GENERALIZED LIE ELEMENTS

RIMHAK REE

Introduction. Let \(3j), 7,7 =1,2,...,m, be m? elements in a field K
of characteristic zero such that A ()N (j7) = 1 for all 7 and 7, and x1, x2, . . . , X
non-commutative associative indeterminates over K. Define the elements
[xuxs ... 2] inductively by [x;] = x; and

n
[xilxi2 Ve xi,,] = xn[xm e xin] - II2 )\(iﬂ'y)[xi? “ o x,-,,]x“.
v=

Any linear combination of the elements
ETE TN

with coefficients in K will be called a generalized Lie elememt. Generalized
Lie elements reduce to ordinary Lie elements if A(¢j) = 1 for all 7 and j.

The purpose of this paper is to generalize to the generalized Lie elements
the following: a theorem of Friedrichs, a theorem of Dynkin-Specht-Wever
(2), and the Witt formula on the dimension of the space spanned by homo-
geneous Lie elements of a fixed degree. The set of all generalized Lie elements
will be made into an algebra which generalizes the ordinary free Lie algebra.
This algebra turns out to be free in a certain sense. We shall also generalize
the algebra associated with shuffles in (2).!

1. Generalized Lie algebras. Throughout this paper K will denote a
field of characteristic zero. By a bi-character in K of an additively written
abelian semi-group M we shall mean a map x: M X M — K satisfying the
following:

x(p, o + 1) = x(p, O)x(p, 1), x(p + o, 7) = x(p, T)x (o, 7)

for all p, o, 7 in M. A bi-character x will be called skew-symmetric if x(o, 7)
x(r, ) =1 for all ¢, 7 in M. An (associative or non-associative) algebra A4
over K is said to be graded by the semi-group M if 4 is a direct sum of sub-
spaces 4, indexed by p € M such that f € 4, and g € 4, imply fg € 4,4..

Let L be an algebra graded by M, and let x be a skew-symmetric bi-
character of M in K. We shall call L a generalized Lie algebra of type x, or
simply a x-algebra, if f € L,, g € L,, imply

[f, g] + x(p, 0)lg, f] = O;
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!The referee remarks that the algebras considered in this paper include, as a special case,
the “left Lie algebras” which are used in homological algebra (cf. for example, the exposition
by P. Cartier in Séminaire Bourbaki, May, 1955).
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[f! [gy h]] - X(py U)[g! [f! h]] = [[fv g]! h]y

where [f, g] denotes the product in L of fand g. In case x is trivial, a x-algebra
is clearly an ordinary Lie algebra. Llet 4 be an associative algebra graded by
M. Define a new multiplication [, 8] in the vector space 4 by

[ar b] = ab — X(pv O')b(l,

where ¢ € 4,, b € 4,. Then we obtain a new algebra which we shall denote
by [4]. It can be seen easily that [A] is a x-algebra.

Let L and L’ be two algebras graded by the same M. A linear map ¢: L — L'
will be said to respect grade if f € L, implies ¢(f) € L,'. Let L be a x-algebra
and 4 an associated algebra both graded by M. A grade-respecting linear
map ¢: L — A will be called a linearization of L in A4 if ¢ is a homomorphism
of L into [4], that is, if

o([f, gD) = ¢(NNe(e) — x(o, )b (Do (f)

for all f € L,, g € L,. The tensor algebra I" over the vector space L is graded
by M if T, is defined to be the subspace spanned by elements of the form
f1i®f®...Q f,, where f; € L,; and p1 + po + ... + p, = p. Let J be the
two-sided ideal of 7' generated by homogeneous elements of the form
f®g—x(p,0)g®f—[f,gl,wheref € L,.g € L,. Thenthealgebra U = T/J
is also graded by M, and the inclusion map L — T induces a linearization 7
of L in U. The algebra U will be called the universal enveloping algebra of L;
it can be characterized by the property: for any linearization ¢: L — 4 of L
into an associative algebra A4, there exists a grade-respecting homomorphism
£: U — A such that ¢ = £o .

2. Finitely generated free x-algebras. From now on we shall consider
x-algebras L satisfying the following conditions (2.1) — (2.4):

(2.1) M is a free abelian group of rank m, with basis elements py, p2, . . . , pu;

(2.2) L, = 0 unless p is of the form p = f{1p1 + taps + . . . + twpm, where
t1, t2, . . ., tn are non-negative integers not all of which are zero;

(23) each L,, (+ =1,2,...,m) is of dimension 1;

(2.4) L is generated by L,,, L,,, ..., L,,.

