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Abstract. Every Anosov flow on a 3-manifold is associated to a bifoliated plane (a
plane endowed with two transverse foliations F s and Fu) which reflects the normal
structure of the flow endowed with the center-stable and center-unstable foliations. A
flow is R-covered if F s (or equivalently Fu) is trivial. On the other hand, from any
Anosov flow one can build infinitely many others by Dehn–Goodman–Fried surgeries.
This paper investigates how these surgeries modify the bifoliated plane. We first observe
that surgeries along orbits corresponding to disjoint simple closed geodesics do not affect
the bifoliated plane of the geodesic flow of a hyperbolic surface (Theorem 1). Analogously,
for any non-R-covered Anosov flow, surgeries along pivot periodic orbits do not affect the
branching structure of its bifoliated plane (Theorem 2). Next, we consider the setSurg(A)

of Anosov flows obtained by Dehn–Goodman–Fried surgeries from the suspension flow
XA of any hyperbolic matrix A ∈ SL(2, Z). Fenley proved that performing only positive
(or negative) surgeries on XA leads to R-covered Anosov flows. We study here Anosov
flows obtained by a combination of positive and negative surgeries on XA. Among other
results, we build non-R-covered Anosov flows on hyperbolic manifolds. Furthermore, we
show that given any flow X ∈ Surg(A) there exists ε > 0 such that every flow obtained
from X by a non-trivial surgery along any ε-dense periodic orbit γ is R-covered (Theorem
4). Analogously, for any flow X ∈ Surg(A) there exist periodic orbits γ+, γ− such that
every flow obtained from X by surgeries with distinct signs on γ+ and γ− is non-R-covered
(Theorem 5).
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1. Introduction
1.1. General setting. In this paper we consider Anosov flows on closed 3-manifolds, up
to topological (orbital) equivalence.
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Following the pioneering work of Handel and Thurston [HT] on geodesic flows,
Goodman [Go] proved that for any Anosov flow X on a manifold M and any periodic orbit
γ , one can build a new Anosov flow on a manifold obtained from M by a Dehn surgery
along γ . In Goodman’s construction, the dynamics of the new Anosov flow was not easy
to understand. In [Fri], Fried proposed an alternative to the Dehn–Goodman surgery, for
which the dynamics of the flow obtained from X is topologically equivalent to X except
on γ . It was implicit in Fried’s paper that his (topological) Anosov flow was indeed
orbitally equivalent to that obtained by Dehn–Goodman surgery and the mathematics
community generally admitted this during the 1980s and 1990s (see, for instance, [Fe1]),
before noticing that there was no explicit proof of such a statement. The orbital equivalence
between Goodman’s and Fried’s surgery was indeed an open question. It was only recently
that this was proven by Shannon, who proves in his thesis that Fried’s surgery is indeed
orbitally equivalent to Dehn–Goodman surgery and that any topological Anosov flow is
orbitally equivalent to an Anosov flow (see also [Sh]). A first attempt to prove that a
topological Anosov flow obtained by Fried’s surgery is orbitally equivalent to a smooth
Anosov flow was made by Brunella in his thesis [Bru]. However, Brunella’s proof relied
on the erroneous fact that isotopic pseudo-Anosov diffeomorphisms on surfaces with
boundary are all conjugated.

Assume that M is orientable and that γ is a periodic orbit with positive eigenvalues.
Then the boundary of a tubular neighbourhood of γ is a torus endowed with a canonical
meridian, parallel basis of its fundamental group. In this basis, the Dehn–Goodman–Fried
surgery involves keeping the same parallel and adding n parallels to the meridian, we
therefore speak of a surgery of characteristic number n. We also define a positive or
negative surgery along γ according to the sign of the characteristic number n.

One of the main open questions of this field (stated by Fried in [Fri]) is as follows.

Question 1.1. Is any transitive Anosov flow obtained through a finite sequence of
Dehn–Goodman–Fried surgeries from the suspension flow of a hyperbolic linear auto-
morphism of the torus T2?

The aim of this paper is to study the Anosov flows obtained by a finite sequence of
surgeries from a suspension Anosov flow, that is, conjecturally, all the Anosov flows on
3-manifolds.

1.2. R-covered and non-R-covered Anosov flows. Our point of view here is to consider
the effect of surgeries on the bifoliated plane associated to an Anosov flow X, in order to
decide whether the flow is R-covered or not. Let us recall these notions.

In [Ba1, Fe1], Barbot and Fenley show simultaneously that for any Anosov flow X on a
3-manifold M, its lift X̃ on the universal cover M̃ is conjugated to the constant vector field
∂/∂x on R3. The space of orbits of X̃ is therefore a 2-plane PX � R2, endowed with the
natural quotient of the lift of the weak stable and unstable manifolds of X on M̃ . In other
words, any Anosov flow X is naturally associated to a pair of transverse foliations F s

X, Fu
X

on the plane PX: we call (PX, F s
X, Fu

X) the bifoliated plane associated to X.
In both [Ba1, Fe1] it has been proven that if the space of leaves of F s

X is Hausdorff, then
the same happens to the space of leaves of Fu

X. In this case, we say that X is R-covered
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(a) Trivial case (b) Positively twisted case (c) Negatively twisted case

FIGURE 1. R-covered flows. Colour available online.

FIGURE 2. Non-R-covered flow. Colour available online.

(Figure 1). When the previous hypotheses are not satisfied, we say that X is non-R-covered
(see Figure 2).

If X is R-covered, [Fe1] shows that the bifoliated plane (PX, F s
X, Fu

X) is conjugated to
one of the following two models:
• R2 endowed with the two foliations by parallel horizontal and vertical straight lines.

We say in this case that R2 is trivially bifoliated (see Figure 1(a)). According to a
Theorem of Solodov, this case corresponds to suspension flows (see [Ba]).

• the restrictions of the trivial horizontal/vertical foliations of R2 to the strip {(x, y) ∈
R2, |x − y| < 1}. We say in this case that X is twisted R-covered (see Figure 1(b),(c)).

[Fe1] shows that if X is an Anosov flow on a non-orientable manifold M, then it cannot
be twisted R-covered: it is either trivially bifoliated or non-R-covered. For this reason,
from now on, the manifold M will be assumed to be oriented. In this case, the bifoliated
plane is naturally oriented. If X is twisted R-covered, the bifoliated plane (PX, F s

X, Fu
X) is

conjugated to one of the two models by an orientation-preserving homeomorphism:
• the restrictions of the trivial horizontal/vertical foliations of R2 to the strip {(x, y) ∈

R2, |x − y| < 1}. In this case, we say that X is R-covered positively twisted (see Figure
1(b)).

• the restrictions of the trivial horizontal/vertical foliations of R2 to the strip {(x, y) ∈
R2, |x + y| < 1}. In this case, we say that X is R-covered negatively twisted (see
Figure 1(c)).
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FIGURE 3. A pivot point.

For instance, the geodesic flow of a hyperbolic closed surface (or orbifold) is twisted
R-covered. Here is an example which is typical of the results we obtain.

THEOREM 1. Let S be a hyperbolic closed surface and X the geodesic flow on M = T 1(S).
By choosing the orientation of M, we can assume X to be R-covered positively twisted.

Let a1, . . . , ak be a set of simple closed disjoint geodesics and � = {±γi} be the set of
corresponding orbits of X.

Then any flow Y obtained from X by surgeries along � is R-covered positively twisted.

In other words, surgeries along non-intersecting closed geodesics have no effect on the
bifoliated plane up to homeomorphism.

Non-R-covered flows also admit a specific set of orbits for which the corresponding
surgeries have a very limited effect on the bifoliated plane. More precisely, [Fe2] defined
the notion of pivot points in the bifoliated plane PX of a non-R-covered Anosov flow (see
Figure 3 and §6 for a precise definition) and he proved that they correspond to a finite set
Piv(X) of periodic orbits.

We prove the following result (see Theorem 14 for a more precise and stronger
statement).

THEOREM 2. Let X be a non-R-covered Anosov flow and let Y be obtained from X
by a finite number of Dehn surgeries along orbits of Piv(X). Then (up to the natural
identification of the orbits of Y with the orbits of X) one has Piv(Y ) = Piv(X).

It is still unknown whether surgeries along pivot points lead to bifoliated planes that are
the same up to homeomorphism. We only have a limited set of examples where this is the
case.

In [Fe2], Fenley proved that a non-R-covered Anosov flow has non-separated leaves in
both F s

X and Fu
X and that they correspond to finitely many periodic orbits, which we denote

by S(X) := Ss(X) ∪ Su(X). Surgeries along orbits in S(X) have also a limited effect on
the bifoliated plane.

THEOREM 3. Let X be a non-R-covered Anosov flow with oriented stable/unstable bundles
and let Y be obtained from X by any Dehn surgery along a periodic orbit in S(X). Then Y
is not R-covered.
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In Theorem 15 we explain in a more detailed way which aspects of the bifoliated plane
are preserved by surgeries along orbits in S(X).

Our main results concern Anosov flows (up to orbital equivalence) obtained by surgeries
from a suspension.

In this paper, A ∈ SL(2, Z) denotes a hyperbolic matrix (not necessarily of positive
trace) and fA : T2 → T2 the induced linear automorphism. We denote by MA, XA

the mapping torus manifold MA endowed with the suspension flow XA. We will
consider the set Surg(A) of Anosov flows (up to orbital equivalence) obtained from
(MA, XA) through a finite sequence of Dehn–Goodman–Fried surgeries. A recent result,
announced by Minakawa [Mi] and recently written up by Dehornoy and Shannon [DeSh],
shows that if A, B ∈ SL(2, Z) are two hyperbolic matrices with positive eigenvalues
then

Surg(A) = Surg(B).

We will denote this set by Surg+ (the + index refers to the positive eigenvalues of
the matrices that we consider). It is known that Surg+ contains the geodesic flows of
hyperbolic surfaces and orbifolds (see [DeSh, Fri]).

The aim of this paper is to describe the bifoliated plane (PX, F s
X, Fu

X) for X ∈
Surg(A), as a function of the surgeries (periodic orbits and characteristic numbers)
performed on XA in order to obtain X.

1.3. The case of two periodic orbits. In [Fe1], Fenley shows that if Y is an Anosov
flow obtained from XA by performing finitely many Dehn surgeries, all positive, then Y is
positively twisted R-covered. This obviously covers the case of a surgery along a unique
periodic orbit of XA.

Let us now consider the set of flows Surg(A, γ+, γ−) obtained from XA after
performing surgeries along two periodic orbits γ+ and γ−. There is a natural parametriza-
tion of Surg(A, γ+, γ−) by the characteristic numbers of the surgeries along γ+ and
γ−, therefore a parametrization by Z2. Section 9 is devoted to the study of vec-
tor fields in Surg(A, γ+, γ−) which will be denoted by Zm,n, m, n ∈ Z, where m
and n are the characteristic numbers of the surgeries performed along γ+ and γ−,
respectively.

In this simple case, our goal is to describe, in terms of γ+ and γ−, the regions of
Z2 where we can decide whether Zm,n is R-covered or not, and twisted (positively or
negatively) or not.

Related to this problem is a question by Mario Shannon (which we do not answer
here).

Question 1.2. (Shannon) Do there exist A, γ+, γ−, γ+ �= γ− and (m, n) ∈ Z2 \ {(0, 0)}
such that Zm,n is a suspension flow?

Proposition 9.1 shows that, given A, γ+, γ−, there are at most finitely many (m, n) for
which the answer to the question can be positive. More generally, we think it is possible
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to prove that, given a matrix A, there are at most finitely many 4-tuples (γ+, m, γ−, n) for
which the answer is positive.

According to [Fe1], we know that if m ≥ 0 and n ≥ 0 (respectively, m ≤ 0 and
n ≤ 0) and (m, n) �= (0, 0) then the flow Zm,n is R-covered and positively (respectively,
negatively) twisted. When m and n have opposite signs, one could expect a competition
between the effects of the surgeries along γ+ and γ− on the bifoliated plane, as they
twist this plane in opposite directions: either one is dominating the other, leading to an
R-covered twisted flow, or the bifoliated plane is positively twisted in some places and
negatively in other places (whatever that means), leading to a non-R-covered flow. We will
see that the result of this competition depends on the mutual positions of the orbits γ+, γ−.
This remark will be made more precise in §2 and a complete overview of the case of two
periodic orbits will be given in §9. Let us now move on to the general setting.

1.4. Two typical effects of surgeries on the bifoliated plane. According to [Fe1],
performing finitely many positive Dehn surgeries on XA twists the bifoliated plane
positively.

Here we consider the effect of positive and negative surgeries on the bifoliated plane.

THEOREM 4. Let A ∈ SL(2, Z) be a hyperbolic matrix and X ∈ Surg(A). Then there is
ε > 0 such that for any periodic orbit γ which is ε-dense all the flows Y obtained from X
by surgeries along γ are R-covered twisted positively or negatively according to the sign
of the surgery on γ .

Conjecturally every transitive Anosov flow with transversally oriented foliations on an
oriented 3-manifold belongs to Surg+. It is therefore natural to ask if it is possible to prove
the following conjecture.

Conjecture 1. Let X be a transitive Anosov flow on an oriented 3-manifold. Then there is
ε > 0 such that for any periodic orbit γ which is ε-dense all the flows Y obtained from X
by surgeries along γ are R-covered twisted positively or negatively according to the sign
of the surgery on γ .

Recently, there has been a lot of progress towards a proof of this conjecture (see [As,
Mar]). A complete and positive answer has been announced by the first author of this
paper in [Bo].

If the answer to Question 1.1 is affirmative, then the Conjecture 1 is a straightforward
consequence of Theorem 4. One can also think of Conjecture 1 as an intermediary step for
answering Question 1.1.

Contrary to Theorem 4, which describes a process of construction of R-covered flows,
our next result goes in the opposite direction, leading to the construction of non-R-covered
Anosov flows.

THEOREM 5. Let A ∈ SL(2, Z) be a hyperbolic matrix and X ∈ Surg(A). Then there
exist periodic orbits γ+ and γ− such that all the flows Y obtained from X by surgeries of
distinct signs along γ+ and γ− are not R-covered.
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In Theorems 4 and 5 we start with any flow obtained from a suspension flow by
finitely many surgeries and we exhibit orbits along which surgeries lead to R-covered or
non-R-covered flows. In other words, the effect of the initial surgeries can be neglected
when compared with the effect of the new surgeries. We will see in Theorems 6 and 7 more
general versions of the previous results: given a finite set E of periodic orbits, we prove the
existence of one orbit γ or two orbits γ+ and γ− such that no matter what surgeries one
may perform along the orbits in E, the result (R-covered or non-R-covered) only depends
on the (non-trivial) surgeries performed along γ or γ+ ∪ γ−, respectively.

Theorems 4 and 5 (and indeed Theorems 6 and 7) are existence results: they ensure
the existence of a periodic orbit γ or two orbits γ+ and γ− with prescribed effects on
the bifoliated plane. However, they do not provide any criterion for deciding whether an
orbit γ or two orbits γ+ and γ− satisfy their conclusions. Theorems 8 and 9 provide a
sufficient and explicit geometric condition for surgeries along a set of periodic orbits to
lead to R-covered or non-R-covered Anosov flows. The previous criterion is satisfied in
a great variety of cases. Explicit examples of bifoliated planes and orbits satisfying this
condition are examined in §§9 and 10.

The precise statement of these stronger results is postponed until §2.

1.5. Structure of the paper. In §2 we begin by presenting some more technical, but much
stronger, versions of Theorems 4 and 5, namely Theorems 6–9.

In §3 we recall basic definitions and properties of Anosov flows on 3-manifolds. In
particular, we recall the works of Fenley and Barbot on the bifoliated plane, a characteri-
zation of R-covered and non-R-covered Anosov flows and finally some properties of the
Dehn–Goodman–Fried surgery.

In §4 we recall very basic facts allowing us to compare the bifoliated planes associated
to two Anosov flows X and Y obtained one from the other by surgeries. This leads to a
general procedure defined in Theorem 13 for comparing the holonomies of the foliations
of both bifoliated planes. When X is a suspension flow, the procedure in Theorem 13 can be
made more explicit and will be called the dynamical game for computing the holonomies.

In §5 we give a general criterion (see Corollary 5.1) ensuring that surgeries along a
finite set of periodic orbits cannot break the R-covered property. Then we apply Corollary
5.1 to the geodesic flow of hyperbolic surfaces and prove Theorem 1.

In §6 we prove Theorems 14 and 15, which are more precise and stronger versions of
Theorems 2 and 3 concerning surgeries which do not change the branching structure of
non-R-covered Anosov flows. This essentially involves recalling the description of this
branching structure given in [Fe2] and in applying the general tools of §4.

More particularly, §7 ends with the proof of Theorems 4 and 7 in which we prove
that for X ∈ Surg+ any surgery on an ε-dense periodic orbit, for ε > 0 small enough,
provides an R-covered flow. In order to prove the previous statement, we begin by proving
Theorem 8, and we proceed by carefully replacing the strong enough surgeries hypothesis
in Theorem 8 by the ε-density hypothesis.

Section 8, being the non-separated counterpart of §7, follows the same structure. We
begin by proving Theorem 9 and we proceed by replacing the strong enough surgeries
condition by an ε-density condition, thus proving Theorems 5 and 6.
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In §9 we consider the flows X ∈ Surg+ obtained from a suspension by surgeries along
two periodic orbits. In this case, by applying Theorems 8 or 9 we get a complete overview
of the flows X obtained from XA by strong enough surgeries.

Having mostly considered surgeries along orbits of very large periods (the period of
an ε-dense orbit tends to infinity as ε goes to 0) in §§7 and 8, in order to present explicit
examples of orbits of small periods (1 or 3), we focus in §10 on the matrices

An =
(

n n − 1
1 1

)

and their cubes Bn = A3
n. We will apply the criteria of §§7 and 8 to the orbits of the points

(0, 0) and ( 1
2 , 1

2 ).

2. Some stronger versions of Theorems 4 and 5
2.1. Existence of dominating surgeries. In Theorems 4 and 5 we start with any flow
obtained from a suspension flow by finitely many surgeries and we exhibit orbits on which
surgeries lead to R-covered or non-R-covered flows.

As promised at the end of the introduction, in this section we will state Theorems 6
and 7 which are more general versions of Theorems 4 and 5: given a finite set E of periodic
orbits, there is one orbit γ or two orbits γ+ and γ− on which the surgeries dominate any
surgery along the orbits in E. We furthermore notice in the addenda to Theorems 6 and 7
that most of these surgeries lead to hyperbolic 3-manifolds.

THEOREM 6. Let A ∈ SL(2, Z) a hyperbolic matrix and E be a finite A-invariant set.
Then there exist periodic orbits γ+ and γ− such that every flow Y obtained from XA

by any surgery on E and any two surgeries of distinct signs along γ+ and γ− is not
R-covered.

ADDENDUM TO THEOREM 6. Let E be the union of the periodic orbits p1, . . . , pn.
There exists N ∈ N such that if the absolute values of all the indices of the surgeries
along γ+, γ−, p1, . . . , pn are greater than N and the surgeries along γ+ and γ− are of
distinct signs, then the resulting flow Y is non-R-covered and is supported by a hyperbolic
manifold.

