𝑓 ) is finite dimensional: indeed, any monomial of degree
𝑡 ≥ 2𝑠+1 either contains one of the monomials listed in 6.4(1–3) or is 𝑥𝑡 or 𝑦𝑡 . But by (16), 𝑥𝑡 = 𝑥𝑡−4·𝑥2·𝑥2

and 𝑦𝑡 = 𝑦2 · 𝑦2 · 𝑦𝑡−4 is equivalent, modulo ((δ𝑥 𝑓 , δ𝑦 𝑓 )), to a monomial that contains one of those
listed, and thus is equivalent to zero. Consequently, the entire graded piece of degree t is zero, and so
Jac( 𝑓 ) is finite dimensional.

(2) We compute a standard basis of ((δ𝑥 𝑓 , δ𝑦 𝑓 )) with respect to a local graded monomial order,
where we refer the reader to 6.6 below for references to the formal theory and its properties in this case.
In particular, leading terms have lowest degree, and lexicographical order selects the leading term when
there is more than one of lowest degree.

The proof of (1) above introduces a simplifying factor: since all monomials of degree 𝑡 = 2𝑠 + 1 lie
in the closed Jacobian ideal, it is sufficient to work in the quotient

Jac( 𝑓 ) � C〈𝑥, 𝑦〉
(δ𝑥 𝑓 , δ𝑦 𝑓 ,M𝑡 )

,
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where we write M𝑡 for the set of all noncommutative monomials of degree t, and closure is no longer
an issue.

Following [GH, 3.6], we compile a standard basis {𝑔1, 𝑔2, . . . } of (δ𝑥 𝑓 , δ𝑦 𝑓 ,M𝑡 ) starting with the
normalised derivatives

𝑔1 = 𝑥2 + 𝑠
3 𝑦(𝑥𝑦)

𝑠−1 = 1
3 δ𝑥 𝑓 and 𝑔2 = 𝑦2 + 𝑠

3𝑥(𝑦𝑥)
𝑠−1 = 1

3 δ𝑦 𝑓 ,

which have leading terms 𝑥2 and 𝑦2, respectively, since 𝑠 ≥ 2. The computation proceeds by resolving
nontrivial overlaps among leading terms. The leading term of 𝑔1 overlaps nontrivially with itself to
produce (after scaling by 3

𝑠 to normalise coefficients)

𝑔3 � 3
𝑠 (𝑥𝑔1 − 𝑔1𝑥) = (𝑥𝑦)𝑠 − (𝑦𝑥)𝑠 .

This does not reduce further modulo existing leading terms. The analogous overlap 𝑦𝑔2 − 𝑔2𝑦 gives the
same 𝑔3, and all other overlaps have order ≥ 𝑡, so reduce to zero modulo M𝑡 . Hence, the standard basis
is {𝑔1, 𝑔2, 𝑔3}. Note that we can then dispense with M𝑡 since those monomials all reduce to zero under
𝑔1, 𝑔2, 𝑔3 – that is exactly what 6.4 demonstrates – and so they do not appear in the standard basis.

As in the commutative case, the set of monomials not divisible by the leading term of any of 𝑔1,
𝑔2, 𝑔3 descends to give a monomial C-vector space basis for the quotient, by, for example, [GH, 3.5
and 3.1–2]. Thus, working in increasing degree, 1, 𝑥, 𝑦 are in the basis. Then, in each pair of degrees
2𝑒, 2𝑒 + 1 for 1 ≤ 𝑒 ≤ 𝑠 − 1, the basis consists of the four monomials

(𝑥𝑦)𝑒, (𝑦𝑥)𝑒, (𝑥𝑦)𝑒𝑥, (𝑦𝑥)𝑒𝑦,

and finally, (𝑥𝑦)𝑠 ≡ (𝑦𝑥)𝑠 in degree 2𝑠. Summing up, this basis has size 4𝑠, as claimed.
In the abelianisation, if 𝑠 > 2, we may rewrite the derivatives as 𝑥2 (unit) and 𝑦2 (unit). Hence,

Jac( 𝑓 )ab � C[[𝑥, 𝑦]]/(𝑥2, 𝑦2), which is four-dimensional. When 𝑠 = 2, it is also easy to verify that
Jac( 𝑓 )ab � C[[𝑥, 𝑦]]/(𝑥2, 𝑦2), so in all cases, the dimension is four. �

Remark 6.6. The theory of standard bases, also known as local Gröbner bases, of ideals and their
closures in noncommutative power series rings is less well documented in the literature than either global
polynomial Gröbner bases (commutative or not), or Mora’s tangent cone algorithm for commutative
power series rings; see, for example, [M3] or [H, III.1]. Nevertheless, the theory exists following
analogous ideas and has analogous conclusions. The essential reference is [GH], where §3 establishes
the existence and properties of standard bases, while §4–5 provide the tools needed to calculate. Standard
bases may be infinite in general, but within the context of Jdim ≤ 1 examples in this paper, this issue
does not arise.

In order to state a unified theorem with the 𝑥𝑦2 case in §6.4 below, it is convenient to mildly change
basis. This is rather cheap, largely because there are no moduli.

Corollary 6.7. Suppose that 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3, where 𝑓 ab
3 has three roots. Then either

𝑓 �

{
𝑥𝑦2 + 𝑥3

𝑥𝑦2 + 𝑥3 + 𝑥2𝑛 for some 𝑛 ≥ 2.

Furthermore, the above are normal forms.

Proof. Each of the forms f listed satisfies the condition that 𝑓 ab
3 has three roots. Thus, there exists some g

from the list in 6.5 with 𝑔 � 𝑓 . Furthermore, dimC Jac(𝑥𝑦2+𝑥3) = ∞, whereas dimC Jac(𝑥𝑦2+𝑥3+𝑥2𝑛) =
4𝑛 (see, for example, [vG, §5] and [Ka, §5], or 4.11), and so all options are uniquely covered. Since the
g listed in 6.5 are normal forms, it follows that the f listed here are normal forms. �
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6.2. Isomorphisms on the quantum plane

The following, which may be of independent interest, is one of the key reduction steps that will be used
in §6.3.

Lemma 6.8. For any units 𝑣, 𝑤 ∈ C[[𝑥2]], the unitriangular automorphism φ of C〈〈𝑥, 𝑦〉〉 sending
𝑥 ↦→ 𝑥𝑣, 𝑦 ↦→ 𝑦𝑤 descends to a topological isomorphism

C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥))

�−→ C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥)) .

Proof. The inverse of φ, as an automorphism of C〈〈𝑥, 𝑦〉〉, is clearly given by the unitriangular automor-
phism ψ : 𝑥 ↦→ 𝑥𝑣−1, 𝑦 ↦→ 𝑦𝑤−1. Set 𝐼 = ((𝑥𝑦 + 𝑦𝑥)). Then since φ is a topological isomorphism by 2.3,
we just need to prove that φ(𝐼) = 𝐼.

Now x commutes with v and w, being power series in 𝑥2, and also 𝑣𝑤 = 𝑤𝑣. But, modulo 𝐼 = ((𝑥𝑦+𝑦𝑥)),
y commutes with 𝑥2; thus, since the ideal is closed, y commutes with both v and w. It follows that

φ(𝑥𝑦 + 𝑦𝑥) = 𝑥𝑣𝑦𝑤 + 𝑦𝑤𝑥𝑣 ≡ (𝑥𝑦 + 𝑦𝑥)𝑣𝑤 ≡ 0 mod 𝐼 . (17)

Since φ is a continuous isomorphism, and I is the smallest closed ideal containing 𝑥𝑦 + 𝑦𝑥, φ(𝐼) is the
smallest closed ideal containing φ(𝑥𝑦 + 𝑦𝑥). But by (17), φ(𝑥𝑦 + 𝑦𝑥) also belongs to the closed ideal I,
so by minimality, φ(𝐼) ⊆ 𝐼.

Since 𝑣−1 and 𝑤−1 are also units in C[[𝑥2]], exactly the same logic applied to ψ shows that ψ (𝐼) ⊆ 𝐼.
Applying φ to this inclusion, we see that 𝐼 = φψ (𝐼) ⊆ φ(𝐼). Combining inclusions gives φ(𝐼) = 𝐼. �

6.3. Abelianized cubic with two factors

This subsection considers the case of 4.13 where 𝑓 ab
3 has two distinct factors – that is, 𝑓 � 𝑥2𝑦 + O4 –

and in 6.18 provides normal forms. This is substantially harder than in §6.1.

Lemma 6.9. Fix 𝑡 ≥ 4, and let 𝑓 = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡 +O𝑡+1. For any ℎ ∈ C〈〈𝑥, 𝑦〉〉 with ord(ℎ) = 𝑡 − 2,
the unitriangular automorphism 𝑥 ↦→ 𝑥 − ℎ, 𝑦 ↦→ 𝑦 sends

𝑓 ↦→ 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1 +
(
𝑓𝑡 − ℎ𝑦2

)
+ O𝑡+1.

Proof. Write ψ for the stated automorphism. The result follows since ψ (𝑥𝑦2) = 𝑥𝑦2−ℎ𝑦2 and ψ (𝑚) ≡ 𝑚
mod 𝔫𝑡+1 whenever deg(𝑚) ≥ 4. �

The next lemma is much less elementary.

Lemma 6.10. Fix 𝑡 ≥ 4, and let 𝑓 = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡 + O𝑡+1, where furthermore,

𝑓𝑡 = h𝑡−2 · 𝑦2 +
∑

𝜆𝑎𝑥
𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + α𝑥𝑡 (18)

for some homogeneous form h𝑡−2 of degree 𝑡 − 2, each 𝑎𝑖 ≥ 1, 𝑟 ≥ 1 and 𝑟 +
∑

𝑎𝑖 = 𝑡, α ∈ C and each
𝜆𝑎 = 𝜆𝑎1 · · ·𝑎𝑟 ∈ C. Then there exists a unitriangular automorphism φ of depth ≥ 𝑡 − 3 such that

φ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1 + (𝑔𝑡 + α𝑥𝑡 ) + O𝑡+1,

where 𝑔𝑡 ∈ C〈〈𝑥, 𝑦〉〉𝑡 satisfies 𝑔𝑡 ∼ 0.

Example 6.11. It is worth considering an example to make the notation of both the statement and proof
more transparent. Consider

𝑓 = 𝑥𝑦2 +
(
𝜆51𝑥

5𝑦𝑥𝑦 + 𝜆42𝑥
4𝑦𝑥2𝑦 + 𝜆33𝑥

3𝑦𝑥3𝑦
)
+ 𝑓≥9,

https://doi.org/10.1017/fmp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.2


30 G. Brown and M. Wemyss

which has 𝑓8 of the form (18). Applying φ1 : 𝑥 ↦→ 𝑥 and 𝑦 ↦→ 𝑦 − 𝜆33𝑥
3𝑦𝑥2, where we cancelled 𝑥𝑦

from the right of the target 𝜆33 term to obtain the subtracted term, gives

φ1( 𝑓 ) = 𝑥𝑦2 + 𝜆51𝑥
5𝑦𝑥𝑦 + (𝜆42 − 𝜆33)𝑥4𝑦𝑥2𝑦 + 𝑔1 + O9,

where 𝑔1 = 𝜆33(𝑥3𝑦𝑥3𝑦 − 𝑥𝑦𝑥3𝑦𝑥2) ∼ 0. Ignoring 𝑔1, the summation in degree 8 symbolically now has
only two terms, which is progress.

An analogous automorphism φ2 sending 𝑥 ↦→ 𝑥 and 𝑦 ↦→ −(𝜆42 − 𝜆33)𝑥4𝑦𝑥, where we cancelled 𝑥𝑦
from the right of the next target term, gives

φ2φ1( 𝑓 ) = 𝑥𝑦2 + (𝜆51 − 𝜆42 + 𝜆33)𝑥5𝑦𝑥𝑦 + 𝑔2 + O9

for some 𝑔2 ∼ 0, and again the number of terms in degree 8 (outside 𝑔2) has not increased. Repeating
again with an analogous automorphism φ3 gives

φ3φ2φ1( 𝑓 ) = 𝑥𝑦2 − (𝜆51 − 𝜆42 + 𝜆33)𝑥6𝑦2 + 𝑔3 + O9

with 𝑔3 ∼ 0. We are now in a position to apply 6.9 to leave only 𝑔3 in degree 8.
The proof below confirms that this inductive idea works more generally.

Proof. If the middle sum in the expression for 𝑓𝑡 is zero, we are done by 6.9 (with 𝑔𝑡 = 0), so we may
assume that the sum is nonzero.

Suppose that the middle sum contains a term t1 = 𝜆𝑏𝑥
𝑏1 𝑦 · · · 𝑥𝑏𝑟 𝑦 with 𝑟 > 1. In this case, consider

the unitriangular automorphism φ defined by 𝑥 ↦→ 𝑥, 𝑦 ↦→ 𝑦−𝜆𝑏𝑥
𝑏1 𝑦 · · · 𝑦𝑥𝑏𝑟−1, where we have simply

cancelled 𝑥𝑦 from the right-hand side of the target term t1. As in 6.9, φ(𝑚) ≡ 𝑚 mod 𝔫𝑡+1 whenever
deg(𝑚) ≥ 4, so any change in degree ≤ 𝑡 comes from φ(𝑥𝑦2), and thus,

φ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1

+ ( 𝑓𝑡 − 𝜆𝑏𝑥𝑦𝑥
𝑏1 𝑦 · · · 𝑦𝑥𝑏𝑟−1 − 𝜆𝑏𝑥

𝑏1+1𝑦 · · · 𝑦𝑥𝑏𝑟−1𝑦) + O𝑡+1. (19)

Writing g1 = t1 − 𝜆𝑏𝑥𝑦𝑥
𝑏1 𝑦 · · · 𝑦𝑥𝑏𝑟−1 ∼ 0, then the degree t term of (19) equals

g1 + ℎ · 𝑦2 +
∑

𝜆𝑎𝑥
𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + α𝑥𝑡 ,

where, under the summand, the target term t1 has been replaced by a term of the form t2 =
−𝜆𝑏𝑥𝑏1+1𝑦 · · · 𝑦𝑥𝑏𝑟−1𝑦, so the sum has the same number of terms or fewer (depending on whether
t2 cancels with existing terms or not).

If 𝑏𝑟 = 1, then the new term t2 equals ℎ𝑦2 for ℎ = −𝜆𝑏𝑥𝑏1+1𝑦 · · · 𝑦𝑥𝑏𝑟−1 , and we so may apply 6.9 to
(19) to find ψ such that

ψφ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1 + ( 𝑓𝑡 − 𝜆𝑏𝑥𝑦𝑥
𝑏1 𝑦 · · · 𝑦𝑥𝑏𝑟−1) + O𝑡+1,

where the degree t term is equal to

𝑓𝑡 − 𝜆𝑏𝑥𝑦𝑥
𝑏1 𝑦 · · · 𝑦𝑥𝑏𝑟−1 = g1 + 𝑓𝑡 − 𝜆𝑏𝑥

𝑏1 𝑦 · · · 𝑥𝑏𝑟 𝑦

= g1 + ℎ · 𝑦2 +
∑
𝑎≠𝑏

𝜆𝑎𝑥
𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + α𝑥𝑡 ,

and the number of terms under the summand is now strictly reduced.

https://doi.org/10.1017/fmp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.2


Forum of Mathematics, Pi 31

Otherwise, 𝑏𝑟 > 1. Set φ1 = φ, and repeating the original construction of a unitriangular automor-
phism by cancelling 𝑥𝑦 from the right, we can construct φ2 such that

φ2φ1 ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1

+
(
g2 + ℎ · 𝑦2 +

∑
𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + α𝑥𝑡
)
+ O𝑡+1, (20)

where g2 ∼ 0 is the sum of g1 and another binomial ∼ 0, and in the sum we have replaced the term
−𝜆𝑏𝑥𝑏1+1𝑦 · · · 𝑦𝑥𝑏𝑟−1𝑦 by 𝜆𝑏𝑥

𝑏1+2𝑦 · · · 𝑦𝑥𝑏𝑟−2𝑦. Repeating this, we find unitriangular automorphisms
φ1, . . . , φ𝑏𝑟−1 so that φ𝑏𝑟−1 · · · φ2φ1( 𝑓 ) has the form of (20), and the sum has the same number of
terms or fewer, but in which the target monomial we are focussing on has become 𝑥𝑏1+𝑏𝑟−1𝑦𝑥𝑏2 · · · 𝑦𝑥𝑦.
A further repetition with a unitriangular automorphism φ𝑏𝑟 replaces that term by one that contains 𝑦2,
and once again, we may apply 6.9 to find a unitriangular automorphism ψ that moves this term into
higher degree. Thus, after applying the single unitriangular automorphism ψφ𝑏𝑟 · · · φ1 to f, the number
of terms in the summation when parsed in the form (18) has strictly reduced.

