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Abstract

Background: Clostridioides difficile infection (CDI) is a common and often nosocomial infection associated with increased mortality and
morbidity. Antibiotic use is the most important modifiable risk factor, but many patients require empiric antibiotics. We estimated the
increased risk of hospital-onset CDI with one daily dose-equivalent (DDE) of various empiric antibiotics compared to management without
that daily dose-equivalent.

Methods: Using a multicenter retrospective cohort of adults admitted between March 2, 2020 and February 11, 2021 for the treatment of
SARS-CoV-2, we used a series of three-level logistic regression models to estimate the probability of receiving each of several antibiotics of
interest. For each antibiotic, we then limited our data set to patient-days at intermediate probability of receipt and used augmented inverse-
probability weightedmodels to estimate the average treatment effect of one daily dose-equivalent, compared tomanagement without that daily
dose-equivalent, on the probability of hospital-onset CDI.

Results: In 24,406 patient-days at intermediate probability of receipt, parenteral vancomycin increased risk of hospital-onset CDI, with an
average treatment effect of 0.0096 cases per daily dose-equivalent (95%CI: 0.0053—0.0138). In 38,003 patient-days at intermediate probability
of receipt, cefepime also increased subsequent CDI risk, with an estimated effect of 0.0074 more cases per daily dose-equivalent (95% CI:
0.0022—0.0126).

Conclusions: Among common empiric antibiotics, parenteral vancomycin and cefepime appeared to increase risk of hospital-onset CDI.
Causal inference observational study designs can be used to estimate patient-level harms of interventions such as empiric antimicrobials.

(Received 15 November 2024; accepted 17 December 2024)

Introduction

Clostridioides difficile infection (CDI, formerly Clostridium difficile
infection) is a common and often healthcare-associated infection
associated with increased mortality, morbidity, and cost.1–3 Many
antibiotics are associated with both initial and recurrent CDI;
antibacterial use may be the most important modifiable risk factor.4–8

Observational analyses of antibiotic use and risk of CDI are
subject to multiple important biases. First, present-on-admission
codes are unreliable; it is therefore difficult to know from
administrative data whether CDI was a reason for admission or
acquired during the hospitalization.9 Second, physician selection of
antibiotics may depend on such factors as acuity of illness and
perceived risk of CDI, which confound apparent relationships

between antibiotic use and subsequent CDI. Third, the distinction
between colonization and infection remains imprecise, while diarrhea
is a common side effect ofmany antibiotics.10As such, physiciansmay
ascribe benign diarrhea to CDI among colonized patients who
received an antibiotic they believe to confer additional risk.

For patients who are given empiric antibiotics, which antibiotic
would confer the lowest increase in a patient’s risk of healthcare-
associated CDI remains an important and unanswered question.
Using a cohort of patients hospitalized for COVID-19 before the
widespread availability of vaccines, we used a causal inference
observational approach to estimate the effect of one day of different
antibiotics commonly given as empiric therapy on subsequent risk
of hospital-onset CDI.

Methods

Patient population and characteristics

HCA Healthcare is a large for-profit healthcare corporation that
operated 186 hospitals in the United States in 2020 and 2021. These
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hospitals are predominantly located in the southern United States,
and the majority are medium-to-large community hospitals.
Electronic health record (EHR) data from HCA facilities are
centralized into a data warehouse. Through the Consortium for
HCAHealthcare and Academia Research GEneration (CHARGE),
HCA made data available from a multicenter retrospective
observational cohort of adults 18 years of age or older who were
admitted to any HCA hospital in the U.S. between March 2, 2020
and February 11, 2021 for the treatment of SARS-CoV-2. The
cohort development has been described previously.11,12

From the CHARGE cohort, we included each patient’s first
hospitalization for treatment of COVID-19. Present-on-admission
codes are unlikely to have acceptable accuracy in this data set; we
therefore excluded hospitalizations with any doses of fidaxomicin,
oral vancomycin, or metronidazole in the first 48 hours of
hospitalization, as these patients could plausibly have had CDI on
presentation.9,13 We also excluded any hospitalizations shorter
than 48 hours. As sensitivity analyses, we used 24 and 72 hours as
the time of inclusion/exclusion as well. Our analyses included all
patient-days after inclusion/exclusion without discharge or a
previous diagnosis of healthcare-associated CDI.