Interestingly enough, Theorem 6 implies that the surgeries along E seem negligible in
comparison with the ones on γ+ and γ−. This is also the case for Theorem 4, which also
admits the following stronger version.

THEOREM 7. Let E ⊂ T2 be a finite fA-invariant set. There is ε > 0 such that for any
finite, ε-dense and fA-invariant set Y ⊂ T2 one has the following property. Let Y be
any flow obtained from XA by surgeries along E ∪Y and such that the characteristic
numbers of the surgeries on Y are non-zero and have the same signs ωY ∈ {+, −}. Then
Y is R-covered and twisted, positively or negatively according to ωY.

ADDENDUM TO THEOREM 7. Furthermore, let Y (respectively, E) be the union of the
periodic orbits d1, . . . , dn (respectively, p1, . . . , pm). There exists N ∈ N such that if
the absolute values of all the indices of the surgeries along d1, . . . , dn, p1, . . . , pm are
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greater than N and the surgeries on Y are either all positive or all negative, then the
resulting flow Y is R-covered and is supported by a hyperbolic manifold.

Thus Theorems 6 and 7 consider well-chosen sets of periodic orbits Y, on which
surgeries dominate all surgeries on a given set E. We are still very far from understanding
the general case.

Problem 1. Consider a vector field Y obtained from XA by performing positive surgeries
on a finite A-invariant set �+ with strength n+ : �+ → N∗, and negative surgeries on a
finite A-invariant set �− with strength n− : �− → −N∗. Knowing (�+, n+), (�−, n−),
can we decide whether Y is R-covered or not?

In the next section we describe several settings where we can answer the previous
question.

2.2. A geometric criterion on periodic orbits for surgery domination. As stated above,
given an invariant finite set E, Theorems 6 and 7 assert the existence of periodic orbits (γ
or γ+ and γ−) for which the surgeries dominate any surgery along E. We will see in this
section that this phenomenon is due to the geometric properties of the relative position with
respect to E of the announced periodic orbits (γ or γ+ and γ−). The aim of this section is to
state Theorems 8 and 9 which provide criteria for surgery domination by using rectangles
in the bifoliated plane.

Let us fix a hyperbolic matrix A ∈ SL(2, Z) (not necessarily of positive trace), XA its
associated suspension Anosov flow and two disjoint finite fA-invariant setsX, Y. Consider
X (respectively, Y) to be the union of the periodic orbits {xi}i∈I (respectively, {yj }j∈J ).
We denote by Surg(XA, X, Y) the set of Anosov flows obtained by performing surgeries
along X ∪Y, and by Surg(XA, X, Y, (mi)i∈I , ∗) the set of Anosov flows obtained by
performing any kind of surgery along Y and surgeries with characteristic numbers mi

along xi . We give an analogous meaning to the notation Surg(XA, X, Y, ∗, (nj )j∈J ).
Similarly, Surg(XA, X, Y, (mi)i∈I , (nj )j∈J ) denotes the flow obtained by the surgeries
with characteristic numbers (mi) and (nj ).

We consider the plane R2 (seen as the bifoliated plane associated to XA) endowed
with the lattice Z2 and the eigendirections Es

A, Eu
A. We fix an orientation for Es

A and
Eu

A. We denote by F s
A and Fu

A the (trivial) foliations of R2 by affine lines parallel to the
eigendirections. For any finite fA-invariant set E, we denote by Ẽ its lift on R2. A rectangle
is a topological disc R ⊂ R2 whose boundary consists of the union of two segments of
leaves of F s

A and two segments of leaves of Fu
A.

A rectangle R has two diagonals. The orientations of Es
A and Eu

A allow us to speak of
the increasing and the decreasing diagonal. We endow the diagonals with the transverse
orientation of Es

A, so that each diagonal has a first point (or else origin) and a last point.
If E ⊂ T2 is a finite fA-invariant subset of the torus T2 = R2/Z2, we say that a

rectangle R is a positive (respectively, negative) E-rectangle if the endpoints of its
increasing (respectively, decreasing) diagonal belong to the lift Ẽ on R2 of E.

A positive or negative E-rectangle R is primitive if R ∩ Ẽ consists of the endpoints of
its increasing or decreasing diagonal.
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We are ready to state our first geometric criterion, which is a geometric version of
Theorem 4.

THEOREM 8. Let A ∈ SL(2, Z) be a hyperbolic matrix and X, Y two disjoint finite
fA-invariant sets. Assume that every positive X-rectangle contains a point of Ỹ. Then
there is N > 0 such that every Anosov flow in Surg(XA, X, Y, ∗, (nj )j∈J ) with nj ≥ N

is R-covered and positively twisted.

Obviously, the same statement holds:
• by exchanging X with Y;
• by replacing ‘positive rectangle’ and ‘positively twisted’ by ‘negative rectangle’ and

‘negatively twisted’.
As we will see in the next observations, the geometric hypotheses in Theorem 8 for any

X-rectangle are indeed conditions on a finite number of rectangles.
Indeed, for any finite fA-invariant set E, since A is orientation-preserving and the

foliations F s
A, Fu

A are invariant, one can make the following observation.

Remark 2.1. If R is a rectangle, then A(R) is a rectangle. If R is a positive E-rectangle,
then A(R) is a positive E-rectangle. If R is primitive, then A(R) is primitive.

In the same way, the notion of primitive (respectively, positive, negative) E-rectangle is
invariant under translations by elements of Z2.

LEMMA 2.1. For any finite fA-invariant set E ⊂ T2, there are finitely many orbits
of primitive E-rectangles, for the action of the group generated by A and the integer
translations.

Therefore, the hypothesis in Theorem 8, namely the fact that every positive X-rectangle
contains a point of Ỹ, can be checked on a finite number of positive primitiveX-rectangles.

Using Lemma 2.1, we get that many pairs (X, Y) satisfying the hypotheses of
Theorem 8.

LEMMA 2.2. Given any fA-invariant finite set X, there is ε > 0 such that every ε-dense
finite invariant set Y intersects every X-rectangle. Such a pair (X, Y) satisfies the
hypotheses of Theorem 8.

Theorem 8 states that if every positive X-rectangle contains a point of Ỹ, then the
surgeries onY dominate the surgeries on X. It turns out that under the previous condition,
it is not possible for the surgeries on X to also dominate the surgeries on Y. We thus get
the following corollary to Theorem 8.

LEMMA 2.3. If Ỹ intersects every positive X-rectangle, then there is a negative
Y-rectangle disjoint from X̃.

The following result can be seen as a geometric version of Theorem 5. It states our
second geometric criterion which is based on the existence of X-rectangles disjoint from
Y and vice versa, a hypothesis that complements the hypothesis of Theorem 8.
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THEOREM 9. Let A ∈ SL(2, R) be a hyperbolic matrix and X, Y two disjoint finite
fA-invariant sets. Assume that for every x ∈ X there exists a positive X-rectangle with
origin x disjoint from Ỹ and for every y ∈ Y a negative Y-rectangle with origin y
disjoint from X̃. Then there exists N > 0 such that every Anosov flow of the form
Surg(XA, X, Y, (mi)i∈I , (nj )j∈J ) with mi ≤ −N and nj ≥ N is not R-covered.

Once again the same statement holds by straightforward symmetries.
The hypothesis of Theorem 9 can be satisfied in a great variety of settings. Indeed,

in Lemma 8.7 (see also Corollary 8.1) we will give a method for constructing for any
A ∈ SL(2, R) infinitely many pairs (X, Y) satisfying this condition.

3. R-covered and non-R-covered Anosov flows on 3-manifolds
3.1. Anosov flows: definitions, stability, orbital equivalence.

Definition 3.1. A C1-vector field X on a closed manifold M is called an Anosov flow if the
tangent bundle T M admits a splitting

T M = Es ⊕ RX ⊕ Eu

satisfying the following properties.
• The splitting is invariant under the natural action of the derivative DXt of the flow on

T M:

DXt(Es(x)) = Es(Xt (x)) and DXt(Eu(x)) = Eu(Xt (x)).

• If ‖ · ‖ is a Riemannian metric on M, there exist C > 0 and 0 < λ < 1 such that, for
any x ∈ M , t > 0 and any two vectors u ∈ Es(x) and v ∈ Eu(x),

‖DXt(u)‖ ≤ Cλt‖u‖ and ‖DX−t (v)‖ ≤ Cλt‖v‖.

An important property of Anosov flows is stated in the following theorem.

THEOREM 10. [A] If X is an Anosov flow, then there is C1-neighbourhood U of X such
that every Y ∈ U is topologically (orbitally) equivalent to X: there is a homeomorphism
h : M → M such that for every x ∈ M the image of the oriented orbit of X through x is the
oriented orbit of Y through h(x). One says that X is C1 -structurally stable .

The homeomorphism h in the theorem can be chosen isotopic to the identity map.
We denote by A(M) the set of orbital equivalence classes of Anosov flows and by

A0(M) the set of equivalence classes of Anosov flows through orbital equivalence by
homeomorphisms isotopic to the identity. Theorem 10 implies that the set A0(M) is at
most countable on any closed manifold M. The set A(M), being a quotient of A0(M), is
at most countable too.

There are simple examples of manifolds M for which A0(M) is infinite (consider,
for instance, the image of the geodesic flow of a hyperbolic surface by a vertical
diffeomorphism of the unit tangent bundle). It remains unknown whether there are
manifolds for which A(M) is infinite. There are 3-manifolds for which A(M) has a
cardinal greater than any given number, see [BeBoYu]. An example of manifold M for
whichA(M) is infinite has recently been proposed in [ClPi].
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3.2. Foliations. Another important property of Anosov flows is that the stable, centre
stable, unstable and centre unstable fibre bundles Es , Ecs = Es ⊕ RX, Eu, Ecu = Eu ⊕
RX are uniquely integrable.

THEOREM 11. There are unique foliations Fs , Fcs , Fu, Fcu tangent to Es , Ecs , Eu, Ecu.
More precisely any C1 curve tangent to one of these bundles is contained in a leaf of the
corresponding foliation. These foliations are invariant under the flow of X.

The foliations Fs , Fcs , Fu and Fcu are respectively called stable, centre stable, unstable
and centre unstable.

In dimension 3 the centre stable and centre unstable foliations provide the main known
obstructions for a 3-manifold M to carry an Anosov flow.

THEOREM 12. A leaf L of the centre stable (or centre unstable foliation) is:
• diffeomorphic to a plane R2 if and only if L does not contain a periodic orbit;
• diffeomorphic to a cylinder R × S1 if it contains a periodic orbit of X with positive

stable eigenvalue—the periodic orbit in L is unique;
• diffeomorphic to a Möbius band if it contains a periodic orbit with negative stable

eigenvalue—again the periodic orbit in L is unique.

As a direct corollary of the above, the manifold M carries foliations (Fcs and Fcu)
with no compact leaves and thus with no Reeb component. Under these hypotheses, a
consequence of Novikov’s theorem implies that M admits R3 as a universal cover.

A simple argument also allows us to check that the leaves have exponential growth. As
a consequence of this, the fundamental group of M has exponential growth (see [PlaTh]).

3.3. The bifoliated plane associated to an Anosov flow on a 3-manifold, R-covered and
non-R-covered Anosov flows. Before beginning this section, the reader can refer to §1.2
for the definitions of:
• the bifoliated plane (PX, F s

X, Fu
X) associated to an Anosov flow X on a 3-manifold;

• a non-R-covered Anosov flow;
• an R-covered Anosov flow;
• a twisted R-covered Anosov flow;
• a positively and negatively twisted R-covered Anosov flow (these notions are only

defined on oriented manifolds and depend on a choice of the orientation of the
manifold).

Any (non-singular) foliation on the plane is orientable and transversally orientable. We
will sometimes use a choice of orientation of the foliations F s

X, Fu
X. By convention, in that

case the orientation chosen on PX is the orientation on F s
X followed by the orientation

on Fu
X.

As we consider flows X on oriented manifolds M, the normal bundle of X is naturally
oriented as follows: the orientation of X followed by the orientation of its normal bundle
is the orientation of M. The orientation on PX can be seen as the orientation of the normal
bundle of X.
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As M is oriented, the strong stable foliation Fs
X is oriented if and only if Fu

X is oriented.
In that case, by convention, the orientation on Fs

X followed by the orientation of Fu
X is the

normal orientation of the normal bundle of X.
If Fs

X and Fu
X are not oriented, then their local orientations define a 2-fold cover on M

and the lift of X on this cover is an Anosov flow with oriented strong stable and strong
unstable foliations.

The fundamental group π1(M) acts by the deck transformation group on the universal
cover M̃ � R3 of M. This action preserves the lift X̃ of X on M̃ and also preserves the lifts
F̃cs

X , F̃cu

X of the centre stable and centre unstable foliations. Therefore, the action passes to
the quotient by the equivalence relation ‘belonging in the same orbit’. The space obtained
by this quotient is PX and we will denote the projection map by π : M̃ → PX. We thus
obtain an action of π1(M) on PX, which preserves the foliations F s

X and Fu
X. This action

is called the natural action of π1(M) on the bifoliated plane (PX, F s
X, Fu

X) and we denote
it by

θX : π1(M) → Homeo(PX, F s
X, Fu

X),

where Homeo(PX, F s
X, Fu

X) is the group of homeomorphisms of the plane PX preserving
the foliations F s

X and Fu
X.

As we consider only Anosov flows on oriented manifolds, the action θX takes values in
Homeo+(PX, F s

X, Fu
X) and thus preserves the orientation on PX.

However, θX may not preserve the orientations of the foliations F s
X and Fu

X.
If X is a transitive Anosov flow then the action on PX admits dense orbits. Furthermore,

the orbit of any half leaf of F s
X and of Fu

X is dense in PX.
Let x0 be the base point of π1(M) in M and x̃0 a lift of x0 on M̃ . Consider an element

γ̃ ∈ PX corresponding to a periodic orbit γ ⊂ M , and �̃ the lift of γ on M̃ corresponding
to γ̃ . Then one has a well-defined element [γ̃ ] ∈ π1(M) which is the homotopy class of
a closed path obtained by the concatenation σγ σ−1, where σ is the projection on M of a
path in M̃ joining x̃0 to a point of the orbit �̃.

The following lemma is a classical result in the theory (see, for instance, [Ba]).

LEMMA 3.1. Let γ̃ ∈ PX be a point corresponding to a periodic orbit γ of X. Consider
Gγ̃ ⊂ π1(M) its stabilizer for the natural action of θ . Then Gγ̃ is the cyclic group
generated by the homotopy class [γ̃ ].

Using the previous notation, we say that a curve Ls ⊂ Ws(γ ) is a complete (stable)
transversal if it is transverse to X, cuts all the orbits in Ws(γ ) and also is such that the first
return map of X induces a homeomorphism Pγ : Ls → Ls (which is a contraction). One
defines in the same way a complete (unstable) transversal Lu ⊂ Wu(γ ) and the first return
map Pγ : Lu → Lu (which is a dilation).

Take complete stable and unstable transversals Ls and Lu that contain a point x ∈ γ .
Now using the previous notation, take any lift x̃ of x in �̃. Ls and Lu admit canonical lifts
Ls

x̃
and Lu

x̃
on M̃ through x̃. Let us denote the lift maps by πs

x̃
: Ls → Ls

x̃
and πu

x̃
: Lu →

Lu
x̃
. Ls

x̃
and Lu

x̃
project on PX injectively. We can therefore define two bijections hs := π ◦

πs
x̃

and hu := π ◦ πu
x̃

from Ls and Lu to F s
X(γ ) and Fu

X(γ ). We denote by Pγ̃ : F s
X(γ̃ ) →
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F s
X(γ̃ ) and Pγ̃ : Fu

X(γ̃ ) → Fu
X(γ̃ ) the homeomorphisms hsPγ (hs)−1 and huPγ (hu)−1.

We can easily convince ourselves that the following lemma holds.

LEMMA 3.2. The homeomorphism Pγ̃ : F s
X(γ̃ ) ∪ Fu

X(γ̃ ) → F s
X(γ̃ ) ∪ Fu

X(γ̃ ) is indepen-
dent of the choices of x̃, of Ls and Lu, and is called the first return map of X.

Lemma 3.2 is a consequence of the following lemma.

LEMMA 3.3. The natural action θX,[γ̃ ] of [γ̃ ] on PX preserves F s(γ̃ ) and Fu(γ̃ ) and its
restriction to F s(γ̃ ) ∪ Fu(γ̃ ) is P −1

γ̃
.

A proof of Lemma 3.3 can be found in [Ba].

3.4. A characterization of R-covered Anosov flows by complete and incomplete quadrants.
In this section, each time we consider an Anosov flow X, we will assume that the bifoliated
plane PX is endowed with a choice of orientation of the foliations F s

X, Fu
X.

Let (F, G) be two oriented transverse foliations on the plane P = R2. This defines four
quadrants at each point x: for any ω = (ω1, ω2) ∈ {−, +}2, the (closed) quadrant Cω(x) is
the closure of the connected component of P \ (F(x) ∪ G(x)) bounded by the half leaves
Fω1(x), Gω2(x).

Definition 3.2.
• We say that the pair (F, G) is undertwisted or incomplete in the quadrant C(+,+)(x) if

there are y ∈ F+(x) and z ∈ G+(x) such that

G+(y) ∩ F+(z) = ∅.

• We say that the pair (F, G) is complete (or has the complete intersection property) in
the quadrant C(+,+)(x) if for all y ∈ F+(x) and z ∈ G+(x),

G+(y) ∩ F+(z) �= ∅.

The complete case is divided into two subcases.
• (F, G) is trivial in the quadrant C+,+(x) if⋃

y∈F+(x)

G+(y) =
⋃

z∈G+(x)

F+(z).

• The pair (F, G) is overtwisted in the quadrant C+,+(x) if it is complete but not trivial.
In other words, for all y ∈ F+(x) and z ∈ G+(x), we have G+(y) ∩ F+(z) �= ∅, but
there is p ∈ C+,+(x) such that F(x) ∩ G(p) = ∅ or G(x) ∩ F(p) = ∅.

One defines these notions in all the other quadrants in the same way, changing some +
into − according to the quadrant.

Remark 3.1.
• If X is a suspension, every quadrant is trivial.
• If X is R-covered and positively twisted, then the quadrants C+,+(x), C−,−(x) are

complete and overtwisted, and the quadrants C+,−(x)C−,+(x) are undertwisted.
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FIGURE 4. In this figure the white circle should be considered as a point at infinity.

• If X is R covered and negatively twisted, then the quadrants C+,−(x), C−,+(x) are
complete and overtwisted and the quadrants C+,+(x)C−,−(x) are undertwisted.

LEMMA 3.4. Let (F, G) be a pair of oriented transverse foliations and assume that two
leaves L1 and L2 in F are not separated from above, that is. there are two positively
oriented G-leaf segments σi : [0, 1] → P such that σi(0) ∈ Li and σ1(t) and σ2(t) belong
to the same F-leaf for all t > 0. Then there exist x, y ∈ P such that C−,−(x) and C+,−(y)

are incomplete (undertwisted).

Proof. It suffices to take x = σi(t) and y = σj (t) for some t > 0 (see Figure 4).