We repeat this process inductively, and it will terminate when there are no terms under the sum-
mation sign of the form 𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 with 𝑟 > 1. Each step was achieved by a single unitriangular
automorphism (itself built as a composition of unitriangular automorphisms), and composing each of
these gives a single unitriangular automorphism ϑ such that

ϑ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1 + (g + ℎ · 𝑦2 + 𝜆𝑥𝑡−1𝑦 + α𝑥𝑡 ) + O𝑡+1

for some g with g ∼ 0.
To conclude, the unitriangular automorphism φ defined by 𝑥 ↦→ 𝑥 − ℎ, 𝑦 ↦→ 𝑦 − 𝜆

2 𝑥
𝑎1−1 = 𝑦 − 𝜆

2 𝑥
𝑡−2

has depth 𝑡 − 3, so again, φ(𝑚) ≡ 𝑚 mod 𝔫𝑡+1 whenever deg(𝑚) ≥ 4, and thus,

φϑ( 𝑓 ) = 𝑥𝑦2 + 𝑓4 + · · · + 𝑓𝑡−1 + (g + 𝜆𝑥𝑡−1𝑦 − 𝜆
2 𝑥𝑦𝑥

𝑡−2 − 𝜆
2 𝑥
𝑡−1𝑦︸������������������������������︷︷������������������������������︸

h

+α𝑥𝑡 ) + O𝑡+1.

Set 𝑔𝑡 = g + h. Then since both g ∼ 0 and h ∼ 0, we are done. �

From here, the strategy of §6.1 remains: first find a standard power series form of each potential, and
then simplify into polynomial normal form.

Proposition 6.12. Suppose that 𝑓 = 𝑓3 + O4, where 𝑓 ab
3 has two distinct linear factors. Then 𝑓 �

𝑥𝑦2 + 𝑞(𝑥) for some power series 𝑞(𝑥) ∈ C[[𝑥]] with ord(𝑞) ≥ 4.

Recall the Conventions 1.8, used in 6.3, on graded pieces of sequence elements; namely, sequence
elements f𝑛 ∈ C〈〈𝑥, 𝑦〉〉 are in Greek font, while (f𝑛)𝑡 is the degree t piece of f𝑛.

Proof. We construct a sequence of power series f1, f2, . . . and unitriangular automorphisms φ1, φ2, . . .
inductively, with each f𝑡 having the form of the target power series 𝑥𝑦2 + 𝑞(𝑥) in low degree. Summary
3.7(3) will then construct f = lim f𝑖 of the required form with Jac( 𝑓 ) � Jac(f).

By 4.13, 𝑓 � 𝑔 where 𝑔3 = 𝑥𝑦2. After grouping together the terms containing 𝑦2, then the terms that
contain y but not 𝑦2, and cyclically permuting, we may write

𝑔4 ∼ h2 · 𝑦2 +
∑

𝜆𝑎𝑥
𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ4𝑥

4

for h2 ∈ C〈𝑥, 𝑦〉2, 𝑟 ≥ 1 and each 𝑎𝑖 ≥ 1 and μ4 ∈ C and where we use the abbreviated notation
𝜆𝑎 := 𝜆𝑎1 · · ·𝑎𝑟 ∈ C. It is convenient to write the sum as

∑
𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 by analogy with the general
case, noting that here it is nothing more than 𝜆11𝑥𝑦𝑥𝑦 + 𝜆3𝑥

3𝑦.
Hence, we begin the induction by setting

f1 = 𝑥𝑦2 + (h2 · 𝑦2 +
∑

𝜆𝑥𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ4𝑥
4) + 𝑔≥5
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and note that f1 ∼ 𝑔 � 𝑓 . Thus, f1 is in the desired form in degrees ≤ 3 and has its degree 4 piece
prepared in standard form for further analysis.

For the inductive step more generally, we may suppose that f𝑡 ∈ C〈〈𝑥, 𝑦〉〉 has been constructed of the
form

f𝑡 =
(
𝑥𝑦2 + q𝑡+2(𝑥)

)
+

(
h𝑡+1 · 𝑦2 +

∑
𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ𝑡+3𝑥
𝑡+3) + O𝑡+4

with q3 = 0 and

1. (f𝑡 )≤𝑡+2 = 𝑥𝑦2+q𝑡+2 (𝑥), for some polynomial q𝑡+2 ∈ C[𝑥]≥4 of degree ≤ 𝑡+2, where the polynomials
q3, . . . , q𝑡+2 satisfy q𝑖+1 − q𝑖 = μ𝑖+1𝑥

𝑖+1 for μ𝑖+1 ∈ C, and
2. (f𝑡 )𝑡+3 = h𝑡+1 · 𝑦2 +

∑
𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ𝑡+3𝑥
𝑡+3 for some homogeneous form h𝑡+1 of degree 𝑡 + 1,

each 𝑎𝑖 ≥ 1, 𝑟 ≥ 1 and 𝑟 +
∑

𝑎𝑖 = 𝑡 + 3, and μ𝑡+3 ∈ C.

By 6.10, there exists a unitriangular φ𝑡 of depth t such that

φ𝑡 (f𝑡 ) = 𝑥𝑦2 + 𝑞𝑡+2 (𝑥) + (𝑘𝑡+3 + μ𝑡+3𝑥
𝑡+3) + O𝑡+4,

where 𝑘𝑡+3 ∼ 0. In degree 𝑡 + 4, again grouping together the terms containing 𝑦2, then the terms that
contain y but not 𝑦2, and cyclically permuting, we may write

φ𝑡 (f𝑡 )𝑡+4 ∼ h𝑡+2 · 𝑦2 +
∑

𝜆𝑎𝑥
𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ𝑡+4𝑥

𝑡+4.

Thus, after setting q𝑡+3(𝑥) = q𝑡+2(𝑥) + μ𝑡+3𝑥
𝑡+3, define

f𝑡+1 = 𝑥𝑦2 + q𝑡+3 (𝑥) +
(
h𝑡+2 · 𝑦2 +

∑
𝜆𝑎𝑥

𝑎1 𝑦 . . . 𝑥𝑎𝑟 𝑦 + μ𝑡+4𝑥
𝑡+4) + φ𝑡 (f𝑡 )≥𝑡+5.

Note that φ𝑡 (f𝑡 ) ∼ f𝑡+1, and that φ𝑡 (f𝑡 ) − f𝑡+1 ∈ 𝔫𝑡+3 ⊂ 𝔫𝑡+1.
Thus, we have constructed a sequence of power series f1, f2, . . . and unitriangular automorphisms

φ1, φ2, . . . to which 3.7(3) applies. Since at each stage q𝑠 = q𝑠−1 + μ𝑠𝑥𝑠 , it is clear that 𝑞 � lim q𝑠 =∑∞
𝑠=4 μ𝑠𝑥

𝑠 , and that f = lim f𝑖 = 𝑥𝑦2 +𝑞, since the difference (f𝑖 − (𝑥𝑦2 +𝑞))𝑖≥1 converges to zero. Hence,
Jac( 𝑓 ) � Jac(𝑥𝑦2 + 𝑞), as required. �

The next step is to reduce the options for 𝑞(𝑥), using the following preliminary lemma.

Lemma 6.13. Let 𝑢 ∈ C[[𝑥]] be an even power series: that is, u is a power series in 𝑥2.

1. If u is a unit, then 𝑢−1 and 𝑛
√
𝑢 are also even power series for any 𝑛 ≥ 2.

2. Let 𝑈 ∈ C[[𝑥]] be a unit and 𝑛 ∈ Z a nonzero integer. Then there is a unit 𝑡 ∈ C[[𝑥]] with 𝑡𝑛 = 𝑈 (𝑥𝑡).
Furthermore, if U is even, then t is even.

Proof. (1) Consider 𝑣 ∈ C[[𝑧]] with 𝑢(𝑥) = 𝑣(𝑥2). If u is a unit, then v is a unit and 𝑣−1 and 𝑛
√
𝑣 ∈ C[[𝑧]]

for all 𝑛 ≥ 2. Then 𝑢−1(𝑥) = 𝑣−1 (𝑥2) and 𝑛
√
𝑢(𝑥) = 𝑛

√
𝑣(𝑥2).

(2) Write𝑈 = 𝑎0 +𝑎1𝑥 +𝑎2𝑥
2 + · · · with 𝑎0 ≠ 0. Consider the case 𝑛 > 0. We show that we may solve

inductively for the coefficients 𝑏𝑑 of the expansion 𝑡 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + · · · in the equation 𝑡𝑛 = 𝑈 (𝑥𝑡).

It is clear that the coefficient of 𝑥𝑑 in 𝑡𝑛 is a sum of 𝑛𝑏𝑛−1
0 𝑏𝑑 with terms involving only coefficients 𝑏𝑖

with 𝑖 < 𝑑. On the other side of the equation, the coefficient of 𝑥𝑑 in 𝑈 (𝑥𝑡) is a sum of terms involving
𝑎𝑖 and 𝑏 𝑗 with 𝑖 ≤ 𝑑 and 𝑗 < 𝑑. Putting these together, 𝑏𝑑 does not appear in the coefficient of 𝑥𝑖 for
any 𝑖 < 𝑑, and it appears linearly with nonzero coefficient for the first time in the coefficient of 𝑥𝑑 , and
so we may solve for it. Working inductively in increasing 𝑑 ≥ 0, and taking the limit, determines t, as
claimed. For 𝑛 < 0, the same argument proves the existence of the unit 𝑡−1, which is equivalent.

Suppose that U is even, and let 𝑏2𝑛+1 be the smallest nonzero odd-degree coefficient of t. Then the
odd-degree term with smallest degree in 𝑡𝑛 is 𝑛𝑏𝑛−1

0 𝑏2𝑛+1𝑥
2𝑛+1, while in 𝑈 (𝑥𝑡), it is 2𝑎2𝑏0𝑏2𝑛+1𝑥

2𝑛+3

which appears in the summand 𝑎2 (𝑥𝑡)2, a contradiction. So t must be even. �
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The point is now simple: y is under control, and so there is a relation 𝑥𝑦 + 𝑦𝑥 in the Jacobi algebra.
Then 6.8 yields the following key preparation result.

Proposition 6.14. If 𝑓 = 𝑥𝑦2 + 𝑝(𝑥) where 𝑝(𝑥) ∈ C[[𝑥]] with ord(𝑝) ≥ 4, then

𝑓 � 𝑥𝑦2 + α 𝑥2𝑛 + β 𝑥2𝑚+1

for some 𝑛, 𝑚 ≥ 2, and some α, β ∈ {0, 1}. Furthermore, α = 1 if and only if p has a nonzero even-
degree term, in which case 2𝑛 is the least even degree appearing in p, and similarly the analogous
criterion for β = 1 and least odd degree term in p.

Proof. First note that

Jac( 𝑓 ) = C〈〈𝑥, 𝑦〉〉/((𝑥𝑦 + 𝑦𝑥, 𝑦2 + δ𝑥 𝑝)).

We exhibit an automorphism of C〈〈𝑥, 𝑦〉〉 that takes the two generators of the Jacobian ideal to (𝑥𝑦 +
𝑦𝑥)(unit) and

(
𝑦2 + β𝑥2𝑚 + α𝑥2𝑛−1) (unit), respectively, where either α = 0 or 2𝑛 ≥ 4 is the least even

degree appearing in p, and either β = 0 or 2𝑚 +1 ≥ 5 is the least odd degree appearing in p. This proves
all the claims.

Parsing δ𝑥 𝑝 into even and odd terms, write the Jacobi algebra relations as

𝑥𝑦 + 𝑦𝑥 and 𝑦2 + 𝑎𝑥2𝑁 𝑢 + 𝑏𝑥2𝑀−1𝑣,

where 𝑢, 𝑣 ∈ C[[𝑥2]] are each either a unit or zero, 𝑁, 𝑀 ≥ 2, and 𝑎, 𝑏 ∈ C are any nonzero numbers
that carry through the calculation undisturbed; we choose 𝑎 = 2𝑁 + 1 and 𝑏 = 2𝑀 at the end.

Suppose in the first place that 𝑢 ≠ 0, and then fix a square root 𝑠 =
√
𝑢 ∈ C[[𝑥2]] and consider the

unitriangular automorphism φ sending 𝑥 ↦→ 𝑥, 𝑦 ↦→ 𝑦𝑠. By 6.8, this induces a topological isomorphism

φ̄ :
C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥))

∼−→ C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥)) .

In the codomain of this map, y commutes with 𝑥2 and thus commutes with 𝑠 ∈ C[[𝑥2]]. It follows that
φ̄(𝑦2) = 𝑦𝑠𝑦𝑠 = 𝑦2𝑠2 = 𝑦𝑢, and thus,

φ̄(𝑦2 + δ𝑥 𝑝) = (𝑦2 + 𝑎𝑥2𝑁 )𝑢 + 𝑏𝑥2𝑀−1𝑣.

By 2.11(1)(3), after right multiplying by the unit 𝑢−1, we obtain an isomorphism

C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥, 𝑦2 + δ𝑥 𝑝))

∼−→ C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥, 𝑦2 + 𝑎𝑥2𝑁 + 𝑏𝑥2𝑀−1 𝑣

𝑢 ))
. (21)

If 𝑣 = 0, then (21) asserts that Jac( 𝑓 ) � Jac(𝑥𝑦2 + 𝑥2𝑁+1), and so we are done. Hence, we may assume
that 𝑣 ≠ 0.

As u and v are both unit power series in 𝑥2, so is 𝑣𝑢 . By 6.13(2), since 2𝑁 −2𝑀 +1 is nonzero, we may
choose a unit 𝑡 ∈ C[[𝑥2]] such that 𝑡2𝑁 = 𝑡2𝑀−1𝑣(𝑥𝑡)/𝑢(𝑥𝑡). Consider the unitriangular automorphism
ψ sending 𝑥 ↦→ 𝑥𝑡, 𝑦 ↦→ 𝑦𝑡𝑁 . Again by 6.8, there is an induced topological isomorphism

ψ̄ :
C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥))

∼−→ C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥)) .
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Clearly, x commutes with 𝑡, 𝑡𝑁 ∈ C[[𝑥2]], and further in the codomain of ψ̄, the element y commutes
with 𝑥2 and thus commutes with 𝑡, 𝑡𝑁 ∈ C[[𝑥2]]. Thus,

ψ̄ (𝑦2 + 𝑎𝑥2𝑁 + 𝑏𝑥2𝑀−1 𝑣
𝑢 ) = 𝑦2𝑡2𝑁 + 𝑎𝑥2𝑁 𝑡2𝑁 + 𝑏𝑥2𝑀−1𝑡2𝑀−1𝑢(𝑥𝑡)/𝑣(𝑥𝑡)
= (𝑦2 + 𝑎𝑥2𝑁 + 𝑏𝑥2𝑀−1)𝑡2𝑁 .

Again, 2.11(1)(3) then induces an isomorphism

C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥, 𝑦2 + 𝑎𝑥2𝑁 + 𝑏𝑥2𝑀−1 𝑣

𝑢 ))
∼−→ C〈〈𝑥, 𝑦〉〉
((𝑥𝑦 + 𝑦𝑥, 𝑦2 + 𝑎𝑥2𝑁 + 𝑏𝑥2𝑀−1))

. (22)

Setting 𝑎 = 2𝑁 + 1 and 𝑏 = 2𝑀 , the right-hand side is Jac(𝑥𝑦2 + 𝑥2𝑁+1 + 𝑥2𝑀 ). Hence, composing (21)
with (22) gives an isomorphism Jac( 𝑓 ) � Jac(𝑥𝑦2 + 𝑥2𝑁+1 + 𝑥2𝑀 ).

The case 𝑢 = 0 and 𝑣 ≠ 0 works in exactly the same way as the case 𝑢 ≠ 0 and 𝑣 = 0 above, applying
an automorphism with 𝑠 =

√
𝑣, while the case 𝑢 = 𝑣 = 0 is trivial. �

The above is not quite yet in normal form since some of the polynomial potentials in 6.14 have
isomorphic Jacobi algebras. The next step is to discard cases where the odd term in 𝑝(𝑥) has significantly
greater degree than the even term.

Lemma 6.15. If 𝑓 = 𝑥𝑦2 + 𝑥2𝑛 + ε𝑥2𝑚+1 where ε ∈ {0, 1} and 𝑚 ≥ 𝑛, then 𝑦3 ∈ (δ𝑥 𝑓 , δ𝑦 𝑓 ). In
particular, 𝑦3 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )).

Proof. Set 𝐼 = (δ𝑥 𝑓 , δ𝑦 𝑓 ) = (𝑦2 + 2𝑛𝑥2𝑛−1 + ε(2𝑚 + 1)𝑥2𝑚, 𝑥𝑦 + 𝑦𝑥), and below write ≡ for an equality
mod I. Since 𝑦2 ≡ −2𝑛𝑥2𝑛−1 − ε(2𝑚 + 1)𝑥2𝑚, multiplying on the left by y and on the right by y gives

−2𝑛𝑥2𝑛−1𝑦 − ε(2𝑚 + 1)𝑥2𝑚𝑦 ≡ 𝑦3 ≡ −2𝑛𝑦𝑥2𝑛−1 − ε(2𝑚 + 1)𝑦𝑥2𝑚

≡ 2𝑛𝑥2𝑛−1𝑦 − ε(2𝑚 + 1)𝑥2𝑚𝑦,

where the last line holds since 𝑥𝑦 ≡ −𝑦𝑥 using the second generator of I. Inspecting the right- and left-
hand sides, the 𝑥2𝑚𝑦 terms cancel, and so 4𝑛𝑥2𝑛−1𝑦 ≡ 0; thus, 𝑥2𝑛−1𝑦 ≡ 0. Finally, since 𝑚 ≥ 𝑛, taking
out the common factor, we see that

𝑦3 ≡ (2𝑛 − ε(2𝑚 + 1)𝑥2𝑚−2𝑛−1)𝑥2𝑛−1𝑦 ≡ 0.

