
GENERALIZED LIE ELEMENTS 

RIMHAK REE 

Introduction. Let X(ij), i ,j = 1, 2, . . . , m, be m2 elements in a field K 
of characteristic zero such that \(ij)X(ji) = 1 for all i and j , and Xi, x2, . . . , xw 

non-commutative associative indeterminates over K. Define the elements 
[xnXi* . . . xin] inductively by [xt] = xt and 

n 

[Xi\Xi2 > • • Xin\ — Xii\_Xi2 • • • X in\ J_ J[ A ^ i ^ y J [Xi2 • . . Xin\XiX. 
v=2 

Any linear combination of the elements 

[XiiXi2 • . . Xin\ 

with coefficients in K will be called a generalized Lie elememt. Generalized 
Lie elements reduce to ordinary Lie elements if \{ij) = 1 for all i and j . 

The purpose of this paper is to generalize to the generalized Lie elements 
the following: a theorem of Friedrichs, a theorem of Dynkin-Specht-Wever 
(2), and the Witt formula on the dimension of the space spanned by homo­
geneous Lie elements of a fixed degree. The set of all generalized Lie elements 
will be made into an algebra which generalizes the ordinary free Lie algebra. 
This algebra turns out to be free in a certain sense. We shall also generalize 
the algebra associated with shuffles in (2).1 

1. Generalized Lie algebras. Throughout this paper K will denote a 
field of characteristic zero. By a bi-character in K of an additively written 
abelian semi-group M we shall mean a map x : M X M —> K satisfying the 
following: 

X(p, <r + r ) = x ( p , <0x(p, T ) , X ( P + o-, T ) = x ( p , T ) X O , T) 

for all p, o-, r in ikf. A bi-character x will be called skew-symmetric if x(o"> T) 
X(T, cr) = 1 for all o-, r in M. An (associative or non-associative) algebra A 
over i£ is said to be graded by the semi-group M iî A is a direct sum of sub-
spaces Ap indexed by p Ç i f such t h a t / Ç ^4P and g £ Aa imply fg G ^p+r. 

Let L be an algebra graded by M, and let x be a skew-symmetric bi-
character of M in i£. We shall call L a generalized Lie algebra of type x, or 
simply a x-algebra, if / Ç Lp, g Ç Lff, imply 

[/, *] + X(P, * )&/ ] = 0; 

Received March 30, 1959. 
xThe referee remarks that the algebras considered in this paper include, as a special case, 

the "left Lie algebras" which are used in homological algebra (cf. for example, the exposition 
by P. Cartier in Séminaire Bourbaki, May, 1955). 
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{fAi,h}}-x(p,<r)[g,lf,h}} = [\f,g],h], 

where [/, g] denotes the product in L o f / and g. In case x is trivial, a x-algebra 
is clearly an ordinary Lie algebra. Let A be an associative algebra graded by 
M. Define a new multiplication [a, b] in the vector space A by 

[a, b] = ab — x(p> o)ba, 

where a £ Ap, b G Aa. Then we obtain a new algebra which we shall denote 
by [A], It can be seen easily that [A] is a x-algebra. 

Let L and V be two algebras graded by the same M. A linear map <f>: L —» Z/ 
will be said to respect grade if / 6 Lp implies #(/) Ç Lp '. Let L be a x-algebra 
and 4̂ an associated algebra both graded by M. A grade-respecting linear 
map <j>: L—> A will be called a linearization of L in 4̂ if </> is a homomorphism 
of L into [yl], that is, if 

for all / G Lp, g G Z,,. The tensor algebra T over the vector space L is graded 
by M if r p is defined to be the subspace spanned by elements of the form 
/ i ® /2 ® . . . ® /n, where ft G Lpi and pi + p2 + . . . + pn = p. Let J be the 
two-sided ideal of T generated by homogeneous elements of the form 
/ <8> g - X(P, o-)g ® / - [/", g], where/ e Lp. g e La. Then the algebra Lr = T / J 
is also graded by ikf, and the inclusion map L —> T induces a linearization 77 
of L in [/. The algebra U will be called the universal enveloping algebra of L ; 
it can be characterized by the property: for any linearization </>: L —> A of L 
into an associative algebra A, there exists a grade-respecting homomorphism 
£: £7—*A such that 0 = £ o 77. 