A x-algebra L satisfying (2.1) — (2.4) above, will be called a free x-algebra
of rank m if any x-algebra satisfying (2.1) — (2.4) is a (grade-respecting) homo-
morphic image of L. The existence of a free x-algebra can be seen as follows:
let F be the free (non-associative) algebra generated by an m-dimensional
vector space E over the field K. If we choose a basis of E over K, then F can
be graded in an obvious way by the free abelian group M of rank m. Let J
be the two-sided ideal of F generated by homogeneous elements of the forms
fg + x(p, o)gf and f(gh) — x(p, 0)g(fh) — (fg)h, where f € F,, g € F,. Then
L = F/J is easily seen to be a free x-algebra of rank m.
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Let U be the universal enveloping algebra of the free x-algebra L of rank
m with the linearization map 5: L — U, and let 4 be the free associative
algebra over K generated by m free generators xi, Xs, ..., Xn. Since L is
free, there exists a homomorphism ¢: L — [4] such that ¢(f;) = x;, 2 = 1,
2,...,m, that is, ¢ is a linearization of L in 4. Then by the definition of U,
there exists a grade-respecting homomorphism £: U — 4 such that ¢ = £ 0 9.
Then £ must be an isomorphism, since 4 is free-associative. Thus we may regard
U as a free associative algebra with free generators x; = 7(f1),- - -, Xn = 7(fun)-
The fact that »(f) = 0 implies F = 0 can also be proved in exactly the same
way as in the case of free Lie algebras (3, 1-9). Hence we may identify L as
the subalgebra of [U] generated by xi, ..., x,. It can be seen easily that L
is spanned by the elements

[oaXs e Xs) = [l [Xo®a] . ]]
defined in the Introduction by using A(j) = x(ps, p;). Thus we may state

THEOREM 2.5. Let K be a field of characteristic zero, x1, Xs, . . . , Xm HOB-COM-
mutative associative indeterminates over K, and \(ij), 1,7 = 1,2, ..., m, be m?
elements in K such that N(¢j)N(ji) = 1 for all i and j. Then the vector space
over K spanned by the elements

[xaXs .. %4
defined above forms a free x-algebra L with respect to the multiplication

(oo ox)]s o0 oo 2g,]]

= feaowgllenxmd = T TT MGl b - w)

p=1

The universal enveloping algebra of L is isomorphic to the free associative algebra
with m free gemerators.

It should be understood in the above theorem that L is graded by M as
follows: for p = t1p1 + f2p2 + . . . & tmpm, L, consists of linear combinations
of elements of the form

(0% .o . X4)
in which, for each 1, x; appears ¢; times. Also, x is defined by x(ps, p;) = N ().
3. A generalization of a Witt formula. Let L be as in Theorem 2.5.

An element in L will be called a homogeneous element of degree n if it is a linear
combination of elements of the form

(X% oo X4,

In this section we shall compute the dimension of the space spanned by all
homogeneous elements of degree n, following a method given by Witt (4). By
the same method one may be able to compute the dimension of each L,.
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Let A and B be two associative algebras both graded by M, and A ® B
the tensor product of 4 and B regarded as vector spaces over K. Using a
bi-character x of M, define a multiplication in the vector space 4 ® B by

(@®b)@ @) = x(s,p)(aa" @ bd)

where b € B,, @’ € 4,'. The algebra obtained in this way is easily seen to be
associative, and will be denoted simply by 4 ® B. It will be used in the
proof of (3.1), below, as well as in the formulation of a generalization of a
theorem of Friedrichs.

Now, for the skew-symmetric bi-character x of M, we have x(p, p) = £1
for any p € M. The subspace L, of the free x-algebra L will be called positive
or negative according as x(p, p) = 1 or x(p, p) = — 1. Choose a basis for
each positive L, and let the union of these basis elements be Py, Ps, P3. . ..
Also, choose a basis for each negative L, and let the union of these basis
elements be Qi, Qs, Qs.... Let n: L — U be the linearization of L into its
universal enveloping algebra U. Then we have

THEOREM 3.1. The elements
7(P1)" n(P2)™ ... (P  9(Q0) " n(Q)" ... 9(Q)™

Jorm a basis of the universal enveloping algebra U of the free x-algebra L. Here
the indices run as follows: sy, so... are non-negative integers; each of t; is
either 0 or 1; kyn =0,1,2....