LEMMA 3.5. A transitive Anosov flow X is a suspension if and only if there exist x ∈ PX

and ω ∈ {+, −}2 such that the quadrants Cω(x) and C−ω(x) are trivially foliated.

Proof. An Anosov suspension flow has clearly trivially foliated quadrants; we only need
to prove the converse. Since being or not being a suspension is invariant by finite covers,
up to considering the lift of X on the 2-fold cover of the orientation of the stable/unstable
bundles, we will assume that the stable/unstable bundles of X are orientable.

Assume that X is a transitive Anosov flow, whose bifoliated plane has a trivial quadrant,
say C+,+(x). Note that C+,+(y) is trivial too for any y ∈ C+,+(x). As X is transitive,
there exists y ∈ C+,+(x) with a dense orbit. One deduces that for any z ∈ PX, there is γ ∈
π1(M) such that z ∈ C+,+(θγ (y)). Thus C+,+(z) is trivial for any z ∈ P(x). Of course, by
exactly the same method, we obtain that C−,−(z) is also trivial for any z ∈ P(x).

Therefore, thanks to Lemma 3.4, F s
X and Fu

X do not contain non-separated leaves, hence
X is R-covered. Finally, by Remark 3.1 it cannot be twisted, so the bifoliated plane is trivial
and X is a suspension.

By Remark 3.1 and Lemma 3.4, we get the following criteria for deciding whether an
Anosov flow is R-covered or not.

COROLLARY 3.1. An Anosov flow X is not R-covered if and only if there are x, y ∈ PX

and ωx , ωy ∈ {−, +}2 which are adjacent (that is, distinct and not opposite) such that the
quadrants Cωx (x) and Cωy (y) are incomplete.

COROLLARY 3.2. Let X be an Anosov flow and assume that for every x ∈ PX the
quadrants C+,+(x) and C−,−(x) are complete. Then either the bifoliation is trivial or
the flow is R-covered and positively twisted.
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Remark 3.2. Given a transitive Anosov flow X, the set of x ∈ PX such that the pair
(F s

X, Fu
X) is incomplete in C(+,+)(x) is either empty or a dense open subset.

3.5. Stable and unstable holonomies and the completeness of the quadrants. Fix x ∈ PX

and consider y ∈ Fu
X(x). We call the map hu

X,x,y from F s
X(x) to F s

X(y) defined by

{hu
X,x,y(z)} = Fu

X(z) ∩ F s
X(y), for z ∈ F s

X(x), if Fu
X(z) ∩ F s

X(y) �= ∅
an unstable holonomy from x to y. This definition is consistent as the intersection of a stable
and an unstable leaves is at most one point.

The domainD(hu
X,x,y) is an interval of F s

X(x) and the image is an interval of F s
X(y).

One defines in a analogous way the stable holonomy hs
X,x,z for z ∈ F s

X(x).

Remark 3.3. For x ∈ PX the quadrant C+,+(x) is complete if for any y ∈ Fu+(x) one has

F s+(x) ⊂ D(hu
X,x,y).

The quadrant C+,+(x) is undertwisted if there is y ∈ Fu+(x) such that D(hu
X,x,y) is a

relatively compact interval in F s+(x).
Analogous statements hold in every quadrant and by exchanging the unstable holonomy

for the stable holonomy.

3.6. Dehn–Goodman–Fried surgery. As explained in the introduction, it has recently
been proven that the topological flow built by Fried’s surgery is orbitally equivalent to the
Anosov flow obtained by Goodman’s surgery. Thanks to its explicitness, throughout the
next pages we will make use of the action of Fried’s surgery on the bifoliated plane rather
than its general definition which we quickly recall now.

Let X be an Anosov flow on a oriented 3-manifold M and let γ be a periodic orbit with
positive eigenvalues.

Consider the blow-up πγ : Mγ → M of M along γ , that is:
• Mγ is a manifold with boundary and ∂Mγ is a torus Tγ � T2;
• πγ induces a diffeomorphism from the interior of Mγ to M \ γ ;
• for every x ∈ γ the fibre π−1

γ is a circle which is canonically identified with the unit
normal bundle N1(x) of γ in M at the point x.

In other words, consider two segments σ1, σ2 in Mγ transverse to the boundary ∂Mγ at
σi(0). Then σ1(0) = σ2(0) if and only if πγ (σ1(0)) = πγ (σ2(0)) = c and the segments
c1 = πγ ◦ σ1 and c2 = πγ ◦ σ2 have the following property: the vector (∂c2/∂t)(0)

belongs to the half plane of Tc(0)M containing ±X(c(0)) and (∂c1/∂t)(0).
The vector field π−1

γ (X) is well defined on the interior of Mγ , and extends by continuity
on the boundary Tγ by the natural action of the derivative DXt on the normal bundle over
γ . We denote by Xγ this (smooth) vector field on Mγ .

The flow on Tγ is a Morse–Smale flow with four periodic orbits, which correspond
to the normal vectors to γ tangent to the stable and unstable manifolds of γ . These four
periodic orbits are freely homotopic to one another and are non-trivial in π1(Tγ ). The
homotopy (or homology) class b ∈ Z2 = π1(Tγ ) of these periodic orbits is called the
parallel.
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On the other hand, the fibres of πγ : Tγ → γ inherit an orientation from the orientation
of M, and the corresponding homotopy class a ∈ Z2 = π1(Tγ ) is called the meridian.

Given any integer n ∈ Z, one easily checks the existence of foliations Gn on Tγ ,
transverse to the flow Xγ , whose leaves are simple closed curves of homotopy class
a + nb. By reparametrizing the flow Xγ , one gets a new smooth vector field Yγ on Mγ

that leaves the foliation Gn invariant.
Let Mγ ,n be the manifold obtained from Mγ by collapsing the leaves of Gn. The flow

Yγ passes to the quotient and becomes a topological Anosov flow Xγ ,n on Mγ ,n.
It is easy to do this construction in a way such that Xγ ,n is a Lipschitz vector field,

but it is not clear at all that it can be smooth and Anosov. It is not even clear that the
orbital equivalence class of the construction does not depend on the choice of the foliation
Gn. Shannon proved that it is orbitally equivalent (by a homeomorphism isotopic to the
identity) to an Anosov flow (the one built by Goodman), proving at the same time that
the orbital equivalence class of this construction (in fact, the element of A0(Mγ ,n)) is
well defined. This element of A0(Mγ ,n) is called the Anosov flowXγ ,nobtained from Xby
a surgery alongγ with characteristic number n.

Remark 3.4.
• If γ1, γ2 are periodic orbits of X and n1, n2 are integers, then

[Xγ1,n1 ]γ2,n2 = [Xγ2,n2 ]γ1,n1 .

In other words, the surgeries are commutative operations. This allows us to
speak without any ambiguity of the Anosov vector field Y obtained from X by
performing surgeries along periodic orbits γ1, . . . , γk with characteristic numbers
n1, . . . , nk .

• If γ is a periodic orbit and m, n ∈ Z then

[Xγ ,m]n = Xγ ,m+n.

3.6.1. Dehn–Goodman–Fried surgeries along orbits with negative eigenvalues. On an
orientated 3-manifold, Dehn–Goodman–Fried surgeries can be performed on periodic
orbits γ with two negative eigenvalues −λ and −(1/λ), for λ > 1. However, the parallel
and meridian intersect twice and thus are not a basis of π1(Tγ ). This leads to some
restrictions that we explain below.

More precisely, the boundary of a tubular neighbourhood of γ is still a torus Tγ endowed
with a meridian a ∈ π1(Tγ ) and carrying a Morse–Smale flow with two periodic orbits
(one attractor and one repeller) which are in the same homotopy class b called a parallel.

The intersection number of the meridian with the parallel is a · b = 2.
The loop a + kb is a multiple of 2 in π1(Tγ ) for any odd k and therefore cannot be used

as a new parallel. However, one can perform a Fried surgery corresponding to keeping the
parallel b and replacing the meridian by a + 2kb, k ∈ Z. The number k will be called the
characteristic number of the surgery.

We can visualize this surgery on the 2-fold cover M̂ → M of the orientations of the
stable/unstable bundles, endowed with the lift X̂ of X. The orbit γ lifts to a periodic orbit
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γ̂ whose period is twice the period of γ and whose eigenvalues are λ−2 < 1 < λ2. The
natural projection Tγ̂ → Tγ maps the meridian and the parallel of Tγ̂ on those of Tγ .

The surgery on M along γ with characteristic number k is the quotient of a surgery
on M̂ , with characteristic number 2k: one can realize it by performing two Goodman
surgeries with characteristic number k along two annuli in opposite quadrants of the
tubular neighbourhood of γ̂ which are images of each other by an element of the deck
transformation group.

Remark 3.5.
• Dehn–Goodman surgery is a local construction and thus can be done on non-orientable

manifolds for orientation-preserving periodic orbits. However, the characteristic num-
ber depends on the local orientation and thus is not well defined for non-orientable
manifolds.

• The boundary of the tubular neighbourhood of a non-orientable periodic orbit is a
Klein bottle, on which the (non-oriented) meridian is canonically defined. Thus, there
are no possible Dehn–Goodman surgeries along such orbits.

3.6.2. Fried surgeries leading to hyperbolic manifolds. In this article we are interested
in constructing Anosov flows on hyperbolic manifolds. There are two reasons for this.
First. Anosov flows on hyperbolic manifolds satisfy additional structural properties; for
instance any periodic orbit of any R-covered Anosov flow on a hyperbolic manifold is
freely homotopic to infinitely many periodic orbits (see [Fe1]). Second, we wish to enrich
the list of examples of non-R-covered Anosov flows on hyperbolic manifolds. To our
knowledge, the only examples of such flows have been constructed in [Fe2] and more
recently in a draft by Béguin and Yu.

In this paper, we provide a construction of infinitely many R-covered and non-R-covered
Anosov flows on hyperbolic manifolds. The most important step of the hyperbolic part of
the construction, which also proves the addenda of Theorems 6 and 7, is the following
lemma.

LEMMA 3.6. Let X be the suspension flow of an Anosov diffeomorphism of the torus
T2 and M its underlying manifold. Fix periodic orbits γ1, . . . , γn of X. There exist
finite subsets D1, . . . , Dn of Z such that for any (k1, . . . , kn) ∈ Zn − [(D1 × Zn−1) ∪
(Z × D2 × Zn−2) · · · ∪ (Zn−1 × Dn)], [[[Xγ1,k1 ]γ2,k2 ] · · · ]γn,kn is an Anosov flow on a
hyperbolic manifold.

Proof. In [Th] Thurston showed that M − ⋃n
i=1 γi admits a complete hyperbolic structure

of finite volume, and thanks to the hyperbolic Dehn surgery theorem (see [Th1]) we obtain
the desired result.

4. The surgeries and the bifoliated plane
Let X and Y be two Anosov flows on closed 3-manifolds M and N such that (the orbital
equivalence class of) Y is obtained from X by performing finitely many surgeries along
periodic orbits: there exist k ∈ N, a finite set � = {γ1, . . . , γk} of periodic orbits of X
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and a finite set N = {n1, . . . , nk} ⊂ Z such that Y = X�,N, that is, Y is the topological
Anosov flow obtained from X by performing a Fried surgery with characteristic number ni

on each γi .
The aim of this section is to give a very partial answer to the following question.

Question 4.1. Knowing the bifoliated plane (PX, F s
X, Fu

X), what can we say about
(PY , F s

Y , Fu
Y )?

A key remark for answering this question is that � can be considered as a subset of N
and

M \ � = N \ � and X|M\� = Y |N\� .

Remark 4.1. If � contains orbits with negative eigenvalues, we can replace X and Y by their
lifts X̂, Ŷ on the 2-fold covers M̂ , N̂ corresponding to the orientations of their foliations.
Let �̂ be the lift of � on M̂ . Then, according to §3.6.1, Ŷ is obtained from X̂ by performing
surgeries along the orbits γ̂ ∈ �̂ with characteristic number n̂(γ̂ ) defined as follows:
• if γ̂ projects on M to an orbit γi with positive eigenvalues, then n̂(γ̂ ) = ni ;
• if γ̂ projects on M to an orbit γi with negative eigenvalues, then n̂(γ̂ ) = 2ni .

Recall that the bifoliated planes of X and Y are the same as those of X̂ and Ŷ ,
respectively. Therefore, in order to understand the effect of surgeries on the bifoliated
plane, it suffices to consider vector fields with transversally oriented foliations.

In view of Remark 4.1 above, from now until Theorem 13, we will assume that the
eigenvalues of the γi are positive. We explain how to adapt the statement of Theorem 13
to the case of negative eigenvalues in Remark 4.6.

In what follows the bifoliated plane PX will be always endowed with an orientation of
the foliations F s

X and Fu
X.

4.1. The key tool: a common cover. We will denote by �̃X ⊂ M̃ and �̃Y ⊂ Ñ the lifts
of � to the universal covers M̃ and Ñ .

By a convenient abuse of language, we will also denote by �̃X and �̃Y the corresponding
(discrete) sets in PX and PY .

Let V = M \ � = N \ � and Z be the restriction of X to V (or equivalently of
Y to V).

CLAIM 1. The universal cover (Ṽ , Z̃) is conjugated to (R3, ∂/∂x),

Proof. Ṽ is the universal cover of M̃ \ �̃X which is conjugated to R3 minus a discrete
family of orbits of ∂/∂x which are parallel straight lines.

The space of orbits in Ṽ is a bifoliated plane, denoted by (P� , F s
� , Fu

�). This bifoliated
plane is the universal cover of (PX, F s

X, Fu
X) \ �̃X and of (PY , F s

Y , Fu
Y ) \ �̃Y . We denote
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by �X and �Y the natural projections of Ṽ onto PX and PY :

P�

�X↙ �Y↘
PX \ �̃X PY \ �̃Y

This simple fact has an important (straightforward) consequence.

LEMMA 4.1. Let RX ⊂ PX be a rectangle for (F s
X, Fu

X) disjoint from �̃X, and let R� be
a connected component of �−1

X (RX). Then RY = �Y (R�) is a rectangle for F s
Y , Fu

Y and
�Y ◦ �−1

X induces a homeomorphism from RX to RY conjugating (F s
X, Fu

X) and (F s
Y , Fu

Y ).

Proof. R� is a rectangle and �X takes the bifoliated R� to the bifoliated RX. The only
thing to check now is that �Y restricted to R� is a homeomorphism. It suffices to prove
that �Y is injective on the rectangle R� . If �Y (x) = �Y (y) for x �= y ∈ R� , then the
stable and unstable leaves at �Y (x) intersect twice, which is impossible in a (non-singular)
bifoliated plane.

One can use the following generalization of this argument.

PROPOSITION 4.1. Consider a closed domain 
X ⊂ PX such that its interior is disjoint
from �̃X and (
X, F s

X|
X
, Fu

X|
X
) is conjugated to the trivially bifoliated plane R2.

Let 
� be a connected component of �−1
X (
X) and let 
Y be the closure of �Y (
�).

Then �Y ◦ �−1
X (defined on 
X \ �̃X) extends on 
X to a homeomorphism conjugating

(F s
X, Fu

X) to (F s
Y , Fu

Y ).

4.2. Two ways to associate a path in PX to a path in PY . Let σX : R → PX be a
locally injective continuous path, obtained by the concatenation of locally finitely many
stable/unstable leaf segments. One can define a transverse orientation as follows: the
transverse orientation followed by the orientation of σX is the orientation of PX.

Remark 4.2. For this choice of the orientation,
• the transverse orientation of a positively oriented unstable segment coincides with the

orientation of the stable leaves intersecting it, and
• the transverse orientation of a positively oriented stable segment coincides with the

negative orientation of the unstable leaves intersecting it.

Assume that pX = σX(0) /∈ �̃X and pY ∈ �Y (�−1
X (pX)).

Let σX,t : R → PX, t ∈ [−1, 1) be a continuous family of paths such that:
• σX,0 = σX;
• σX,t (0) = pX;
• σX,t is disjoint from �̃X;
• σX,t tends to σX,0 from the positive side as t → 0 and t > 0 and from the negative side

as t → 0 and t < 0.
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FIGURE 5. In this picture the black points represent points in �̃X,Y on which we have performed non-trivial
surgeries. Colour available online.

COROLLARY 4.1. Using the above notation, there are uniquely defined paths σY ,t for t > 0
(respectively, t < 0) such that
• σY ,t (0) = pY , and
• σY ,t (s) ∈ �Y (�−1

X (σX,t (s))), s ∈ R,
and the limits

lim
t→0+

σY ,t (s) = σY ,+(s) and lim
t→0−

σY ,t (s) = σY ,−(s)

are well-defined continuous paths which are a concatenation of locally finitely many
stable/unstable segments. Furthermore, σY ,+ and σY ,− only depend on the choice of pY

and not on the choice of the homotopies σX,t .

Proof. We construct σY ,t by lifting σX,t on P� , which is the universal cover of PX \ �̃X,
and then projecting the lifts by �Y on PY \ �̃Y .

The second part of the statement is a consequence of Proposition 4.1.

Definition 4.1. Using the above notation, σY ,+ and σY ,− are respectively called the positive
and negative paths through pY corresponding to σX. We can similarly define this notion in
the case where pX ∈ �̃X.

It is fairly easy to see that, in general, σY ,+ and σY ,− do not coincide. An example
of such a case is given in Figure 5. In this example, we consider a black path and
a family of green and blue paths all with the same endpoints in PX. Because of the
surgery performed on p, by applying �Y ◦ �−1

X to a blue and a green path, we obtain
two paths in PY that do not share the same endpoints. This is made more precise in
Proposition 4.2.

4.3. Comparison of holonomies: the main tool. Recall that, given an Anosov flow X, the
orientations of the manifold M, of the bifoliated plane PX and the foliations F s

X and Fu
X

are related by the convention introduced in §3.3.
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FIGURE 6. The action of a surgery on two adjacent rectangles: the union of R+ and R− in PX , which is not a
rectangle, corresponds to a rectangle of PY . Colour available online.

Our main tool for comparing the holonomies of the foliations associated to X and Y is
the next proposition.

PROPOSITION 4.2. Let γ̃ ∈ PX be a point corresponding to a periodic orbit γ ∈ �. Let
n be the characteristic number of the surgery performed on γ . Consider two rectangles
R+, R− such that the following statements hold.
• R± ∩ �̃X = {γ̃ }.
• γ̃ belongs to the interior of the lower stable boundary component J s of R+

(see Figure 6) and to the interior of the upper stable boundary component
I s of R−.

• The positively oriented stable segments I s , J s satisfy I s = [a, b]s and J s = [a, c]s ,
with c = P n

γ̃
(b), where Pγ̃ is the first return map on F s(γ̃ ) and Fu(γ̃ ).

If we denote R± = R+ ∪ R−, then for any connected component R±
� of �−1

X (R±) the
projection �Y (R±

� ) is a rectangle punctured at γ̃ .

Proof. Consider the closed curve δ onPX starting at the point c, following ∂R+ \ Int (J s)

until a and then following ∂R− \ Int (I s) until b. Project δ on a local section of γ and
complete it by the orbit segment joining b to c. Then the closed curve obtained is freely
homotopic in M \ γ to a meridian plus n parallels of γ , that is, to the new meridian after
surgery.