Outcome and exposures

Our outcome was a diagnosis of CDI during the index
hospitalization, identified by the combination of an appropriate
ICD-10 code (A01.71 or A04.72) and receipt of one or more doses
of a possible treatment for CDI (metronidazole, oral vancomycin,
and/or fidaxomicin) before hospital discharge, an approach that
should be highly accurate despite our lack of testing data.14 The
first date of treatment was taken to be the date of CDI onset.
Patient-days after diagnosis and treatment of CDI were excluded.

We considered as exposures several antibiotics commonly used
in the care of patients with pulmonary infections (COVID-19 and
others): azithromycin, ceftriaxone, cefepime, levofloxacin, piperacil-
lin/tazobactam, vancomycin, and meropenem. On each patient-day,
we identified whether at least one daily-dose equivalent of each
antibiotic was administered. We calculated daily dose-equivalents
based on 24-hours of therapy using common inpatient doses. These
differ somewhat fromWHO’s defined daily dose (DDD); for example,
a daily dose-equivalent of vancomycin would vary depending on a
patient’s weight and we considered 1g of ceftriaxone to be treatment,
rather than only 2g. Further detail can be found in the Supplemental
Appendix.

Analyses and covariates

We theorized that: (1) antibiotics would be more likely to be given
to patients who were older, less clinically stable, or who had
received the same antibiotic the previous day, (2) patients would
differ in likelihood of receiving each antibiotic, and (3) the
tendency to administer antimicrobials would differ across
hospitals. We therefore created, for each antibiotic studied, a
three-level logistic model to estimate the probability of antibiotic
receipt on a given patient-day, with patient-days clustered by
patients and patients clustered within hospitals. We included
temperature, systolic blood pressure, heart rate, respiratory rate,
white blood cell (WBC) count, the number of days since admission,
and whether the patient had been administered the antibiotic of
interest on the previous day as covariates at the patient-day level
and age and sex at the patient level. Vital signs and labs were
averaged on each calendar day. We treated each continuous
variable as a restricted cubic spline to allow for nonlinear effects.15

Physicians might also alter antibiotic choice for patients admitted
from a nursing facility (for example, due to resistance patterns of
colonizing organisms); we therefore added whether the patient was
admitted from a nursing facility as a patient-level predictor.
A directed acyclic graph (DAG) is included in the Supplemental
Appendix.We usedmultiple imputation with chained equations to
reduce bias from missing data and the White, Royston, and Wood
guidelines to ensure imputation did not introduce Monte Carlo
error.16We ensured adequate calibration of each antibiotic’s model
using the Brier score.17 Detailed information regarding these steps
can be found in the Supplemental Appendix.

For each antibiotic, we then used augmented inverse probability
weighting (AIPW) to control for both the probability of antibiotic
receipt and the probability of CDI. This “doubly-robust” approach
may produce accurate estimates even if one of the two models is
misspecified, and therefore reduce sensitivity of results to model
specification.18,19 To estimate the probability of antibiotic receipt,
we used the three-level models described above. In our AIPW
outcome model, we included age, sex, and whether the patient was
admitted from a nursing facility as covariates. To avoid extreme
weights, we trimmed patient-days where the estimated probability
of antibiotic receipt was either less than 5% or greater than 95% for
each antibiotic, and ensured remaining patient-days were balanced
with respect to probability of receipt by visual inspection of
weighted density plots. If necessary to achieve model convergence
or appropriate propensity weighting overlap, we trimmed addi-
tional days from the analysis in increments of 1%. When doing so,
we also verified that the outcome model retained at least 10
outcomes per included predictor. Overlap plots are included in the
Supplemental Appendix.

Finally, to estimate how robust our findings would be to
unmeasured confounding, we computed E-values for each antibiotic
with a nonnull risk difference in our causal inference models.20

As a post-hoc analysis to better understand an unexpected
result, we also compared receipt of one dose-equivalent of
azithromycin against no antibiotics at all. Details of this analysis
are included in the Supplemental Appendix.

Analyses were approved by the Cleveland Clinic Institutional
Review Board and performed in Stata (version 16.2, College
Station, TX).

Results

Among 99,114 adults, we identified 104,647 hospital admissions.
We excluded 13,485 hospitalizations of 48 hours or less. Among
hospitalizations longer than 48 hours, we excluded 2,142 in which
the patient received one or more potential treatments for CDI in
the first 48 hours: 1,616 received metronidazole, 602 received oral
vancomycin, and 2 received fidaxomicin. Our resulting sample
included 91,411 index hospitalizations for COVID-19. Patient and
hospitalization characteristics are shown in Table 1.