Thus, 𝑦3 ∈ 𝐼. The final statement follows immediately. �

Corollary 6.16. If 𝑓 = 𝑥𝑦2 + 𝑥2𝑛 + ε𝑥2𝑚+1 where 𝑚 ≥ 2𝑛 − 1, then 𝑥4𝑛−2 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )).

Proof. Continue to write ≡ for an equality mod (δ𝑥 𝑓 , δ𝑦 𝑓 ). Then

𝑥4𝑛−2 = (−𝑥2𝑛−1)2 ≡ 1
(2𝑛)2 (𝑦2 + ε(2𝑚 + 1)𝑥2𝑚)2 (since 𝛿xf ≡ 0)

≡ ε (2𝑚+1)
(2𝑛)2 (𝑦2𝑥2𝑚 + 𝑥2𝑚𝑦2 + ε(2𝑚 + 1)𝑥4𝑚) (y3 ≡ 0 by 6.15)

≡ ε (2𝑚+1)
(2𝑛)2 (2𝑥2𝑚𝑦2 + ε(2𝑚 + 1)𝑥4𝑚). (xy ≡−yx)

Taking out the 𝑥2𝑚 common factor from the front, we may write 𝑥4𝑛−2 ≡ 𝑥2𝑚𝑔 for some g with no
constant term. Then, since 2𝑚 ≥ 4𝑛− 2 by assumption, we see that 𝑥4𝑛−2 ≡ 𝑥4𝑛−2 (𝑥2𝑚−(4𝑛−2)𝑔), and so
𝑥4𝑛−2 (1 − 𝑥2𝑚−(4𝑛−2)𝑔) ≡ 0.

Given this statement holds mod (δ𝑥 𝑓 , δ𝑦 𝑓 ), it also holds mod ((δ𝑥 𝑓 , δ𝑦 𝑓 )), and hence, 𝑥4𝑛−2 (1 −
𝑥2𝑚−(4𝑛−2)𝑔) = 0 in Jac( 𝑓 ). But there, 1 − 𝑥2𝑚−(4𝑛−2)𝑔 is a unit, and so it follows that 𝑥4𝑛−2 = 0 in
Jac( 𝑓 ), as required. �
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The above two results combine to remove the case when the odd-degree x term is sufficiently larger
than the even-degree x term, as follows.

Corollary 6.17. If 𝑓 = 𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚+1 where 𝑚 ≥ 2𝑛 − 1, then 𝑓 � 𝑥𝑦2 + 𝑥2𝑛.

Proof. By 6.16, we have 𝑥4𝑛−2 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )) and 𝑥4𝑛−2 ∈ ((𝑦2 +2𝑛𝑥2𝑛−1, 𝑥𝑦 + 𝑦𝑥)). Since 2𝑚 ≥ 4𝑛−2,
it follows that 𝑥2𝑚 belongs to both of the ideals above, and thus,

((δ𝑥 𝑓 , δ𝑦 𝑓 )) = ((𝑦2 + 2𝑛𝑥2𝑛−1 + (2𝑚 + 1)𝑥2𝑚, 𝑥𝑦 + 𝑦𝑥, 𝑥2𝑚))
= ((𝑦2 + 2𝑛𝑥2𝑛−1, 𝑥𝑦 + 𝑦𝑥, 𝑥2𝑚))
= ((𝑦2 + 2𝑛𝑥2𝑛−1, 𝑥𝑦 + 𝑦𝑥)).

As this final ideal is obtained from 𝑥𝑦2 + 𝑥2𝑛 by differentiation, the result follows. �

Summarising the above gives the following, which is the main result of this subsection.

Corollary 6.18. Suppose that 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3 where ( 𝑓3)ab has two roots. Then either

𝑓 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥𝑦2

𝑥𝑦2 + 𝑥2𝑚+1 𝑚 ≥ 2
𝑥𝑦2 + 𝑥2𝑛 𝑛 ≥ 2
𝑥𝑦2 + 𝑥2𝑚+1 + 𝑥2𝑛 2 ≤ 𝑚 ≤ 𝑛 − 1
𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚+1 2 ≤ 𝑛 ≤ 𝑚 ≤ 2(𝑛 − 1)

All of the above are mutually non-isomorphic.

Proof. The fact that the stated list covers all cases follows from 6.14, using 6.17 to discount the case
when the odd-degree x term is sufficiently larger than the even-degree x term. We now claim that the
potentials listed give pairwise non-isomorphic Jacobi algebras.

The first two families both have infinite dimensional Jacobi algebras, whereas the bottom three are
all finite dimensional. As such, the only possibilities for isomorphisms are between members in families
one and two, or between members in families three, four and five. But dimC Jac(𝑥𝑦2)ab = ∞, whereas
dimC Jac(𝑥𝑦2 + 𝑥2𝑚+1)ab = 2𝑚 + 2, and so all members of families one and two are mutually non-
isomorphic.

For the final three families, all members of families three and four and mutually non-isomorphic,
as can be seen by extending the method of [BW1, 4.7], or by using [Ka, 5.10] directly. Further, all
members of family five are also mutually non-isomorphic for dimension reasons since for f in family
five dimC Jac( 𝑓 )ab = 2𝑚 + 2 and dimC Jac( 𝑓 ) = (2𝑚 + 2) + 4(𝑛 − 1) by either [vG, §5] or §4.3, and
thus, we can distinguish between all different m and n. The only remaining possibility is an isomorphism
between a member of family five, and a member of family three or four. But by above, the dimension of
Jac( 𝑓 ) for f in family five is even, and the dimension of Jac(𝑔) for g in families three and four is odd
[Ka, 5.10], so there can be no such isomorphisms. �

6.4. Overview of Type D normal forms

The previous subsections combine to give the following, which is the main result of this section.
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Theorem 6.19. Let 𝑓 ∈ C〈〈x〉〉≥2 with Crk( 𝑓 ) = 2 and Crk2 ( 𝑓 ) = 2. Then either

𝑓 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧2
1 + · · · + 𝑧2

𝑑−2 + 𝑥𝑦2

𝑧2
1 + · · · + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑚+1 with 𝑚 ≥ 1
𝑧2

1 + · · · + 𝑧2
𝑑−2 + 𝑥𝑦2 + 𝑥2𝑛 with 𝑛 ≥ 2

𝑧2
1 + · · · + 𝑧2

𝑑−2 + 𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚+1 with 𝑛 ≥ 2, 𝑛 ≤ 𝑚 ≤ 2𝑛 − 2
𝑧2

1 + · · · + 𝑧2
𝑑−2 + 𝑥𝑦2 + 𝑥2𝑚+1 + 𝑥2𝑛 with 𝑚 ≥ 1, 𝑛 ≥ 𝑚 + 1.

The Jacobi algebras of these potentials are all mutually non-isomorphic, and furthermore, the following
statements hold.

1. Every f in the first two families satisfies JdimJac( 𝑓 ) = 1.
2. Every f in the last three families satisfies JdimJac( 𝑓 ) = 0.

(a) For any fixed 𝑛 ≥ 2, the algebras in families three and four combine to give 𝑛 − 1 non-
isomorphic Jacobi algebras, all of which satisfy dimC Jac( 𝑓 )ab = 2𝑛+1 and dimC Jac( 𝑓 ) =
(2𝑛 + 1) + 4(𝑛 − 1) = 6𝑛 − 3.

(b) In the fifth family, dimC Jac( 𝑓 )ab = 2𝑚 + 2 and dimC Jac( 𝑓 ) = (2𝑚 + 2) + 4(𝑛 − 1).

Proof. By the Splitting Lemma 4.5, the condition Crk( 𝑓 ) = 2 implies that 𝑓 � 𝑧2
1 + . . . + 𝑧2

𝑑−2 + 𝑔
for some 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥3. The condition Crk2( 𝑓 ) = 2 is then equivalent to the first two cases in 4.13 –
namely, those 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥3 with 𝑔3 ≠ 0 for which 𝑔ab

3 has either two or three distinct linear factors.
The options for all such g thus follow from combining 6.7 and 6.18

The fact that JdimJac(𝑥𝑦2 + 𝑥3) = 1 follows since Jac(𝑥𝑦2 + 𝑥3) � Jac(𝑥3 + 𝑦3) by linear change in
coordinates, and JdimJac(𝑥3 + 𝑦3) = 1 by 6.5(1). The statements that JdimJac(𝑥𝑦2 + 𝑥2𝑚−1) = 1 for all
𝑚 ≥ 2 and JdimJac(𝑥𝑦2) = 1 can be shown by a very similar explicit method as in the proof of 6.5(1),
or alternatively by using 8.5 below, once we know (in 8.16) that all such Jacobi algebras are contraction
algebras. The stated vector space dimensions of the Jacobi algebras in all remaining cases have already
been justified in the proofs of 6.7 and 6.18, respectively.

The fact that the above are all mutually non-isomorphic, and thus a list of normal forms, then follows.
Indeed, by inspecting 𝔍-dimension, the only possible isomorphisms are between members of families
one and two, or between members of families three, four and five. Given we have just added the normal
forms of 6.7 to the normal forms of 6.18, the only remaining possible isomorphisms are between these
two cases. But again, either the dimension of the abelianisation, or the dimension of the contraction
algebra itself, distinguishes in all cases. �

7. Central elements and general elephants

This section algebraically extracts ADE information from the normal forms in §1.2, using generic central
elements and contracted preprojective algebras.

7.1. The six algebras

As notation, consider the following ADE Dynkin diagrams, which we also furnish with the information
of their highest roots.

𝐴1

1
𝐷4

1 2

1

1
𝐸6

1 2 3

2

2 1
𝐸7

234

2

321
𝐸8

246

3

5432 (23)

To each such Dynkin diagram, there is an associated preprojective algebra Π (see, for example, [CBH]),
which is a finite dimensional algebra. The vertices of the Dynkin diagram give rise to idempotents in
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the corresponding Π. In each diagram in (23), let e be the idempotent corresponding to the unique
vertex marked , except for 𝐸8 when there are two cases: e is either the left or the right . From this
information, consider the algebra 𝑒Π𝑒.

Remark 7.1. Before relating the above to the introduction, we remark that the fifth algebra in (3) has
full presentation

C〈𝑥, 𝑦, 𝑧〉(
𝑥2 + 𝑦 + 𝑧,

𝑥4, 𝑧2 + 𝑥𝑦𝑥, 𝑦𝑥𝑦 + 𝑦2𝑥 + 𝑦𝑥3

) . (24)

There are many equivalent presentations, with the point being that all are necessarily less pretty than the
other five in (3). Indeed, 7.2 below proves that the algebra in (24) is isomorphic to 𝑒Π𝑒, where e is the
vertex marked 5 in 𝐸8. This is the only time that the chosen vertex in (23) is not the central vertex
in the Dynkin diagram, and so slightly different behaviour should be expected. We also remark that this
algebra is strictly needed in order for noncommutative singularity theory to distinguish between the two
different types of 𝐸8 flop (of length 5 and 6, respectively).

The upshot from (23) is that there are six algebras 𝑒Π𝑒, corresponding to the six different vertices
marked . The following result asserts that these give a presentation-free description of the six algebras
of (3) in the introduction.

Lemma 7.2. Consider in order the algebras 𝑒Π𝑒 where e is the vertex with label 1, . . . , 6 in (23). This
list is isomorphic to the list of algebras in (3), reading left to right.

Proof. When is a central vertex (which covers all cases except the awkward one in 7.1), the isomor-
phism is a direct application of [M2, Theorem 1]; see also [CB, p53]. The final remaining case, when
e is the vertex marked 5 in 𝐸8, can be proved using Auslander–Reiten theory; alternatively, we may
simply observe that 𝑒Π𝑒 is the factor of the algebra in [K, 1.3(5)] by the ideal generated (in the notation
there) by 𝑎, 𝑎∗, 𝑡, 𝑇

β
0 , . . . , 𝑇 δ1 . The result [K, 1.3(5)] then gives a presentation

𝑒Π𝑒 �
C〈β, γ〉

(β4, γβγ + γ2β + γβ3, (γ + β2)2 + βγβ)
,

which is clearly isomorphic to the algebra in (24). �

7.2. Generic central sections

For any 𝑓 ∈ C〈〈x〉〉≥2, set Z = Z(Jac( 𝑓 )) to be the centre of Jac( 𝑓 ), and write 𝔪Z for the Jacobson
radical of Z. Recall that 𝔍 denotes the Jacobson radical of the local ring Jac( 𝑓 ).

Lemma 7.3. We have 𝔪Z = 𝔍 ∩ Z and Z/𝔪Z � C. Thus, Z is also a local ring.

Proof. Set 𝐽 𝑓 = ((δ1 𝑓 , . . . , δ𝑑 𝑓 )). Then it is clear that 𝔍∩Z = {𝑔 + 𝐽 𝑓 ∈ Z | 𝑔 ∈ 𝔫}. This set is clearly
a two-sided ideal of Z, and further, 1+𝔍∩Z consists of units in Z. These two properties imply that 𝔍∩Z
equals the Jacobson radical 𝔪Z of Z; see, for example, [L1, 4.5]. The fact that Z/𝔪Z � C is clear. �

Generic elements of the centre Z will be used to intrinsically extract ADE information.

Definition 7.4. Given 𝑓 ∈ C〈〈x〉〉≥2, we say that Jac( 𝑓 ) has Type X if for all finite dimensional vector
spaces𝑉 ⊂ 𝔪Z such that𝑉 � 𝔪

Z
/𝔪2

Z
, there exists a Zariski open subset U of V such that Jac( 𝑓 )/(𝑢) �

𝑒Π𝑒 for all 𝑢 ∈ 𝑈, where Π is the preprojective algebra of Type X, and e is an idempotent marked
in (23).

Equivalently, in the language of [R1, 2.5], Jac( 𝑓 ) has Type X provided that a general hyperplane
section u of Z satisfies Jac( 𝑓 )/(𝑢) � 𝑒Π𝑒 where Π is the preprojective algebra of Type X, and e is an
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idempotent marked in (23). We also remark that there are two different Type 𝐸8’s in 7.4, corresponding
to the two different choices of in 𝐸8 in (23). This feature matches the two different 𝐸8 cases in the
length classification of flops [KM].

Much like the definition of cDV singularities, 7.4 is only designed to be useful in specific situations.
Indeed, for general 𝑓 ∈ C〈〈x〉〉≥2, it is not clear whether the centre Z of Jac( 𝑓 ) is noetherian, nor whether
its maximal ideal 𝔪Z is finitely generated as a Z-module. Consequently, work is required to establish
that 𝔪

Z
/𝔪2

Z
is finite dimensional, which is needed for there to exist a finite dimensional vector space

V surjecting onto it.
When Jac( 𝑓 ) is finite dimensional, these difficulties disappear since Jac( 𝑓 ), and thus, Z, 𝔪Z and

𝔪
Z
/𝔪2

Z
are all finite dimensional vector spaces. Other cases are more tricky, but for our purposes, the

following suffices.

Lemma 7.5. If f is a normal form from 6.19, then the following statements hold.

1. If 𝑢 ∈ 𝔪Z, then 𝑢 ≡ 𝜆𝑥2 + ℎ in Jac( 𝑓 ) for some ℎ ∈ C〈〈𝑥, 𝑦〉〉≥3.
2. If further f has Type 𝐷∞,∞ or 𝐷∞,𝑚, then Z � C[[𝑥2]].

In particular, in all cases, dimC (𝔪Z
/𝔪2

Z
) < ∞.

Proof. (1) In all cases, δ𝑦 𝑓 = 𝑥𝑦 + 𝑦𝑥, and so certainly 𝑥2 commutes with y in Jac( 𝑓 ). Obviously, 𝑥2

commutes with x; thus, since we are considering closed ideals, it follows that 𝑥2 is central in Jac( 𝑓 ).
Similarly, 𝑦2 is central.

We next claim that there are no elements in𝔪Z that contain linear terms. Write 𝑢 ∈ 𝔪Z as 𝑢 = 𝑘 + 𝑔
for some 𝑘 = 𝜆1𝑥 + 𝜆2𝑦 and 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥2. Now u remains central after factoring by 𝔍3, so set
𝐼 = ((δ𝑥 𝑓 , δ𝑦 𝑓 , 𝔫3)), and observe that

0 + 𝐼 = [𝑥 + 𝐼, 𝑢 + 𝐼] = 2𝜆2𝑥𝑦 + 𝐼 .

