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NOTE ON t-MINIMAL COMPLETE BIPARTITE GRAPHS

I.Z. Bouwer and I. Broere

1. Introduction. The thickness of a graph G is the smallest
natural number t such that G is the union of t planar subgraphs.
A graph G is t-minimal if its thickness is t and if every proper
subgraph of G has thickness < t. (These terms were introduced by
Tutte in [3]. In [4, p. 51] Beineke employs the term t-critical instead
of t-minimal.) The complete bipartite graph K(m, n) consists of
m ‘'dark!® points, n 'light' points, and the mn lines joining points of
different types.

In [1, p. 52] Beineke proves that the complete bipartite graph
2
(X) K(2s +1, 45° - 25 +1)

is (s +1)-minimal (s =1,2,... ). He also states, without proof, that
the complete bipartite graph

(Y) K(4s - 1, 45 - 1)
is (s + 1)-minimal if s 1is odd, and conjectures that it also holds if
s is even. The purpose of this note is to prove that for each s the
graph (Y) is (s + 1)-minimal. The proof is based upon a technique
developed by Beineke, Harary and Moon [2].

Before giving the proof, we motivate the appearance of the families
(X) and (Y). The maximal number of lines of a planar subgraph of
K(m,n) is 2(m +n - 2) (see for instance [2, p. 1]). It is therefore
natural to consider, as candidates for (s + 1)-minimal graphs, those
graphs X(m,n) that satisfy:
(1) mn=2(m +n-2)s +1 .
Since (1) may be written in the form:

(m - 2s) (n- 2s) = (2s - 1)2,

we see that to each couple (s,R), where s is any integer > 1 and

where R is any (integral) factor of (2s - 1)2, there corresponds a
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graph K(m, n) satisfying (1), namely the graph for which

(2) m=2s +R and n=Zs+(Zs-1)2/R.

We may assume m < n, thatis, 1 g Rg 2s - 1. The correspondence
(s, R) = K(m, n) defined as above then becomes one-to-one and onto the
set of all graphs K(m, n) satisfying (1). The graphs (X) and (Y)
appear as the graphs corresponding to the extremal values 1 and

2s - 1 of R.

2. Proof. In order to prove the result, it is sufficient to show
that there exist s +1 planar subgraphs of the given graph (Y) such
that their union is (Y) and such that one of the subgraphs contains only
one line (so that, by (1), the remaining subgraphs contain the maximum
possible number of lines).

We may assume s » 2. From the Main Theorem of [2] (reproduced
as Theorem 8 on p. 49 of [1]) the thickness of K(4s - 1, 4s - 2) is
found to be s. Constructa (2s - 1) by s array A as follows: The
(i, j)th cell of A comnsists of N(i, j) consecutive integers modulo
4s - 1, where

N(2s - j,j) =N(s -j,j) =N(s,s)=3 (j=1,2,..., s-1) and

N(i, j) = 4 otherwise (i=1,2,...,2s -1; j=1,2,...,8);

in the first row of A the integers 1,2,...,4s - 1 appear consecutively;
the cells are then filled in, inductively, by letting the penultimate entry

of a cell be the first entry of the cell below it. (This array is found from
the construction given in the proof of [2, Lemma 2] by setting

m =4s - 1, =s and r =4s - 2.) It can be seen that the total number

of distinct entries in the cells of the jth column of A is 4s - 1 if

j=s, and 4s - 2 if j# s. The integer not appearing among the entries
of the first (or jth for j=2,3,...,s-1; s> 2) columnis 4s - 1

(or, respectively, 4(j - 1)). Construct a subgraph Gj of K(4s - 1, 4s - 2)

from the jth column of the array A (as in the proof of [2, Theorem 2])

as follows: the dark points correspond to the integers 1,2,...,4s - 1;

the 4s - 2 light points correspond in pairs to the cells of the column
(where we shall assume that the light points i and (i +2s - 1) correspond
to the ith cell); and a dark point and a light point are joined if and only

if the integer corresponding to the dark point occurs as an entry of the

cell corresponding to the light point. The graphs Gj are planar, and

their union is K(4s - 1, 4s - 2) ([2], proof of Theorem 2).

We now represent each graph Gj as follows: consider rectangular

coordinate axes in the plane. Let the dark points correspond, in the order
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in which they occur in the jth column (starting with the first entry of
the first cell and excluding repetitions), to the points on the horizontal
axis with abscissas: 0, -1, 1, -2,2, -3, ... . Let the light points

i and (i +2s-1)(i=1, 2, ..., 2s - 1) correspond to the points on
the vertical axis with ordinates i and -i, respectively. The lines of
Gj may now be drawn (for instance as straight lines) without causing

intersections.
From the graphs Gi’ cey Gs, represented as above, we form
graphs H1, ey HS, respectively, as follows:
(i) If s>4 we interchange in Gj (j=1,2,..., s - 3) the positions

of the dark points (4j + 1) and (4j +2), and in Gs the positions of the
dark points 1 and 2. I s =3 we interchange in G3 the positions of

the dark points 8 and 9, and the positions of the dark points 10 and
11. (In each case the dark points that are interchanged, are joined to
the same set of light points.)

(ii) The dark point (4s - 1) is inserted in G, and joined to the

1
light points 1 and 2, while the dark point (4j - 4) is inserted in
Gj (j=2,3, ..., s-1; s>2) and joined to the light points 2s and

(2s +1) if j is even, and to the light points 1 and 2 if j is odd.

(iii) The pairs of lines inserted as above in Gi' GZ’ ..., G appear

s-1
in GS, Gi’ G G respectively, from which they are now removed.

A

It may be checked that each graph H,(j # s - 1) contains an octagonal
region. For j=1, 2,..., s -2, the boundary of the octagonal region
contains the dark points (4j-2), (4j-1), 4j, (4j+1); and for j = s, the
dark points (4s-3), (4s-2), (4s - 1), 1.

We now postulate a new light point P and form graphs
Ik (k=1,2,..., s +1) as follows: In each Hj (j#s-1) we insert P

in the octagonal region of Hj and join it to the four dark points occurring

on the boundary of the octagonal region to form the graph Ij . In Hs—i

we insert P in the region between the dark points (4s - 6) and (4s - 4),

and join it to these two dark points to form IS T The graph IS 1

consists of the single line joining P and the dark point (4s - 5).

Clearly the graphs Ik (k=1,2, ..., s+1) are planar and their
union is the graph (Y).

3. Conclusion. Under the lexicographic ordering of the couples
(s, R) the graphs K(m, n) for which (2), or equivalently (1), is
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satisfied, become linearly ordered. With respect to this order the
smallest graph which is not of the form (X) or (Y), is the graph
K(13,37) (s =5, R =3). We have found a construction showing that

this graph is 6-minimal. The next larger such graphs are K(19, 91)

(s =8, R=3), K(21, 61) (s =8, R =5) and K(25, 41) (s =8, R =9).

We do not know if these graphs are 9-minimal. It would be of interest to
know if all the graphs K(m, n) satisfying (1) are (s + 1)-minimal and
if all (s + 1)-minimal graphs K(m, n) satisfy (1).

Added in proof: The same result (with a different construction used)
has appeared in (A.M. Hobbs and J. W. Grossman, A Class of Thickness-
Minimal Graphs, J. Res. Nat. Bur. Standards. 72(B) (1968) 145-153.)
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