A total of 128 hospitalizations (0.13%) included diagnosis and
treatment of CDI over a total of 922,187 patient-days, for an
incidence rate of 1.4 cases per 10,000 patient-days at risk.

The most prescribed antibiotic in this cohort was ceftriaxone
(24.9% of patient-days), followed by azithromycin (23.8%). Other
antibiotics included cefepime (7.3% of patient-days), vancomycin
(6.1%), piperacillin/tazobactam (5.7%), meropenem (2.0%), and
levofloxacin (1.1%). Around 53.2% of patient-days did not include
a daily dose-equivalent of any of our antibiotics of interest. Our
multilevel logistic regression models for each antibiotic demon-
strated reasonable discrimination and calibration, with C-statistics
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ranging from 0.85 (vancomycin) to 0.94 (meropenem) and Brier
scores ranging from 0.01 (levofloxacin) to 0.10 (ceftriaxone).
Additional information regarding each model, including calibra-
tion plots, are included in the Supplemental Appendix.

After trimming extreme probabilities, too few cases of CDI
remained among patients given meropenem or levofloxacin to fit
causal inference models. Numbers of patient-days and summary
statistics for patient-days included in our causal inference models
are shown in Table 2.

Parenteral vancomycin was associated with an absolute increase
of 0.0096 cases of hospital-onset CDI per daily dose-equivalent
(95%CI: 0.0053–0.0138). Each daily dose-equivalent of cefepime
was associated with 0.0074 more cases of hospital-onset CDI (95%
CI: 0.0022–0.0126). The effect of piperacillin/tazobactam did not
differ from the null. Azithromycin was associated with 0.0027
fewer cases of hospital-onset CDI per daily dose-equivalent
administered (95%CI: 0.0036–0.0018). Absolute risk differences
with receipt of one daily-dose equivalent of each antibiotic are
shown in Table 3. These results were robust to inclusion/exclusion
after 24 or 72 hours of admission. Ceftriaxone did not differ from
the null in our base-case analysis, but this estimate was more
sensitive to the time of inclusion/exclusion. Results of both
sensitivity analyses are included in the appendix.

Calculated as relative rather than absolute effects, azithromycin
was associated with a relative risk of CDI of 0.17 (95% CI: 0.10–
0.29), ceftriaxone was associated with a relative risk of CDI of 0.61
(95% CI: 0.36–1.03), cefepime was associated with a relative risk of
CDI of 4.62 (95% CI: 2.20–9.71), piperacillin/tazobactam was
associated with a relative risk of CDI of 2.24 (95% CI: 0.78–6.43),

and vancomycin was associated with a relative risk of CDI of 7.13
(95% CI: 4.25–11.95).

In our post-hoc analysis, receipt of azithromycin did not appear
to change the rate of subsequent CDI compared to the
counterfactual of receiving no doses of other considered anti-
biotics, with an absolute treatment effect of 2.6e-06 fewer cases per
daily dose-equivalent (P> 0.2, 95% CI: -0.0001 to 0.0001).

For an unmeasured confounder to shift the observed risk
difference from one daily dose-equivalent of vancomycin to a null
effect, its E-value would have to be 13.6. That is, a confounder that
was associated with both vancomycin administration and CDI by a
risk ratio of 13.6-fold each could explain away this effect, while a
weaker confounder could not. The corresponding E-value for
cefepime was 9.6.

Discussion

Antibiotic use is likely the most important modifiable risk factor
for Clostridioides difficile infection. Previous observational analy-
ses havemeasured the association between different antibiotics and
risk of C. difficile colonization, infection, and recurrent infec-
tion.4,6,21–24 In this study, we used causal inference observational
models to estimate the effect of one daily-dose equivalent of each of
several common empiric antibiotics, compared to not administer-
ing one daily dose of that antibiotic.