For any (finite-dimensional) C〈〈𝑥, 𝑦〉〉/((δ𝑥 𝑓 , δ𝑦 𝑓 , 𝔫𝑟 )), 𝑟 ≥ 3, we may choose a basis of the form
1, 𝑥, . . . , 𝑥𝑖 , 𝑥𝑦, 𝑥2𝑦, . . . , 𝑥 𝑗 𝑦 for some 𝑖, 𝑗 ≥ 2. Since 𝑥𝑦 forms part of this basis, it follows that 𝜆2 = 0.
Repeating using the commutator [𝑦 + 𝐼, 𝑢 + 𝐼] shows that 𝜆1 = 0.

Thus, 𝑢 = 𝑔 for some 𝑔 ∈ C〈〈𝑥, 𝑦〉〉≥2. Using the relation 𝑥𝑦 + 𝑦𝑥 to move x’s to the left, and the other
relation to move 𝑦2 either to zero, to 𝑥2, or into higher degree, write

𝑢 ≡ 𝜆1𝑥
2 + 𝜆2𝑥𝑦 + ℎ

in Jac( 𝑓 ), for some ℎ ∈ C〈〈𝑥, 𝑦〉〉≥3. We next claim that 𝜆2 = 0. Since u is central, and 𝑥2 is central, it
follows that 𝑣 � 𝜆2𝑥𝑦 + ℎ is also central in Jac( 𝑓 ). In particular, it is still central after factoring by 𝔍4.
Set 𝐼 = ((δ𝑥 𝑓 , δ𝑦 𝑓 , 𝔫4)), so that

0 + 𝐼 = [𝑥 + 𝐼, 𝑣 + 𝐼] = 2𝜆2𝑥
2𝑦 + 𝐼

and thus 2𝜆2𝑥
2𝑦 ∈ 𝐼. But 𝑥2𝑦 forms part of a basis of C〈〈𝑥, 𝑦〉〉/𝐼, so 𝜆2 = 0.

(2) Either set 𝐼 = (𝑥𝑦 + 𝑦𝑥, 𝑦2), or (𝑥𝑦 + 𝑦𝑥, 𝑦2 + 𝑥2𝑚), so by assumption, Jac( 𝑓 ) � C〈〈𝑥, 𝑦〉〉/((𝐼)).
Consider an arbitrary element 𝑢 ∈ Z. By using the first relation to move all the x’s to the left, and the
second relation to either move 𝑦2 to zero or to higher powers of x, we may write 𝑢 ≡ 𝑝 + 𝑞𝑦 in Jac( 𝑓 ),
where by (1) 𝑝 ∈ C[[𝑥]]≥2 and 𝑞 ∈ C[[𝑥]]≥2. Observe that in Jac( 𝑓 ),

0 ≡ [𝑥, 𝑢] ≡ [𝑥, 𝑝 + 𝑞𝑦] = 2𝑥𝑞𝑦,

and so 𝑥𝑞𝑦 ∈ ((𝐼)). Thus, 𝑥𝑞≤𝑡−3𝑦 ∈ 𝐼 + 𝔫𝑡 for all 𝑡 ≥ 3. Now C〈〈𝑥, 𝑦〉〉/(𝐼 + 𝔫𝑡 ) has basis
1, 𝑥, . . . , 𝑥𝑡−1, 𝑦, 𝑥𝑦, . . . , 𝑥𝑡−2𝑦. Write 𝑞≤𝑡−3 =

∑𝑡−3
𝑖=2 𝜆𝑖𝑥

𝑖 . Then the second part of this basis on the
equation 𝑥𝑞≤𝑡−3𝑦 ∈ 𝐼 + 𝔫𝑡 shows that 𝜆2 = . . . = 𝜆𝑡−3 = 0. This holds for all t, and so 𝑞 = 0.
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Thus, the central element 𝑢 ≡ 𝑝. Splitting into even and odd terms, write 𝑢 ≡ 𝑃(𝑥2) + 𝑥𝑄(𝑥2) in
Jac( 𝑓 ) for some 𝑃,𝑄 ∈ C[[𝑥]]≥1. Then, in Jac( 𝑓 ), since 𝑥2 is central,

0 ≡ [𝑦, 𝑢] ≡ [𝑦, 𝑃 + 𝑥𝑄] ≡ −2(𝑥𝑄)𝑦.

Using the same argument as above, 𝑄 = 0, and so 𝑢 ≡ 𝑃(𝑥2), as claimed. This shows that Z ⊆ C[[𝑥2]],
but since 𝑥2 is central by (1), equality holds, proving (2).

For the very last statement, all the finite-dimensional Jac( 𝑓 ) satisfy dimC(𝔪Z
/𝔪2

Z
) < ∞. Since the

only other potentials in 6.19 are those in (2), where visibly dimC(𝔪Z
/𝔪2

Z
) = 1, the final statement

follows. �

It follows from 7.5 that 𝔪
Z
/𝔪2

Z
is finite dimensional for any 𝑓 ∈ C〈〈x〉〉≥2 with Crk( 𝑓 ) = 2 and

Crk2( 𝑓 ) = 2. The is a rather remarkable use of normal forms: we have no method to prove such a result
without using 6.19.

7.3. ADE preliminaries

The next problem is to exhibit a single element of the centre Z that gives an ADE quotient. For Type A
and D, this turns out to be easy, but Type E requires the following preparation. Consider the elements

𝑔6,𝑛 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥2 + 𝑥𝑦𝑥 + 𝑦𝑥2 if 𝑛 = 3𝑡 + 1 with 𝑡 ≥ 1
𝑥2 + 𝑥𝑦𝑥 + 𝑦𝑥2 + (−1)𝑡3𝑡 (3𝑡 + 2)𝑥2𝑡+1 if 𝑛 = 3𝑡 + 2 with 𝑡 ≥ 1
𝑥2 + 𝑥𝑦𝑥 + 𝑦𝑥2 + (−1)𝑡+13𝑡 𝑡 (𝑥𝑦𝑥2𝑡−2 + 𝑦𝑥2𝑡−1) if 𝑛 = 3𝑡 with 𝑡 ≥ 2.

The following establishes, in the cases 𝐸6,𝑛, that the centre of Jac( 𝑓 ) is nontrivial, and that 𝔪Z is at
least two-dimensional as a vector space.
Lemma 7.6. If f has Type 𝐸6,𝑛, then 𝑥2 is central in Jac( 𝑓 ), as is 𝑔6,𝑛.
Proof. The first statement follows from the relation 3𝑥2 + 𝑦3 ≡ 0, which implies that 𝑦𝑥2 ≡ − 1

3 𝑦
4 ≡ 𝑥2𝑦

and thus 𝑥2 commutes with y. Since 𝑥2 clearly commutes with x and we are considering closed ideals,
it follows that 𝑥2 is central in Jac( 𝑓 ).

For the second statement, we establish the first case, with the proofs of all other cases being similar.
For this, it suffices to show that 𝑥𝑦𝑥 + 𝑦𝑥2 is also central in Jac( 𝑓 ) when 𝑛 = 3𝑡 + 1 with 𝑡 ≥ 1. We first
claim that 𝑥𝑦𝑥𝑦 − 𝑦𝑥𝑦𝑥 ∈ ((δ𝑥 𝑓 , δ𝑦 𝑓 )). This follows since 𝑛 − 1 = 3𝑡. Then 𝑦𝑛−1 ≡ (−3𝑥2)𝑡 is central,
and thus, the commutator

((δ𝑥 𝑓 , δ𝑦 𝑓 )) � [𝑥, δ𝑦 𝑓 ] ≡ (𝑥𝑦𝑥𝑦 − 𝑦𝑥𝑦𝑥) + 𝑛(𝑥𝑦𝑛−1 − 𝑦𝑛−1𝑥) ≡ 𝑥𝑦𝑥𝑦 − 𝑦𝑥𝑦𝑥.

Using this, again with the fact that 𝑥2 is central, it follows that

[𝑥, 𝑥𝑦𝑥 + 𝑦𝑥2] ≡ (𝑦𝑥3 + 𝑥3𝑦) − (𝑥3𝑦 + 𝑦𝑥3) = 0
[𝑦, 𝑥𝑦𝑥 + 𝑦𝑥2] ≡ (𝑦𝑥𝑦𝑥 + 𝑦2𝑥2) − (𝑥𝑦𝑥𝑦 + 𝑦𝑥2𝑦) ≡ 0.

Thus, 𝑥𝑦𝑥 + 𝑦𝑥2 commutes with both x and y, and so is central in Jac( 𝑓 ). �

7.4. Extracting ADE

We are now in a position to extract ADE using general hyperplane sections of the centre. In what
follows, in the case that Jac( 𝑓 ) is finite dimensional, all ideals are automatically closed. In the cases
when JdimJac( 𝑓 ) = 1, this fact is also true for Type A by inspection, and for Type D by, for example, 8.4
and 8.17 below. As such, in the following, technically we should temporarily write Jac( 𝑓 )/((𝑔)) when
considering Type 𝐷∞,𝑚 and 𝐷∞,∞ until we have established 8.4 and 8.17. However, since 8.4 and 8.17
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are logically independent of what follows, we refrain from doing so and drop the double bracket to ease
notation.

Theorem 7.7. Consider the normal forms 𝐴𝑛, 𝐷𝑛,𝑚, 𝐷𝑛,∞, 𝐸6,𝑛, 𝐴∞, 𝐷∞,𝑚, 𝐷∞,∞ and 𝐸6,∞ from §1.2.
In each case, define an element s as follows:

Type Normal form Conditions s

A 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

2 + ε1𝑦
𝑛 𝑛 ∈ N≥2 ∪ {∞} y

D 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥𝑦

2 + ε2𝑥
2𝑛 + ε3𝑥

2𝑚−1 𝑚, 𝑛 ∈ N≥2 ∪ {∞} 𝑥2

E 𝑧2
1 + . . . + 𝑧

2
𝑑−2 + 𝑥

3 + 𝑥𝑦3 + ε4𝑦
𝑛 𝑛 ∈ N≥4 𝑔6,𝑛

where 𝑔6,𝑛 is defined in §7.3 above. Then the following statements hold.

1. The element s is central in Jac( 𝑓 ), and Jac( 𝑓 )/(𝑠) � 𝑒Π𝑒, where Π is the preprojective algebra of
Type 𝐴1, 𝐷4, or 𝐸6, and e is the idempotent marked .

2. Normal forms of Type A and D give rise to Jacobi algebras which have Type A and D, respectively,
in the sense of 7.4.

Proof. For (1), Type A is clear since Jac( 𝑓 ) � C[[𝑦]]/𝑦𝑛−1 or C[[𝑦]] depending on whether ε1 is 1 or
0. In both cases, y is central, and the quotient is Jac( 𝑓 )/𝑦 � C � 𝑒Π𝑒 where Π is the preprojective
algebra of Type 𝐴1.

Type D is similar. The fact 𝑥2 is central was justified in 7.5(1). But then since (𝑥2) is a closed ideal
of Jac( 𝑓 ), setting 𝜆2 = (2𝑛)ε2 and 𝜆3 = (2𝑚 − 1)ε3, it follows that

Jac( 𝑓 )/(𝑥2) � C〈〈𝑥, 𝑦〉〉
((𝑥2, 𝑥𝑦 + 𝑦𝑥, 𝑦2 + 𝜆2𝑥2𝑛−1 + 𝜆3𝑥2𝑚−2))

(by 2.11)

�
C〈〈𝑥, 𝑦〉〉

((𝑥2, 𝑥𝑦 + 𝑦𝑥, 𝑦2))
(since 2n − 1 ≥ 2 and 2m − 2 ≥ 2)

� 𝑒Π𝑒 (by 7.2)

where Π is the preprojective algebra of Type 𝐷4, and e is the central vertex.
Type E is more involved. All proofs turn out to be similar, so here we illustrate the technique by

considering the case f of Type 𝐸6,𝑛 with 𝑛 = 3𝑡 + 1 and 𝑡 ≥ 2. Certainly, 𝑔6,𝑛 is central by 7.6. After
rescaling the x and y appropriately,

Jac( 𝑓 ) � C〈〈𝑥, 𝑦〉〉
((−𝑥2 + 𝑦3, 𝑥𝑦2 + 𝑦𝑥𝑦 + 𝑦2𝑥 + 𝑦3𝑡 ))

� Γ ,

and we work on the right-hand side. Under this identification, the element 𝑔6,𝑛 becomes𝜆𝑥2+μ(𝑥𝑦𝑥+𝑦𝑥2)
for some nonzero scalars 𝜆 and μ. We now claim that for any nonzero scalars 𝜆 and μ, the factor

𝐴 �
Γ

(𝜆𝑥2 + μ(𝑥𝑦𝑥 + 𝑦𝑥2))
=

C〈〈𝑥, 𝑦〉〉
((−𝑥2 + 𝑦3, 𝑥𝑦2 + 𝑦𝑥𝑦 + 𝑦2𝑥 + 𝑦3𝑡 , 𝜆𝑥2 + μ(𝑥𝑦𝑥 + 𝑦𝑥2)))

is isomorphic to the model algebra 𝐵 � C〈〈𝑥, 𝑦〉〉/((𝑥2, 𝑦3, (𝑥 + 𝑦)3)) � 𝑒Π𝑒 in 7.2. The result will then
follow, since for particular 𝜆, μ, there is an isomorphism 𝐴 � Jac( 𝑓 )/(𝑔6,𝑛).

To establish the claim, note first that 𝑥3 ≡ 0 in A for any 𝑡 ≥ 2, as follows. The additional relation
gives −𝜆𝑥3 ≡ μ(𝑥2𝑦𝑥 + 𝑥𝑦𝑥2), which equals μ(𝑦𝑥3 + 𝑥3𝑦) since 𝑥2 is central. Repeating, we may push
𝑥3 into higher and higher degrees, and so 𝑥3 belongs to the closed ideal defining A, as claimed. Given
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𝑥3 ≡ 0 in A, it follows from the first relation that 𝑦6 ≡ 𝑥4 ≡ 0 in A and, since 𝑡 ≥ 2, also that 𝑦3𝑡 ≡ 0 in
A. Consequently,

𝐴 �
C〈〈𝑥, 𝑦〉〉

((−𝑥2 + 𝑦3, 𝑥𝑦2 + 𝑦𝑥𝑦 + 𝑦2𝑥, 𝜆𝑥2 + μ(𝑥𝑦𝑥 + 𝑦𝑥2), 𝑦3𝑡 ))
(25)

=
C〈〈𝑥, 𝑦〉〉

((−𝑥2 + 𝑦3, 𝑥𝑦2 + 𝑦𝑥𝑦 + 𝑦2𝑥, 𝜆𝑥2 + μ(𝑥𝑦𝑥 + 𝑦𝑥2)))
, (26)

where the last equality holds since 𝑦6 belongs to the closed ideal in (25), and 𝑡 ≥ 2. This latter
presentation has no dependence on t.

Now, composing the automorphism ϕ : C〈〈𝑥, 𝑦〉〉 → C〈〈𝑥, 𝑦〉〉 defined by

𝑥 ↦→ 𝑥 − (𝑥𝑦 + 𝑦𝑥) + 𝑦𝑥𝑦, 𝑦 ↦→ (𝑥 + 2𝑦) − 𝑦2 − 𝑦𝑥

with C〈〈x〉〉 � 𝐵 gives a surjective homomorphism C〈〈x〉〉 � 𝐵. It is elementary to check that the three
relations of A in (26) map to zero, and hence, since ϕ is continuous, it extends to the closure of ideals
and thus induces a surjection ϕ : 𝐴 � 𝐵.

Using the same method, it is also elementary to check that the automorphism C〈〈𝑥, 𝑦〉〉 → C〈〈𝑥, 𝑦〉〉
given by

𝑥 ↦→ − 2
3𝑥(3 − 2𝑥) + (𝑦 − 2)𝑥𝑦, 𝑦 ↦→ 𝑥(1 + 25

48𝑥) + 𝑦(1 + 1
4 𝑦 + 𝑥)

descends to a surjective map 𝐵 � 𝐴. Thus, dim 𝐴 ≤ dim 𝐵 = 12, and in particular, dim 𝐴 is also finite.
The previous surjection 𝐴 � 𝐵 then implies that dim 𝐴 = dim 𝐵, so that ϕ : 𝐴 → 𝐵, being a surjective
map between algebras of the same dimension, is necessarily an isomorphism.

(2) For potentials of Type A, clearly Jac( 𝑓 ) is either C[[𝑦]]/(𝑦𝑛−1) or C[[𝑦]], both of which are
commutative, so Z = Jac( 𝑓 ) and further 𝔪

Z
/𝔪2

Z
is spanned by the image of y. Given any finite

dimensional vector space𝑉 ⊂ 𝔪Z such that π : 𝑉 � 𝔪
Z
/𝔪2

Z
, setU1 = {𝜆 ∈ A1 | 𝜆 ≠ 0},U = π−1 (U1),

and let 𝑢 ∈ U. Then for all 𝑢 ∈ U, write 𝑢 = 𝜆𝑦 + 𝑝 in Jac( 𝑓 ) for some 𝜆 ≠ 0 and some 𝑝 ∈ C[[𝑦]]≥2.
In particular, u equals y multiplied by a unit, and so Jac( 𝑓 )/(𝑢) � Jac( 𝑓 )/(𝑦) � C � 𝑒Π𝑒, where Π is
the preprojective algebra of Type A.