2. Finitely generated free x-algebras. From now on we shall consider 
X-algebras L satisfying the following conditions (2.1) — (2.4): 

(2.1) M is a free abelian group of rank m, with basis elements pi, p2, . . . , pm; 

(2.2) Lp = 0 unless p is of the form p = /ipi + t2p2 + . . . + tmpm, where 
h, h, . . . ,tm are non-negative integers not all of which are zero; 

(2.3) each LPi (i = 1, 2, . . . , m) is of dimension 1; 

(2.4) L is generated by LPl, LP2, . . . , LPm. 

A x-algebra L satisfying (2.1) — (2.4) above, will be called a free x-algebra 
of rank m if any x-algebra satisfying (2.1) - (2.4) is a (grade-respecting) homo-
morphic image of L. The existence of a free x-algebra can be seen as follows: 
let F be the free (non-associative) algebra generated by an w-dimensional 
vector space E over the field K. If we choose a basis of E over K, then F can 
be graded in an obvious way by the free abelian group M of rank m. Let J 
be the two-sided ideal of F generated by homogeneous elements of the forms 
fg + X(P, <r)gf and f(gh) - X(P, <r)g(jh) - (fg)h, where / Ç Fp, g 6 / v Then 
L = / ? / / is easily seen to be a free x-algebra of rank m. 
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Let U be the universal enveloping algebra of the free %-algebra L of rank 
m with the linearization map rj : L —> U, and let A be the free associative 
algebra over K generated by m free generators x±, %2, . . . , xm. Since L is 
free, there exists a homomorphism 0: L —» [̂ 4] such that #(/*) = £*, i = 1, 
2, . . . , m, that is, 0 is a linearization of L in ^4. Then by the definition of U, 
there exists a grade-respecting homomorphism £: U -+ A such that <t> = % o rj. 
Then £ must be an isomorphism, since 4̂ is free-associative. Thus we may regard 
[ /asa free associative algebra with free generators X\ = rj(fi),. . . , xm = rj{fm). 
The fact that rç(/) = 0 implies .F = 0 can also be proved in exactly the same 
way as in the case of free Lie algebras (3, 1-9). Hence we may identify L as 
the subalgebra of [U] generated by Xi, . . . , xm. It can be seen easily that L 
is spanned by the elements 

[X^Xig . . . Xfn\ = [Xftl. . '[Xin_1Xin\ . . . J J 

defined in the Introduction by using \(ij) = X(PU Pj)> Thus we may state 

THEOREM 2.5. Let K be a field of characteristic zero, xi, x2, . . . , xm non-com­
mutative associative indeterminates over K, and \(ij), i,j = 1, 2, . . . , m, be m2 

elements in K such that \{ij)\(ji) — 1 for all i and j . Then the vector space 
over K spanned by the elements 

% i\X i2 • • • %in\ 

defined above forms a free x~aheora L w ^ respect to the multiplication 

[[X fj . . . Xlp\, [Xj l . • . X j g j j 

V Q 

— [X-i^ . . . Xip\[Xjl . . . Xjq\ J ^ J ^ A \l>njv) [%ji • • • %jq\l%ii • • • %ip\' 
M=l v=l 

The universal enveloping algebra of L is isomorphic to the free associative algebra 
with m free generators. 