Prompt broad-spectrum antibiotics can improve survival in
severely ill patients.25 However, antimicrobials have untoward
effects as well, which must prompt stewardship and deescalation.
Appropriately balancing the benefits and harms of antibiotics to

Table 1. Patient and hospitalization characteristics

Variable

Not diagnosed with or not treated
for inpatient CDI

Diagnosed with and treated
for inpatient CDI Overall

(N= 91,022) (N= 128) (N= 91,150)

Age in years, median (IQR) 67 (54–77) 74 (64–82) 67 (54–77)

Male sex (%) 53.4% 45.3% 53.4%

Patient state of residence

Texas 27,115 31 27,146

Florida 26,616 43 26,659

California 5,198 10 5,208

Georgia 4,891 6 4,897

Tennessee 4,744 9 4,753

Nevada 4,714 8 4,722

Other 17,744 21 17,765

Admitted from nursing facility (%) 3.2% 6.3% 3.2%

Taking proton-pump inhibitor before admission (%) 11.9% 12.5% 11.9%

Length of stay, median (IQR) 7 (4–12) 10 (6–18) 7 (4–12)

Received at least one day of azithromycin 31.9% 16.9% 31.9%

Received at least one day of ceftriaxone 32.6% 34.7% 32.6%

Received at least one day of cefepime 6.4% 24.2% 6.5%

Received at least one day of piperacillin/tazobactam 4.4% 10.5% 4.5%

Received at least one day of meropenem 1.0% 0.0% 1.0%

Received at least one day of levofloxacin 1.2% 2.4% 1.2%

Received at least one day of IV vancomycin 4.9% 43.5% 5.0%
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optimally deescalate empiric therapy would require clear estimates
of patient-level harms and societal externalities, not simply the risk
of hospital-onset CDI. Still, we hope that our precise estimates of
one adverse consequence can inform future decision analyses.

This analysis offers several advantages over previous observa-
tional work. First, all patients were admitted for a distinct reason of
acute onset (COVID-19). Few patients would be expected to have
acute onset of CDI and COVID-19 simultaneously in this epoch of
COVID-19; after excluding patients who received possible CDI
treatments in the first 48 hours of hospitalization, our cohort
should contain almost no patients admitted for CDI. Second, due
to early COVID-19 precautions, isolation procedures likely
exceeded those used in most other times and places.26 If non-
pharmaceutical hospital care affects risk of CDI, as is sometimes
theorized, this data set allows a clearer estimate of the effect of
antibiotics alone. Third, we used causal inference models to
minimize confounding by indication. To the extent that the
decision to administer each antibiotic (compared to alternatives
without that antibiotic) can be modeled based using variables
captured in our data set, our use of causal effect models should
minimize this critical bias. Fourth, all patients in our cohort were
admitted for a viral infection which is not improved by any
antibiotics and which has low rates of bacterial coinfection.27–29

This allows more confidence in causal exchangeability: after
controlling for probability of antibiotic receipt, patient outcomes
(including rates of CDI) should be substantially similar in patients
who received antibiotics as those who did not.

To parallel the decision faced by clinicians considering
initiating or discontinuing empiric antibiotics, each of our causal
inference models compares one daily dose-equivalent against
management without that antibiotic, rather than comparing
against no antibiotics whatsoever. However, this means the results
for each antibiotic are not directly comparable. A physician
considering cefepime had different available alternatives than a
physician considering azithromycin or vancomycin. In our
primary analysis, azithromycin appeared to reduce the risk of
CDI, which is discordant with theory and observational
analyses.22,30 In our post-hoc analysis comparing azithromycin
to no antibiotics, azithromycin did not affect risk of CDI.
Physicians who prescribed azithromycin may have done so in lieu
of higher-risk alternative coverage of atypical organisms (includ-
ing, for example, fluoroquinolones), leading to an apparently lower
risk when physicians chose azithromycin. In other words, the
mechanism of this apparent risk decrease may be antimicrobial
substitution rather than the macrolide itself.

Unlike other empiric antibiotics in our study, physicians would
have lacked a clear alternative to vancomycin. Our data were notTa
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Table 3. Absolute treatment effect of one daily dose-equivalent of each
antibiotic on the rate of hospital-onset C. difficile infection

Absolute risk
increase 95% CI p

Mean
NNH

Azithromycin −0.0027 −0.0036 −0.0018 <0.001 –

Ceftriaxone −0.0005 −0.0015 0.0005 >0.2 –

Cefepime 0.0074 0.0022 0.0126 0.006 135

Piperacillin/
tazobactam

0.0025 −0.0020 0.0070 >0.2 399

Vancomycin 0.0096 0.0053 0.0138 <0.001 105
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adequate to test other antibiotics used for coverage of methicillin-
resistant Staph aureus (MRSA), such as daptomycin, linezolid, or
ceftaroline; that vancomycin confers the highest risk of CDI in this
study could reflect the lack of an alternative. Replacing empiric
vancomycin treatment with an antimicrobial of similar spectrum
may be ineffective or counterproductive. Clindamycin in particular
seems likely to confer even higher risk than vancomycin.31 If
physicians wish to minimize the risk of hospital-onset CDI from
empiric antibiotics, a patient’s risk of infection with MRSA is a key
decision parameter.