Lastly, consider Type D. By 7.5, all potentials f in 6.19 satisfy dimC (𝔪Z
/𝔪2

Z
) < ∞. Hence, we can

again consider a finite dimensional vector space 𝑉 ⊂ 𝔪Z, such that π : 𝑉 � 𝔪
Z
/𝔪2

Z
. Since 𝑥2 ∈ 𝔪Z

by (1), and 𝔪Z contains no linear terms (as justified in 7.5(1)), 𝑥2 is nonzero in 𝔪
Z
/𝔪2

Z
. Thus, set

𝑏1 = 𝑥2 +𝔪2
Z

, and extend to a basis 𝑏1, . . . , 𝑏𝑡 . Set U1 = {
∑

𝜆𝑖𝑏𝑖 | 𝜆1 ≠ 0}, and U = π−1(U1).
Let 𝑢 ∈ U. Then by 7.5(1), 𝑢 ≡ 𝜆𝑥2 + ℎ in Jac( 𝑓 ), for some ℎ ∈ C〈〈𝑥, 𝑦〉〉≥3. The assumption 𝑢 ∈ U

ensures that 𝜆 ≠ 0. By the relation 𝑥𝑦 ≡ −𝑦𝑥, we may pull all the x’s in h to the left, and since h has
order at least three, afterwards each term either starts with 𝑥2, or ends with 𝑦2. Thus, in Jac( 𝑓 ),

ℎ ≡ 𝑥2𝑟 + 𝑥𝑦2𝑝 + 𝑦2𝑞

for some 𝑟 ∈ C〈〈𝑥, 𝑦〉〉≥1, 𝑞 ∈ C[[𝑦]]≥1 and 𝑝 ∈ C[[𝑦]]. Consequently, 𝑢 ≡ 𝑥2 (𝜆 + 𝑟) + 𝑥𝑦2𝑝 + 𝑦2𝑞, and
further using the relation δ𝑥 𝑓 , it follows that

𝑢 ≡ 𝑥2 ( 𝜆 + 𝑟 − (𝜆2𝑥
2𝑛−2 + 𝜆3𝑥

2𝑚−3)𝑝 − (𝜆2𝑥
2𝑛−3 + 𝜆3𝑥

2𝑚−4)𝑞
)
,

where again, 𝜆2 = (2𝑛)ε2 and 𝜆3 = (2𝑚 − 1)ε3. The term in brackets is a unit: since 𝑛, 𝑚 ≥ 2, its only
degree zero term is 𝜆, which by assumption is nonzero. It follows that Jac( 𝑓 )/(𝑢) � Jac( 𝑓 )/(𝑥2), and
so the result follows by (1). �
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Remark 7.8. The need for taking a generic, or at least well chosen, central element in 7.7 is essential.
Indeed, by 7.6, for f of Type 𝐸6,𝑛 the element 𝑥2 is central in Jac( 𝑓 ). However,

Jac( 𝑓 )/(𝑥2) � C〈〈𝑥, 𝑦〉〉
((𝑥2, 𝑦3, (𝑥 + 𝑦)3 − 𝑥𝑦𝑥))

�
C〈〈𝑥, 𝑦〉〉

((𝑥2, 𝑦3, (𝑥 + 𝑦)3))
= 𝑒Π𝑒 (27)

even although both sides have dimension twelve. Write U for the open set given by the nonvanishing of
the co-efficient of 𝑥2. Then (27) together with 7.7(1) assert that the isomorphism class of Jac( 𝑓 )/(𝑢) is
not constant along 𝑢 ∈ U. Consequently, for Type E, a smaller generic open set is required.

Remark 7.9. In the proof of 7.7(1) above, the inverse of ϕ : 𝐴 → 𝐵 is not the constructed map 𝐵 � 𝐴,
but rather ϕ−1 is induced by the much more non-obvious automorphism

𝑥 ↦→ 𝑥 + 1
2 (𝑥𝑦 + 𝑦𝑥) − 1

8 𝑦𝑥𝑦

𝑦 ↦→ 1
2 (−𝑥 + 𝑦) + 1

8 (𝑥
2 − 3𝑥𝑦 − 𝑦𝑥 + 𝑦2) + 1

64 (5𝑦𝑥
2 + 12𝑦𝑥𝑦 + 16𝑦2𝑥) + 3

64 𝑦
2𝑥𝑦 + 7

128 𝑦
2𝑥2.

8. Geometric corollaries

The previous results have geometric consequences. Section 8.1 classifies contraction algebras, up
to isomorphism, from all Type A and D flopping contractions. This immediately gives, in §8.2, a
classification of Type A and D flops, and it also has consequences to GV invariants. Then §8.3 constructs
the first, and conjecturally only, infinite family of Type D divisor-to-curve contractions. Using this, and
known results from flops, we then prove that the Realisation Conjecture (1.11) is true, except possibly for
some exceptional cases, establishing 1.12 in the introduction. The last subsection classifies contraction
algebras that can arise from Type A and Type 𝐷4 divisor-to-curve contractions.

8.1. Classification of contraction algebras for A and D flops

In this section, we classify contraction algebras that can arise from Type A and D flops, in both cases
without referring to any classification of such flops (noting that a Type D flop classification arises as a
consequence, in §8.2). We will show that the only possible options are those finite dimensional Jacobi
algebras in 5.1 and 6.19, respectively. We use the notation of §1.5 freely; in particular, R is commutative
noetherian and in applications Spec R is the base of a simple 3-fold flop.

Remark 8.1. In both 8.2 and 8.9 below, we classify the contraction algebras within a given type, but in
fact, more is true. By [HT, 4.6], if Bcon is the contraction algebra of a Type X flopping contraction which
is isomorphic to a contraction algebra Acon of a Type Y flopping contraction, then 𝑋 = 𝑌 . Hence, the
algebras in 8.2 below are the contraction algebras of all possible Type A flops, and only of Type A flops,
and the algebras in 8.9 are the contraction algebras of all possible Type D flops, and only of Type D flops.

The classification in Type A is elementary.

Proposition 8.2. If Acon is a contraction algebra of a Type A flopping contraction, then Acon �
Jac(𝑥2 + 𝑦𝑛) for some 𝑛 ≥ 2. Furthermore, any other contraction algebra of any other type cannot be
isomorphic to such a Jacobi algebra.

Proof. Consider Acon from an arbitrary Type A flop X→ Spec R. By a now standard argument of Van
den Bergh [V2, A.1], any indecomposable CM R-module necessarily has rank one. Further, since R is
normal, the endomorphism ring of any rank one CM module is isomorphic to R. Hence, Acon, being
defined to be a factor of EndR(𝑁) for some indecomposable CM R-module N, is thus a factor of R, and
hence is commutative.

Since Acon � Jac( 𝑓 ) for some f, combining 5.1 and 5.4, we see that Acon � Jac(𝑥2 + 𝑦𝑛) or
Acon � Jac(𝑥2). The last case is impossible since dimC Acon < ∞ given that X → Spec R is a flop
[DW3]. �
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Remark 8.3. A more geometric proof of 8.2 uses Reid’s Pagoda classification of Type A flops [R2] and
then applies [DW1, 3.10] to conclude that Acon � Jac(𝑥2 + 𝑦𝑛) for some n.

Type D is much more involved and requires multiple preliminary results. In the following, by an
R-algebra Γ we simply mean that there exists a homomorphism R → 𝑍 (Γ ), where 𝑍 (Γ ) is the centre.
From 3.2, let 𝔍(Γ ) denote the Jacobson radical of Γ .

Lemma 8.4. Let Γ be an R-algebra, where (R,𝔪) is commutative local noetherian, and suppose that
Γ is finitely generated as an R-module.

1. The 𝔍(Γ )-adic topology coincides with the 𝔪-adic topology on Γ .
2. Every ideal of Γ is closed with respect to the 𝔍(Γ )-adic and the 𝔪-adic topologies.
3. If (R,𝔪) is complete local, then Γ is complete with respect to both the 𝔍(Γ )-adic and the 𝔪-adic

topologies.

Proof. (1) Since (R,𝔪) is local, and Γ is finitely generated as an R-module, it follows immediately
from, for example, [L1, 20.6] that there exists 𝑛 ≥ 1 such that

𝔍(Γ )𝑛 ⊆ 𝔪Γ ⊆ 𝔍(Γ ). (28)

From this, it is clear that the 𝔍(Γ )-adic and the 𝔪-adic topologies coincide.
(2) We show that for any finitely generated R-module M, with submodule N, then N is closed in M.

Given this, applying (1) to 𝑀 = Γ and 𝑁 = 𝐼 proves the result. But since M is finitely generated, and
R is noetherian, Krull’s intersection theorem [M1, 8.10(1)] immediately shows that 𝑀/𝑁 is separated,
and hence, N is closed in M.

(3) Again, this is well known. Since Γ is a finitely generated R-module, and (R,𝔪) is complete local
and noetherian, it follows from, for example, [L1, 21.33] that Γ is 𝔪-adically complete, and hence, the
result follows by (1). �

Corollary 8.5. If Acon is a contraction algebra associated to a crepant X → Spec R as above, then
JdimAcon = 0, 1. Furthermore, the following statements hold.

1. JdimAcon = 0 if and only if X→ Spec R is a flop.
2. JdimAcon = 1 if and only if X→ Spec R is a divisorial contraction to a curve.

Proof. Acon is module finite over R, being a factor of an NCCR [DW1].
Now if M is any finitely generated R-module (e.g., 𝑀 = Acon), since (R,𝔪) is local, dimR(𝑀) can be

defined using the𝔪-adic topology, as the growth rate of the function length(𝑀/𝔪𝑖𝑀); see, for example,
[E1, §12.1]. Taking suitable powers of the inclusions in (28), it is elementary to see that the two sets

S1 = {𝑟 ∈ R | for some 𝑐 ∈ R, dimC (Acon/𝔍𝑛) ≤ 𝑐𝑛𝑟 for every 𝑛 ∈ N}
S2 = {𝑟 ∈ R | for some 𝑐 ∈ R, dimC (Acon/𝔪𝑛Acon) ≤ 𝑐𝑛𝑟 for every 𝑛 ∈ N}

are equal, so JdimAcon = inf S1 = inf S2 = dimR(Acon).
The main result of [DW2] shows that SuppR(Acon) equals the contracted locus in Spec R. Hence,

dimR(Acon) is either 0 for flops, or 1 for divisor-to-curves respectively. It follows that Jdim(Acon) is
either 0 or 1, respectively. �

Theorem 8.6. If 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3 and Jac( 𝑓 ) is complete in its 𝔍-adic topology, then every central
element 𝑔 + ((δ𝑥 𝑓 , δ𝑦 𝑓 )) ∈ Jac( 𝑓 ) which is not a unit satisfies 𝑔 ∈ 𝔫2.

Proof. Set 𝑅 = Jac( 𝑓 ), and 𝔍 = 𝔍(𝑅). Note that 𝐼 = ((δ 𝑓 )) ⊆ 𝔫2; hence, by 3.2(1),

𝔍2 = (𝔫2 + 𝐼)/𝐼 = 𝔫2/𝐼 . (29)

Consider the central element 𝑔′ = 𝑔 + 𝐼 in R. Since 𝑔′ is not a unit in R, certainly 𝑔′ ∈ 𝔍. Further, g
cannot be a unit in C〈〈𝑥, 𝑦〉〉, or it would descend to a unit, so 𝑔 ∈ 𝔫.
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We now suppose that 𝑔 ∉ 𝔫2 and aim for a contradiction. Since 𝐼 ⊆ 𝔫2, we see that 𝑔′ = 𝑔 + 𝐼 ∉ 𝔍2,
and hence, 0 ≠ 𝑔′ + 𝔍2 ∈ 𝔍/𝔍2. But by (29), we have

𝔍

𝔍2 =
𝔫/𝐼
𝔫2/𝐼

�
𝔫

𝔫2 ,

and so dimC 𝔍/𝔍2 = 2. Pick 0 ≠ ℎ + 𝔍2 to complete 𝑔′ + 𝔍2 to a basis of 𝔍/𝔍2.
But now since by assumption R is complete, and local, we may use [BIRS, 3.1] to present R. Consider

the two-loop quiver Q, and map the trivial path to the identity of R, one of the loops ℓ1 to h and the other
loop ℓ2 to 𝑔′. Then by [BIRS, 3.1], the completeness of R extends this to a surjective homomorphism

φ : C〈〈ℓ1, ℓ2〉〉 � 𝑅,

and the kernel is a closed ideal. Since the kernel contains the relation ℓ1ℓ2 − ℓ2ℓ1, given 𝑔′ is central
and so commutes with h, it follows that ((ℓ1ℓ2 − ℓ2ℓ1)) ⊆ Kerφ. In particular, φ induces a surjection
C[[ℓ1, ℓ2]] � 𝑅, and so R is commutative. Given this would contradict 5.4, and we conclude that
𝑔 ∈ 𝔫2. �

We will also require the following fact.

Proposition 8.7. Suppose that Acon is the contraction algebra associated to a 𝐷4 contraction. Then
there is a central element 𝑔 ∈ Acon such that

Acon/(𝑔) �
C〈𝑥, 𝑦〉

(𝑥2, 𝑥𝑦 + 𝑦𝑥, 𝑦2)
.

Proof. Consider the 3-fold contraction X → Spec R, and for generic 𝑔 ∈ R, consider the pullback
diagram

Y X

Spec R/𝑔 Spec R

By assumption, R/𝑔 is a 𝐷4 Kleinian singularity. Now let A = EndR(𝑁) be the NCCR associated
to X → Spec R, and view 𝑔 ∈ R = 𝑍 (A) ⊂ A. Since g is generic, we can find such a g which
is not contained in any associated prime ideal of Ext1

R
(𝑁, 𝑁), from which [IW2, Proof of 5.24] (the

assumptions there are Type A, but the method is general) shows that there is an isomorphism

A/𝑔 � EndR/𝑔 (𝑁/𝑔𝑁).

From this isomorphism, [DW1, (3.C)] establishes that Acon/𝑔 is isomorphic to the contraction algebra
associated to the surfaces contraction Y → SpecR/𝑔. The fact that the surfaces contraction algebra for
this particular 𝐷4 contraction is C〈𝑥, 𝑦〉/(𝑥2, 𝑥𝑦 + 𝑦𝑥, 𝑦2) can be deduced from [DW1, 8.7]; see also
[M2]. �

We obtain the following remarkable consequence.

Corollary 8.8. No Jac( 𝑓 ) with 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥3, such that either 𝑓3 = 0 or 𝑓3 � 𝑥3, can arise as a
contraction algebra of a 𝐷4 flop, or a 𝐷4 divisor-to-curve contraction.

Proof. Given such an f, suppose that Jac( 𝑓 ) � Acon for a contraction algebra of a 𝐷4 flop, or a 𝐷4
divisor-to-curve contraction X→ SpecR. Since Acon is module finite over R, being a factor of a NCCR
[DW1], 8.4 shows that Acon, and hence, Jac( 𝑓 ) is complete with respect to its radical-adic topology,
and further every ideal is closed.
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Further, by 8.7, we can find a central g such that dimC Jac( 𝑓 )/(𝑔) = 4, and since Jac( 𝑓 ) � Acon is
complete, we can use 8.6 to write 𝑔 = 𝑔′ + ((δ𝑥 𝑓 , δ𝑦 𝑓 )) where 𝑔′ ∈ 𝔫2. But since all ideals in Jac( 𝑓 )
are closed, it follows that

Jac( 𝑓 )
(𝑔) =

Jac( 𝑓 )
((𝑔))

2.11
�

C〈〈𝑥, 𝑦〉〉
((δ𝑥 𝑓 , δ𝑦 𝑓 , 𝑔′))

has dimension four. We claim that this is impossible by exhibiting a factor with higher dimension.
Reusing the notation in 5.4, write M3 for the set of all noncommutative monomials of degree 3, and
then we will factor by ((M3)). In the two cases 𝑓3 = 𝑥3 and 𝑓3 = 0, the factors are, respectively

C〈〈𝑥, 𝑦〉〉
((𝑥2, 𝑔′,M3))

and
C〈〈𝑥, 𝑦〉〉
((𝑔′,M3))

.

The right-hand algebra surjects onto the left-hand algebra, so it suffices to prove that
dimC C〈〈𝑥, 𝑦〉〉/((𝑥2, 𝑔′,M3)) > 4. But since 𝑔′ ∈ 𝔫2 by 8.6, inside the ideal, we can replace 𝑔′ by
𝜆1𝑥𝑦 + 𝜆2𝑦𝑥 + 𝜆3𝑦

2, which gives at most one linear relation between 𝑥𝑦, 𝑦𝑥 and 𝑦2. From this, the
statement is clear. �

The above gives rise to the following, which is the main result in this subsection.