Thus δ is 0-homotopic on the manifold N carrying Y. Its lifts on PY are closed curves
consisting of two stable and two unstable segments, hence bounding a rectangle, which
finishes the proof.

In Proposition 4.2 one considers an orbit segment joining the points b, c ∈ F s+(γ̃ ) by
turning around γ̃ in the positive sense. Analogous statements hold after changing the sign
of the exponent of the first return map. Let us be more explicit, as this is crucial for our
arguments.

PROPOSITION 4.3. Let γ̃ ∈ PX be a point corresponding to a periodic orbit γ ∈ �. Let
n be the characteristic number of the surgery performed on γ . Consider two rectangles
R+, R− such that the following statements hold.
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• R± ∩ �̃X = {γ̃ }.
• γ̃ belongs to the interior of the lower stable boundary component J s of R+ and to the

interior of the upper stable boundary component I s of R−.
• The positively oriented stable segments I s , J s satisfy I s = [b, a]s and J s = [c, a]s ,

with c = P −n
γ̃

(b), where Pγ̃ is the first return map on F s(γ̃ ) and Fu(γ̃ ).

If we denote R± = R+ ∪ R−, then for any connected component R±
� of �−1

� (R±) the
projection �Y (R±

� ) is a rectangle punctured at γ̃ .

Proof. The proof is identical to that of Proposition 4.2, except that in this case the path
from c to b is negatively oriented: one obtains −1 meridian minus n parallels for X, which
is −1 meridian for Y.

Finally, let us note that the previous results hold independently of the sign of the
eigenvalues of γ .

4.4. Comparison of the holonomies in the quadrants: choosing the holonomies to be
compared. Our next goal in this paper is to obtain the holonomies of F s

Y and Fu
Y from

the holonomies of F s
X and Fu

X by using Proposition 4.2. In §4.5 we will first describe the
change of holonomies for the unstable holonomies in the C+,+ quadrants and then we will
explain how to adapt the previous statement in all the other quadrants.

Before doing that, we need to explain which holonomies of Fu
Y and Fu

X will be
compared. More precisely, consider a point pX ∈ PX, a point qX ∈ Fu+(pX) and the
unstable holonomy hu

X,pX ,qX
from F s

X,+(pX) to F s
X,+(qX). We want to describe the effect

of the surgery on this holonomy and to compare the new holonomy with hu
X,pX ,qX

.
Consider the path σX obtained by the concatenation of:

• the half stable leaf F s
X,+(pX) (with the negative orientation);

• the unstable segment [pX, qX]u;
• the half stable leaf F s

X,+(qX).
We fix a parametrization of σX so that the path σX becomes a map σX : R → PX.

4.4.1. The easy case: no point of �̃ on σX. Assume first that σX is disjoint from �̃X.
Consider a lift p� ∈ P� of pX and let pY ∈ PY be the projection of p� .

Now σX has a well-defined lift σ� on P� through p� . Consider σY the projection of σ� .
In other words, we have

σY = �Y (�−1
X (σX)),

and σY (t) = �Y (�−1
X (σX)) will be called the corresponding point of σX(t)inPY .

Thus qY is the corresponding point of qX in PY and belongs to Fu+(pY ). So the unstable
holonomy hu

Y ,pY ,qY
from F s

Y ,+(pY ) to F s
Y ,+(qY ) is well defined.

As every point in F s+(pX) (respectively, in F s+(qX)) has a corresponding point in
F s+(pY ) (respectively, in F s+(qY )), it makes sense to compare hu

X,pX ,qX
with hu

Y ,pY ,qY
.
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FIGURE 7. The dotted curves correspond to the approximations used in order to construct σY .

4.4.2. The general case. In the next section we will need to compare holonomies of X
and Y corresponding to stable leaves that intersect �̃X and �̃Y , in other words, we will
consider the case where σX is not disjoint from �̃X. In this case, σX no longer lifts on P� .
We have seen in §4.2 that one may associate different paths γY in PY to a path γ in PX,
depending, roughly speaking, on whether we choose to move at the right or at the left of x
for every x in γX ∩ �̃X.

The aim of this subsection is to fix our choices for the segment σX.
Consider a point pX ∈ PX and pY ∈ PY , which are obtained in one of the following

ways:
• either as the projections of a same point p� ∈ P� , which means, in particular, that

pX /∈ �̃X;
• or, if pX ∈ �̃X, we consider a small rectangle RX,+,+ admitting pX as its lower left

corner and such that RX,+,+ ∩ �̃X = {pX}. We lift RX,+,+ \ {pX} on P� and we
project this lift on PY . One gets a rectangle RY ,+,+ punctured at its lower left corner,
which is denoted by pY ∈ �̃Y .

Given a point qX in Fu
X,+(pX), we previously defined a path σX obtained by the

concatenation of σ 1
X = F s

X,+(pX) (with negative orientation), σ 2
X = [pX, qX]u and σ 3

X =
F s

X,+(qX).
The point qY ∈ PY corresponding to qX will be the end point of the path σ 2

Y ,+, defined
in §4.2 and whose origin is pY .

We want to compare the unstable holonomy hu
X,pX ,qX

with the unstable holonomy
hu

Y ,pY ,qY
for Y. In order to do that, we consider the path σY obtained by the concatenation

of three paths (see Figure 7):
• the half stable leaf σ 1

Y ,+ (which corresponds to F s
Y ,+(pY ), negatively oriented);

• the unstable segment σ 2
Y ,+ (joining pY to qY );

• the half stable leaf σ 3
Y ,− (which corresponds to F s

Y ,+(qY ), positively oriented)

The construction of the paths σ i
Y ,± (see §4.2) induces a homeomorphism from σ i

X

to σ i
Y , mapping σ i

X(t) on σ i
Y (t). By gluing these homeomorphisms together, we get a

homeomorphism between σX and σY , mapping σX(t) on σY (t).
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FIGURE 8. In this figure we performed negative surgeries along the red periodic points ( ) and positive along
the blue ones ( ). Every time we hit a stable manifold of either a blue or red point the holonomy is respectfully

contracted or expanded. Colour available online.

For any point zX = σX(t), we define its corresponding point as zY := σY (t).

Remark 4.3. Our choice to define σY as the concatenation of the paths σ 1
Y ,+σ 2

Y ,+ and σ 3
Y ,−

may look arbitrary. According to the previous definition, σY corresponds to the projection
on PY of the lifts of a sequence of (continuous) paths σX,n disjoint from �̃X, converging to
σX and approaching F s

X,+(pX) from above, [pX, qX]u from the right and F s
X,+(qX) from

above. In particular, the paths σX,n are contained in C+,+(pX) and intersect F s
X,+(qX).

In the terms of the holonomy hu
Y ,pY ,qY

, this means that we will suppose that the segments
[y, hu

Y ,pY ,qY
(y)]u do not ‘cross’ F s

Y ,+(pY ), but they do ‘cross’ F s
Y ,+(qY ). (Another choice

of σ i
Y would not change the definition of the holonomy hu

Y ,pY ,qY
, but would change the

parametrization of the path σY , thus interfering in the comparison of holonomies.)
This particular choice is convenient for composing holonomies.

4.5. Comparison of the holonomies in the quadrants: the formula. We are now ready to
compare the holonomies hu

X,pX ,qX
and hu

Y ,pY ,qY
.

THEOREM 13. With the notation above, let xY ∈ F s
Y ,+(pY ). Then

hu
Y ,pY ,qY

(xY ) = yY

if and only if there exist � ∈ N and two finite sequences ti ∈ R and xi ∈ PX with i ∈
{0, . . . , �} such that the following statements hold.
(1) x0 = xX and xl = yX.
(2) σX(t0) = pX, σX(t�) = qX.
(3) ti < ti+1 for i ∈ {0, . . . , � − 2} and t�−1 ≤ t�, therefore σX(ti) ∈ [pX, qX]u. We

denote qX,i = σX(ti).
(4) For i ∈ {1, . . . , � − 1} there exists μi ∈ �̃X (see Figure 8) such that the point qX,i

belongs to F s
X,−(μi) and the point xi belongs to F s

X,+(μi). We denote by ki the
corresponding characteristic number of the surgery and we take k0 = 0.

(5) {x1} = Fu
X(x0) ∩ F s

X(qX,1) and {xi+1} = Fu
X(P

ki
μi

(xi)) ∩ F s
X(qX,i+1) (where Pμi

is
the first return map of X associated to μi see Lemma 3.2) for i ∈ {1, . . . , � − 1}.
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(6) Let Ri for i ∈ {0, . . . , � − 1} be the rectangle (R�−1 can be degenerated) bounded by
the segments [qX,i , qX,i+1]u, [qX,i+1, xi+1]s , [qX,i , P

ki
μi

(xi)]s and [P ki
μi

(xi), xi+1]u.
Then the interior of Ri is disjoint from �̃X.

Proof. If qX does not belong to the negative stable manifold of a point μ on which we
have performed surgery, the above theorem is obtained by a simple induction argument
using Proposition 4.2.

Otherwise, we can use a simple induction argument to calculate the holonomy from
F s

X,+(pX) to F s
X,+(q−

X), where q−
X ∈ [pX, qX]u and satisfies the hypothesis of the previous

case. q−
X can be taken as close as we want to qX. By Proposition 4.2 and because of

our choice of σX and σY , we have that changing the surgery on μ would change the
parametrization of the path σ ′′

Y ,−. Therefore, in order to compute the holonomy from
F s

X,+(q−
X) to F s

X,+(qX) we must apply Proposition 4.2 for two rectangles R− and R+,
where R+ is degenerated.

Let us make some remarks about the previous theorem.

Remark 4.4. In the above theorem, σX and σY play the roles of local coordinates on each
bifoliated plane. Changing the definition of the above coordinates would naturally change
the statement of the theorem and therefore the computation of the holonomy.

Remark 4.5.
• The same statement holds for the holonomies in the C−,− quadrant by changing F s

X,+
and Fu

X,+ to F s
X− and Fu

X,−. In fact, it is enough to apply Theorem 13 after changing
the orientation of both foliations F s

X and Fu
X. This change preserves the orientation of

the manifold and hence preserves the characteristic numbers ki of the surgery.
• An analogous statement holds in the C+,−C−,+ quadrants, but one needs to change

the sign of the characteristic numbers, therefore to change ki to −ki . For that, we
apply Theorem 13 after changing only one of the two orientations of F s

X and Fu
X, thus

changing the orientation of M and eventually the orientation of the meridian. For this
new orientation, the characteristic number of the surgery changes sign.

Remark 4.6. According to §3.6.1, the statement of Theorem 13 can be easily adapted for
the case where � = {γ1, . . . , γk} contains orbits with negative eigenvalues.

More specifically, if the point μi ∈ �̃X corresponds to an orbit γ ∈ � with negative
eigenvalues, then ki should be taken equal to 4 times the characteristic number n(γ ) of
the surgery performed along γ . That is because the surgery along γ corresponds, on the
orientation cover, to a surgery with characteristic number 2n(γ ) along the lifted orbit γ̂ ,
whose first return map is the square of the first return map of γ .

4.6. The special case where X is a suspension: calculating the holonomies as a dynamical
game. In this section we assume that X is the suspension flow of a hyperbolic Anosov
diffeomorphism fA, where A ∈ SL(2, Z) is a hyperbolic matrix with positive eigenvalues
0 < λ−1 < 1 < λ. We will explain how our arguments can be adapted for the case of
matrices in SL(2, Z) with negative eigenvalues in §4.6.4.
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In this particular case, the bifoliated plane is trivial, so the holonomies are also trivial
in PX and the first return maps are simple to understand. This will simplify significantly
the statement of Theorem 13.

We perform a linear change of coordinates on PX = R2 so that F s
X is the horizontal

foliation and Fu
X is the vertical foliation. In these coordinates, A is the linear map

A =
(

λ−1 0
0 λ

)

We now consider:
• two finite sets X and Y of T2 which are disjoint and fA-invariant. Every point x in
X ∪Y is periodic and we denote by τ(x) its period. Notice that τ is invariant by fA.

• two functions m : X→ N and n : Y→ N which are fA-invariant.
By a convenient abuse of language, we will still denote by X and Y the periodic orbits

of the vector field X. In this way, the functions m and n become integer functions on this
finite set of orbits of X.

We denote by X̃ and Ỹ the lifts of X and Y on PX, which is canonically identified with
the universal cover of the torus T2. We still denote by τ , m and n the lifts of the previous
functions.

In the previous section we defined the first return map Px associated to a point x ∈ PX

corresponding to a periodic orbit of X. In our setting, the first return map associated to a
point x ∈ X̃ ∪ Ỹ is the affine map having x as its unique fixed point andAτ(x) as its linear
part:

Px = p �→ Aτ(x)(p − x) + x.

We denote by Y the vector field obtained from X by performing surgeries with character-
istic numbers m on the orbits in X and −n on the orbits in Y.

We denote

μ = m · τ and ν = n · τ .

The aim of this section is to express Theorem 13 in this particular setting.
Consider a point p = pX = (ps , pu) ∈ R2. We want to describe the holonomies of F s

Y

and Fu
Y in the quadrants C±,±(pY ), where pY is the projection on PY of a lift of pX on

the universal cover of PX \ (X̃ ∪ Ỹ). Let us start from the C+,+ quadrant, in order to avoid
useless formalism.

4.6.1. In the C+,+ quadrants. Consider r > 0, t0 > 0, a point q = (ps , pu + r) in the
positive unstable manifold of p, a point z0 = (ps + t0, pu) in the positive stable manifold
of p, and their corresponding points pY , z0,Y in PY . One would like to know if the
holonomy hu

p,q of Fu
Y from the positive stable manifold of pY to the positive stable

manifold of qY is defined on z0,Y , and if this is the case, what its value is.
In order to answer the previous question, one considers the set of points zs = (ps +

t0, pu + s) in PX, with 0 < s < s1 ≤ r , where s1 is the smallest positive real for which
there exists a point γ1 = (ps + u1, pu + s1) ∈ X̃ ∪ Ỹ, with 0 < u1 < t0. If such an s1
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FIGURE 9. In this figure the periodic points on which we performed positive surgery are represented by blue ( )
and the others by red ( ). Colour available online.

does not exist, then the holonomy from Ws+(p) to Ws+(q) is defined on (ps + t0, pu) and
its value is (ps + t0, pu + r)

If such an s1 exists (see Figure 9), then one defines zs = (ps + t1, pu + s), with s ∈
[s1, s2), where
• t1 = u1 + λ−μ(γ1)(t0 − u1) if γ1 ∈ X̃,
• t1 = u1 + λν(γ1)(t0 − u1) if γ1 ∈ Ỹ, and
• s2 is the smallest positive number in (s1, r] such that zt crosses the positive stable

manifold of a point γ2 = (ps + u2, pu + s2) ∈ X̃ ∪ Ỹ, with 0 < u2 < t1.
Analogously, if such an s2 does not exist then the holonomy from Ws+(p) to Ws+(q) is

defined on (ps + t0, pu) and its value is (ps + t1, pu + r). If s2 exists, then one defines
zs = (ps + t2, pu + s), s ∈ [s2, s3), where
• t2 = u2 + λ−μ(γ2)(t1 − u2) if γ2 ∈ X̃,
• t2 = u2 + λν(γ2)(t1 − u2) if γ2 ∈ Ỹ, and
• s3 is the smallest positive number in (s2, r] such that zt crosses the positive stable

manifold of a point γ3 = (ps + u3, pu + s3) ∈ X̃ ∪ Ỹ, with 0 < u3 < t2.
We define by induction the sequences ti , si+1, ui+1, γi+1: zs = (ps + ti , pu + s), s ∈

[si , si+1), where
• ti = ui + λ−μ(γi)(ui − ti−1) if γi ∈ X̃,
• ti = ui + λν(γi )(ui − ti−1) if γi ∈ Ỹ, and
• si+1 is the smallest positive number in (si , r] such that zt crosses the positive stable

manifold of a point γi+1 = (ps + ui+1, pu + si+1) ∈ X̃ ∪ Ỹ, with 0 < ui+1 < ti .
Now,

• either this process is repeated infinitely many times, in which case the holonomy hu
p,q

is not defined at the point z0,
• or the process ends when, for some i ∈ N, si is not defined, in which case hu

p,q is
defined at the point z0 and

hu
p,q(z0) = zr .

In this game, one sees that:
• the points in X̃ induce a contraction of the horizontal coordinate of zs , increasing the

chances of the holonomy being defined on z0;
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• a contrario the points in Ỹ induce an expansion of the horizontal coordinate of zs ,
making it in this way more likely to meet the positive stable manifold of new points in
X̃ ∪ Ỹ. If the new points are in Ỹ, the expansion continues. This explains why, after
surgeries, the quadrant C+,+(p) may be no more complete for Y. This is what happens
if X̃ is empty, which was already shown in [Fe1].

When playing the previous game, an important tool emerges: if two successive points
γi and γi+1 both belong to X̃ (respectively, Ỹ), then there is a rectangle admitting γi and
γi+1 as corners, which is disjoint from Ỹ (respectively, from X̃). This rectangle will be the
main object of §7. The existence or not of such rectangles is what determines the different
cases that we consider in our study.

4.6.2. In the C−,− quadrants. The game in the C−,− quadrants is identical: crossing
the negative stable manifold of a point in Ỹ (respectively, X̃) induces an expansion
(respectively, contraction).

4.6.3. In the C−,+ and C+,− quadrants. In the C+,− and C−,+ quadrants, the descrip-
tion of the game is similar, but the roles of X̃ and Ỹ are interchanged (the unique difference
in the formulas is the sign before μ and ν):
• ti = ui + λ+μ(γi)(ui − ti−1) if γi ∈ X̃,
• ti = ui + λ−ν(γi )(ui − ti−1) if γi ∈ Ỹ.

Thus in these quadrants crossing the stable (positive or negative, according to the
quadrant) separatrix of a point in Ỹ induces a contraction and crossing the separatrix of a
point in X̃ induces an expansion.

4.6.4. Matrices with negative eigenvalues. According to §3.6.1 and Remark 4.6, the
dynamical game can be adapted in the case of negative eigenvalues as follows: when
playing the game, if the point γi corresponds to a periodic orbit in X ∪Y with neg-
ative eigenvalues, then we should replace μ(γi) and ν(γi) by 4μ(γi) and 4ν(γi),
respectively.

5. Surgeries on the geodesic flow and R-covered Anosov flows
The main goal of this section is to prove Theorem 1: surgeries along a set of peri-
odic orbits associated to disjoint simple closed geodesics do not change the bifoliated
plane.

We start by formulating a general criterion for preserving the R-covered character of
Anosov flows after surgeries.

5.1. R-covered Anosov flows. We recall that for any finite set of periodic orbits �,
Surg(X, �) denotes the set of Anosov flows obtained by X by performing surgeries
on � up to orbital equivalence. In this section, X is either a suspension or a positively
twisted Anosov flow. In other words, the bifoliated plane (PX, F s

X, Fu
X) is either trivial or

conjugated to the restriction of the trivial (horizontal/vertical) foliations of R2 to the strip
{(x, y) ∈ R2, |x − y| < 1}.
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According to Corollary 3.2, our hypothesis is equivalent to the following property: for
any x ∈ PX the quadrants C+,+(x) and C−,−(x) have the complete intersection property
(in other words, they are complete).

