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Abstract

We describe finite soluble nonnilpotent groups in which every minimal nonnilpotent subgroup is abnormal.
We also show that if G is a nonsoluble finite group in which every minimal nonnilpotent subgroup is
abnormal, then G is quasisimple and Z(G) is cyclic of order |Z(G)| ∈ {1, 2, 3, 4}.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group; GN

is the nilpotent residual of G, that is, the intersection of all normal subgroups N of
G with nilpotent quotient G/N; and Z∞(G) is the hypercentre of G, that is, the largest
normal subgroup of G such that CG(H/K) = G for every chief factor H/K of G below
Z∞(G). A nonnilpotent group G is called minimal nonnilpotent or a Schmidt group if
every proper subgroup of G is nilpotent.

The structure of Schmidt groups is well known (see [10, III, Satz 5.2] and [2]) and
such groups have deep applications in the theory of the classes of groups [3, 8]. Groups
in which the condition of subnormality or generalised subnormality is satisfied for all
or selected Schmidt subgroups are studied in [12, 17] and the recent papers [1, 9, 11,
13, 15, 19]. In this article, we consider, in a certain sense, the opposite situation.

A subgroup H of G is said to be abnormal in G if x ∈ 〈H, Hx〉 for all x ∈ G. From
the results in [1, 9, 11, 13, 15, 19], it is natural to ask: What is the structure of a group
in which all Schmidt subgroups are abnormal? We provide an answer to this question.
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We say that G is an SA-group if G is not nilpotent and every Schmidt subgroup of
G is abnormal, and an SSA-group if G is a nonabelian simple SA-group and for every
Schmidt subgroup H of G, we have π(H) ∩ {2, 3} � ∅. The usefulness of the concept
of an SSA-group is due to the fact that in any SA-group, any of its nonsoluble local
subgroups is an SSA-group (see [6, page 444] and Theorem 1.2 below).

Our first result shows that the class of all soluble SA-groups is rather narrow.

THEOREM 1.1. The group G is a soluble SA-group if and only if the following
conditions hold.

(i) G = D � Q, where D = GN � 1 is nilpotent, Q = 〈x〉 is a cyclic Sylow q-subgroup
of G for some prime q dividing |G| and F(G) = D〈xq〉. In particular, 〈xq〉 ≤ Z(G).

(ii) Z := Z∞(G) ∩ D ≤ Φ(Op(D)) for some prime p and, if Z � 1, then D = Op(D) is
a Sylow p-subgroup of G.

(iii) For every prime r dividing |D| and for the Sylow r-subgroup Dr of D:

(a) R = (RQ)N for every normal r-subgroup R of G with Z < R; in particular,
Dr = (DrQ)N;

(b) if H/K is any chief factor of G between Z and Dr, then CG(H/K) = F(G)
and |H/K| = rn, where n is the smallest integer such that q divides rn − 1.

(iv) ZQ = NG(Q) is a Carter subgroup of G and the set of all Carter subgroups of G
coincides with the set of all its system normalisers. Moreover, a subgroup C of
G is a Carter subgroup if and only if C is a maximal abnormal subgroup of a
Schmidt subgroup of G.

We do not know how wide the class of all nonsoluble SA-groups is (see Section 4).
Nevertheless, using Theorem 1.1, we prove the following theorem which partially
describes such groups.

THEOREM 1.2. If G is a nonsoluble SA-group, then the following conditions hold.

(i) G is quasisimple and Z(G) is cyclic of order |Z(G)| ∈ {1, 2, 3, 4}. In particular,
Z(G) ≤ Φ(H) for every Schmidt subgroup H of G and U/Z(G) is a Schmidt
subgroup of G/Z(G) if and only if U is a Schmidt subgroup of G.

(ii) G/Z(G) is an SSA-group.
(iii) If N = NG(P) for some nonnormal p-subgroup P of G, then either N is a group

of type (i) with |Z(G)| ∈ {2, 3, 4}, or N is nilpotent or |N/F(N)| is a prime.

2. Proof of Theorem 1.1

The first lemma is a corollary of the definition of abnormal subgroups.

LEMMA 2.1. Let H ≤ E and N � G, where H is abnormal in G. Then H is abnormal
in E, E is abnormal in G and HN/N is abnormal in G/N.