Corollary 8.9. If Acon is a contraction algebra of a Type D flopping contraction, then Acon � Jac(𝑥2𝑦 +
𝑥2𝑛) for some 𝑛 ≥ 2, or Acon � Jac(𝑥𝑦2 + 𝑥2𝑛 + 𝑥2𝑚−1) for some 𝑚, 𝑛 ≥ 2 with 𝑚 ≤ 2𝑛 − 1.

Proof. Consider Acon from an arbitrary Type D flop. By [KM], necessarily the elephant is 𝐷4, so Acon
is not commutative by 8.7 since Acon has a factor which is not commutative. As Acon � Jac( 𝑓 ) for some
𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2, appealing to 5.4 then gives 𝑓2 = 0.

From this, 8.8 asserts that 𝑓3 ≠ 0, and 𝑓3 � ℓ3. Hence, by 6.19, Acon � Jac( 𝑓 ) for some f in the list
stated there. Only the bottom three families are possible since dimCAcon < ∞ given the contraction is
a flop [DW3]. �

8.2. Classification of flops

The above results for contraction algebras classify flops, given that the Donovan–Wemyss conjecture is
true [DW1, A3, JKM].

Theorem 8.10. With notation as above, the following statements hold.

1. Type A flops are classified by Type A normal forms in Table 1.
2. Type D flops are classified by Type D normal forms in Table 1.

Furthermore, Type E flops are classified by Type E normal forms.

Proof. The fact that the isomorphism class of the contraction algebra classifies flops is established in
[JKM]. Thus, (1) follows from the fact in 8.2 that the contraction algebras of Type A flops are precisely
those Jacobi algebras coming from the Type A normal forms. Similarly, (2) follows from 8.9 and the fact
that each normal form is realisable from geometry [vG, Ka] (see also 8.11 below). Since the remaining
Type E normal forms cannot correspond to either Type A or Type D geometry (by either 8.2 or 8.8),
it follows that the contraction algebras of the remaining Type E flops must be isomorphic to Jacobi
algebras of Type E normal forms. Note that the Type E normal forms stated in Table 1 are genuine
examples; full details of others will appear elsewhere [BW2]. �

The classification of contraction algebras in 8.9 then has the following consequence.
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Theorem 8.11. There is a one-to-one correspondence between lattice points in the diagram in 1.6 and
the base singularities 0 ∈ Spec R of Type D flops, given by

(𝑛, 𝑚) ↦→ Spec
(

C[[𝑢, 𝑣, 𝑥, 𝑦]]
𝑢2 + 𝑣2𝑦 − 𝑥(𝑦2𝑛+1 + (𝑥 + ε𝑦𝑚)2)

)
,

where ε = 1 if the lattice point is contained within the shaded region, and ε = 0 otherwise.
In particular, Type D flops do not admit moduli. Furthermore, the following hold.

1. The quasi-homogeneous Type D flops are precisely those outside the shaded region, and these are
the standard Laufer family.

2. The GV invariants 𝑛1, 𝑛2 of the flopping contraction associated to a point (𝑛, 𝑚) are illustrated in
Figure 1. The ovals group together flops with the same GV invariants.

Proof. It is immediate from 8.10 that the Type D normal forms in Table 1 classify Type D flops. In
particular, once we exhibit one flop for each Type D normal form in Table 1, which has contraction
algebra isomorphic to the prescribed Jacobi algebra, then the geometric classification is complete.

In the indexing of the diagram, for (𝑛, 𝑚) with 𝑛, 𝑚 ≥ 1, consider the corresponding potential
𝑥𝑦2 + 𝑥2𝑛+2 + 𝑥2𝑚+1. Under this assignment, the points (𝑛, 𝑚) in the shaded region correspond to the
normal forms 𝐷𝑛+1,𝑚+1, which by definition have a restriction on m relative to n. The lattice points not
in the shaded region – namely, those (𝑛, 2𝑛 + 1) – correspond to 𝑥𝑦2 + 𝑥2𝑛+2 + 𝑥4𝑛+3. By 6.17, this is
isomorphic to 𝑥𝑦2 + 𝑥2𝑛+2, which is the normal form 𝐷𝑛+1,∞ in Table 1. Thus, the lattice points stated
are in bijection with the Type D normal forms.

Now by [vG, §2.2] and [Ka], given any potential 𝑥𝑦2 + 𝑥2𝑛+2 + 𝑥2𝑚+1, the claimed commutative ring
in the statement is the base of a flopping contraction, and further, the corresponding contraction algebra
is isomorphic to Jac(𝑥𝑦2 + 𝑥2𝑛+2 + 𝑥2𝑚+1). The first statement regarding the bijection follows.

The fact that the quasi-homogeneous singularities correspond to those outside the shaded region
follows from [vG2, §2.2.4], which computes the Milnor and Tjurina numbers. For the final statement
regarding GV invariants, by 6.19(2) and Toda’s dimension formula [T, 1.1], we can read off the GV
invariants. Indeed, by [T], the pair 𝑛1, 𝑛2 where 𝑛1 = dimC Jac( 𝑓 )ab and 𝑛2 = 1

4 (dimC Jac( 𝑓 ) −
dimC Jac( 𝑓 )ab)) are precisely the GV invariants for length two flops. Only those pairs illustrated in the
diagram in 1.6 (or Figure 2) appear. �

Remark 8.12. The map in 8.11 is in fact well defined on all points (𝑛, 𝑚) with 𝑚, 𝑛 ≥ 1, not just those
marked in the picture in 1.6. This follows since the commutative ring in 8.11 is always the base of a
Type D flop, for every (𝑛, 𝑚) [vG, §2.2]. The point is that the domain needs to be restricted in order to
obtain a bijection. The previous result 6.17 shows that any lattice point (𝑛, 𝑚) with 𝑚 ≥ 2𝑛 + 1 gives an
isomorphic flop to the lattice point (𝑛, 2𝑛 + 1).

Simply inspecting 8.11(2) and the diagram in 1.6 gives the following corollary, which illustrates the
significant gaps in the possible GV invariants that can arise.

Corollary 8.13. Consider (𝑎, 𝑏) ∈ N2. Then 𝑎, 𝑏 are the GV invariants for a Type D flopping contraction
if and only if either

1. (𝑎, 𝑏) = (2𝑚 + 3, 𝑚) for some 𝑚 ≥ 1, or
2. (𝑎, 𝑏) = (2𝑛, 𝑏) for some 𝑛 ≥ 2, with 𝑏 ≥ 𝑛 − 1.

Further, when 𝑎 = 2𝑚 + 3, there are precisely 𝑚 + 1 distinct contraction algebras realising (𝑎, 𝑏), up to
isomorphism, while for any given (2𝑛, 𝑏), the contraction algebra is unique.

Remark 8.14. It is possible to instead index the GV invariants to the classifying potentials, and this is
done in Figure 2 on page 8.
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8.3. Constructing divisor to curve contractions

In the list of potentials in 6.19, the first appears as the contraction algebra of a divisor-to-curve contraction
in [DW4, 2.18]. The second family, with 𝑚 = 1, is isomorphic to 𝑥3 + 𝑦3, and so appears as a contraction
algebra in [DW4, 2.25]. All the other three families are contraction algebras of 𝐷4 flops by [vG, Ka],
and the above subsection.

Motivated by Conjecture 1.11, this subsection will fill the last remaining gap and show that the whole
of the second family in 6.19, with arbitrary m, are realised as the contraction algebra of a divisor-to-curve
contraction.

Remark 8.15. In the proof below, we will first construct the contraction algebraically before passing
to the formal fibre to realise the contraction algebra. This algebraic construction is advantageous since
it conceptually distinguishes between the cases: in Spec 𝑅∞ below, which locally realises 𝐷∞,∞, the
origin is 𝑐𝐷4 while all other points on the singular locus are 𝑐𝐴2. In contrast, in Spec𝑅𝑚 below, which
locally realises 𝐷∞,𝑚, the origin is 𝑐𝐷4 while all other points on the singular locus are 𝑐𝐴1. Compare
the pictures in [DW4, 2.18] and [DW4, 2.25], and also [W].

Proposition 8.16. For 𝑚 ∈ N ∪ {∞}, consider the element of C[[𝑋,𝑌, 𝑍, 𝑇]] defined by

𝐹𝑚 �
{
𝑌 (𝑋𝑚 + 𝑌 )2 + 𝑋𝑍2 − 𝑇2 if 𝑚 ≥ 1

𝑌3 + 𝑋𝑍2 − 𝑇2 if 𝑚 = ∞

and set R𝑚 = C[[𝑋,𝑌, 𝑍, 𝑇]]/𝐹𝑚. Then the following statements hold.

1. Sing(R𝑚)red = (𝑋𝑚 + 𝑌, 𝑍, 𝑇) if 𝑚 ≥ 1, and (𝑌, 𝑍, 𝑇) if 𝑚 = ∞.
2. In either case, blowing up this locus gives rise to a crepant Type D divisorial contraction to a curve

X𝑚 → Spec R𝑚 where X𝑚 is smooth.
3. The contraction algebra of X𝑚 → Spec R𝑚 is isomorphic to Jac(𝑥𝑦2 + 𝑥2𝑚+1) when 𝑚 ≥ 1,

respectively Jac(𝑥𝑦2) when 𝑚 = ∞.
4. R𝑚 � R𝑛 if and only if 𝑚 = 𝑛, and so the 𝐹𝑚 are all distinct up to isomorphism and so form an

infinite family.

Proof. (1) is immediate.
(2) Working first on the case of finite 𝑚 ≥ 1, consider the affine algebra

𝑅𝑚 =
C[𝑟, 𝑠, 𝑢, 𝑣]

𝑢2 − 𝑟 (𝑟 − 𝑠𝑚)2 − 𝑠𝑣2

whose completion at the origin is R𝑚, in coordinates (𝑟, 𝑠, 𝑢, 𝑣) = (−𝑌, 𝑋, 𝑇, 𝑍). The blowup along
(𝑢, 𝑣, 𝑟−𝑠𝑚) is covered by two affine patches: the first is𝑈 = SpecC[𝑠, 𝑦0, 𝑦1], with 𝑦0 = 𝑢/(𝑟−𝑠𝑚) and
𝑦1 = 𝑣/(𝑟 − 𝑠𝑚), the second chart is a smooth hypersurface, and the map from U to the base is given by

(𝑠, 𝑦0, 𝑦1) ↦→ (𝑦2
0 − 𝑠𝑦2

1, 𝑠, 𝑦0 (𝑦2
0 − 𝑠𝑦2

1 − 𝑠𝑚), 𝑦1 (𝑦2
0 − 𝑠𝑦2

1 − 𝑠𝑚)).

The exceptional locus in U is the divisor 𝑦2
0 − 𝑠𝑦2

1 − 𝑠𝑚 = 0. Pulling the canonical basis of differentials
on Spec 𝑅𝑚 back to U gives

𝑓 ∗2

(
𝑑𝑟 ∧ 𝑑𝑠 ∧ 𝑑𝑣

𝑢

)
=

𝑑 (𝑦2
0 − 𝑠𝑦2

1) ∧ 𝑑𝑠 ∧ 𝑑 (𝑦1 (𝑦2
0 − 𝑠𝑦2

1 − 𝑠𝑚))
𝑦0 (𝑦2

0 − 𝑠𝑦2
1 − 𝑠𝑚)

= 2𝑑𝑠 ∧ 𝑑𝑦0 ∧ 𝑑𝑦1,

which is a regular differential on U and, in particular, has no zero or pole along the exceptional divisor.
Thus, the map is crepant, as claimed. The case 𝑚 = ∞ is similar, but easier, as both open charts are
affine 3-space.
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(3) The easiest way to establish the claim is to recognise 𝐹𝑚 as a pullback from the universal 𝐷4
flop and apply restriction theorems for contraction algebras. Consider the six-dimensional universal 𝐷4
flop, given in [K, (1.1)] as

R =
C[𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑧]

𝑢2 − 𝑟𝑤2 + 2𝑧𝑣𝑤 − 𝑠𝑣2 + (𝑟𝑠 − 𝑧2)𝑡2

and its universal family Y −→ Spec R, which is an isomorphism away from the singular locus in SpecR.
As observed by Van Garderen [vG2, §2.2.3], slicing by the sequence 𝑔1 = 𝑧, 𝑔2 = 𝑟 −𝑤− 𝑠𝑚, and 𝑔3 = 𝑡
yields a commutative diagram

𝑌 = 𝑌3 𝑌2 𝑌1 Y

Spec R3 Spec R2 Spec R1 Spec R

𝑓

where R1 = R/𝑔1, R2 = R1/𝑔2 and R3 = R2/𝑔3. The result is the affine algebra

R3 =
C[𝑟, 𝑠, 𝑢, 𝑣]

𝑢2 − 𝑟 (𝑟 − 𝑠𝑚)2 − 𝑠𝑣2

whose completion at the origin is R𝑚. The pullback 𝑓 : 𝑌 → Spec R3 is visibly an isomorphism away
from Sing(R3)red = (𝑢, 𝑣, 𝑟 − 𝑠𝑚), and so in particular is birational.

Van Garderen observes that R3 is an integral domain [vG2, 2.12] and Y is smooth [vG2, 2.13], and
that each 𝑔𝑖 is a slice, in the terminology of [vG2, 2.9], which implies that f is projective and surjective
with R 𝑓∗O = O [vG2, 2.10].

Furthermore, the tilting bundle yielding a derived equivalence between Y and Λ ∈ CMR restricts to
give a derived equivalence between Y and Λ ⊗R3 [vG2, (2.11)]. Since 𝑔1, 𝑔2, 𝑔3 is a regular sequence,
Λ ⊗ R3 ∈ CMR3 and so in particular f is crepant [IW1, 4.14]. Since visibly both the blowup in (2)
and f are crepant resolutions of the same variety, and both containing no flopping curves, they must be
isomorphic (as varieties over the base Spec 𝑅𝑚) since minimal models are unique up to flop. Thus, the
contraction algebra associated to (2) is isomorphic to the contraction algebra of the formal fibre of f. But
by [vG2, 2.8], this is the claimed Jacobi algebra – namely, Jac(𝑥𝑦2 + 𝑥2𝑚+1) when 𝑚 ≥ 1, respectively
Jac(𝑥𝑦2) when 𝑚 = ∞.

(4) If R𝑚 � R𝑛 are isomorphic, then the contraction algebras of X𝑚 → Spec R𝑚 and of X𝑛 →
Spec R𝑛 must be isomorphic. But then their abelianisations must also be isomorphic, and so in particular
must have the same dimension. But the abelianisations have dimension 2(𝑚+1) and 2(𝑛+1), respectively,
and hence, 𝑚 = 𝑛. �

The start of this subsection, combined with 8.16, then gives the following.

Corollary 8.17. All the potentials in 6.19 are geometric.

In turn, this establishes 1.12 in the introduction.

Corollary 8.18. Conjecture 1.11 is true, except for the one remaining unresolved case when 𝑓 � 𝑥3+O4,
where some further analysis is required.

Proof. Every Acon � Jac( 𝑓 ) for some 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2. If 𝑓2 ≠ 0, the result is 5.2, so we can assume
𝑓2 = 0. We need 𝑓3 ≠ 0 so that JdimJac( 𝑓 ) ≤ 1, and 4.13 splits into three cases. The first two cases
are covered by 6.19, and 8.17 asserts that these are all geometric. The only remaining, unresolved, case
from 4.13 is when 𝑓3 � 𝑥3. �
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Remark 8.19. It is possible to change variables to see that all type D normal forms can be realised in a
uniform way. Indeed, the contraction algebra associated to the 𝑐𝐷4 singularity

C[[𝑢, 𝑣, 𝑥, 𝑦]]
𝑢2 + 𝑣2𝑦 − 𝑥(ε2𝑦2𝑛+1 − (𝑥 − ε3𝑦𝑚)2)

realises the general Type D potential 𝑓 = 𝑥𝑦2 + ε2𝑥
2𝑛 + ε3𝑥

2𝑚−1, with the convention that each ε𝑖 is
either 0 or 1.
Remark 8.20. Much like in Pagoda [R2] for Type A, it is also possible to view each Type D divisor-
to-curve contraction as an infinite limit of flops. The Type D situation is more delicate since there are
more possible directions in which to take such a limit. In relation to the classification of Type D flops
in 8.11, the following are the limits which give rise to the divisor-to-curve contractions in 8.16.

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

𝐹∞

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • •

• • • • • • •

• • • • • •

• • • • • •

. . .

...

Without the normal forms from noncommutative singularity theory, it is hard to either see or predict
the above purely geometrically.

8.4. Classification for A and D divisor-to-curve contractions

This section is the divisor-to-curve analogue of §8.1.
Proposition 8.21. If Acon is a contraction algebra of a Type A divisor-to-curve contraction, then
Acon � Jac(𝑥2).
Proof. For the same homological reason as in 8.2, in Type A, the contraction algebra Acon is necessarily
commutative. Since the contraction is divisor-to-curve, necessarily dimC Acon = ∞ [DW3]. Combining
5.4 and 5.1, we see that Acon � Jac(𝑥2) since 𝑥2 is the only infinite dimensional example in 5.1. �

The following is the analogue of 8.9. However, it is slightly weaker due to two key geometric
facts having only been developed in the flops setting: (1) Katz–Morrison [KM] asserts that Type D is
generically Type 𝐷4 for flops, but this is open in the divisor-to-curve setting, and (2) Hua–Toda [HT]
asserts that the isomorphism class of a contraction algebra determines the type, but again only for flops.