It should be understood in the above theorem that L is graded by M as 
follows: for p = tipi + hp^ + . . . + tmpm, Lp consists of linear combinations 
of elements of the form 

X i\X i2 • • • "^inl 

in which, for each i, Xi appears tt times. Also, x is defined by X(PU Pj) = M^)-

3. A generalization of a Witt formula. Let L be as in Theorem 2.5. 
An element in L will be called a homogeneous element of degree n if it is a linear 
combination of elements of the form 

Xi\Xi2 • • • %in\' 

In this section we shall compute the dimension of the space spanned by all 
homogeneous elements of degree n, following a method given by Witt (4). By 
the same method one may be able to compute the dimension of each Lp. 

https://doi.org/10.4153/CJM-1960-044-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-044-x


496 RIMHAK REE 

Let A and B be two associative algebras both graded by M, and A ® B 
the tensor product of A and B regarded as vector spaces over K. Using a 
bi-character % of M, define a multiplication in the vector space A ® B by 

(a ® b)(a' ® bf) = x(cr, p){aa' ® bb') 

where b £ Bff, ar £ Ap
f. T h e algebra obtained in this way is easily seen to be 

associative, and will be denoted simply by A ® B. I t will be used in the 
proof of (3.1), below, as well as in the formulation of a generalization of a 
theorem of Friedrichs. 

Now, for the skew-symmetric bi-character % of M, we have X(PJ p) = ± 1 
for any p £ M. T h e subspace Lp of the free %-algebra L will be called positive 
or negative according as x(p> p) = 1 or x(p, p) = " 1- Choose a basis for 
each positive Lp and let the union of these basis elements be P i , P 2 , P* . . . . 
Also, choose a basis for each negative Lp and let the union of these basis 
elements be <2i, Q2, Q% . . . . Let rj: L —> U be the linearization of L into its 
universal enveloping algebra U. Then we have 

T H E O R E M 3.1. The elements 

v(P1y
i „(P,)M • • • niP*)"1 v(Qi)tl vmh • • • v(Qn)'

n 

form a basis of the universal enveloping algebra U of the free x~algebra L. Here 
the indices run as follows: Si, s2 . . . are non-negative integers; each of tt is 
either 0 or 1; k, n = 0, 1, 2 . . . . 

Proof. Since, for each i, 

v([Qu Qt]) = v(Qi)2 - X(P, p)v(Qi)2 = 2v(Qi)\ 

it follows t h a t v(Qt)2 is a linear combinat ion of some ^ ( P ^ ' s and some rj(Qkys. 
Then by the definition of the linearization, it is clear t h a t U is spanned by the 
given elements. T h u s it remains to show t h a t the given elements are linearly 
independent . For this purpose, let U' be a replica of U with grade-respecting 
isomorphism i: U —> U', and let 7/ = 1 o rj. Let U ® U' be the tensor product 
of £ /and U' with respect to %• Then Z7 ® t / ' is also graded by M in an obvious 
way, and the map rj: L —» U ® U' defined by 

v(f) =v(f) 0 1 + 1 ®v'(f) 
is easily seen to be a linearization of L into £7 ® U'. Therefore there exists 
a homomorphism £: U —* U ® Ur such t h a t Coy = rj. Using £, one may now 
prove the linear independence of the given elements in exactly the same way 
as in the case of ordinary Lie algebras (3, pp . 1-8). We omit the details. 

Now, let the free x-algebra L given in (2.5) be graded by M as in the 
remark following (2.5). Let the basis elements pi, p2, . . . , pm be such t h a t 

Xv p i , . . . , LtPp 

are positive while 

•L'Pp+ll ' • ' 1 •L'Pp +q' 
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(p + q = m) are negative. Since, for p = t\p\ + . . . + tmpm, 

t2 

x(p,p) = n x(pupj)uh = n x(pt,PU i = (-1)', 
i.j i 

where t = tp+\ + . . . + tp+g, it follows that 
[XiiXi2 . • . 0Cin\ 

belongs to a positive Lp if and only if its degree with respect to xp+i, . . . , xp+Q 

is even. Denote by pn and qn, respectively, the numbers of P / s of degree n 
and the numbers of Q/s of degree w, and consider the formal power series 