LEMMA 2.2. Let N, H ≤ G, where N � G and N ≤ Z∞(G). Then H is subnormal in
HN and if H is abnormal in G, then N ≤ H.
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PROOF. First we show that H is subnormal in E = HN. Assume this is false and let G
be a counterexample of minimal order. Then H � G. Since N ≤ Z∞(G) ∩ E ≤ Z∞(E),
the hypothesis holds for (E, H, N). If E < G, then H is subnormal in E by the choice
of G, and this contradicts the hypothesis. Therefore, G = E = HN. Let M be a maximal
subgroup of G such that H ≤ M. Then M = H(M ∩ N), where M ∩ N ≤ Z∞(M), so the
hypothesis holds for (M, H, M ∩ N) and hence H is subnormal in M and M is not
normal in G. However, the hypothesis holds also for (G/MG, M/MG, NMG/MG), so
MG = 1. Note also that M ∩ N < NN(M ∩ N) since Z∞(G) is nilpotent and so M ∩ N
is normal in G. Therefore, from G = NM and MG = 1, it follows that M ∩ N = 1 and
so N is a minimal normal subgroup of G contained in Z∞(G). Hence N ≤ Z(G), so
G = MN ≤ NG(M) and this contradicts the hypothesis. Therefore, H is subnormal in
E = NH. Finally, if H is abnormal in G, then H is abnormal in E by Lemma 2.1 and so
H = E by [5, I, Illustrations 6.19(b)]. The lemma is proved. �

The following lemma is well known (see, for example, [14, I, Lemma 4.1]).

LEMMA 2.3. Let A be an abelian irreducible automorphism group of a p-group P of
order |P| = pn. Then A is a cyclic group and n is the smallest integer such that |A|
divides pn − 1.

PROOF OF THEOREM 1.1. First we show that if G is a soluble SA-group, then
Conditions (i), (ii), (iii) and (iv) hold for G. Assume that this is false and let G be
a counterexample of minimal order. Then G is not a Schmidt group since Conditions
(i), (ii), (iii) and (iv) hold for every Schmidt group G by Proposition 1.9 in [8, Ch. 1]
and the results in [2]. Let D = GN by the nilpotent residual of G. Then D � 1.

(1) If L � T ≤ G, where T/L is nonnilpotent and either L � 1 or T � G, then
Conditions (i), (ii), (iii) and (iv) hold for T/L.

Let E/L be a Schmidt subgroup of T/L. Then E is not nilpotent, so it contains a
Schmidt subgroup, A say, and A is abnormal in G by hypothesis. Then E is abnormal
in T and so E/L is abnormal in T/L by Lemma 2.1. Therefore, the hypothesis holds for
T/L, so we have (1) by the choice of G.

(2) Every nonabnormal subgroup E of G is nilpotent.

Since every nonnilpotent group possesses a Schmidt subgroup, this follows from
Lemma 2.1 and the hypothesis.

(3) D < G and if D ≤ V < G, where V is a maximal subgroup of G, then V = F(G) is
the largest normal nilpotent subgroup of G and G/D is a cyclic group of order qr

for some prime q.

Since G is soluble, D � G. However, G/D is nilpotent, so each maximal subgroup
V of G containing D is subnormal in G. Assume that V is not nilpotent. Then
V is abnormal in G by (2), so V/D is abnormal in G/D = Z∞(G/D) and hence
V/D = G/D by Lemma 2.2. This contradiction shows that V is nilpotent. If G/D
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has at least two distinct maximal subgroups V/D and W/D, then G = 〈V , W〉 is
nilpotent since the subgroup generated by any two subnormal nilpotent subgroups of
the group is nilpotent by [3, Theorem 6.3.3]. Therefore, G/D is a cyclic q-group for
some prime q and V = VG is the largest normal nilpotent subgroup of G. Hence, we
have (3).

(4) Condition (i) holds for G.

Let Q be a Sylow q-subgroup of G. Then Q ∩ D is a Sylow q-subgroup of D and
D has a normal Hall q′-subgroup V since D is nilpotent by (3). The subgroup V is
characteristic in D, so it is normal in G. Moreover,

G/V = DQ/V = QV/V 
 Q/(Q ∩ V) = Q/1

is nilpotent, so D ≤ V and hence Q ∩ D = 1. Therefore, G = D � Q, where G/D 
 Q =
〈x〉 is a cyclic q-group and F(G) = D〈xq〉, again by (3). It follows that 〈xq〉 ≤ Z(G).