For every x ∈ PX, let us denote


+(x) = {y ∈ PX, F s+(x) ∩ Fu−(y) �= ∅ and Fu+(x) ∩ F s−(y) �= ∅},

−(x) = {y ∈ PX, F s−(x) ∩ Fu+(y) �= ∅ and Fu−(x) ∩ F s+(y) �= ∅}.

These sets are included respectively in C+,+(x) and C−,−(x). Our hypothesis is equivalent
to the fact that for any x ∈ PX, 
+(x) and 
−(x) are conjugated to the trivially bifoliated
plane.

The announced criterion is stated in the following corollary.

COROLLARY 5.1. Let X be an Anosov flow which is R-covered positively twisted. Let � be
a finite set of periodic orbits of X Assume that for all x ∈ �̃X corresponding to γ ∈ �,


+(x) ∩ �̃X = ∅ = 
−(x) ∩ �̃X.

Then every Y ∈ Surg(X, �) is R-covered positively twisted.

Corollary 5.1 will be obtained as consequence of the following two propositions.

PROPOSITION 5.1. Let X be an Anosov flow which is either a suspension or R-covered
positively twisted. Let � be a finite set of periodic orbits of X and Y ∈ Surg(X, �). Assume
that for every x ∈ �̃Y the quadrants C+,+(x) and C−,−(x) are complete. Then Y is either
a suspension or is R-covered positively twisted.

In other words, the completeness of the C+,+ and C−,− quadrants at the points where
we performed the surgery guarantees the completeness of every C+,+ and C−,− quadrant.

PROPOSITION 5.2. Let X be an Anosov flow which is either a suspension or R-covered
positively twisted. Let � be a finite set of periodic orbits of X and Y ∈ Surg(X, �). Assume
that there is x ∈ �̃X corresponding to γ ∈ � such that


+(x) ∩ �̃X = ∅.

Then for any y ∈ �̃Y corresponding to γ , we have that C+,+(y) is complete. The same
statement holds if we change 
+(x) to 
−(x) and C+,+(y) to C−,−(y).

Remark 5.1. The above hypothesis 
+(x) ∩ �̃X = ∅ remains valid for all z in the
π1(M)-orbit of x. Indeed, for any point z in the orbit of x there is an element of π1(M)

mapping 
+(x) onto 
+(z) (even if the eigenvalues of γ are negative).

Proof of Proposition 5.2. This is a straightforward consequence of Theorem 13 applied
for � = 1: the positive unstable leaves Fu

X,+(z) with z ∈ F s
X,+(x) do not meet any positive

stable separatrix of an element in �̃X. Therefore, the holonomies in 
+(x) are not affected
at all by the surgeries on �.
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FIGURE 10. FX,+(yx) will eventually enter the (+, +)-quadrant of a point in �̃X . Colour available online.

Corollary 5.1 is a straightforward consequence of Propositions 5.1 and 5.2. We therefore
only need to prove Proposition 5.1.

Proof of Proposition 5.1. Assume, by contradiction, that there is xY ∈ PY such that the
quadrant C+,+(xY ) (or C−,−(xY )) does not have the complete intersection property. In
other words, there is zY ∈ Fu

Y ,+(xY ) such that the holonomy hu
Y ,xY ,zY

is not defined on
the whole of F s

Y ,+(xY ). However, by transversality, the holonomy is defined on an open
interval containing xY , so there exists a first point yY on which the holonomy is not
defined.

Consider the triple of corresponding points xX, zX ∈ Fu
X,+(x), yX ∈ F s

X,+(xX).
As the holonomy is not defined at yY , Theorem 13 implies that Fu

X,+(yX) intersects
the positive stable separatrix of a point in �̃X between Fu

X,+(xX) and Fu
X,+(yX) (see

Figure 10). Let γ̃X be the first such point. There exists a rectangle R, whose interior is
disjoint from �̃X and whose boundary consists of [xX, yX]s , a segment of Fu

X,+(xX), a
segment of Fu

X,+(yX) and a segment of F s
X(γ̃X) containing γ̃X. Hence, there is a point y0

in Fu
X(γ̃X) ∩ F s

X,+(xX) belonging to (xX, yX)s .
This implies that the holonomy map hu

Y ,xY ,zY
is defined on y0,Y , hence Fu

Y ,+(γ̃Y ) cuts
F s

Y ,+(zY ).
In other words, both Fu

Y ,+(yY ) and F s
Y ,+(zY ) eventually enter the quadrant C+,+(γ̃Y ).

By assumption, C+,+(γ̃Y ) is complete, so Fu
Y ,+(yY ) ∩ F s

Y ,+(zY ) �= ∅ which contradicts
our initial hypothesis.

5.2. The geodesic flow. Theorem 1 is now a straightforward consequence of the
following proposition.

PROPOSITION 5.3. Let S be a hyperbolic surface. Let � = {γ +
1 , γ −

1 , . . . , γ +
k , γ −

k }
be orbits of the geodesic flow X corresponding to closed simple disjoint geodesics
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(c1, . . . , ck). Then,for any γ̃ in �̃X,


+(γ̃ ) ∩ �̃X = ∅ = 
−(γ̃ ) ∩ �̃X.

Proposition 5.3 is itself a straightforward consequence of the next lemma.

LEMMA 5.1. Consider x ∈ PX and the corresponding geodesic γx in the Poincaré disk D.
Then 
+(x) is identified with the set of geodesics cutting transversely and positively γx .

Proof. The geodesics σ ⊂ D positively crossing a given geodesic γ ⊂ D are in one-to-one
correspondence with the set of pairs of points (α(σ ), ω(σ)) ∈ ∂D, which belong to
different connected components of D \ {α(γ ), ω(γ )}. Now σ is the unique intersection
point between the stable manifold of the geodesic associated to (α(γ ), ω(σ)) ∈ Fu(γ )

and the unstable manifold of the geodesic associated to (α(σ ), ω(γ )) ∈ F s(γ ).

6. Surgeries preserving the branching structure of a non-R-covered Anosov flow
The aim of this section is to make an observation, which is almost clear after reading
[Fe2]. (Fenley told us that, at the time he wrote [Fe2] he was aware of this result, but did
not publish it. We thought that the present paper would be a good place to do so.) The
results of this section generalize Theorems 2 and 3.

Given an Anosov vector field X, Fenley proved in [Fe2] that the following statements
hold.
(1) The leaves of F s

X which are not separated correspond to finitely many periodic orbits
of X. Let us denote this set of orbits Ss(X) = Ss+(X) ∪ Ss−(X), where Ss+(X) and
Ss−(X) correspond to the leaves which are not separated from above and from below,
respectively. The sets Ss+(X), Ss−(X) are not necessarily disjoint.

(2) Similarly, the leaves of Fu
X which are not separated correspond to a finite set of

periodic orbits of X denoted by

Su(X) = Su+(X) ∪ Su−(X).

(3) The set of stable leaves in PX, which are not separated from below from a given leaf
Ls

0, are ordered as an interval of Z, so let us denote them {Li , i ∈ I ⊂ Z}. For each
pair Li , Li+1 of successive non-separated leaves from below:
• there is γ in π1(M) fixing both leaves L1 and L2. Each of those leaves contains

a fixed point xi for the action of γ on PX.
• there is a proper embedding φ of [−1, 1]2 \ {(−1, −1), (0, 1), (1, −1)} in PX

conjugating the trivial foliations with F s
X and Fu

X and whose image is uniquely
associated to the pair (L1, L2).

• The image of an orientation-preserving embedding of the trivially bifoliated
[0, 1]2 \ {(0, 0), (1, 1)} that cannot be extended to {(0, 0), (1, 1)} is called a
positive lozenge. Similarly, the image of an orientation-preserving embedding
of the trivially bifoliated [0, 1]2 \ {(0, 1), (1, 0)} that cannot be extended to
{(0, 1), (1, 0)} is called a negative lozenge. The points {(0, 1), (1, 0)} (respec-
tively, {(0, 0), (1, 1)}) in the first (respectively, second) case will be called corner
points of the lozenge.
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FIGURE 11. An example of a pivot point in P ivs−(X).

• Following the terminology in [Fe2], the image of φ is a pair of adjacent
lozenges, one of which is positive and the other negative (see Figure 11). The
points (−1, 1), (1, 1) correspond to x1, x2 and the point (0, −1), whose positive
unstable leaf ends at the missing point (0, 1) is called the pivot associated to L1,
L2 and is unique, hence also a fixed point of γ . The set of pivots associated to
non-separated stable leaves from below will be denoted by P ivs−(X).

(4) A pivot can be similarly associated to any two successive stable or unstable
leaves that are not separated from above or below. We define in the same way
the sets P ivs+(X), P ivu+(X), P ivu−(X). The set of pivots is finite. Let us also
denote by

P iv(X) = P ivs+(X) ∪ P ivs−(X) ∪ P ivu+(X) ∪ P ivu−(X)

the set of pivot periodic orbits of X.
Our first observation is that performing surgeries along the pivots does not change the

branching structure.

THEOREM 14. Let X be a non-R-covered Anosov flow, P iv(X) its set of periodic pivots
and Y ∈ Surg(X, P iv(X)). Then, under the natural identification of the orbits of Y with
the orbits of X,

P iv
s/u
± (Y ) = P iv

s/u
± (X) and Ss/u

± (Y ) = Ss/u
± (X)

As a by-product of the proof of Theorem 14 one gets that if X is an Anosov flow
with oriented stable/unstable bundles, then performing surgeries on the set of orbits
corresponding to lower-non-separated stable leaves cannot change the lower-non-separated
stable leaves and their pivots.

THEOREM 15. Consider X a non-R-covered Anosov flow with oriented stable/unstable
bundles and Y an element of Surg(X, Ss−(X)). Then, under the natural identification of
the orbits of Y with the orbits of X,

P iv(Y )s− = P ivs−(X) and Ss−(Y ) = Ss−(X).

The proof of both theorems is based on [Fe2] and follows from the following
lemma.
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FIGURE 12. The above three cases are impossible.

LEMMA 6.1.
• Let l1 (respectively, l2) be a positive (respectively, negative) lozenge. The corner points

of l1 cannot be in the interior of l2.
• Every pivot is disjoint from the interior of any lozenge.
• Let x be a periodic point in a stable leaf not separated from below. The point x cannot

belong in the interior of any pair of adjacent lozenges associated to two successive
lower-non-separated stable leaves.

Proof. Assume by contradiction that a corner point of l1, say y, is in the interior of l2.
Since the interior of l2 is trivially bifoliated, the stable and unstable separatrices starting
from y in the boundary of l1 must exit l2. Therefore, one of the ‘missing points’ of l2 is
contained in the interior of l1 (see Figure 12).

The second point is a direct consequence of the first, since a pivot point is a corner point
of a negative and positive lozenge (see Figure 12).

Suppose without loss of generality that x is the corner point of a negative lozenge. By
the first point, x can only be contained in the interior of the negative lozenge of the pair of
lozenges. But this implies that a pivot point is in the interior of the lozenge associated to
x, which is impossible because of the previous point (see Figure 12).

7. Domination of the contracting holonomies
From here until §7.7, we fix a hyperbolic matrix A ∈ SL(2, Z) with positive trace and
eigenvalues λ, λ−1 satisfying 0 < λ−1 < 1 < λ. In §7.7 we will explain how to adapt the
arguments for the case of A ∈ SL(2, Z) with negative eigenvalues. We denote by X the
Anosov flow which is the suspension of fA and its associated mapping torus M = MA.
We fix an orientation on the stable and unstable directions Es , Eu of A, which defines an
orientation on the corresponding foliations on PX.

We begin by proving Lemma 2.1, stating that for any finite fA-invariant set X ⊂ T2,
there exist finitely many orbits of primitive X-rectangles, for the action of the group
generated by A and the integer translations.

Proof of Lemma 2.1. We give the proof for positive X-rectangles.
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Using the fA-invariance, one can choose an X-rectangle R in each orbit so that the ratio
between the lengths of the stable and unstable sides is contained in [1, λ2).

Using the integer translations, one can also assume that the first point of the increasing
diagonal of R is in [0, 1)2.

Consider the endpoint e(R) in X of the increasing diagonal of R. As X̃ is discrete, if the
set of such rectangles R is infinite we obtain that e(R) tends to infinity. In this case, as the
ratio of the lengths of the stable and unstable sides is bounded, the area of R also tends
to infinity and, as a consequence of this, R contains in its interior an arbitrary number of
points in X̃, which contradicts the primitive assumption on R.

7.1. If no X-rectangle is disjoint from Ỹ the contracting holonomies dominate. In §4.6
we presented the holonomies as a dynamical game, where crossing the positive stable
separatrices of points in X̃ or in Ỹ leads to either an expansion or a contraction. The
holonomy will not always be defined when the expansion is strong. We also noticed that,
in order to get two successive expansions, one needs to have a X-rectangle disjoint from
Ỹ. When no X-rectangle is disjoint from Ỹ, the expansion due to the points in X̃ can be
neutralized by a sufficiently strong contraction associated to the points in Ỹ. That is exactly
what we prove in Theorem 8.

Theorem 8 involves proving that the hypothesis no positive primitive X-rectangle
disjoint from Ỹ implies that the contractions in the C+,+ and C−,− quadrants due to
(sufficiently strong) positive surgeries on Y dominate any surgery on X. The contractions
in the C+,− and C−,+ quadrants due to negative surgeries on X cannot at the same time
dominate the surgeries performed on Y, which leads to a dynamical proof of Lemma 2.3
(which can also be proven geometrically).

If there are neither positive nor negative X-rectangles disjoint from Ỹ then we obtain
the following corollary.

COROLLARY 7.1. Let X, Y be two finite fA-invariant disjoint sets. Assume that there
are no primitive X-rectangles disjoint from Ỹ. Then there is N > 0 such that, if Y ∈
Surg(XA, X, Y, ∗, (nj )j∈J ) where the nj are of the same sign and of absolute value
greater than N, then Y is R-covered twisted (positively or negatively, according to the sign
of the nj ).

This is particularly interesting in view of Lemma 2.2, which proves that the hypothesis
no X-rectangle disjoint from Ỹ frequently holds. More particularly, according to the
lemma, for any fA-invariant finite set X, there is ε > 0 such that every ε-dense finite
invariant set Y intersects every X-rectangle.

Proof of Lemma 2.2. This is a simple consequence of the fact that there are finitely
many orbits of primitive X-rectangles. Fix a finite family of X-rectangles containing one
rectangle of every orbit. The lift on R2 of an ε-dense set Y will have a point in each of
these finitely many rectangles, when ε is small enough. The lift Ỹ is invariant by integer
translations. If furthermore Y is fA-invariant, one gets that the lift Ỹ contains a point in
each primitive X-rectangle, hence in every X-rectangle.

https://doi.org/10.1017/etds.2021.170 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.170


1164 C. Bonatti and I. Iakovoglou

Remark 7.1. If in Lemma 2.2 one chooses ε > 0 very small, then Ỹwill have an abundance
of points in anyX-rectangle and even in any 1/K-homothetic subrectangle for any arbitrary
choice of K > 1.

The frequency of crossing the separatrices of points inY can counterbalance a possible
lack of strength of the contractions associated to Y, which is the basic idea behind the
proof of Theorem 7.

Our aim from now on is to prove Theorems 8 and 7: assuming the lack of positive
X-rectangles disjoint from Ỹ, strong positive surgeries along Y generate R-covered
positively twisted Anosov flows.

In order to do so, we will use the fact that a flow Y is R-covered (trivially or positively
twisted) if every C+,+ and C−,− quadrant at every point of PY is complete. Then we will
discard the trivial case, getting the positive twist property.

We start by proving the completeness at all points in X̃.

7.2. Completeness of the quadrants C+,+(x) and C−,−(x) for x ∈ X̃, for large surgeries
on Y. In this section we will prove the following result.

PROPOSITION 7.1. Assume that X and Y are two finite invariant sets such that there
are no positive X-rectangles disjoint from Ỹ. Then there is N > 0 such that if Y ∈
Surg(XA, X, Y, ∗, (nj )j∈J ) and nj > N , then at every x ∈ X̃ the quadrant C+,+(x) is
complete. The same holds for the quadrant C−,−(x).

Let us parametrize the positive stable separatrices of points in X̃. X̃ is the union of a
finite number of π1(M)-orbits. Take a representative x1, . . . , xn of each orbit and identify
F s+(xi) with [0, +∞) in an affine way. Take for every x ∈ X̃ \ {x1, . . . , xn} an element
γx ∈ π1(M) such that x = θX(γx)(xi) for some i. Using the θX(γx), we can parametrize
in an affine way all the F s+(x) with x ∈ X̃.

Consider x ∈ X̃. Thanks to the previous paragraph we can identify F s+(x) with
[0, +∞). A primitive positive (X, x)-rectangle is a primitive positive X-rectangle whose
increasing diagonal has its origin on x. Any primitive positive (X, x)-rectangle R is
uniquely determined by its base segment [0, μR] := R ∩ F s+(x).

To every t ∈ [0, +∞) one associates the primitive (X, x)-rectangle Rx(t) with the
largest base segment, which does not contain t in its interior. The base segment of this
rectangle is equal to [0, μx(t)], where μx(t) = max{μR ≤ t}.

Similarly, one can define the primitive (X, x)-rectangle with the smallest base segment
containing t in its interior and νx(t) = min{μ(R) > t}. μx and νx are well defined thanks
to Lemma 2.1.

One denotes ρx(t) the positive number such that the point (μx(t), ρx(t)) ∈ X̃ ∩ Rx(t)

is the endpoint of the positive diagonal of the rectangle Rx(t).
By assumption on X, Y, the rectangle Rx(t) contains a point of Ỹ in its interior. We

consider the smallest first coordinate of such a point; more precisely, we denote by δx(t)

the smallest r > 0 such that there is (r , s) ∈ Ỹ ∩ Rx(t). Clearly, we have

0 < δx(t) < μx(t).
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FIGURE 13. In this figure red points ( ) represent points in Ỹ and blue ones ( ) points in X̃. Colour available
online.

LEMMA 7.1. Recall that λ > 1 is the expansive eigenvalue of A. There is N such that for
every t > 0, every x ∈ X̃ and every n ≥ N ,

μx(δx(t) + λ−n(t − δx(t))) = μx(δx(t)).

Proof. Just notice that the functions μx , δx are equivariant under multiplication by λπ ,
where π is a common multiple of the periods of points in X, Y. Notice also that because
of our choice of parametrization, if the lemma stands for x ∈ X̃ it also stands for every
point in its π1(M)-orbit.

So we only need to prove the lemma for t in the interval [1, λπ ] and for a finite number
of points in X̃, therefore for a finite number of intervals [μx(t), νx(t)).

For n large enough δx(t) + λ−n(νx(t) − δx(t)) is very close to δx(t) (see Figure 13),
and since the function μx is constant on an interval of the form [δx(t), δx(t) + ε] we get
the desired result.