F(x, X) = A (1 + x* + x2d + . . .)Pd(l + Axd)M 

with a parameter X. The coefficient cn(X) of xw in F(x) is a polynomial in X 
with integral coefficients. By (3.1), cn{\) is equal to the dimension of the sub-
space of Uspanned by all homogeneous elements of degree n; cn(l) = (p + q)n. 
On the other hand, also by (3.1), cn(— 1) = an — bny where an denotes the 
dimension of the subspace An of U spanned by all homogeneous elements 
which are of even degrees with respect to xp+i, . . . , xp+q, and where bn denotes 
the dimension of the subspace Bn of U spanned by all homogeneous elements 
which are of odd degrees with respect to xp+i,. . . , xp+Q. Since U is free associa­
tive, An (resp. Bn) is spanned by elements 

fl**' 12 • * • •*' in 

of even (resp. odd) degree with respect to xp+i, . . . , xp+q. Thus 

an = Cntopn + Cn,2p
n~ q + . . . , 

bn = Cn,\pU~Xq + Cn,Zpn~Zq + . . • , 

where CnfT are binomial coefficients. Hence an — bn = (p — q)n, and we have 

P(x, 1) = 1 + (p + q)x + (p + qYx* + . . . , 

F(xf 1) = - 1 + (p - q)x + (p - q)V + . . . . 

Taking logarithms of both sides, and comparing the coefficients of xn/n, we 
have, for n = 1 , 2 , . . . , 

T,dpd-Z (-l)n,ddqd= (P + qT, 
d\n d\n 

Z # « - S dqt = (p - q)n. 
d\n d\n 

Let k > 0 be an odd integer. Then, since 

£ {-lY"mdqd =Zdqd-Z 2adqiai, 
d\2ak d|2«-lA; d\k 

Z dpd= T, dpd + £ Tap** 
d\2ak d|2«-ifc d\k 

we obtain, from the above, 
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Z 2"d(p,ad + q2ad) =(P + qfk -(p- qf"-l\ 
d\k 

Then by the Mobius inversion formula, we have 

P** + 2« = ~ E »(d)((P + qfaW -(P- qf-lm). 
4 R d\k 

In case a = 0, the above reduces (for odd k) to 

ft + fe = J l /*(<*)(/> + «)*" 

Following Witt, we shall use the notations: 

^*(w) = pn + g». 

Then the above can be summarized as 

THEOREM 3.2. JTze dimension \f/*(n) of the vector space spanned by all elements 
of the form 

\X iyX Î2 • • • % i n \ 

is given, for odd k, by 

rm = +m + ~ z MW((P + ff)*"1*" - (P - or-1™), 
^ & d\k 

where p denotes the number of indices i such that \{ii) = x(pu Pt) = 1 while 
q denotes the number of indices j such that A (jj) = — 1. 

It should be remarked that the function \f/*(n) is completely determined 
by the values of X(ii), and independent of other values of \(ij). The Witt 
formula is obtained as the case q = 0. In case all \(ii) = — 1, we have 
p = 0, and we may deduce from the above that 

,*/ \ _ jV(n) f° r n = 0, 1,3 (mod 4), 
^ W " \yf,(n) + \l/($n) for n = 2 (mod 4). 

4. An algebra associated with shuffles. We shall generalize the algebra 
defined in (2) to apply to generalized Lie elements. If r and s are positive 
integers, define a shuffle of type {r, s) to be a permutation a of the numbers 
1, 2, . . . , r + s such that 1 < o-(/x) < a(v) < r or r < er(/x) < o-(p) < r + 5 
implies n < v. Take w2 elements A({/) in X arbitrarily, and define an algebra 
A over i£ as follows. A has the basis 

{1} \J {a(ii . . . in)\ii, . . . , in = 1, 2, . . . , m; n = 1, 2, . . .} 

with the multiplication table: 1 is a unity element; 

a(ii. . . ir)a(ir+1 . . . ir+s) = ^ \{(j)a{ia{i)ia(2) . . . Mr+s)), 
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where the sum ranges over all shuffles a of type (r, s) while X(o-) denotes 
the product of all A(MM)> V*o) s u c n t h a t /* < v and c(/x) > o-(V). (We set 
\(a) = 1 il a is the ident i ty permutat ion.) 
Thus , for example, 

a(i)a(jk) = a(ijk) + X(ji)a(jik) + X(ji)\(ki)a(jki). 