Proof. Since, for each 1,
7([04, Qi) = n(Q)? — x(p, PIn(Q)* = 29(Q)?,

it follows that (Q;)? is a linear combination of some 7(P;)’s and some 7(Q;)’s.
Then by the definition of the linearization, it is clear that U is spanned by the
given elements. Thus it remains to show that the given elements are linearly
independent. For this purpose, let U’ be a replica of U with grade-respecting
isomorphism «: U — U’,and let ' = 1o 9. Let U ® U’ be the tensor product
of U and U’ with respect to x. Then U ® ¥’ is also graded by M in an obvious
way, and the map 7: L —» U ® U’ defined by

i(f) =2() @1+ 1®7(f)

is easily seen to be a linearization of L into U ® U’. Therefore there exists
a homomorphism ¢: U — U ® U’ such that £ o n = 4. Using &, one may now
prove the linear independence of the given elements in exactly the same way
as in the case of ordinary Lie algebras (3, pp. 1-8). We omit the details.
Now, let the free x-algebra L given in (2.5) be graded by M as in the

remark following (2.5). Let the basis elements ps, p2, . . ., p, be such that
Ly,...,L,,
are positive while
Lyiyoooy Lo
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(p + q = m) are negative. Since, for p = tip1 + ... 4+ twom,
2
. 1S
x(o,p) = 1 x(oup)™ =TT x(ow p0)™ = (=1),

1.7
where ¢t = t,11 + ... + t,4, it follows that

ETE P

belongs to a positive L, if and only if its degree with respect to xp41, . . . , Xptq
is even. Denote by p, and g¢,, respectively, the numbers of P;s of degree »
and the numbers of Q;'s of degree #n, and consider the formal power series

o

F,N) =[] @+« +x™4.. )"0 + )

d=1

with a parameter N\. The coefficient ¢,(\) of " in F(x) is a polynomial in A
with integral coefficients. By (3.1), ¢,(1) is equal to the dimension of the sub-
space of U spanned by all homogeneous elements of degree #; ¢,(1) = (p + ¢)™
On the other hand, also by (3.1), ¢,(— 1) = a, — b,, where a, denotes the
dimension of the subspace 4, of U spanned by all homogeneous elements

which are of even degrees with respect to %11, . . . , Xp4 and where b, denotes
the dimension of the subspace B, of U spanned by all homogeneous elements
which are of odd degrees with respect to %41, . . ., Xp4q- Since U is free associa-

tive, 4, (resp. B,) is spanned by elements

XXig oo e Xin
of even (resp. odd) degree with respect to x,41, ..., Xp+q Thus
n—2 2

ap=Coop"+ Gt ¢ + ...,
by = Corp" g+ Cost"¢" + ...,
where C,,, are binomial coefficients. Hence a, — b, = (p — ¢)*, and we have
Fe,) =14+ @p+x+ p+o=x>+...,
Fe,) = =1+ @ —q@x+ (p — 9>+ ....

Taking logarithms of both sides, and comparing the coefficients of x"/z, we
have, for n = 1,2,...,

;m dpa — ; (—1)"dg, = (p + )",
2 dpa— D, dga= (p — @)™

dln dln

Let £ > 0 be an odd integer. Then, since
Z (“l)zak/dde = Z dqq — Z 2ad_(l2ady

da|2% da|2a-1g dlk
2 dpa= D, dpa+ 2 2pr,
a2 d|29—1g dlk

we obtain, from the above,
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S Fdlpust g = (0 + 0™ = (6~ "7

dlk

Then by the Mébius inversion formula, we have
1 . .
prox + g = o 2 w(@ (0 + @™ = (0 — ")

In case @ = 0, the above reduces (for odd k) to
1 .
bt o= dZ;{ p@) (P + 9"
Following Witt, we shall use the notations:

Yo =1 T w@ 0+ o

V¥*(n) = pn + ¢

Then the above can be summarized as

THEOREM 3.2. The dimension y*(n) of the vector space spanned by all elements
of the form
[xilxi;: LRI x‘in]

is given, for odd k, by
Y (k) = ¢(k);
V@R = V@B F i @D+ " = (0 - )",

where p denotes the number of indices 1 such that N(11) = x(ps, p;) = 1 while
q denotes the number of indices j such that N(jj) = — 1.