(5) Condition (ii) holds for G.

Assume that Z � 1 and let L be a minimal normal subgroup of G contained in Z.
Then L ≤ Z(G). Let p be any prime dividing |Z| and let Zp be the Sylow p-subgroup
of Z. We show that D is a Sylow p-subgroup of G. Assume that D � Dp := Op(D).
Then for the p-complement V of D, we have Zp ≤ CG(VQ) since [Q, Z] = 1 by [18,
Appendixes, Theorem 6.2]. If VQ is not nilpotent and H is a Schmidt subgroup of
VQ, then Zp ≤ H ≤ VQ by Lemma 2.2. However, Zp ∩ VQ = 1 and so Zp = 1, and this
contradicts the hypothesis. Hence, G/Dp 
 VQ is nilpotent, so Dp ≤ D ≤ Dp. Thus,
D = Dp.

Now we show that Z ≤ Φ(D) = Φ(Dp). Let Φ = Φ(D). Then Φ ≤ Φ(G) and so G/Φ
is not nilpotent. First assume that Φ � 1. Then Condition (ii) holds for G/Φ by (1).
Hence,

ZΦ/Φ = (Z∞(G) ∩ D)Φ/Φ ≤ Z∞(G/Φ) ∩ (D/Φ) = Z∞(G/Φ) ∩ (GN/Φ)

= Z∞(G/Φ) ∩ (G/Φ)N ≤ Φ(D/Φ) = Φ/Φ,

so Z ≤ Φ = Φ(D). Finally, assume that Φ = 1, that is, D = Dp is an elementary abelian
p-group. Then D = N1 × · · · × Nt, where N1, . . . , Nt are minimal normal subgroups of
G by Maschke’s theorem. It is clear also that for some i, for i = 1 say, we have N1 = L ≤
Z(G). However, then G/N2 × · · · × Nt 
 N1Q is nilpotent and so D ≤ N2 × · · · × Nt.
This contradiction completes the proof that Z ≤ Φ = Φ(D). Therefore, (5) holds.

(6) Condition (iii) holds for G.

Let E = RQ. If E is nilpotent, then E < G and G/CG(R) is an r-group by (4), so R ≤
Z = Z∞(G) ∩ D by [18, Appendixes, Theorem 6.3] and this contradicts the hypothesis.
Therefore, E is not nilpotent, so EN = R by (1). Finally, if E = G, then R = D = EN by
(4). Hence, Condition (a) holds.
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Now, let H/K be any chief factor of G between Z and Dr. First we show
that CG(H/K) = F(G) = D〈xq〉. By [5, Ch. A, Theorem 13.8(b)], we have F(G) ≤
CG(H/K). Assume that F(G) < CG(H/K). Then CG(H/K) = G, so Q ≤ CG(H/K). Let
E = HQ. Then H = EN by (a), so E/K is not nilpotent. However, Q ≤ CG(H/K),
so QK/K ≤ CE/K(H/K) and then E/K = (H/K) × (QK/K) is nilpotent, and this
contradicts the hypothesis. Hence, CG(H/K) = F(G) = D〈xq〉.

From G = D � Q, it follows that for every element g ∈ G, we have g = dy for some
d ∈ D and y ∈ Q, where d ∈ CG(H/K), so (hK)g = (hK)y. Hence, Q acts irreducibly on
H/K. Therefore, Q/CQ(H/K) = Q/〈xq〉 is an abelian irreducible automorphim group
for H/K. Hence, |H/K| = rn, where n is the smallest integer such that q divides
rn − 1 by Lemma 2.3. Therefore, Condition (b) holds. Therefore, Condition (iii) holds
for G.

(7) Condition (iv) holds for G.

Let N = NG(Q) and D0 = D ∩ N. Then N = N ∩ DQ = (N ∩ D)Q = D0 × Q is
nilpotent. However,

NG(D0 × Q) = NG(D0) ∩ NG(Q) = D0Q ∩ NG(D0) = D0(Q ∩ NG(D0)) = D0Q.