T H E O R E M 4.1 . The algebra A is associative, and if \(ij)\(ji) = 1 for all i 
and j , then it satisfies the generalized commutativity: 

7 S 

a(ji • • Js)a(ii. . . ir) = FI Yl Hijv)a(ii. . . ir)a(ji • . Js)-

Pr^6>/. If 

/ = a ( i i . . . i r ) , g = a ( i r + i . . . ir+s), h = a(ir+s+i . . . i r + ,+ «). 

then it is readily seen t h a t both (Jg)h and /(gÂ) are of the form 

22 A((X) a(ia(l)iff(2) • • • ^ ( r + s + o ) » 

where a runs over all permuta t ions of 1, 2, . . . , r + 5 + t such t ha t any one 
of the three conditions 

1 < O-(M) < <r(v) < r, 

r < O-(M) < o-W < r + s, 

r + s < <r(n) < <r(v) < r + s + t 

implies n < v, and where X(o-) denotes the product of all A(MM)M»O) such 
t h a t id < v and o-(/i) > <r(v). Hence (fg)h = f(gh). T h e second half of the 
theorem may be verified easily. 

In the rest of this section, we shall assume tha t X(ij)\(ji) — 1 for all i 
and j . Making the convention t ha t a{i\ . . . ir) s tands for 1 whenever the 
set { i i , . . . , ir) of indices is empty , we define the bilinear operation V in A by 

a ( i i . . . ir) V a(ji. . . js) = a{ix . . . ir j x . . . j , ) . 

We also make the convention t h a t the multiplication in A has priority over 
the operation V . 

Define the elements a[iii2 • . . in] in A inductively by a[i] = a(i) and 

7 1 - 1 

a [ i i i 2 . . • in] = a( i i ) V a[i2. . . in] — Yl M i ^ V ( i n ) V a [ i i . . . i„_i]. 

For the generalizations in the next section of some theorems on Lie elements, 
we need the following 

T H E O R E M 4.2. For n > 0, we have 
n 

^ a[ii . . . i s ] a ( i s + i . . . in) = na(n . . . in) . 
s = l 
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The above theorem may be proved in exactly the same way as in the 
case where all \(ij) = 1 (2), if we use the linear map D: A —» A defined by 
D(l) = 0 and 

Da(ixi2. . . in) = y(ii)a(i2. . . in), 

where 7(1), . . . , y(m) are m arbitrary elements in K. We omit the proof 
of (4.2). Incidentally, the map D becomes an anti-derivation of A if all 
Hij) = -1. 

THEOREM 4.3. If the linear map <\>\ A—> A is defined by 0(1) = 0 and 
(t>(a(i1i2 . . . in)) = a\i\ii . . . in], then <t>{a(ii . . . ir)a(ir+1 . . . ir+s)) = 0 for all 
ii, i2j . . . , ir+s = 1, 2, . . . , m\ r > 0, 5 > 0. 

Proof. We shall proceed by induction on n = r + s. If n = 2, then the 
theorem can be verified easily. Assume n > 2 and that the theorem is proved 
for smaller values of n. By the definition of the multiplication in A, we have 

0(a( i i . . . ir)a(ir+i. . . in)) 

= 23 MO-MMD) V a[i(2) • • • ïa(n)] 

w - l 

— X M<0 I I ^(io(n)ia{v))a{ia{n)) V a ^ d ) . . . iff(n_i)], 

where the sums run over all shuffles of type (r, s), r + s = n. Since o-(l) = 1 
or r + 1, and o-(n) = r or ?z, the right-hand side of the above equation can 
be written 

23 M<0a(*"i) V a[ia(2) . . . i*in)] 
<T(l) = l 

+ 23 X((r)a(ir+1) V 
<r(l) = r + l 

w - l 

- 23 M<0 IT \{iri<r{v))a{ir) V a[4(i) . . . i,(„_i)] 
<r(n) = r v=l 

w - l 

- 23 X(°") E[ Hinia(v))a(in) V «[^(1) . . . V(n-i)] 
<r(w)=w v = l 

= a(ii) V 0(a( i 2 . . . ir)a(ir+1 . . . in)) 
r 

+ Et X(ir+i^)«(^r+i) V 0(a( i i . . . iT)a(iT+2. . . in)) 
v=l 

n n 

- E[ MVr) I l \{iriv)a{ir) V <i>{a{iY. . . iT^x)a{iT+1. . . iB)) 
M=r+1 y= l , ^ r 