It should be remarked that the function ¢*(n) is completely determined
by the values of A\ (:z), and independent of other values of A(zj). The Witt
formula is obtained as the case ¢ = 0. In case all \(#7) = — 1, we have
p = 0, and we may deduce from the above that

V) = ),\0(11) for n =0,1,3 (mod 4),
V¢ (n) + ¢(3n) for n =2 (mod 4).

4. An algebra associated with shuffles. We shall generalize the algebra
defined in (2) to apply to generalized Lie elements. If r and s are positive
integers, define a shuffle of type (r,s) to be a permutation ¢ of the numbers
1,2,...,7 4+ s such that 1 <o) <d(¥) K7 o0or7r <o) <ol) <r-+s
implies p < v. Take m? elements A(4j) in K arbitrarily, and define an algebra
A over K as follows. 4 has the basis

(U faG.. .0, ytn=1,2,...,m n=12..}
with the multiplication table: 1 is a unity element;

a(iy...i)a(lrgr. . i) = 2, Na)Va(Gonian - - - laras),
o
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where the sum ranges over all shuffles ¢ of type (r,s) while A(¢) denotes
the product of all A(%, %(») such that u < » and o(u) > ¢(»). (We set
M) = 1 if ¢ is the identity permutation.)

Thus, for example,

a(@a(j) = a(y) + X(Gia(ji);
a(da(Gk) = a(ijk) + N(jia(jik) + NGO (ki)a (jki).

THEOREM 4.1. The algebra A 1is associative, and if N(¢)AN(Gi) = 1 for all i
and j, then it satisfies the gemeralized commutativity:

a(jy...jaGy...4,) = EI] r=11 NGujNaly . . i)aGy . .. ).
Proof. If

f = (l(/l:l . ”1«.7), g = a(i,+1 [ ’ir—}—s)y h = a(i,+s+1 e i1‘+s+t)-

then it is readily seen that both (fg)% and f(gh) are of the form

2 M0) aloio - - - Totrrstn)s

where ¢ runs over all permutations of 1, 2,...,7 + s + ¢ such that any one
of the three conditions

1<olp) <aly) <7,
r <o) <ol <r-+s,
r+s<ow) <o@) <r4+s++t
implies u < », and where A(¢) denotes the product of all (¢ yis(») such
that u < v and o(u) > o(»). Hence (fg)h = f(gh). The second half of the
theorem may be verified easily.
In the rest of this section, we shall assume that A(z/)A(j7) = 1 for all 4

and j. Making the convention that a(¢;...4,) stands for 1 whenever the
set {11,..., 7,} of indices is empty, we define the bilinear operation V in 4 by

a(il S 7/1) V (l(jl. . ’js) = a(il . .’ir jl .. -jx)~

We also make the convention that the multiplication in A has priority over
the operation V.
Define the elements a[i172. .. 4,] in 4 inductively by a[i] = a(7) and

n—1
aliis ... 1, = a(iy) V alia. .. i) — [] MNGui)aGa) V aliy. .. u).
y=1
For the generalizations in the next section of some theorems on Lie elements,

we need the following

THEOREM 4.2. For n > 0, we have

n

> oaliy. . ddaligr. .. 1) = na(y. .. ).
s=1
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The above theorem may be proved in exactly the same way as in the
case where all A(zj) = 1 (2), if we use the linear map D: 4 — A defined by
D(1) =0 and

Da(ivia. .. 1) = v(@)a(te. . . 4,),

where v(1), ..., v(m) are m arbitrary elements in K. We omit the proof
of (4.2). Incidentally, the map D becomes an anti-derivation of A4 if all
\Nij) = — 1.

THEOREM 4.3. If the linear map ¢: A — A 1s defined by ¢(1) =0 and
d(a(ids. .. 1) = alirta. .. 1,), then ¢p(@(t1...15,)8(lry1 ... 2r45)) = 0 for all
1;1,1:2,...,7;74_3 = 1,2,...,7’”; 7’>0, s> 0.