Hence, D0Q is a Carter subgroup of G. In view of (4), N = D0Q is a system normaliser
of G. Hence, N covers all central chief factors of G and N avoids all noncentral chief
factors of G by [5, I, Theorem 5.6]. Therefore, |N | is the product of the orders of all
central factors of a chief series of G by [5, I, Theorem 5.7]. In view of (5) and (6),
the product of the orders of all central factors of a chief series of G is |Z||Q|. However,
ZQ ≤ N, so Z × Q = D0 × Q and hence Z = D0. Therefore, ZQ = NG(Q) is a Carter
subgroup of G and the set of all Carter subgroups of G coincides with the set of all
its system normalisers since in a soluble group, every two Carter subgroups and every
two system normalisers are conjugate.

Now, let C be any Carter subgroup of G. Then C = (ZQ)a = ZQa for some a ∈ G
since any two Carter subgroups of a soluble group are conjugate. Let N/Z be a chief
factor of G, where N ≤ Dr. Then NQa is not nilpotent by (4). Hence, this subgroup
contains a Schmidt subgroup H. Moreover, Z ≤ H by Lemma 2.2 since H is abnormal
in G by hypothesis. Also we have Qb ≤ H for some b ∈ G since every subgroup of
G not containing a conjugate of Q is nilpotent by (6). Therefore, H contains a Carter
subgroup ZQb = (ZQ)b and so C is contained in some conjugate Hy of H. Hence, C is
a maximal abnormal subgroup of Hy since Hy is not nilpotent but each of its maximal
subgroups is nilpotent. Similarly, it can be proved that if H is a Schmidt subgroup
of G, then each maximal abnormal subgroup of H is a Carter subgroup of G. Hence,
we have (7).

From (3)–(7), it follows that Conditions (i), (ii), (iii) and (iv) hold for G, contrary
to the choice of G. This contradiction completes the proof of the necessity of the
condition of the theorem.

Conversely, assume that Conditions (i), (ii), (iii) and (iv) hold for G. Then G is
a nonnilpotent soluble group. Let H be any Schmidt subgroup of G. Then for some
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Carter subgroup C of G, we have C ≤ H by Condition (iv), so H is abnormal in G by
Lemma 2.1 since every Carter subgroup of G is abnormal by [10, VI, Satz 12.2(c)].
Therefore, every Schmidt subgroup of G is abnormal in G.

The theorem is proved. �

3. Proof of Theorem 1.2

The following lemma can be proved similarly to Lemma 6.3 in [10, VI].

LEMMA 3.1. Let p be a prime and K ≤ H normal subgroups of G, where K ≤ Φ(G). If
H/K is p-closed, then H is p-closed.

PROOF OF THEOREM 1.2. Assume that this theorem is false and let G be a
counterexample of minimal order.

(1) If L � T ≤ G, where T/L is nonsoluble and either L � 1 or T � G, then Condi-
tions (i) and (ii) hold for T/L.

Since every Schmidt subgroup of T/L is abnormal in T/L (see (1) in the proof of
Theorem 1.1), this follows from the choice of G.

(2) If H/K is a nonabelian chief factor of G such that K is soluble, then H/K = G/K
is a nonabelian simple group and K is the soluble radical of G (that is, every
normal soluble subgroup of G is contained in K). Hence, G′ = G and a Sylow
2-subgroup G2 of G is not cyclic.

Let L/K be a minimal normal subgroup of H/K. Then L/K is a nonabelian simple
group. Let A be a Schmidt subgroup of L. Then A is abnormal in G, so L = H = G.
Hence, G/K is a nonabelian simple group. Assume that G′ < G. Then G′K = G, hence
G′/(G′ ∩ K) 
 G/K is a nonabelian chief factor of G such that G′ ∩ K is soluble and
so G′ = G, and this contradicts the hypothesis. Hence, G′ = G, so G2 is not cyclic by
[10, IV, Satz 2.8].

(3) K is nilpotent.