However, we can say the following, without using any geometric classifications.
Proposition 8.22. If Acon is a contraction algebra of a Type 𝐷4 divisor-to-curve contraction, then
Acon � Jac(𝑥2𝑦), or Acon � Jac(𝑥𝑦2 + 𝑥2𝑚+1) for some 𝑚 ≥ 2.
Proof. The proof is very similar to 8.9. The algebra Acon is not commutative by 8.7 since Acon has a
factor which is not commutative. As Acon � Jac( 𝑓 ) for some 𝑓 ∈ C〈〈𝑥, 𝑦〉〉≥2, appealing to 5.4 then
gives 𝑓2 = 0.

From this, 8.8 asserts that 𝑓3 ≠ 0, and 𝑓3 � ℓ3. Hence, by 6.19, Acon � Jac( 𝑓 ) for some f in the
list stated there. Only the top two families are possible since dimC Acon = ∞ given the contraction is
divisor-to-curve [DW3]. �

https://doi.org/10.1017/fmp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.2


50 G. Brown and M. Wemyss

A. 𝕵-dimension restrictions

The papers [ISm, IS2] introduce several new ideas that substantially strengthen the Golod–Shafarevich
estimates [GS] for the growth of algebraic Jacobi rings and prove that almost all have cubic or higher
growth. In this appendix, we extend the main results of [IS2] into the setting of formal noncommutative
Jacobi algebras of 3.1 in a manner which should be viewed as the analogue of Vinberg’s [V3] extension
of Golod–Shafarevich into the setting of topological rings.

A.1. Algebraic notation

Throughout this appendix, we let 𝑑 ≥ 2 and consider C〈x〉 = C〈𝑥1, . . . , 𝑥𝑑〉. An element 𝐹 ∈ C〈x〉 is
called a superpotential if it is cyclically symmetric, in the sense of 3.3. For 𝑚 ≥ 𝑘 ≥ 3, write

SP𝑘,𝑚 = {𝐹 ∈ C〈x〉 | 𝐹 is a superpotential with 𝐹𝑗 = 0 for 𝑗 < 𝑘 and 𝑗 > 𝑚},

where 𝐹𝑗 is the homogeneous component of F of degree j, as in §2.1. In the special case 𝑚 = 𝑘 , write
SP𝑘 � SP𝑘,𝑘 , which consists of all homogeneous superpotentials of degree k, together with zero.
Throughout, we will write elements of C〈x〉 and C〈〈x〉〉 by small letters f and g, and superpotentials by
capital letters F, G.

With the (left) strike-off derivatives 𝜕𝑖 defined as in (10), the algebraic Jacobi algebra associated to
a superpotential F is the algebra

AJac(𝐹) � C〈𝑥1, . . . , 𝑥𝑑〉
(𝜕1𝐹, . . . , 𝜕𝑑𝐹)

=
C〈x〉
𝐼𝐹

,

where 𝐼𝐹 = (𝜕1𝐹, . . . 𝜕𝑑𝐹) is the two-sided ideal generated by 𝜕1𝐹, . . . , 𝜕𝑑𝐹. We write 𝔪 =
(𝑥1, . . . , 𝑥𝑑) ⊂ C〈x〉, a maximal two-sided ideal, and denote its image in AJac(𝐹) by ℜ = 𝔪/𝐼𝐹 ,
the powers of which are ℜ𝑖 = (𝔪𝑖 + 𝐼𝐹 )/𝐼𝐹 .

The use of strike-off derivatives 𝜕𝑖 on superpotentials, as we use here to align with the statements
and results of [ISm, IS2], or cyclic derivatives δ𝑖 on any potential, as in 3.1, give equivalent theories
but with minor differences in detail, which we address in §A.4.

A.2. Exact potentials and Hilbert series

The differentiation package has two useful tools. The first is the following Euler relation.

Lemma A.1. [ISm, 3.5] If F is a superpotential, then
∑𝑑
𝑖=1 [𝑥𝑖 , 𝜕𝑖𝐹] = 0.

The second is a sequence of right AJac(𝐹)-modules

0 → AJac(𝐹) d3−→ AJac(𝐹)⊕𝑑 d2−→ AJac(𝐹)⊕𝑑 d1−→ AJac(𝐹) d0−→ C→ 0 (A1)

defined in, for example, [ISm, 3.4]. The precise form of the morphisms d𝑖 will not concern us, as below
we will only require the following two facts.

1. [ISm, 3.6] For any superpotential F, the sequence (A1) is a complex, which is exact at the three
right-most nonzero terms.

2. If further F is homogeneous, say 0 ≠ 𝐹 ∈ SP𝑘 , then the morphisms in the complex (A1) satisfy
deg(d3) = 1, deg(d2) = 𝑘 − 2, deg(d1) = 1 and deg(d0) = 0.

Definition A.2. An element 𝐹 ∈ SP𝑘,𝑚 is called exact if (A1) is exact.
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If G is homogeneous, then the ideal (𝜕1𝐺, . . . , 𝜕𝑑𝐺) is a homogeneous ideal, and so the graded
decomposition of C〈x〉 induces a decomposition

AJac(𝐺) =
⊕
𝑖≥0

AJac(𝐺)𝑖 . (A2)

For 𝐺 ∈ SP𝑘 , the boundary maps d𝑖 are homogeneous, and so furthermore, the sequence (A1) also
decomposes into graded pieces, or homogeneous slices, each of which is a complex of finite-dimensional
vector spaces, exact at the codomains of the restrictions of d0, d1 and d2.

Definition A.3. For 𝐺 ∈ SP𝑘 , (A2) determines the Hilbert series of AJac(𝐺)

H𝐺 =
∑
𝑖≥0

dimC
(
AJac(𝐺)𝑖

)
𝑡𝑖 ∈ C[[𝑡]] .

Throughout, recall that SP𝑘 and SP𝑘,𝑚 are defined only when 𝑘 ≥ 3. The following is an easy
consequence of the degree of the morphisms in (2) above; see, for example, [ISm, §3].

Corollary A.4. If 𝐺 ∈ SP𝑘 is exact, then H𝐺 = (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )−1.

It will be convenient to consider the following subset of homogeneous superpotentials:

ESP𝑘 � {𝐺 ∈ SP𝑘 | 𝐺 is an exact potential, and AJac(𝐺) 𝑥1 ·−−→ AJac(𝐺) is injective}.

Recall that 𝑑 ≥ 2 is the number of variables in C〈x〉.

Lemma A.5 [IS2, 2.1, 2.2]. If 𝑘 ≥ 3 with (𝑑, 𝑘) ≠ (2, 3), then ESP𝑘 ≠ ∅.

Proof. Set

𝑔 =

{∑
σ∈𝔖𝑑−1 𝑥

𝑘−𝑑+1
𝑑 𝑥σ (1) . . . 𝑥σ (𝑑−1) if 𝑘 ≥ 𝑑

𝑥𝑑𝑥𝑑−1 . . . 𝑥𝑑−𝑘+1 +
∑
𝑗∈S 𝑥 𝑗𝑥𝑑m 𝑗 if 𝑘 < 𝑑,

where 𝔖𝑑−1 is the symmetric group, S = { 𝑗 | 1 ≤ 𝑗 ≤ 𝑑 − 1, 𝑗 ≠ 𝑑 − 𝑘 + 1}, and the m 𝑗 are
explicit monomials explained in [IS2, 2.2]. It is a reasonably elementary calculation to show that
𝐺 = cyc(𝑔) ∈ ESP𝑘 ; see [IS2, 2.1, 2.2]. �

It turns out, although we do not need this, that if 𝑑 = 2, then ESP3 = ∅. This is why the argument in
A.13 below fails in the (𝑑, 𝑘) = (2, 3) case.

Recalling that ℜ𝑖 = (𝔪𝑖 + 𝐼𝐹 )/𝐼𝐹 , the following is one of the main insights of [IS2].

Corollary A.6. If 𝐹 ∈ SP𝑘,𝑚 with 𝐹𝑘 ∈ ESP𝑘 , then left multiplication

AJac(𝐹)/ℜ 𝑗 𝑥1 ·−−→ AJac(𝐹)/ℜ 𝑗+1

is injective for all 𝑗 ≥ 1.

Proof. This is [IS2, 3.1]. A proof in the notation used here is in arXiv:2111.05900v1, as Proposition
A.12. �

A.3. Very general elements

Fixing, once and for all, a basis 𝑓1, 𝑓2, . . . , 𝑓𝑟 of SP𝑘 , we treat SP𝑘 as an irreducible algebraic family
of superpotentials and identify it with C𝑟 = Spec C[t], where t = 𝑡1, . . . , 𝑡𝑟 are parameter variables
and any element of SP𝑘 is the specialisation t = 𝑎 at a point 𝑎 ∈ C𝑟 of the ‘generic’ superpotential
𝐺 t =

∑
𝑡𝑖 𝑓𝑖 . In particular, SP𝑘 inherits the Zariski topology from C𝑟 . Under this identification, it is

natural to abbreviate 𝐺𝑎 ∈ SP𝑘 by 𝑎 ∈ SP𝑘 .
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Lemma A.7 (c.f. [ISm, 3.9]). Fix (𝑑, 𝑘) and consider SP𝑘 with its Zariski topology as above. For any
𝑖 ≥ 0, the following statements hold.

1. There is a nonempty Zariski open subset 𝑈𝑖 ⊂ SP𝑘 on which dim AJac(𝐺𝑎)𝑖 is constant for all
𝑎 ∈ 𝑈𝑖 and takes the minimum value of any 𝐺 ∈ SP𝑘 .

2. There is a largest Zariski open subset 𝑉𝑖 ⊂ 𝑈𝑖 ∩ 𝑈𝑖+1 on which the rank of the restriction
d3 : AJac(𝐺𝑎)𝑖 → (AJac(𝐺𝑎)⊕𝑑)𝑖+1 for any 𝑎 ∈ 𝑉𝑖 is the maximum possible for a linear map
between spaces of these dimensions (i.e., is injective).

3. There is a largest Zariski open subset 𝑊𝑖 ⊂ 𝑉𝑖 ∩ 𝑈𝑖+𝑘−1 on which the rank of the restriction
d2 : (AJac(𝐺𝑎)⊕𝑑)𝑖+1 → (AJac(𝐺𝑎)⊕𝑑)𝑖+𝑘−1 for any 𝑎 ∈ 𝑊𝑖 is the maximum possible for a linear
map whose kernel contains the image of d3.

Thus if 𝑊𝑖 not empty, then for 𝑎 ∈ 𝑊𝑖 , the homogeneous slice of (A1) with the domain of d3 in degree i
is an exact sequence of finite-dimensional vector spaces.

Proof. (1) This is [IS1, 2.2], proved as in [IS1, 2.1]. The point is this: let 𝑎0 ∈ SP𝑘 be a point at which
the minimum dimension is achieved, and choose a subset of the set Φ𝑖 of all monomials of degree i
for which the (square) coefficient matrix of a basis of the kernel of C〈x〉𝑖 → AJac(𝐺𝑎0)𝑖 with respect
to Φ𝑖 is invertible (a section of the surjection). The entries of this square matrix are algebraic in a, so
it remains invertible as a varies in a Zariski open subset 𝑎0 ∈ 𝑈𝑖 ⊂ SP𝑘 . Thus, the kernel cannot get
smaller, so must have constant dimension, and thus, the minimum is also achieved for all 𝑎 ∈ 𝑈𝑖 .

(2) Within 𝑈𝑖 ∩ 𝑈𝑖+1, the map d3 : AJac(𝐺𝑎)𝑖 → (AJac(𝐺𝑎)⊕𝑑)𝑖+1 is determined by a matrix of
fixed size whose entries are functions in a. Maximising its rank is an open condition on a since it
occurs on the complement of a locus of vanishing minors. (It is possible that all relevant minors vanish
identically, in which case the conclusion is simply that 𝑉𝑖 is empty.)

(3) Similarly, maximising the rank of d2 is an open condition prescribed by minors that are functions
in a. The condition that the kernel contains the image of d3 is already imposed by the entries of the
matrix since 𝑎 ∈ 𝑉𝑖 and (A1) is a complex. �

Corollary A.8 [ISm, 3.2]. Let 𝑘 ≥ 3 and (𝑑, 𝑘) ≠ (2, 3).

1. For each 𝑖 ≥ 0, the minimum value achieved by dim AJac(𝐺)𝑖 for any 𝐺 ∈ SP𝑘 , as in A.7(1), is the
coefficient of 𝑡𝑖 in the expansion of (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )−1.

2. If 𝐺 ∈ SP𝑘 is exact, then H𝐺 attains the minimum coefficient for every term 𝑡𝑖 .

In particular, each𝑊𝑖 in A.7(2) is non-empty, and the minimum Hilbert series in the set {H𝐹 | 𝐹 ∈ SP𝑘 }
is (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )−1.

Proof. The proof follows [ISm, 3.2, 3.8], which is for 𝑑 = 2 but generalises with no change, using the
existence of the exact potentials in A.5. �

For formal power series φ(𝑡) and ψ (𝑡), write φ ≥ ψ to mean that the coefficients of φ − ψ are all
nonnegative. If P is a family of power series, then ψ ∈ P is called the minimum if φ ≥ ψ for all φ ∈ P ,
noting that the minimum does not necessarily exist.

Proposition A.9. If 𝑘 ≥ 3 and (𝑑, 𝑘) ≠ (2, 3), then there exists a countable intersection U of nonempty
Zariski opens of SP𝑘 such that 𝐺 ∈ ESP𝑘 for all 𝐺 ∈ U.

Proof. Let U1 be the countable intersection over all 𝑖 ≥ 0 of the Zariski open subsets 𝑊𝑖 of A.7. By
A.8, each 𝑊𝑖 is nonempty; thus, this intersection is nonempty. Similarly, there is another such countable
intersection U2 ⊂ SP𝑘 on which the left-multiplication map 𝑥1 : AJac(𝐺) → AJac(𝐺) is injective,
as injectivity maximises rank in each degree. Since 𝑥1 is injective on the free algebra (at t = 0), or
again applying A.5, this intersection is also nonempty. Thus, U = U1 ∩ U2 is a nonempty countable
intersection. �
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For a given 𝐹 ∈ SP𝑘,𝑚, recall the notation 𝔪 and 𝐼𝐹 from §A.1. The Poincaré series of F is defined
to be

P𝐹 =
∑
𝑖≥0

dimC
(
C〈x〉

𝔪𝑖+1+𝐼𝐹

)
𝑡𝑖 . (A3)

This measures the growth of the quotients of AJac(𝐹) by the ideals (𝔪𝑖+1 + 𝐼𝐹 )/𝐼𝐹 . The general
situation is more delicate than the homogeneous case of A.9 but still a minimum is achieved by a very
general element.

Corollary A.10. If 𝑘 ≥ 3 and (𝑑, 𝑘) ≠ (2, 3), then for any 𝑚 ≥ 𝑘 , there exists 𝐹 ∈ SP𝑘,𝑚 such that the
following statements hold.

1. P𝐹 is the minimum in {P𝐻 | 𝐻 ∈ SP𝑘,𝑚}.
2. 𝐹ord(𝐹 ) ∈ U, where U ⊂ SP𝑘 is defined in A.9.

Proof. Similar to A.7(1) (cf. [IS1, 2.1]), minimising each coefficient of the Poincaré series is an open
condition in a family, and so the minimum is realised on a countable intersection of nonempty Zariski
open subsets V ⊂ SP𝑘,𝑚.

Consider the map SP𝑘,𝑚 → SP𝑘 given by 𝐹 ↦→ 𝐹𝑘 . Intersecting the preimage of U ⊂ SP𝑘 with
V determines a countable intersection of open subsets of SP𝑘,𝑚 on which the claims hold. Since C is
uncountable, this set contains a closed point. �

A.4. Power Series

Given 𝑓 ∈ C〈〈x〉〉, its Poincaré series is defined to be

P̂ 𝑓 =
∑

(dimC Jac( 𝑓 )/𝔍𝑖)𝑡𝑖 ,

where recall that 𝔍 is the Jacobson radical of Jac( 𝑓 ).
When 𝐹 ∈ SP𝑘,𝑚, we can view F as either a polynomial superpotential and form P𝐹 in (A3), or

we can view F as an element of C〈〈x〉〉 and form P̂𝐹 . Since Jac( 𝑓 ) is defined with respect to the cyclic
derivatives δ, and AJac( 𝑓 ) is defined with respect to strike-off derivatives 𝜕, it is not quite true that
P̂𝐹 = P𝐹 .