Previous observational analyses have found associations
between vancomycin and CDI, and our study furthers a hypothesis
that parenteral vancomycin is causally related to CDI.30,32

Previously hypothesized mechanisms include excretion of vanco-
mycin in stool at concentrations adequate to disrupt colonic flora
but inadequate for treatment of C. difficile.32 It is also possible that
vancomycin (or any of the other antibioticswe studied) causeCDI in a
practical sense, but not in a biologic sense.33 Antibiotics commonly
cause loose stools, which could precipitate testing for and diagnosis of
CDI in colonized persons. If future analyses demonstrated that
specific antibiotics increase C. difficile testing with equivalent rates of
diagnosis and treatment, those antibiotics could be thought of as
causing inpatient identification of C. difficile carriage rather than
causing CDI.10 Such an approach would be similar to work on
“epidemiologic signatures” described in other settings.34

As with all observational studies, our data set is likely to have
unmeasured confounding. However, E-value calculations argue
against unmeasured confounding as a primary explanation of our
results. To shift our estimated risk difference for one daily dose-
equivalent of vancomycin to a null effect, an unmeasured
confounder would have to be associated with both vancomycin
administration and hospital-onset CDI by 13.6-fold. Meanwhile,
our conclusion that cefepime increases the risk of hospital-onset
CDI would be vulnerable to an unmeasured confounder that had a
9.6-fold association with both cefepime administration and CDI.
Unmeasured confounders with risk ratios lower than those would
not change the conclusions that each of those antibiotics increases
the risk of CDI.

Other limitations remain. Our data set lacks CDI test results; a
data set with CDI testing could address time-dependent
confounding through daily probability of testing, further unrav-
eling the causal pathway between specific antibiotics and CDI.35

Also, widespread isolation precautions and the gastrointestinal
manifestations of COVID-19 may have changed testing practices
in this cohort and/or changed the probability of new exposure to
C. difficile.36While that allows amore precise estimate of the effects
of antimicrobials, the distinctive features of inpatient care in this
period may limit generalizability to other cohorts. We lacked some
common measures of nosocomial infection, such as colonization
pressure. The high mortality of this condition may have led fewer
future cases of CDI to become apparent. We investigated hospital-
onset CDI, not cases that arise following discharge. Finally, we
considered each daily dose-equivalent of each antibiotic to be
independent of other doses of that antibiotic and doses of other
medications, such as other antibiotics and acid-suppressive
therapies. If multiple doses of one antibiotic have a more-than-
additive effect, or if other medications (including antimicrobials)
modify the effect of the antibiotics we considered, our estimated
effect of one daily dose-equivalent would be a simplistic
representation of reality.

Despite these limitations, we believe these analyses further our
understanding of causal relationships between empiric antibiotics

and CDI. For an outcome as rare as CDI, a randomized clinical trial
would likely be impracticable even for the most common
antimicrobials in clinical use. Where randomized trial data are
lacking, causal inference observational analyses like this one can
further the argument for causal relationships.37–39 In other recent
work, methods similar to ours have produced results similar to a
randomized trial.40 In hopes of informing clinical practice, we
explicitly designed our analyses to reflect the consequences of the
decision faced in clinical practice for hospitalized patients: whether
or not to administer a chosen antibiotic for an acutely ill patient on
a given day.

In summary, we used a large cohort of patients hospitalized for
care of COVID-19, many of whom were given empiric antibiotics,
to study the causal effect of different antibiotics on risk of hospital-
onset C. difficile infection. Parenteral vancomycin and cefepime
each appeared to increase the risk of hospital-onset CDI.When the
risk of MRSA infection is low, stewardship of vancomycin without
substitution by other MRSA-covering agents may be the best
strategy to reduce hospital-onset CDI. Efforts to reduce hospital-
onset CDI may wish to focus on identifying colonized persons,
clarifying the distinction between CDI colonization and infection,
and identifying persons for whom MRSA is a likely pathogen.
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