Assume that this is false and let R be a minimal normal subgroup of G contained in
K. Then R ≤ Op(G) for some prime p since K is soluble. Moreover, G/R is quasisimple
by (1), where (G/R)/(K/R) 
 G/K, so K/R ≤ Z(G/R) and hence K/R is nilpotent. If
G has a minimal normal subgroup N � R, then K/1 = K/(R ∩ N) is nilpotent. Hence,
R is the unique minimal normal subgroup of G and, by Lemma 3.1, R � Φ(G) since
K is not nilpotent. Let M be a maximal subgroup of G such that G = RM. Then M is
not nilpotent since G′ = G and R ∩M = 1 = CG(R) ∩M since both these intersections
are normal in G, so CG(R) = R(CG(R) ∩M) = R and so |Op(G/R)| = 1 = |Op(M)| by
[5, Ch. A, Lemma 13.6(b)]. It follows that for some prime q � p, the group M is
not q-nilpotent and hence M possesses a q-closed Schmidt subgroup A of the form
A = Aq � Ar for some prime r � q by [10, IV, Satz 5.4]. Let E = RA. Then E is a soluble
nonnilpotent group with abnormal Schmidt subgroups by Lemma 2.1. Therefore, from
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Theorem 1.1, it follows that E = D � V , where D = EN is a nilpotent Hall subgroup of
E and V is a cyclic Sylow t-subgroup of E for some prime t ∈ {p, q, r}. However, E/RAq
is nilpotent, so D = RAq and V 
 Ar. Therefore, Aq ≤ CG(R) = R. This contradiction
completes the proof of (3).

(4) G has a p-closed Schmidt subgroup A = Ap � Aq, where p ∈ π(A), for every prime
p dividing |G/K|.

From (2), it follows that G/K is not p-nilpotent, so some subgroup E/K of G/K is
a p-closed Schmidt group with π(E/K) = {p, q}. Let U be a minimal supplement to K
in E. Then U ∩ K ≤ Φ(U), so U is a p-closed nonnilpotent group by Lemma 3.1 with
π(U) = {p, q}. Then U has a p-closed Schmidt subgroup A with p ∈ π(A).

(5) K ≤ Z∞(G).

Assume that K � Z∞(G) and let C = CG(K). Then C � G. If C � K, then G = KC
by (2) and so from the isomorphism G/K 
 C/(C ∩ K) and (2), it follows that C = G
and this contradicts the hypothesis. Hence, C ≤ K.

Let V be the Hall 2′-subgroup of K. The subgroup V is characteristic in K, so
it is normal in G. Assume that V � Z∞(G). Then V � 1, so K/V ≤ Z(G/V) by (1)
and (2). If G2V is nilpotent, then G2 ≤ CG(V). Since G/K is a nonabelian simple
group, G2 � K by the Feit–Thompson theorem. Hence, CG(V) � K, which implies that
G = CG(V)K and so G = CG(V) by (2). Therefore, V ≤ Z(G) and this contradicts the
hypothesis. Hence, G2V is a soluble nonnilpotent group and every Schmidt subgroup
of G2V is abnormal in G2V , so G2 is cyclic by Theorem 1.1, contrary to (2). Therefore,
V ≤ Z∞(G). Since also we have K/V ≤ Z(G/V), it follows that K ≤ Z∞(G) by the
Jordan–Hölder theorem for the chief series, contrary to our assumption on K. Hence,
K ≤ G2.

Finally, G has a p-closed Schmidt subgroup A = Ap � Aq, where p ∈ π(A), for
every prime p � 2 dividing |G/K| by (4). Then (KA)

N

= KAp = K × Ap is nilpotent
by Theorem 1.1. Therefore, Ap ≤ CG(K) = K. This contradiction completes the proof
of (5).

(6) G is quasisimple. Hence, K = Z(G) ≤ Φ(G).

Since G/CG(K) is nilpotent by [5, IV, Theorem 6.10] and (5), K = Z(G) ≤ Φ(G) by
(2). Hence, we have (6).

(7) K ≤ Φ(H) for every Schmidt subgroup H of G. Hence, K is a cyclic p-group for
some prime p.

Let H be a Schmidt subgroup of G. Then K ≤ H by (5) and Lemma 2.2. Moreover,
if V is a maximal subgroup of H, then V is nilpotent and so, in fact, K ≤ V . Hence,
K ≤ Φ(H).