Proof of Proposition 7.1. Fix N given by Lemma 7.1 and x ∈ X̃. Let Y ∈ Surg(XA, X, Y,
∗, (nj )j∈J ) with nj > N . Consider the positive unstable separatrix through the point
t ∈ F s+(x) (see Figure 14). One follows it starting at t. The first point of X̃ ∩ C+,+(x)

whose positive stable separatrix we meet is the point x0 = (μx(t), ρx(t)). However, before
that, we meet the positive separatrices of all the points in Ỹ ∩ Rx(t) and perhaps of some
points of Ỹ outside Rx(t). The holonomy of the vector field Y obtained by surgery involves
changing the intersection point each time by multiplying the distance to the point in Ỹ by
a factor λ−n (where n is the product of the characteristic number and the period) which by
hypothesis is smaller than λ−N . Thus, according to Lemma 7.1, by playing the holonomy
game we reach the stable manifold of x0 = (μx(t), ρx(t)) at a point (t1, ρx(t)) with

μx(t1) = μx(δx(t)) < μx(t).
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FIGURE 14. In this figure red points ( ) represent points in X̃ and blue ones ( ) points in Ỹ. Colour available
online.

In particular, (t1, ρx(t)) is on the negative stable separatrix of x0 and therefore is not
affected by the surgery on that point.

We proceed by following the positive unstable separatrix of the point (t1, ρx(t)). Let
x1 be the first point of X̃ ∩ C+,+(x) whose positive stable separatrix meets the positive
unstable separatrix of (t1, ρx(t)). It is easy to see that x1 = (μx(t1), ρx(t1)).

Again, by assumption there are points of Ỹ in Rx(t1). But since μx(t1) = μx(δx(t)) <

δx(t) the points in Ỹ ∩ Rx(t1) are not in Rx(t).
Similarly, by playing the holonomy game we will reach the stable manifold of x1 =

(μx(t1), ρx(t1)) at a point (t2, ρx(t1)) with μx(t2) = μx(δx(t1)) < μx(t1). In particular,
the point (t2, ρx(t1)) is on the negative separatrix of x1 and is not affected by the surgery
on X.

We proceed in the same way. By finite induction, we obtain a primitive rectangle Rx(ti)

in the orbit of Rx(t) and after this the procedure will become periodic modulo iteration
by a power of A. In particular, while we play the holonomy game, the positive unstable
separatrix of t will come closer and closer to Fu

X(x).
This shows that the positive unstable separatrix of t intersects the positive stable separa-

trix of every point in the positive unstable separatrix of x. Therefore, the (+, +)-quadrant
at the point x is complete, which concludes the proof.

Notice that the notion of positive X-rectangle is the same for the quadrants (+, +) and
(−, −). Therefore the same argument proves the completeness of the quadrant C−,−(x) for
x ∈ X̃.

7.3. Completeness of the quadrants C+,+(x) and C−,−(x) for x ∈ X̃: replacing strong
surgeries by the ε-density of Y.

PROPOSITION 7.2. Assume that X is a finite fA-invariant set. Then there is a ε > 0 such
that for any ε-dense finite fA-invariant set Y, one has the following property: if Y ∈
Surg(XA, X, Y, ∗, (nj )j∈J ) and nj > 0, then for every x ∈ X̃ the quadrants C+,+(x)

and C−,−(x) are complete.

Using the fact that the orbits of primitiveX-rectangles are finitely many, one gets ε0 > 0
such that every ε0-dense periodic orbit Y0 intersects every X-rectangle. We fix such a Y0.
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Fix N > 0 given by Proposition 7.1. We denote by μ the product of N and the period
of Y0:

μ = N · π(Y0).

LEMMA 7.2. Take K ∈ N. There is ε > 0 such that, for every ε-dense fA-invariant finite
setY, for any x ∈ X̃ and for any primitive positive (X, x)-rectangle R, there are at least K
points y ∈ Ỹ ∩ R with the following properties:
• the period of y is greater than μ;
• y belongs to the connected component of R \ ⋃

y0∈Ỹ0∩R Fu
X(y0) which is bounded on

one side by Fu
X(x);

• y belongs toR \ ⋃ Ri , where theRi are the positive primitive (X, x)-rectangles having
a strictly larger base than R.

Proof. We choose a rectangle R in each orbit of primitive X-rectangles. We just need
to prove the statement for this finite collection of (X, x)-rectangles R. One still gets a
finite collection of rectangles by considering R \ ⋃ Ri where Ri are the positive primitive
(X, x)-rectangles having a strictly larger base than R.

The second and third properties are granted by the ε density. Furthermore, if ε is
sufficiently small, any periodic point ε-close to Fu

X(x) ∩ R has period greater than μ.

Proof of Proposition 7.2. Fix x ∈ X̃. Consider for every t ∈ F s+(x) the rectangle whose
base is [0, νx(t)] and whose height is ρx(t). We will denote this rectangle by Rext

x (t).
Notice that thanks to the definition of μx , νx , ρx , we have that Rext

x (t) ∩ X̃ = (
Rx(t) ∪

Rx(νx(t))
) ∩ X̃. In particular, since Rx(t) and Rx(νx(t)) are primitive, Rext

x (t) ∩ X̃
consists of three points: x, (μx(t), ρx(t)) and

(
μx(νx(t)), ρx(νx(t))

)
.

Since there are finitely many orbits of primitive X-rectangles (for the action of π1(M)),
the set

⋃
x∈X̃

⋃
t∈R{Rext

x (t)} consists also of a finite number of π1(M)-orbits. Because of
our previous argument and the fact that Ỹ0 is π1(M)-invariant, the maximum number of
points of Ỹ0 in any Rext

x (t) is finite. We denote it by K.
Take ε, Y given by Lemma 7.2 applied for K. We will compare the holonomy game for

a vector field Y obtained by positive surgeries along Y and the vector field Y0 obtained by
surgeries along Y0 of characteristic number N. Roughly speaking, we will check that the
holonomy of Y is more contracting than that of Y0, which will finish the proof.

Fix t ∈ F s+(x) and consider t ′ = (
t , ρx(νx(t))

)
. Since Rx(νx(t)) is a primitive

X-rectangle, it does not contain any point of X̃ in its interior and therefore

hY ,x,ρx(νx(t))(t) ≤ t ′.

Hence for every q > ρx(νx(t)),

hY ,x,q(t) ≤ hY ,ρx(νx(t)),q(t ′).

It therefore suffices to prove that the holonomy of t ′ for Y is ‘more contracting’ than the
holonomy of t for Y0. More precisely, it suffices to prove that for some sequence qi → +∞
with qi > ρx(νx(t)) we have

hY ,ρx(νx(t)),qi
(t ′) ≤ hY0,x,qi

(t) (1)
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In the proof of Proposition 7.1, we defined by induction a sequence of points xi =
(μx(ti), ρx(ti)) ∈ X̃ (where t0 = t), which are the successive points of X̃ ∩ C+,+(x)

appearing in the game for Y0. We choose qi = ρx(ti). Let us now play the game for Y
and show (1) for this choice of qi .

We follow the positive unstable separatrix of t ′ starting from t ′. The first point in X̃ ∩
C+,+(x) whose positive stable separatrix we meet is x0, as in the game for Y0. Before
that, we meet the positive separatrices of all the points in Ỹ ∩ (Rext

x (t) − Rx(νx(t))). In
the game for Y0 there were at most K points of Ỹ0 in Rext

x (t), and in the game for Y there
are at least K of these points in the connected component of Rx(t) \ ⋃

y0∈Ỹ0∩Rx(t)
F u

X(y0)

which is bounded on one side by Fu
X(x).

The holonomy of the vector field Y obtained by surgery involves changing the
intersection point each time by multiplying the distance to the point in Ỹ by a factor λ−n

(where n is the product of the characteristic number and the period) which by hypothesis
is smaller than λ−μ.

It is now easy to check that the two previous paragraphs imply

hu
Y ,ρx(νx(t)),q0

(t ′) < hu
Y0,x,q0

(t). (2)

We denote by t ′1 the point (hu
Y0,x,q0

(t), q0) = (t1, q0). We repeat the same argument for t ′1
and t1. We therefore get

hu
Y ,q0,q1

(t ′1) < hu
Y0,x,q1

(t1). (3)

Using (2) and the fact that t1 < t , we have that

hu
Y0,x,q1

(t1) ≤ hu
Y0,x,q1

(t), (4)

hu
Y ,ρx(νx(t)),q1

(t ′) ≤ hu
Y ,q0,q1

(t ′1). (5)

Finally, by combining (3)–(5), we get the desired inequality

hu
Y ,ρx(νx(t)),q1

(t ′) ≤ hu
Y0,x,q1

(t).

We denote by t ′n the point (hu
Y0,x,qn−1

(t), qn−1) = (tn, qn−1) and we proceed by induc-
tion in order to prove the desired inequality.

7.4. Completeness of the (+, +)-quadrants at every point. The aim of this section is to
deduce from Proposition 7.1 that every (+, +) and (−, −) quadrant at any point of PY is
complete.

PROPOSITION 7.3. Let X, Y be two disjoint finite fA-invariant sets, and let Y ∈
Surg(XA, X, Y, ∗, (nj )j∈J ) be any vector field with nj ≥ 0. If for any x ∈ X̃ the quadrant
C+,+(x) is complete, then for any z ∈ PY the quadrant C+,+(z) is also complete.
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FIGURE 15. If Ws+(r) enters C+,+(x), then it will intersect Wu+(t). Colour available online.

As a straightforward consequence of Propositions 7.1, 7.2 and 7.3 we obtain the
following corollary.

COROLLARY 7.2. With the hypothesis of Proposition 7.1 or Proposition 7.2 the quadrants
C+,+(z) and C−,−(z) are complete for any point z ∈ PY .

Proof of Proposition 7.3. Assume by contradiction that there is p ∈ PY for which the
quadrant C+,+(p) is not complete. Therefore, there exist r ∈ Wu+(p) and t0 ∈ Ws+(p) such
that the stable positive separatrix Ws+(r) and the unstable positive separatrix Wu+(t0) do
not intersect.

Note that the set of unstable leaves cutting a stable leaf is open, as the intersections
are transversal. Thus the leaves which do not cut Ws+(r) form a closed set which does not
contain p. Therefore, there is a smallest t > 0 for which Wu+(t) does not cut Ws+(r).

If this unstable leaf does not cut the positive stable separatrix of a point in X̃ ∩ C+,+(p),
then the unstable holonomy hu

Y ,p,r restricted on [0, t] is well defined and its image is

contained in ([0, t], r). Hence, by our initial hypothesis, there is x ∈ X̃ ∩ C+,+(p) such
that Wu+(t) cuts Ws+(x) and thus enters the quadrant C+,+(x).

If Ws+(r) crosses Wu+(x) (see Figure 15), then as the quadrant C+,+(x) is by assumption
complete, Ws+(r) cuts Wu+(t), thus contradicting the hypothesis.

Therefore, Ws+(r) cannot cross Wu+(x). Now the holonomy from [0, t] to Ws(x) is well
defined and contains x in its image. Hence, Wu−(x) cuts Ws+(p) at some point t0 < t , which
means by our previous hypothesis that Wu+(t0) does not cut Ws+(r). This contradicts the
minimality of t and concludes the proof of the corollary.

7.5. R-covered. Using Corollary 7.2, we obtain the following result.

COROLLARY 7.3. Under the hypotheses of Propositions 7.1 or 7.2 the flow Y is R-covered
and positively twisted.

Proof. An Anosov flow for which every (+, +) and (−, −) quadrant is complete is
R-covered and not negatively twisted. By our proofs of Propositions 7.1 or 7.2 the
completeness of the (+, +) and (−, −) quadrants does not depend on the surgeries
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performed on X. However, if Y were non-twisted, a negative surgery on X would create a
negatively twisted R-covered field. So Y needs to be twisted.

This concludes the proof of Theorems 8 and 7 and hence also of Theorem 4.

7.6. On the existence of rectangles: proof of Lemma 2.3.

Proof. Assume that every positive X-rectangle contains points in Ỹ and every negative
Y-rectangle contains point in X̃. Then strong negative surgeries on X and positive on
Y would induce flows which are R-covered with all quadrants complete (according
to Proposition 7.1), that is, with trivial bifoliated planes. Performing stronger negative
surgeries on X would not change this property, thus contradicting [Fe1].

7.7. The case of matrices with negative eigenvalues. In this section we consider a hyper-
bolic matrix B ∈ SL(2, Z) with negative eigenvalues and where XB is the suspension
flow of fB on the manifold MB , the mapping torus of fB . Let A = B2 and denote by XA

the suspension flow of fA on MA. The matrix A is hyperbolic with positive eigenvalues
and MA is the 2-fold cover of the orientations of the stable/unstable bundles of XB . The
Anosov flow XA is the lift of XB on MA.

We consider two finite fB -invariant disjoint setsX, Y and we assume that every positive
X-rectangle intersects Ỹ.

We denote by XA, YA the lifts of X, Y on MA. Note that the bifoliated plane
(PXA

, F s
XA

, Fu
XA

) is canonically identified with (PXB
, F s

XB
, Fu

XB
) and the lifts of XA, YA

on PXA
are X̃, Ỹ, respectively.

Remark 7.2. Every positive X-rectangle contains a point in Ỹ if and only if every positive
XA-rectangle contains a point in Ỹ.

Proof of Theorems 8, 7 and 4 for matrices with negative eigenvalues. According to Remark
7.2, the hypotheses for XB , X, Y imply that every positive XA-rectangle contains a point
in Ỹ, so XA, XA, YA satisfy the hypotheses of Theorem 8 for matrices with positive eigen-
values. Thus, there is N > 0 such that every Anosov flow inSurg(X, XA, YA, ∗, (νj )j∈J )

with νj ≥ N is R-covered and positively twisted.
The lift YA on the bundles orientation cover of every Anosov flow Y in Surg(XB , X, Y,

∗, (nj )j∈J ) with nj ≥ N belongs to Surg(XA, XA, YA, ∗, (n̂j )j∈J ) with n̂j ≥ N (see
Remark 4.1). Thus YA is R-covered and positively twisted and therefore Y is also R-covered
and positively twisted. This concludes the proof of Theorem 8 for matrices with negative
eigenvalues.

Now let us move on to the proof of Theorem 7, which will imply Theorem 4.
Observe that for any finite fB -invariant setY, ifY is ε-dense thenYA is ε-dense. We fix

ε so that, given any ε-dense Y, Theorem 7 for matrices with positive eigenvalues implies
that any flow in Surg(XA, XA, YA, ∗, (νj )j∈J ) with νj ≥ 1 (respectively, νj ≤ −1) is
R-covered and positively (respectively, negatively) twisted.

The lift YA of any Y ∈ Surg(XB , X, Y, ∗, (nj )j∈J ) with nj ≥ 1 (respectively, nj ≤
−1) belongs to Surg(XA, XA, YA, ∗, (n̂j )j∈J ) with n̂j ≥ 1 (respectively, n̂j ≤ −1).
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We conclude that YA and therefore Y are R-covered twisted according to the sign of
the surgeries performed on Y. This concludes the proof of Theorem 7 and therefore of
Theorem 4 for matrices with negative eigenvalues.

8. Domination of expanding holonomies: strings of X-rectangles disjoint from Ỹ
From here until §8.7, similarly to §7, we fix a hyperbolic matrix A ∈ SL(2, Z) with
positive eigenvalues 0 < λ−1 < 1 < λ. In §8.7 we will explain how our arguments can
be adapted for the case of A ∈ SL(2, Z) with negative eigenvalues.

Our aim in this section is to prove Theorems 5, 6 and 9. We start by proving Theorem 9.
Going from Theorem 9 to Theorems 5 and 6 is a process that is analogous to the one we
followed to go from Theorem 8 to Theorems 7 and 4.

Therefore, in addition to Theorem 9, in order to prove Theorems 5 and 6, we will need
two more things. The first is following theorem, which will be proved later in this section.

THEOREM 16. For any hyperbolic matrix A ∈ SL(2, Z) there are two periodic orbits X
andY such that there exist positiveX-rectangles disjoint from Ỹ and negativeY-rectangles
disjoint from X̃.

The second is to replace the hypothesis of large characteristic numbers in Theorem 9 by
a large period as in the case of Theorems 4 and 7.

8.1. Main step for Theorem 9: undertwisted quadrants. Let X be a finite fA-invariant
set. A string of positive X-rectangles or a positive X-string is a family of positive
X-rectangles Ri indexed by N such that for any k ∈ N the intersection Ri ∩ Ri+1 is the
endpoint of the increasing diagonal of Ri and the initial point of the increasing diagonal
of Ri+1. The origin of the increasing diagonal of R0 is called the origin of the string.

Remark 8.1. Let X be a periodic orbit for fA and Y a finite fA-invariant set disjoint
from X. The existence of a positive (respectively, negative) X-string disjoint from Ỹ is
equivalent to the existence of a positive (respectively, negative) X-rectangle disjoint from
Ỹ. Indeed, given one X-rectangle R disjoint from Ỹ, by eventually breaking it, we can
assume that it is primitive. Now we can consider its image by g ∈ π1(M), where g sends
one of the points of X̃ ∩ R to the other, and thus construct a string by induction.

Theorem 9 is a consequence of the following technical result.

THEOREM 17. Let A ∈ SL(2, Z) be a hyperbolic matrix, and let X and Y be finite
fA-invariant sets such that there exists a positive X-string disjoint from Ỹ. Then there
is n > 0 such that for any Y ∈ Surg(XA, X, Y, (mi)i∈I , ∗) with mi < −n, there is x ∈ X̃
such that the quadrants C+,+(x) and C−,−(x) are incomplete (that is, undertwisted).

The important point in the statement of Theorem 17 is that the conclusion does not
depend on the surgeries performed (or not) on the orbits of the points in Y.

Proof of Theorem 9 assuming Theorem 17. The hypotheses of Theorem 9 allow us to apply
Theorem 17 for the quadrants C+,+ and C−,−, but also the quadrants C+,− and C−,+ by
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FIGURE 16. A positive X-staircase. Colour available online.

exchanging the roles of X and Y. Therefore there is n > 0 such that for all surgeries on X
and Y with negative characteristic numbers on X and positive on Y, all of absolute value
greater than n, there exist a point x ∈ X̃ and a point y ∈ Ỹ such that the quadrants C+,+(x)

and C+,−(y) are both undertwisted. This implies that Y is not R-covered, which finishes
the proof.

8.2. Proof of Theorem 17: X-staircase disjoint from Ỹ. We consider R2 endowed with
a (linear) base in which Fs is the horizontal foliation, Fu is the vertical foliation and the
origin (0, 0) belongs to X̃. For the sake of simplicity we will assume that the eigenvalues
of A are positive, but indeed the arguments that follow can also be adapted for the case
of negative eigenvalues. We denote by λ > 1 and λ−1 < 1 the two eigenvalues of A.
Fix m to be the twist function for X and n the twist function for Y, that is, the product
of the characteristic number and the period for fA. We have that m(fA(x)) = m(x) and
n(fA(x)) = n(x).

Recall that the stable and unstable foliations are oriented. Hence, every rectangle R has
a top side ∂s,upR, a bottom side ∂s,lowR, a right side ∂u,rightR and a left side ∂u,leftR.