Lemma A.11. Given 𝐺 ∈ SP𝑘,𝑚, then P𝐺 = P̂G, where G =
∑𝑚
𝑖=𝑘

1
𝑖𝐺𝑖 . Thus, if 𝐺 ∈ SP𝑘 , then

P̂G = P𝐺 = 1
1−𝑡H𝐺 , where G = 1

𝑘𝐺.

Now for 𝑓 ∈ C〈〈x〉〉 and for any 𝑖 ≥ 0, set f𝑖 = 𝑓≤𝑖 and F𝑖 = cyc(f𝑖). Then, continuing the notation of
§2.2, and recalling that ℜ𝑖 = (𝔪𝑖 + 𝐼𝐹 )/𝐼𝐹 ,

Jac( 𝑓 )/𝔍𝑖 � C〈〈x〉〉
((𝔫𝑖 , δ1 𝑓 , . . . , δ𝑑 𝑓 ))

�
C〈x〉

(𝔪𝑖 , δ1f𝑖 , . . . , δ𝑑 f𝑖)
(A4)

�
C〈x〉(

𝔪𝑖 , 𝜕1(cyc f𝑖), . . . , 𝜕𝑑 (cyc f𝑖)
)

� AJac(F𝑖)/ℜ𝑖 .

This gives a term-by-term algebraicisation of the Poincaré series, by

P̂ 𝑓 =
∑
𝑖≥0

(dimC AJac(F𝑖)/ℜ𝑖)𝑡𝑖 .
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A.5. Main result

The main result, A.13, requires the following elementary lemma.

Lemma A.12. For 𝑑 ∈ R and 𝑘 ≥ 2, consider the formal power series

1
(1 − 𝑡) (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )

=
∑
𝑖≥0

𝑏𝑖𝑡
𝑖 .

Setting 𝑏 𝑗 = 0 for 𝑗 < 0, the following statements hold.

1. There is an equality 𝑏 𝑗 = 𝑑𝑏 𝑗−1 − 𝑑𝑏 𝑗−𝑘+1 + 𝑏 𝑗−𝑘 + 1 for all 𝑗 ≥ 0.
2. 𝑏0 = 1, and further, 𝑏 𝑗 = 1 + 𝑑 + . . . + 𝑑 𝑗 for all 1 ≤ 𝑗 ≤ 𝑘 − 2.

Proof. (1) Treating the series as a sum over 𝑖 ∈ Z, with 𝑏<0 = 0, and multiplying up shows at once that
𝑏0 = 1 and that for any 𝑗 ∈ Z \ {0},

𝑏 𝑗 − (𝑑 + 1)𝑏 𝑗−1 + 𝑑𝑏 𝑗−2 + 𝑑𝑏 𝑗−𝑘+1 − (𝑑 + 1)𝑏 𝑗−𝑘 + 𝑏 𝑗−𝑘−1 = 0.

When 𝑗 = 0, the claimed equality in (1) holds. For 𝑗 ≥ 1, splitting off a single 𝑏 𝑗−1 summand from the
equation above, we see by induction that

𝑏 𝑗 = 𝑑𝑏 𝑗−1 − 𝑑𝑏 𝑗−2 − 𝑑𝑏 𝑗−𝑘+1 + (𝑑 + 1)𝑏 𝑗−𝑘 − 𝑏 𝑗−𝑘−1 + (𝑑𝑏 𝑗−2 − 𝑑𝑏 𝑗−𝑘 + 𝑏 𝑗−𝑘−1 + 1)
= 𝑑𝑏 𝑗−1 − 𝑑𝑏 𝑗−𝑘+1 + 𝑏 𝑗−𝑘 + 1.

(2) For 1 ≤ 𝑗 ≤ 𝑘 − 2, the equality in (1) reads 𝑏 𝑗 = 𝑏 𝑗−1𝑑 + 1, and so the result follows since
𝑏0 = 1. �

The following is the main result of this appendix, and it asserts that, in almost all cases, the 𝔍-
dimension of Jac( 𝑓 ) is ≥ 3. In particular, in almost all cases, the Jacobi algebra is infinite dimensional,
as a vector space. Recall from §2.1 that C〈〈x〉〉≥𝑘 consists of all those 𝑓 ∈ C〈〈x〉〉 for which 𝑓 𝑗 = 0 for all
𝑗 < 𝑘 , and note that 0 ∈ C〈〈x〉〉≥𝑘 .

Theorem A.13. Suppose that 𝑑 = 2 and 𝑘 ≥ 4, or 𝑑 ≥ 3 and 𝑘 ≥ 3. If 𝑓 ∈ C〈〈x〉〉 has order k, then
JdimJac( 𝑓 ) ≥ 3.

The proof will show that the coefficients of the Poincaré series of Jac( 𝑓 ) are no smaller than those of

1
(1 − 𝑡) (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )

.

When 𝑑 = 2 and 𝑘 = 4, this lower bound is 1/
(
(1 − 𝑡)3(1 − 𝑡2)

)
, and when 𝑑 = 𝑘 = 3, it is 1/(1 − 𝑡)4,

both of which have polynomial growth of degree 3. For all other 𝑑, 𝑘 in the scope of the theorem, the
growth is exponential, and JdimJac( 𝑓 ) = ∞.

Proof. Associated to the fixed 𝑘 = ord( 𝑓 ) and d is the power series

1
(1 − 𝑡) (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )

=
∑
𝑖≥0

𝑏𝑖𝑡
𝑖 .

The 𝑏𝑖s are integers that depend only on k and d. Similarly, associated to k and d are the positive integers
𝑎0, 𝑎1, . . . defined to be

𝑎 𝑗 � min{dimC
( Jac(𝑔)
𝔍 𝑗+1

)
| 𝑔 ∈ C〈〈x〉〉≥𝑘 }

= min{dimC
( Jac(𝑔)
𝔍 𝑗+1

)
| 𝑔 ∈ C〈x〉≥𝑘 } (truncate terms mod 𝔍j+1)
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= min{dimC
( Jac(𝑔)
𝔍 𝑗+1

)
| 𝑔 ∈ C〈x〉≥𝑘 , 𝑔𝑡 = 0 for 𝑡 > 𝑗 + 1}

=

{
dimC

(
C〈〈x〉〉
𝔫 𝑗+1

)
if 𝑗 ≤ 𝑘 − 2

min
{
dimC

(AJac(𝐺)
ℜ 𝑗+1

)
| 𝐺 ∈ SP𝑘, 𝑗+1

}
if 𝑗 ≥ 𝑘 − 1.

. (by (33))

Certainly, P̂ 𝑓 ≥
∑
𝑖≥0 𝑎𝑖𝑡

𝑖 , by the minimality of the 𝑎𝑖 . We claim that 𝑎𝑖 = 𝑏𝑖 for all 𝑖 ≥ 0 since then

P̂ 𝑓 ≥
∑
𝑖≥0

𝑎𝑖𝑡
𝑖 =

∑
𝑖≥0

𝑏𝑖𝑡
𝑖 =

1
(1 − 𝑡) (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )

,

which has the prescribed growth as in the statement of the result.
So, from here on, we discard the original f and instead prove that 𝑎𝑖 = 𝑏𝑖 for all 𝑖 ≥ 0. This is a

statement which depends only on k and d.
Since by assumption (𝑑, 𝑘) ≠ (2, 3), by A.5, ESP𝑘 ≠ ∅ and so choose 𝐺 ∈ ESP𝑘 . Since G is exact,

by A.4 H𝐺 = (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )−1, and so by A.11 for G = 1
𝑘𝐺, we have

P̂G =
1

1 − 𝑡
·H𝐺 =

1
(1 − 𝑡) (1 − 𝑑𝑡 + 𝑑𝑡𝑘−1 − 𝑡𝑘 )

=
∑
𝑖≥0

𝑏𝑖𝑡
𝑖 .

Since G exists, it follows immediately by minimality of the 𝑎𝑖s that 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 ≥ 0.
Now clearly, 𝑎0 = 𝑏0 = 1, and further, for all 1 ≤ 𝑗 ≤ 𝑘 −2, we have 𝑎 𝑗 = dimC

(
C〈〈x〉〉
𝔫 𝑗+1

)
, which equals

𝑏 𝑗 by A.12(2). Further, since d relations of degree k can cut down the dimension of C〈〈x〉〉/𝔍𝑘+1 by at
most d, it follows that 𝑎𝑘−1 ≥ 1 + 𝑑 + . . . + 𝑑𝑘 − 𝑑. This equals 𝑏𝑘−1 by A.12(2), and so 𝑎𝑘−1 ≥ 𝑏𝑘−1,
which in turn forces 𝑎𝑘−1 = 𝑏𝑘−1.

Thus, by induction, we can suppose that 𝑎 𝑗 = 𝑏 𝑗 for all 0 ≤ 𝑗 ≤ 𝑠, for some 𝑠 ≥ 𝑘 − 1. The proof
will be completed once we show that 𝑎𝑠+1 = 𝑏𝑠+1.

Now by A.10 applied to 𝑚 = 𝑠 + 2, there exists 𝐹 ∈ SP𝑘,𝑠+2 for which P𝐹 is the minimum in
{P𝐻 | 𝐻 ∈ SP𝑘,𝑠+2}, and further, 𝐹𝑘 ∈ U where U is from A.9. By the first of these facts, since for all
𝑗 ≤ 𝑠 + 1 by truncation

𝑎 𝑗 = min
{
dimC

(AJac(H)
ℜ 𝑗+1

)
| H ∈ SP𝑘, 𝑗+1

}
= min

{
dimC

(AJac(H)
ℜ 𝑗+1

)
| H ∈ SP𝑘,𝑠+2

}
,

it follows that

P𝐹 =
𝑠+1∑
𝑗=0

𝑎 𝑗 𝑡
𝑖 + O𝑠+2. (A5)

However, since 𝐹𝑘 ∈ U, by definition, 𝐹𝑘 ∈ ESP𝑘 . Thus, by A.6 for all 𝑗 ≥ 1, the left multiplication by
𝑥1

AJac(𝐹)/ℜ 𝑗 𝑥1 ·−−→ AJac(𝐹)/ℜ 𝑗+1

is injective.
Set 𝐼 = (𝜕1𝐹, . . . , 𝜕𝑑𝐹) ⊂ C〈x〉. The above asserts that there is an injection

C〈x〉
𝐼 +𝔪 𝑗

𝑥1 ·−−→ C〈x〉
𝐼 +𝔪 𝑗+1

for all 𝑗 ≥ 1. This allows us to pick inductively sets of monomials 𝑀 𝑗 of C〈x〉 of degree j, starting with
𝑀0 = {1}, such that the following two conditions are satisfied.
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1. There is an inclusion 𝑥1𝑀 𝑗 ⊆ 𝑀 𝑗+1.
2. The necessarily disjoint union 𝑁 𝑗 = 𝑀0∪ . . .∪𝑀 𝑗 projects down to give a basis of C〈x〉/(𝐼 +𝔪 𝑗+1).

To fix notation, set 𝐵 𝑗 = SpanC(𝑁 𝑗 ) ⊂ C〈x〉, and define b 𝑗 via the equality

dimC 𝐵 𝑗 = dimC
(
C〈x〉
𝐼+𝔪 𝑗+1

)
= b 𝑗 .

Note that the second equality implies that P𝐹 =
∑
𝑖≥0 b 𝑗 𝑡 𝑗 .

Write 𝑉 = SpanC{𝑥1, . . . , 𝑥𝑑} ⊆ C〈x〉, 𝑅 = SpanC{𝜕1𝐹, . . . , 𝜕𝑑𝐹} ⊆ C〈x〉, and for 𝑗 ≥ 0, consider
the quotient map π 𝑗 : C〈x〉 → C〈x〉/𝔪 𝑗+1. By the definition of b 𝑗 , for every 𝑗 ≥ 0,

dimC π 𝑗 (𝐼) = 1 + 𝑑 + . . . + 𝑑 𝑗 − b 𝑗 . (A6)

We now apply the adapted Vinberg argument: elements of the two-sided ideal I are sums of elements,
each of which either starts with an 𝑥𝑖 or starts with a derivative 𝜕𝑖𝐹, so we can write

𝐼 = 𝑉𝐼 + 𝑅C〈x〉.

Applying π 𝑗+1 then gives an equality

π 𝑗+1 (𝐼) = π 𝑗+1 (𝑉𝐼) + π 𝑗+1(𝑅C〈x〉).

Since 𝐵 𝑗 descends to span C〈x〉/(𝐼 + 𝔪 𝑗+1), every element of C〈x〉 may be written as an element in
𝐵 𝑗 , plus an element in I, plus an element in 𝔪 𝑗+1. Projecting down this sum via π 𝑗+1, and noting that
𝑅𝐼 ⊂ 𝑅C〈x〉 gets absorbed into π 𝑗+1 (𝐼), and elements of R have degree ≥ 𝑘 , it follows that mod 𝔪 𝑗+1

there is an equality

π 𝑗+1 (𝐼) = π 𝑗+1 (𝑉𝐼) + π 𝑗+1(𝑅𝐵 𝑗+2−𝑘 ).

Write 𝑅′ = SpanC{𝜕2𝐹, . . . , 𝜕𝑑𝐹} ⊆ C〈x〉. Then using the Euler relation
∑𝑑
𝑖=0 [𝑥𝑖 , 𝜕𝑖𝐹] = 0 of A.1, we

may get rid of any appearance of the product (𝜕1𝐹)𝑥1 at the cost of terms in the other summands. It
follows that

π 𝑗+1 (𝐼) = π 𝑗+1(𝑉𝐼) + π 𝑗+1(𝑅′𝐵 𝑗+2−𝑘 ) + π 𝑗+1 ((𝜕1𝐹)𝐵+𝑗+2−𝑘 ),

where 𝐵+𝑗+2−𝑘 = SpanC{𝑛 ∈ 𝑁 𝑗+2−𝑘 | 𝑛 ≠ 𝑥1𝑚 for any 𝑚}.
The proof is completed by estimating the dimension of each of the three individual summands.

Applying (A6) for the first summand,

dimC π 𝑗+1(𝐼) ≤ 𝑑 (1 + 𝑑 + . . . + 𝑑 𝑗 − b 𝑗 ) + (𝑑 − 1)b 𝑗+2−𝑘 + (b 𝑗+2−𝑘 − b 𝑗+1−𝑘 )

since dimC 𝐵+𝑗+2−𝑘 ≤ b 𝑗+2−𝑘 −b 𝑗+1−𝑘 holds by construction of the 𝑁 𝑗 in (1). Plugging (A6) for π 𝑗+1 into
the above displayed equation, and then cancelling, it follows that

1 − b 𝑗+1 ≤ −𝑑b 𝑗 + 𝑑b 𝑗+2−𝑘 − b 𝑗+1−𝑘 ,

which after re-arranging gives

b 𝑗+1 ≥ b 𝑗𝑑 − b 𝑗+2−𝑘𝑑 + b 𝑗+1−𝑘 + 1. (A7)
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Since P𝐹 =
∑
𝑖≥0 b 𝑗 𝑡 𝑗 , by (A5) we see that b 𝑗 = 𝑎 𝑗 for 0 ≤ 𝑗 ≤ 𝑠 + 1, and hence,

𝑎𝑠+1 ≥ 𝑎𝑠𝑑 − 𝑎𝑠+2−𝑘𝑑 + 𝑎𝑠+1−𝑘 + 1 ((36) for j = s)

= 𝑏𝑠𝑑 − 𝑏𝑠+2−𝑘𝑑 + 𝑏𝑠+1−𝑘 + 1 (aj = bj for j ≤ s by induction)

= 𝑏𝑠+1 (A.12(1) for j = s + 1)

Since we already know 𝑎𝑠+1 ≤ 𝑏𝑠+1 by minimality, the above forces 𝑎𝑠+1 = 𝑏𝑠+1. Hence, by induction,
𝑎 𝑗 = 𝑏 𝑗 for all 𝑗 ≥ 0, and the result follows. �

Remark A.14. The above theorem establishes that often JdimJac( 𝑓 ) ≥ 3, while earlier sections
considered the case JdimJac( 𝑓 ) ≤ 1. In general, we do not know what, if anything, satisfies
1 < JdimJac( 𝑓 ) < 3, even in the case when f is a polynomial. Nor do we know whether JdimJac( 𝑓 ) is
always an integer.

A.6. Contractibility consequence

The following is an immediate geometric consequence of the above.

Theorem A.15. Let C ⊂ X be an irreducible rational curve in a smooth CY 3-fold, with NC deformation
algebra Λdef , such that NC |X ≠ (−3, 1). Then C ⊂ X contracts to a point suitably locally, without
contracting a divisor, if and only if dimC Λdef < ∞.

Proof. The case of (−1,−1) and (−2, 0)-curves is of course well known [R2, DW1]. The point is
that (−4, 2), (−5, 3), . . . curves never contract [L2, 4.1], and further, as a consequence of [V1], their
noncommutative deformations are given as the Jacobi algebra quotient of a free power series ring
in 3, 4, . . . variables. By A.13, these can never be finite dimensional. Thus, in all these cases, the
statement is true, just since the curves never contract, and the deformation algebras are always infinite
dimensional. �
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