Now observe that π(K) ⊆ {2, p} for some prime p � 2 since G has a Schmidt
subgroup A with 2 ∈ π(A) by (2) and (4). From (2) and Burnside’s paqb-theorem, it
follows that for some prime q dividing |G/K|, we have 2 � q � p. However, G has a
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q-closed Schmidt subgroup A = Aq � Ar by (4) and we also have K ≤ A. Hence, K ≤ Ar
is a cyclic r-group and so we have (7).

(8) Condition (i) holds for G.

From (6) and (7), we have K = Z(G) ≤ H for every Schmidt subgroup H of G. Now
we show that |K| ∈ {1, 2, 3, 4}. Assume that K � 1. From (6) and (7), it follows that K
is cyclic and |K| divides the order of the Schur multiplier M(G/K) of G/K. Hence,
|K| ∈ {2, 3, 4} (see Section 4.15(A) in [7, Ch. 4]).

Next assume that H/K is a Schmidt subgroup of G/K. Then H is not nilpotent, so it
has a Schmidt subgroup U and we have K ≤ U. Moreover, U/K is not nilpotent since
K ≤ Z(U) and so U = H since every proper subgroup of H/K is nilpotent. Similarly, it
can be proved that if H is a Schmidt subgroup of G, then K < H and H/K is a Schmidt
subgroup of G/K. Therefore, (8) holds.

(9) Condition (ii) holds for G.

This follows from Condition (i).

(10) Condition (iii) holds for G.

If N is soluble and N is not nilpotent, then |N/F(N)| is a prime by Theorem 1.1. Finally,
suppose that N = NG(P) is not soluble. Then N is a group of type (i) with |Z(G)| ∈
{2, 3, 4}. Indeed, this follows from (1), if N < G and from (8), in the case when N = G.

The theorem is proved. �

4. Final remarks, examples and open questions

EXAMPLE 4.1.

(1) Let E be an extraspecial group of order 37 and exponent 3. Then Aut(E) contains
an element α of order 7 which operates irreducibly on E/ZE and centralises Z(E)
by Lemma 20.13 in [5, Ch. A]. Let E1 and E2 be two copies of the group E and let
P = E1 � E2 := (E1 × E2)/D, where D = {(a, a−1) | a ∈ Z(E)} is the direct product
of the groups E1 and E2 with joint centre (see [10, page 49]). Then α induces an
automorphism of order 7 on P and for the group G1 = P � 〈α〉, all Conditions (i),
(ii), (iii) and (iv) are fulfilled for G1 with Z = Z(E).

Now let G2 = C57 � 〈α〉, where α is an element of order 7 in Aut(C57). Let
φi : Gi → 〈α〉 be an epimorphism of Gi onto 〈α〉 and let

G = G1 � G2 = {(g1, g2) | gi ∈ Gi, φ1(g1) = φ2(g2)}

be the direct product of the groups G1 and G2 with joint factor group 〈α〉 (see [10,
page 50]). Then Conditions (i), (iii) and (iv) are fulfilled for G.

(2) The alternating group A5 of degree 5 is an SA-group and an SSA-group.
(3) It is well known that the alternating group A13 possesses a Frobenius subgroup

C13 � C6 = (C13 � C3) × C2 (see [4, page 104]), where C13 � C3 is a Schmidt
subgroup of A13. Hence, A13 is neither an SA-group nor an SSA-group.
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REMARK 4.2

(1) If G is a soluble SA-group and Dr a Sylow r-subgroup of G for some prime r
dividing GN, then (using Theorem 1.1) it can be proved by direct verification that
all chief factors of G between Z and Dr are G-isomorphic.

(2) In fact, Theorem 1.2 reduces the problem of classification of all nonsoluble
SA-groups to the classification of all nonabelian simple SA-groups.

Remark 4.2(2) is a motivation for the following natural questions.

QUESTION 4.3. Classify all nonabelian simple SA-groups.

QUESTION 4.4. Classify all nonabelian simple groups in which every nonsoluble local
subgroup is an SSA-group.

QUESTION 4.5. Classify all nonabelian simple groups in which every Schmidt
subgroup is self-normalising.

In Ref. [16], Thompson classified nonsoluble groups all of whose local subgroups
are soluble. This classical result makes it natural to ask: What is the structure of a
nonsoluble group in which every nonsoluble local subgroup is quasisimple?
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