A horizontal(respectively, vertical) subrectangle of R is a rectangle R0 ⊂ R such that
∂u(R0) ⊂ ∂u(R) (respectively, ∂s(R0) ⊂ ∂s(R)).

Furthermore, we will say that a vertical subrectangle is a right vertical subrectangle if

∂u,right(R0) = ∂u,right(R).

Given a rectangle R, we denote by �s(R) the length of its stable (top or bottom) sides
and �u(R) the length of the unstable (right or left) sides.

Definition 8.1. Fix x ∈ X̃. We say that an infinite sequence of rectangles R0, R1, . . . is a
positive X-staircase with origin at x ∈ X̃in C+,+(x) (or a (X, x, +, +)-staircase) if the
following conditions are satisfied (see Figure 16).
(1) All rectangles Rn are contained in C+,+(x).
(2) There is a positive X-string {
i}i∈N with origin at x such that 
i is a right vertical

subrectangle of Ri for every i > 0 and R0 = 
0.
(3) ∂s,upRm ⊂ ∂s,lowRm+1

(4) �s(
i+1)/�
s(
i) is bounded for i ∈ N.
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In a similar way, one can define a positive staircase inside C−,−(x) and negative
staircases in C+,−(x) and C−,+(x).

Remark 8.2. By definition, the left unstable sides ∂u,left(Ri) of all the rectangles Ri in
a positive (X, x, +, +)-staircase R = {Ri}i∈N are segments on Fu+(x) which are adjacent
(disjoint interior but sharing an endpoint with the next one), whose the union is an interval
Iu(R) on Fu+(x) starting at x:

Iu(R) =
∞⋃
i=0

∂u,left(Ri).

We say that Iu(R) is the axis of the staircase R.

Remark 8.3. We also have that

�s(Ri) =
i∑

j=0

�s(
j ).

Theorem 17 is a simple consequence of the next two lemmas.

LEMMA 8.1. If there is a positive X-string {
i}i∈N disjoint from Ỹ with origin at x ∈ X̃,
then there exists a positive X-staircase disjoint from Ỹ with origin at x inside C+,+(x).

LEMMA 8.2. If for some point x ∈ X̃ there exists a positive X-staircase (Ri)i∈N disjoint
from Ỹ with origin at x in C+,+(x), then there exists N ′ > 0 such that for any Y ∈
Surg(XA, X, Y, (mi)i∈I , ∗) with mi < −N ′ the C+,+(x) quadrant for Y is undertwisted
(that is, incomplete).

8.3. X-strings and X-staircase disjoint for Ỹ.

Proof of Lemma 8.1. Let X̃ and Ỹ be two finite invariant sets and assume that {
i}i∈N is
a positive X-string disjoint from Ỹ with origin at a point x0 ∈ X̃. By eventually breaking
some of the 
i , we can assume without loss of generality that the 
i are primitive.

For any i there is a unique rectangle, denoted by Di , such that:
• 
i is a right vertical subrectangle of Di ;
• the interior of Di is disjoint from Ỹ;
• Di contains a point of Ỹ on its left unstable side ∂u,leftDi .
In other words, starting with 
i , we push its left unstable side to the left until we find a
point in Ỹ for the first time.

CLAIM 2. There are 1 < c < C such that for every i,

c <
�s(Di)

�s(
i)
< C.

Proof. There are finitely many orbits of primitive X-rectangles and therefore there are
also finitely many orbits of associated rectangles Di . The ratio in the statement is invariant
under the action of A and of integer translations, which gives the desired result.
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FIGURE 17. Constructing a positive X-staircase from a positive X-string. Colour available online.

We denote by x0
i the origin of 
i for every i ∈ N (x0 = x0

0 ). By assumption all the x0
i

belong to X̃.
As X is finite and fA-invariant, every point is periodic. Let n > 0 denote a common

period of all points in X and let Tz be the translation by z ∈ X̃ in PXA
. By definition of n,

for every z ∈ X̃, φz := Tz ◦ An ◦ T −1
z is the (unique) lift of f n

A having z as a fixed point.
φz is affine and its derivative on R2 is An in the canonical coordinates. In the F s

X, Fu
X

coordinates, the derivative of φz is (
λ−n 0

0 λn

)
.

We are ready to define the rectangles Ri of the staircase by induction, and we start by
fixing R0 = 
0.

Assume that Ri has been defined and denote by xi+1 the endpoint of its increasing
diagonal. Consider gi in the group generated by A and the integer translations such that
xi+1 = gi(x

0
i+1).

Consider gi(Di+1). This is a rectangle whose bottom stable side contains xi+1. We
consider the orbit of gi(Di+1) by φi+1 := φxi+1 , which consists of rectangles containing
xi+1 in their bottom stable side.

CLAIM 3. For large k > 0, φk
i+1(gi(Di+1)) is disjoint from Fu

X(x0) and φ−k
i+1(gi(Di+1))

is not disjoint from Fu
X(x0).

Let ki+1 = min{k|φ−k
i+1(gi(Di+1)) ∩ Fu

X(x0) �= ∅} and

hi+1 = φ
−ki+1
i+1 ◦ gi .

By construction (see Figure 17) Fu
X(x0) cuts hi+1(Di+1) in two vertical subrectangles:

Ri+1 is the right subrectangle. Notice that Ri+1 is disjoint from Ỹ as it is included in the
image of Di \ ∂u,left(Di) by hi+1.

This defines by induction a family of rectangles {Ri} satisfying all the conditions of
Definition 8.1 except possibly (4). It remains to check that �s(Ri+1)/�

s(Ri) is bounded.
Recall that Ri+1 is a right vertical subrectangle of hi+1(Di+1) and that Di+1 admits 
i+1

as a right vertical subrectangle. Let us denote ai+1 = �s(
i+1) and bi+1 = �s(
̃i+1),
where 
̃i+1 = Di+1 \ 
i+1.

https://doi.org/10.1017/etds.2021.170 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.170


Anosov flows on 3-manifolds: the surgeries and the foliations 1175

Because of the invariance of the ratio ai/bi under the action of integer translations or
A and thanks to the finiteness of orbits of primitive X-rectangles, one gets that ai/bi and
bi/ai are bounded.

Now recall that hi+1 is obtained by composing gi with φ
−ki+1
i+1 , where ki+1 is the

minimal integer k for which φ−k
i+1 ◦ gi(Di+1) meets Fu+(x0). This implies (see Figure 17)

that

i∑
j=0

�s(hj (
j )) < �s(hi+1(
̃i+1)) < λn.
i∑

j=0

�s(hj (
j )).

Let �i = �s(hi(
i)) and �̃i = �s(hi(
̃i)). Then �i/�̃i = ai/bi (because hi is affine), so
this ratio and its inverse are bounded.

By the previous inequality we have that �̃i+1/
∑i

j=0 �j ∈ [1, λn]. Hence, there is C > 0

so that �i+1/
∑i

j=0 �j ∈ [1/C, C]. Finally, using the fact that �s(Ri) = ∑i
j=0 �j , we have

that �s(Ri+1)/�
s(Ri) is bounded from above. Therefore, (Ri)i∈N satisfies property (4) of

the definition of a staircase and is indeed a positive X-staircase disjoint from Ỹ.

Remark 8.4. If Y is a non-empty finite invariant set then for any finite invariant X any
X-staircase R = {Ri} disjoint from Ỹ has an axis of bounded length:

�(Iu(R)) < ∞.

Indeed, if this is not the case, then
⋃+∞

i=0 Ri would contain the infinite band ∂s,lowR0 ×
[0, +∞), which projects to whole torus T2 and thus contains points of Ỹ.

Remark 8.5. Because of the previous remark, if 
i is the X-string associated to the
X-staircase R = {Ri} (see Definition 8.1), then since the 
i are primitive X-rectangles
(hence finite in number up to the action of π1(M)) and �u(
i) → 0, we have that
�s(
i) → +∞. Therefore,

�s(Ri) → +∞.

8.4. Staircase and the holonomy game: proof of Lemma 8.2. In this section we give the
proof of Lemma 8.2, thus completing the proof of Theorems 17 and 9. The proof will be
the result of three fairly simple observations given in the form of lemmas.

Let R = {Ri} be a (X, x, +, +)-staircase disjoint from Ỹ for some x ∈ X̃. For any i we
denote by Ri,Y (see Figure 18) the unique rectangle with the following properties:
• ∂u,leftRi,Y = ∂u,leftRi ⊂ Fu+(x);
• Ri,Y ∩ Ỹ = ∂u,rightRi,Y ∩ Ỹ �= ∅.
In other words, one pushes the right side of Ri to the right until it intersects Ỹ for the first
time.

We denote Si,Y = Ri,Y \ Ri . This is a right vertical subrectangle of Ri,Y called the
Y-safe zone of Ri . We also denote by (
i)i∈N the X-string of rectangles associated to the
X-staircase R (see Definition 8.1).
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FIGURE 18. In the above picture red (respectively, blue ) points represent points in Ỹ (respectively, X̃), white
rectangles represent the staircase Ri and the blue (grey) rectangles the safety zones Si . Colour available online.

Once again, because of the finiteness of the number of orbits of X-rectangles, one gets
that the ratio �s(Si,Y)/�s(
i) takes a finite number of values (in particular, this ratio and
its inverse are bounded).

For any i, let

qi = ∂s,lowRi ∩ Fu+(x) and q = lim qi ∈ Fu+(x).

Let us note here that q < ∞, because of Remark 8.4.
For any Y ∈ Surg(A, X, Y) we denote by hi,Y : F s+(qi) → F s+(qi+1) the holonomy

of Fu
Y .

LEMMA 8.3. Using the above notation, we have:
• if (t , qi) ∈ ∂s,low(Ri) then

hi,Y (t , qi) = (t , qi+1);

• if (t , qi) ∈ ∂s,low(Si,Y) then

hi,Y (t , qi) = (ti+1 + λ−τ(xi+1)(t − ti+1), qi+1),

where xi+1 = (ti+1, qi+1) = ∂s,low(Ri+1) ∩ X̃ and τ(xi+1) = m(xi+1) · π(xi+1) is
the twist number associated to xi+1, in which m(xi+1) is the characteristic number
of the surgery at the orbit corresponding to xi+1 and π(xi+1) is its period.

Proof. Just notice that for points in ∂s,low(Ri) their positive unstable leaf reaches F s+(qi+1)

without crossing any positive stable leaf of a point in X̃ ∪ Ỹ at the right of Fu(x), so
the holonomy is not affected by the surgeries. For the points in ∂s,low(Si,Y), the unique
moment when they cross a positive stable leaf of a point in X̃ ∪ Ỹ at the right of Fu(x) is
precisely when they reach F s+(qi+1): they cross the positive stable leaf of xi+1, leading to
the claimed formula.

LEMMA 8.4. If for every i we have

∂s,low(Ri+1,Y) ⊂ hi,Y (∂s,low(Ri,Y))

then C+,+(x) is undertwisted.
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Proof. In this case the image by the holonomy of Fu
Y of ∂s,low(R0,Y) on F s+(qi) contains

the segment ∂s,low(Ri,Y) whose length tends to infinity, thanks to Remark 8.5. Thus the
holonomy from F s+(x) to F s+(q) takes ∂s,low(R0,Y) to the whole of F s+(q), so the domain
of that holonomy is contained in ∂s,low(R0,Y), which finishes the proof.

Recall that the ratios �s(
i+1)/�
s(
i), �s(Si+1)/�

s(
i+1), �s(
i)/�
s(Si) are bounded,

therefore there is C > 0 such that for every i,

�s(
i+1) + �s(Si+1)

�s(Si)
< C.

LEMMA 8.5. For all x ∈ X, let m(x) be the characteristic number of the surgery
associated to x. Assume that all the m(x) are negative and of large absolute value, so
that the product τ(x) = m(x)π(x) (where π is the period function) satisfies, for every
x ∈ X,

λ|τ(x)| > C.

Then for every i, one gets ∂s,low(Ri+1,Y) ⊂ hi,Y (∂s,low(Ri,Y)), and by the previous lemma
C+,+(x) is incomplete.

An example of a holonomy game that satisfies the hypotheses of the previous lemma
is given in Figure 18. By combining the three previous lemmas, we obtain the proof of
Lemma 8.2.

8.5. Abundance of pairs (X, Y) with strings of rectangles. As the proof of Theorem 9
has reached its end, we continue by proving Theorem 16, as promised at the beginning
of §7. In fact, in this section we prove in Corollary 8.1 a much stronger result, closely
resembling Theorem 6. Notice that Theorem 16 is a straightforward consequence of
Corollary 8.1 applied for E = ∅.

Consider two distinct periodic orbits X and Y and the points x ∈ X̃ and y ∈ Ỹ. We
recall that, thanks to Remark 8.1, if there is a positive X-rectangle R disjoint from Ỹ, then
there is a positive X-string disjoint from Ỹ based at x.

In order to prove the next corollary, we will use the following classical fact from ergodic
theory.

LEMMA 8.6. Let f be a diffeomorphism of a compact surface, p a hyperbolic periodic sad-
dle point and q1, . . . , qk transverse homoclinic intersections between a stable separatrix
in Ws(Orb(p)) and an unstable separatrix in Wu(Orb(p)). Denote by K the union of
the orbit of p and of the orbits of the qi , which is an invariant compact set. Then for any
neighbourhood U of K, there is a hyperbolic basic set �U (that is, transitive and with local
product structure) satisfying K � �U � U

We are ready to prove the main result of this section.

LEMMA 8.7. Let B ∈ SL(2, Z) be a hyperbolic matrix (possibly with negative eigenval-
ues). Let E ⊂ T2 be a finite fB -invariant set. Then there are periodic orbits γ+, γ− such
that there exist positive and negative γ+-rectangles (respectively, γ−-rectangles) disjoint
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from γ− ∪ E (respectively, γ+ ∪ E). Furthermore, if B has negative eigenvalues, one can
choose γ+, γ− each with an arbitrary sign of eigenvalues, for instance negative.

Proof. Choose two distinct periodic points σ+ /∈ E and σ− /∈ E. If B has negative
eigenvalues, one can choose σ+ and σ− with negative eigenvalues (that is, with odd
periods). For each orbit σ± we choose qi,±, i = 1, . . . , 4, four homoclinic intersections
between the two stable and the two unstable separatrices of σ±. We denote by K± the
compact obtained by the union of σ± and the orbits of the qi,±.

We choose neighbourhoods U± of K± such that U+ ∩ U− = U+ ∩ E = U− ∩ E = ∅.
We denote by �± the hyperbolic basic sets contained in U± and containing K± given by
Lemma 8.6.

There is ε > 0 such that every periodic orbit γ+ in �+ which is ε-dense in �+ admits
positive and negative γ+-rectangles disjoint from E and from �−.

In the same way, for ε > 0 small enough, any periodic orbit γ− ⊂ �−, which is ε-dense
admits positive and negative rectangles disjoint from E and from �+.

We conclude the proof of Lemma 8.7 with the following claim.

CLAIM 4. If B has negative eigenvalues, each of the basic sets �± contains the periodic
orbit σ± with negative eigenvalues and therefore admits ε-dense orbits with negative
eigenvalues.

Proof. The basic sets �± admit Markov partitions. A ε-dense periodic orbit γ0, for small
ε, contains the code of σ± for this Markov partition and this code is a word of odd length.
We get a new ε-dense orbit γ1 by repeating once more the code of σ± in the one of γ0.
Now, either γ0 or γ1 has odd period, which concludes the proof of the claim.

As a result of Theorem 17 and Lemma 8.7 we obtain the following corollary.

COROLLARY 8.1. Let A ∈ SL(2, Z) be a matrix with positive eigenvalues and E be a finite
fA-invariant set. Let γ+ and γ− be the periodic orbits obtained by Lemma 8.7. There exists
n > 0 such that every flow Y obtained from XA by surgeries along E and by two surgeries
of distinct signs along γ+ and γ− with characteristic numbers of absolute value greater
than n is not R-covered.

Proof. By Remark 8.1 and using the notation of the proof of Lemma 8.7, there exist posi-
tive and negative γ+-strings (respectively, γ−-strings) disjoint from E ∪ �− (respectively,
E ∪ �+).

Then Theorem 17 implies that large negative surgeries along γ+ induce incomplete
C+,+ quadrants (at any point of the bifoliated plane associated to γ+) independently of the
surgeries we perform on γ− ∪ E. In the same way large positive surgeries along γ− induce
incomplete C+,− quadrants at any point associated to γ−.

Therefore, by performing large positive surgeries along γ− and large negative surgeries
along γ+ one obtains a non-R-covered flow Y, independently of the surgeries performed
along E.
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In order to prove Theorems 5 and 6, we would like to remove the ‘large enough’
hypothesis in Corollary 8.1.

8.6. Replacing large characteristic numbers by large periods. The aim of this section is
to go from the proof of Theorems 17 and 9 to the proof of Theorems 5 and 6. As Theorem
6 clearly implies Theorem 5, we will only prove Theorem 6, that is, for any finite set E of
periodic orbits there exist two periodic orbits γ+ and γ− such that any Y ∈ Surg(XA, E ∪
γ+ ∪ γ−) for which the surgeries along γ+ and γ− are of different signs is not
R-covered.

8.6.1. Choosing a staircase and a safety zone. As in the proof of Lemma 8.7, we first
build two disjoint hyperbolic basic sets �+ and �− in T2 that do not intersect E. Then, for
ε0 > 0 sufficiently small, any ε0-dense (in �±) periodic orbit σ± ⊂ �± admits a positive
and a negative σ±-string disjoint from Ẽ ∪ �̃∓.

Remark 8.6. A classical fact in hyperbolic dynamical systems on surfaces is that hyper-
bolic basic sets � admit at most finitely many periodic boundary points (see, for instance,
[BoLa2]), that is, points which are not accumulated by points in � in each of their four
quadrants.

Therefore, if ε0 is taken very small, the orbits σ+ and σ− are not boundary periodic
points of �+ and �−, respectively.

From this point on, we will concentrate on σ+; the results stated for σ+ can be proven
in the exact same way for σ−. Because of the previous remark and thanks to Lemma 8.1,
one can build in each quadrant C±±(σ+) positive or negative (according to the quadrant)
staircases for σ+ disjoint from Ẽ ∪ �̃−.

Fix x ∈ σ̃+, where σ̃+ is the lift of σ+ in the bifoliated plane. For the sake of simplicity,
we will restrict ourselves from now on to the (+, +) quadrant of x; the proofs of all the
following results can be adapted for all the other quadrants of x.

Consider in C+,+(x) a σ+-staircase {Ri} disjoint from Ẽ ∪ �̃− based at x, its associated
positive σ+-string {
i} (see Definition 8.1) and its extension by its E ∪ �−-safe zone Si :=
Si,E∪�− (see §8.4 for the definition of the Y-safe zone Si,Y, where Y = E ∪ �−).

We recall that (see Figure 19):
• R = {Ri} are the rectangles of a staircase disjoint from E ∪ �−. Their left unstable

sides are adjacent segments on Fu+(x), whose union is a bounded interval Iu(R).
We will denote qi = Fu+(x) ∩ ∂s,lowRi . The ratio �s(Ri+1)/�

s(Ri) is bounded and
bounded away from 1.