Proof. We shall proceed by induction on #n = » 4+ s. If » = 2, then the
theorem can be verified easily. Assume # > 2 and that the theorem is proved
for smaller values of #. By the definition of the multiplication in 4, we have

d)((l(i.l e 'i,)a(i,+1 e ’Ln))
= 2 M0)aliew) V alio - - - o]

n—1
- Z )\(U> Hl )\(ia(n)iu(v)>a(iu(7z)) V a[ia'(l) L iu(n—l)]v

where the sums run over all shuffles of type (r,s), 7 + s = n. Since ¢(1) = 1
or r + 1, and ¢(n) = r or #n, the right-hand side of the above equation can
be written

> M0)a(@r) V alie - - - dewm)

o(1)=1

+ 20 No)alirg) V alioe - - - o]

o(y=7r+1
n—1
- (Z):_ >‘(‘7) H x(iriﬂ(voa(ir) \% a[ia(l) .. ia(n—l)]
n—1
- (Z A(o) H N(into»)a(in) V alto) .« « ton-n]
og(n)=n V=

=a(t) V ¢@@s...1)a@ 1. ..1,))

+ ijl )\(ir+liv)a(ir+l) Vv ¢(a(11 [P if)a(’iH_g N 1,,))

=TT M) TT MGG v (G- iralire - i)

_ I:l N )a(in) V $(@ G . 5)a(rgn - . . ip))
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because of the induction assumption and the fact that, for » = 1,
IT 2Ga) IT 2Gn) = 1.
p=r+1 v=1,#r

COROLLARY 4.3. If 0 < 7 < n, then

naGiyy ..oy i)a(Grr. .. i) = 20 MN0)Ba(Gaqy - - - Gow) — alioq) - - - Taw])s
where the sum ranges over all shuffles of type (r,n — r).

The above corollary, together with (4.2), shows that the (z — 1)m" ele-
ments a(ty...7,)8Trg1 .« - Tn)y 21y e ooy ln = 1,2,...,m; 0 <7 <mn, and the
m"® elements na(i;...1,) — afi;...1,] span the same vector space over K.
Also from (4.2) we obtain

COROLLARY 4.4. The linear map ¢o: A — A defined by ¢o(1) = 0 and
dola(iyiz. .. 1y)) = nlalists . . . 1,],
for m > 0, is a projection, that is, ¢o* = .

The following theorem is essentially a generalization of Theorem 2.6 of
(2), and may be proved by using the map D introduced in the above.

THEOREM 4.5. For n > 0, we have

n
> (=1 TI NGidalis. .. i)a(iipr . . . ds1) = O.
§=0 s<u<r<n

5. Generalization of a theorem of Friedrichs. Let L be a free x-
algebra of rank m, and 5: L — U the linearization of L into its universal
enveloping algebra. Let U’ be a replica of U with the grade-respecting iso-
morphism ¢: U — U’ and o’ = von. Let U ® U’ be the tensor product of
U and U’ with respect to x. In the course of the proof of (3.1) we have seen
that the map 7: L —» U ® U’ defined by

A(f) =2(f) @ 1+ 1 '(f)

is a linearization and that there exists a homomorphism ¢: U — U ® U’ such
that £ o7 = 4. Now the following theorem generalizes a theorem of Fried-
richs (2).

THEOREM 5.1. Let 4, «, and & be as above. Then an element u in U belongs
to the image n(L) of L under n if and only if

tw) =u®l+1Q (n).

Proof. The “‘only if”’ part follows from the fact that 4 = £0%. In order
to prove the “‘if” part, let xy, x2, . .., x, be free generators of U and write,
for simplicity, x; and x,/ for x; ® 1 and 1 ® «(x;), respectively. If

u = Z gy inXiy o e Xy
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with coefficients in K, then

E(u) = Z ail...in(xil + x;:) e (xin + x’in)

=2 go 6@ 108 (o1 o 0))%sy o Xy e K
where ¢ is a linear map: 4, — K defined by
o@(iy.. . 14,) =ay ...
Hence the condition given in (5.1) is equivalent to
o@(ty...15)a(lsq1...17,)) =0 0 <s < mn).

The rest of the proof is exactly the same as in the case A\ (z7) = 1 (2, p. 214),
and may be omitted. Here we have to use

daliv. . in . xn = 2 alin. .. i)[Xy ... X0l

but this, too, can be proved as in (2, p. 213).
Similarly we may prove the following

THEOREM 5.2. A homogeneous element
F= 2 an. k.. %
in U of degree n > 0 is a generalized Lie element if and only if
nf = Z Qi inXay+ v X
This generalizes a theorem of Dynkin-Specht-Wever (2, p. 214).
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