r - 1 
- H Hiniv)a(in) V 0(a( i i . . . i r)a(ir+i. . . V-i)) 

v = i 

= 0 
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because of the induction assumption and the fact that, for r = 1, 

n n 

n Mvo n Hirip) = i. 
COROLLARY 4.3. If 0 < r < n, then 

na(ii, . . . , ir)a(iT+i. . . in) = 2^ X(o-)(na(i<r(i) . . . i ^ ) ) — a[ia{i) . . . 4u)])> 

wAere /&e 5MW ranges over all shuffles of type (r, n — r). 

The above corollary, together with (4.2), shows that the (n — l)mn ele­
ments a(ii . . . ir)a(iT+i . . . in), i\, . . . , in = 1, 2, . . . , m\ 0 < r < n, and the 
mn elements na(ii . . . in) — a[ii . . . in] span the same vector space over K. 
Also from (4.2) we obtain 

COROLLARY 4.4. The linear map </>0: A —* A defined by $o(l) = 0 and 

<l>o(a(iii2 • . . in)) = n~la[iii2 . . . 4] , 

/or n > 0, is a projection, that is, </>o2 = </>o-

The following theorem is essentially a generalization of Theorem 2.6 of 
(2), and may be proved by using the map D introduced in the above. 

THEOREM 4.5. For n > 0, we have 

n 

Z) ( -1 )* n Miviv)a(ii • • • is)a{inin-i. . . i8+1) = 0. 
s=0 s<n<v<n 

5. Generalization of a theorem of Friedrichs. Let L be a free x-
algebra of rank m, and r\\L—> £/ the linearization of L into its universal 
enveloping algebra. Let U' be a replica of U with the grade-respecting iso­
morphism i: £/—> [/' and rj' = L o y. Let £/ 0 £/' be the tensor product of 
U and Uf with respect to x- I n the course of the proof of (3.1) we have seen 
that the map rj: L —> U 0 U' defined by 

v(f) = v(f) 0 1 + 1 ®v'(f) 
is a linearization and that there exists a homomorphism £: Z7 —> £/ 0 C/7 such 
that £ o rç = 7?. Now the following theorem generalizes a theorem of Fried­
richs (2). 

THEOREM 5.1. Let rj, i, and £ be as above. Then an element u in U belongs 
to the image rj (L) of L under rj if and only if 

%(u) = u 0 1 + 1 0 L(U). 

Proof. The "only if" part follows from the fact that r) = £ o rj. In order 
to prove the "if" part, let Xi, x2, . . . ,xm be free generators of U and write, 
for simplicity, xt and x/ for xt 0 1 and 1 0 i(Xi), respectively. If 

V" / { ®-i\... inP" il ' ' ' "^ in 
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with coefficients in K, then 

£(«) = Z) «il... <»(*«! + **l) • • • (**» + %'in) 

n 

= HI X) *(a(ii • • • i*)a(is+i. . . in))xu . . . xux'u+l . . . x*», 

where 0 is a linear map: An —•» i£ defined by 

0(a(ii . . . in)) = atl . . . in. 

Hence the condition given in (5.1) is equivalent to 

tf>(a(z'i • • • is)a(is+i • • • in)) = 0 (0 < 5 < n). 

The rest of the proof is exactly the same as in the case \(ij) = 1 (2, p. 214), 
and may be omitted. Here we have to use 

X) a[ii. . . in]xtl . . . xin = X ^(*i • • • in)[xa • • • xin], 

but this, too, can be proved as in (2, p. 213). 
Similarly we may prove the following 

THEOREM 5.2. A homogeneous element 

J / J & i\... in% II ' ' • X in 

in U of degree n > 0 is a generalized Lie element if and only if 

MJ / J &ii... in\pCii • . • Xin\. 

This generalizes a theorem of Dynkin-Specht-Wever (2, p. 214). 
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