• (
i) is a positive σ+-string with origin at x. The 
i are right vertical subrectangles of
the Ri and the ratios �s(Ri)/�

s(
i), �s(
i+1)/�
s(
i) and their inverses are bounded.

Once again we may assume that the 
i are primitive σ+-rectangles
• the left unstable side of the rectangles Si is the right stable side of the Ri and 
i .

Their intersection with E ∪ �− is contained in their right side, and finally the ratio
�s(Ri)/�

s(Si) is bounded with bounded inverse.
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FIGURE 19. The rectangle 
i,2ρ in the safety zone Si . Colour available online.

8.6.2. Choosing the periodic orbits γ+ and γ−. Note that ∂s,low(
i+1) and ∂s,up(Si)

are two segments in the same stable leaf F s+(qi+1) that are adjacent to the same segment
∂s,up(
i).

Furthermore, their lengths have a bounded ratio �s(
i+1)/�
s(Si).

For every i and every ρ ∈ (0, 1) we define by Ji+1,ρ ⊂ ∂s,low(
i+1) the segment
adjacent from the right to ∂s,up(
i) of length

�s(Ji+1,ρ) = ρ · �s(
i+1).

Then there is 0 < ρ < 1 small enough with the following property:

Ji+1,2ρ ⊂ ∂s,up(Si) for all i.

Let 
i,ρ denote the left vertical subrectangle of Si , whose bottom stable side is Ji,ρ (see
Figure 19).

CLAIM 5. For any n > 0, there exists εn > 0 such that any fA periodic orbit γ+ ⊂ �+
which is εn-dense (in �+), has period greater than n and has more than n points in 
i,ρ

for any i.

Proof. Fix n ∈ N. Take γ+ a ε-dense periodic orbit in �+ and γ̃+ its lift on the bifoliated
plane. Up to the action of the group generated by A and the integer translations, we just
need to check the claim on finitely many primitive σ+-rectangles. Thanks to Remark 8.6,
we asked that σ+ be accumulated by points in �+ in each quadrant, so the interior of 
i,ρ

intersects �+. The ε-density implies that for a sufficiently small ε the period of γ+ is
greater than n and also that 
i,ρ contains more than n points of γ̃+.

Using the above notation and hypotheses, the aim of this section is to prove the following
proposition.

PROPOSITION 8.1. If n > 0 is large enough then for any vector field Y ∈ Surg(X, E ∪
�+ ∪ �−) for which the characteristic numbers of the surgeries along �+ are non-positive
and non-zero along γ+, where γ+ is εn-dense in �+, the quadrant C+,+(x) is incomplete
(undertwisted).
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Notice that (for the first time in this paper) we perform a surgery on a periodic orbit γ+
and we calculate the holonomy on a quadrant of a different periodic point.

Proof of Proposition 8.1. Proposition 8.1 is a direct consequence of the next lemma.

LEMMA 8.8. Following the above notation, let ti be the right endpoint of Ji,2ρ . If n > 0 is
chosen large enough then the unstable holonomy hu

Y ,qi ,qi+1
: F s+(qi) → F s

i (qi+1) satisfies
one of the following assertions:
• hu

Y ,qi ,qi+1
(ti) is not defined (so C+,+(x) is incomplete);

• ti+1 ∈ [qi+1, hu
Y ,qi ,qi+1

(ti)]s .

Proposition 8.1 follows because the length of [qi , ti]s tends to infinity as i → ∞, hence
the unstable holonomy from F s+(x) to F s+(q) (where q = lim qi is the endpoint of Is(R))
is not defined at t0.

We proceed to the proof of Lemma 8.8. Consider the holonomy game for ti in Ri ∪ Si .
Let us follow the positive unstable leaf Fu+(ti). As the rectangle Ri ∪ Si is disjoint from
Ẽ ∪ �̃− and as the surgeries along periodic orbits in �+ have non-negative characteristic
numbers, all holonomies are expansions as long as the point remains inside Ri ∪ Si .

If, while following the holonomy, we exit Ri ∪ Si before reaching F s+(qi+1), it is
impossible to go back in later in the game. Consequently, either the holonomy hu

Y ,qi ,qi+1
is

not defined at ti or ti+1 ∈ [qi+1, hu
Y ,qi ,qi+1

(ti)].
Therefore, we just need to check that the point ti exits Ri ∪ Si before reaching F s+(qi+1).

As all the holonomies that affect it inside Ri ∪ Si are all expansions, it is enough to prove
that ti exits Ri ∪ Si before reaching F s+(qi+1) only thanks to the points in γ+ ∩ 
i,ρ . Each
time the unstable manifold of ti crosses the stable manifold of one of these points, the
distance to this point is multiplied by a factor larger than λn. This distance is at least
ρ�s(
i), which is in bounded ratio with �s(Ri) + �s(Si).

In order to get the desired property, it is enough to choose n such that for every i, we
have

λn >
�s(Ri) + �s(Si)

ρ�s(
i)
,

which concludes the proof of the lemma and hence of Proposition 8.1.

The previous results can be proven in the exact same way for C−,−(x). Also, the
same result holds for the quadrants C+,−(x′), C−,+(x′) for any x′ ∈ σ̃−, when performing
non-negative surgeries on �− and non-zero surgeries along γ−.

8.6.3. Concluding the proof of Theorem 6. Now the proof of Theorem 6 just involves
applying Proposition 8.1 in the quadrants C+,+(x+) and C+,−(x−), where x+ ∈ σ̃+ and
x− ∈ σ̃− for a common choice of a small ε and of orbits γ+ ⊂ �+ and γ− ⊂ �−, which
are ε-dense in �+ and �−, respectively.

Remark 8.7. Theorem 6 only proclaims the existence of a pair of orbits γ+ and γ−. In the
previous proof, we have established slightly more, that is, for any two disjoint basic sets
�+ and �−, which are also disjoint from the arbitrary given set E, there is ε > 0 such
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that Theorem 6 holds for any γ+ ⊂ �+ and γ− ⊂ �− which are ε-dense in �+ and �−,
respectively.

8.7. The case of matrices with negative eigenvalues. In this section we consider a
hyperbolic matrix B ∈ SL(2, Z) with negative eigenvalues, and XB is the suspension flow
of fB on the manifold MB , the mapping torus of fB . We let A = B2 and denote by XA

the suspension flow of fA on MA. The matrix A is hyperbolic with positive eigenvalues
and MA is the 2-fold cover of the orientations of the stable/unstable bundles of XB . The
Anosov flow XA is the lift of XB on MA.

We start by proving Theorem 9 for matrices with negative eigenvalues. Let X, Y be
two disjoint finite fB -invariant sets. Assume that for every x ∈ X there exists a positive
X-rectangle with origin x disjoint from Ỹ and for every y ∈ Y a negativeY-rectangle with
origin y disjoint from X̃.

Let XA, YA be the lifts on MA of X, Y, respectively. We can identify the bifoliated
plane of XA and XB , and under this identification the lifts of XA, YA on PXA

= PXB

coincide with the lifts X̃, Ỹ of X and Y.
So, for every x ∈ X̃ there exists a positive XA-rectangle with origin x disjoint from

Ỹ, and for every y ∈ Ỹ a negative YA-rectangle with origin y disjoint from X̃. Thus
one may apply Theorem 9 to XA, XA, YA: there is N > 0 such that every Anosov flow
of the form Surg(XA, XA, YA, (mi)i∈I , (nj )j∈J ) with mi ≤ −N and nj ≥ N is not
R-covered.

In order to prove Theorem 9 for matrices with negative eigenvalues it suffices to notice
that any flow Y, obtained by surgery on XB along X, Y, negative on X and positive on Y
and larger than N in absolute value, lifts on MA to a flow YA obtained by a surgery on XA

along XA, YA, negative on XA and positive on YA and larger than N in absolute value
(see Remark 4.1). Therefore YA is non-R-covered and so is Y.

We will now prove Theorem 6 (and thus Theorem 5) for the above matrix B with
negative eigenvalues. Consider a finite fB -invariant set E. Lemma 8.7 provides two basic
sets �+ and �− disjoint from each other and from E and two periodic orbits with negative
eigenvalues γ+ ⊂ �+ and γ− ⊂ �−, which are ε-dense in �+ and �−, respectively, for
any ε > 0.

Let EA, �+,A and �−,A be the lifts on MA of E, �+ and �−, respectively. In the same
way, for any ε > 0, we denote by γ+,A and γ−,A the lifts on MA of γ+ and γ−, respectively.
As γ+ and γ− have negative eigenvalues, one gets that each of γ+,A and γ−,A is a (unique)
periodic orbit. Notice that �±,A is still a basic set: the issue is that its lift could be the
union of two disjoint basic sets (thus breaking the transitivity) which is avoided in this
case since γ±,A is a unique orbit. Note that γ±,A is ε-dense in �±,A

We now conclude the proof of Theorem 6 as in the case of matrices with positive
eigenvalues, by applying Proposition 8.1 for the flow XA, the finite fA-invariant set EA,
the two basic sets �±,A and γ±,A, where γ± is εn dense in �±, for n large enough.

9. Surgeries along two periodic orbits
The aim of this section is to give an overview of the vector fields obtained from a
suspension flow XA, where A ∈ SL(2, Z), by performing surgeries along exactly two
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FIGURE 20. In this figure, crossed rectangles correspond to impossible cases, green (grey) rectangles correspond
to cases that we consider and white rectangles to cases that are similar to a case that we consider up to symmetry.

Colour available online.

periodic orbits. In other words, using the previous notation, X and Y are each a single
periodic orbit.

There are, in theory, 16 different cases, according to the existence or non-existence
of positive or negative X-rectangles disjoint from Ỹ or Y-rectangles disjoint from
X̃ (see Figure 20). We denote by (�, ×) the existence of positive X-rectangles dis-
joint from Ỹ and the non-existence of negative X-rectangles disjoint from Ỹ. We
define similarly the symbols (�, �), (×, �) and (×, ×). We use the same notation for
Y-rectangles.

Lemma 2.3 implies that if there are no positive X-rectangles disjoint from Ỹ then there
are negative Y-rectangles disjoint from X̃. Therefore, seven of the above 16 cases are
impossible (see Figure 20).

Also, up to interchangingY and X, we can restrict ourselves to the upper triangular part
of Figure 20 and, up to interchanging positive and negative, we can furthermore restrict
ourselves to the following four cases among the cases in the upper triangular part.
(1) There are positive and negative X-rectangles disjoint from Ỹ and Y-rectangles

disjoint from X̃.
(2) There are no X-rectangles (either positive or negative) disjoint from Ỹ (so there are

positive and negative Y-rectangles disjoint from X̃).
(3) There are no negative X-rectangles disjoint from Ỹ and no negative Y-rectangles

disjoint from X̃ (thus according to Lemma 2.3 there are positiveX-rectangles disjoint
from Ỹ and positive Y-rectangles disjoint from X̃).

(4) There are no positive X-rectangles disjoint from Ỹ, but there are rectangles in the
three other categories.

In each case we will consider the vector field Zm,n obtained by an (m, n) surgery along
X and Y and discuss what we know about the bifoliated plane of Zm,n, according to the
position of (m, n) in the lattice Z2; see Figure 22.

Recall that, according to [Fe1], if n, m have the same sign (or one of them vanishes) then
Zm,n is R-covered twisted in the direction of that sign. We will therefore only consider the
case where m · n < 0.
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9.1. Case 1: existence of positive/negativeX,Y-rectangles disjoint fromY,X. This case
can be realized by considering periodic points in the neighbourhood of the homoclinic
intersections of any two fixed (a priori) periodic points, as already done in the proof of
Lemma 8.7. In this case:
• if n, m have opposite signs and are large enough, then Zm,n is not R-covered according

to Theorem 9;
• if n, m have opposite signs and one of them is large enough, then, using Lemma 8.1,

some quadrant is incomplete and Zn,m is not a suspension flow.

9.2. Case 2: no X-rectangle disjoint from Ỹ. This case can be realized as follows:
take any X ⊂ T2 and choose ε > 0 small enough such that any ε-dense periodic orbit
Y intersects the interior of every X-rectangle. In this case,
• if n is large enough in absolute value then, using Theorem 8, Zm,n is R-covered twisted

in the direction of the sign of n.

9.3. Case 3: no negative X-rectangles disjoint from Ỹ and no negative Y-rectangles
disjoint from X̃. In contrast to the previous cases, we are not aware of a large family of
examples in which this case is realized. Nevertheless, one could check that if X = (0, 0),
Y = (0, 1/2) and

A =
(

3 2
4 3

)

(see Figure 21) there are no negative X-rectangles disjoint from Ỹ and no negative
Y-rectangles disjoint from X̃. Our proof of this fact involves understanding the nature
of the continued fractions associated to the slopes of the eigendirections and thus goes
beyond the purposes of this paper. In this case,
• if n or m is negative and large enough in absolute value then, using Theorem 8, Zm,n

is R-covered negatively twisted.

9.4. Case 4: no positiveX-rectangles disjoint from Ỹ, but existence of all other rectangles.
We have not been able to come up with an example satisfying the hypotheses of this case,
but it seems possible to us that an example similar to that of case 3 also makes this case
realizable. In this case:
• if n is positive and large enough, then using Theorem 8, Zm,n is R-covered positively

twisted;
• if m is positive and large enough and n is negative and large enough in absolute value,

then, using Theorem 9, Zm,n is non-R-covered.

Remark 9.1. As we have seen above, for any hyperbolic matrix with positive eigenvalues
in SL(2, Z), we can reproduce cases 1 and 2 by choosing in an appropriate way a pair of
periodic orbits. We are not able to reproduce the cases 3 and 4 in a similar way. Indeed,
we think that for most matrices, there are no pairs of periodic orbits that satisfy those
hypotheses.
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FIGURE 21. In this figure red points ( ) represent lifts of the point (0, 1
2 ), blue points ( ) lifts of (0, 0), the red

(black) line is the stable eigendirection and the green (grey) one the unstable. An X-rectangle disjoint from Ỹ is
traced; we can see that there are no negative X-rectangles disjoint from Ỹ. Colour available online.

Remark 9.2. In each of the above cases, keeping in mind Fenley’s theorem, the set of
points in Z2 for which we do not know the outcome of the corresponding surgeries is
either finite or the union of vertical/horizontal half bands of the form [[k, l]] × Z+,− or
Z+,− × [[k, l]], where k, l ∈ Z (see Figure 22).

LEMMA 9.1. For any band B of the form Z × [[k, l]], where k, l ∈ Z, there are finitely many
(m, n) ∈ B such that Zm,n is a suspension flow.

Proof. Indeed, suppose that Zm0,n0 is a suspension flow. According to [Fe1], for every
m ∈ Z − {m0}Zm,n0 is a twisted R-covered flow. We deduce that there are at most l − k

suspension Anosov flows in B.

As a direct consequence of Remark 9.2 and Lemma 9.1 we obtain the following
proposition.

PROPOSITION 9.1. For every A ∈ SL2(Z) and γ+, γ− periodic orbits of XA, there are
finitely many (m, n) ∈ Z2 such that Zm,n is a suspension flow.
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FIGURE 22. The horizontal axis in each case in this figure is the m-axis and the vertical one the n-axis.

10. Explicit examples
In this section we consider more specifically the orbits of (0, 0) and ( 1

2 , 1
2 ). For any A ∈

SL(2, Z) the point (0, 0) is a fixed point of fA, but for the point ( 1
2 , 1

2 ) there are three
possibilities:
• either ( 1

2 , 1
2 ) is a fixed point,

• or ( 1
2 , 1

2 ) is a periodic point of period 2,
• or it is a periodic point of period 3, whose orbit is exactly

{(0, 1
2 ), ( 1

2 , 0), ( 1
2 , 1

2 )}.
For instance ( 1

2 , 1
2 ) is a periodic of period 3 (respectively, 2) for every matrix of the

form

Ak =
(

k k − 1
1 1

)
,

with k ∈ 2N∗ (respectively, k ∈ 2N + 3).

Remark 10.1. Given any matrix A ∈ SL(2, Z), any positive or negative (0, 0)-rectangle
contains a point of {(0, 1

2 ), ( 1
2 , 0), ( 1

2 , 1
2 )} + Z2

Indeed, a (0, 0)-primitive rectangle does not contain any other integer points and has a
diagonal whose endpoint is an integer point. Therefore, the middle point of that diagonal
cannot be an integer point, hence it belongs to {(0, 1

2 ), ( 1
2 , 0), ( 1

2 , 1
2 )} + Z2. Using the

previous remark and by applying Theorem 8, we have the following result.
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COROLLARY 10.1. Given any matrix A ∈ SL(2, Z), consider any vector field Y
obtained from XA by performing surgeries along the orbits corresponding to the set
{(0, 0), (0, 1

2 ), ( 1
2 , 0), ( 1

2 , 1
2 )} such that the characteristic numbers associated to the points

{(0, 1
2 ), ( 1

2 , 0), ( 1
2 , 1

2 )} have the same sign ω ∈ {+, −} and are large enough. Then Y is
R-covered and ω-twisted.

Also by our above remark, the triples (XAk
, (0, 0), {(0, 1

2 ), ( 1
2 , 0), ( 1

2 , 1
2 )}) with k ∈

2N∗ provide infinitely many examples that realize case 2 of §9.
Consider now the matrix Bk = A3

k when k ∈ 2N∗ and Bk = A2
k when k ∈ 2N + 3.

LEMMA 10.1. For any k, the Anosov map fBk
admits positive and negative (0, 0)-

rectangles disjoint from (̃ 1
2 , 1

2 ) and positive and negative ( 1
2 , 1

2 )-rectangles disjoint from

(̃0, 0).

Proof. Notice that the foliations of Ak and Bk coincide. We denote

F s
k = F s

Bk
= F s

Ak
and Fu

k = Fu
Bk

= Fu
Ak

.

Because Ak has positive coefficients its unstable direction is inside (R+)2 ∪ (R−)2

and its stable direction in R+ × R− ∪ R− × R+, where R+ = [0, +∞) and
R− = (−∞, 0].

By looking at the image of the (R+)2 quadrants one obtains that the unstable direction
Eu is between the increasing (usual) diagonal of R2 and the x-axis. In the same way, by
looking at the inverse image of the R+ × R− quadrant, one checks that the stable direction
Es is between the decreasing diagonal and the y-axis.

One deduces by the previous observations that the (0, 0)-rectangle admitting [0, 1] ×
{0} as a diagonal is a positive primitive (0, 0)-rectangle disjoint from (̃ 1

2 , 1
2 ). In the

same way, the (0, 0)-rectangle admitting {0} × [0, 1] as a diagonal is a negative primitive

(0, 0)-rectangle disjoint from (̃ 1
2 , 1

2 ).
Finally, the translated by ( 1

2 , 1
2 ) positive and negative (0, 0)-rectangles disjoint from

(̃ 1
2 , 1

2 ) are respectfully positive and negative ( 1
2 , 1

2 )-rectangles disjoint from (̃0, 0), which
concludes the proof.

The triples (XBk
, (0, 0), ( 1

2 , 1
2 )) provide infinitely many examples that realize the

situation (1) of §9.
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