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CHAIN RECURRENT POINTS OF A TREE MAP

TAO LI AND XIANGDONG Y E

We generalise a result of Hosaka and Kato by proving that if the set of periodic points
of a continuous map of a tree is closed then each chain recurrent point is a periodic
one. We also show that the topological entropy of a tree map is zero if and only if the
w—limit set of each chain recurrent point (which is not periodic) contains no periodic
points.

By a tree we mean a connected compact one-dimensional branched manifold con-
taining no circle. The dynamics of a tree map, that is, a continuous map from a tree into
itself, have been studied intensively in the recent years (see the references). In this paper
we shall study the set of chain recurrent points of a tree map. It is known that if / is
an interval map and the set of periodic points of / is closed, then each chain recurrent
point is a periodic one [6, 13]. Recently, Hosako and Kato [5] showed that if the set of
non-wandering points of a continuous map of a tree is finite, then each non-wandering
point is a periodic point. We shall generalise the result of [5] and prove some other
results. To be more precise, we need some notation.

A subtree of T is a subset of T, which is itself a tree. For x £ T the number of
connected components of T \ {x} is called the valence of x in T. A point of T of valence
1 is called an end of T, and a point of valence different from 2 is called a vertex of T. Let
V(T) be the set of vertices of T. The closure of each connected component of T \ V(T)
is called an edge of T. The set of ends of T and the number of ends of T will be denoted
by E(T) and End (T) respectively. Let n ^ 2. A tree is said to be an n-star if T has a
point b of valence n and the closure of each connected component of T \ b is an interval.
Let A c T. We shall use [A] to denote the smallest closed connected subset containing
A. If A = {a,b} then we use [a,b) to denote [A]. We define (a,b) = [a,b] \ {a,b} and
we similarly define (a,6] and [a,b). For a subset A of T, we use int(A), ~A and b(A) to
denote the interior, the closure and the boundary of A respectively.

Let / be a tree map. The set of periodic points of / , the set of almost peri-
odic points of / , the set of recurrent points of / , the w—limit set of x, the set of
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non-wandering points of / and the set of chain recurrent points of / will be denoted
by P(f), AP(f), R(f), CJ(XJ), Q(f) and CR(f) respectively (see [3] for the defini-
tions). It is known that P(f) C AP(f) C R(f) C U w(z,/) C ft(/) C CR(f).

For the notion of no division for a periodic orbit of a tree map, the notion of topologi-
cal entropy of / (denoted by h(f)) and the notion of minimal set see [1, 11, 9, 12].
It is known that if A is a minimal set of / , then A C AP(f). For x € T, let
a(x, f) = {y € T : there are n{ —> oo, y{ € f~ni(x), with y{ —> y}.

Now we are in the position to state the main results of the paper.

THEOREM A. Let T be a tree and / : T —>T be continuous. Then CR{f) = P(f)
if and only ifPjf) = P(J).

THEOREM B . Let f : T —> T be a continuous map from a tree T into itself. Then
f has zero topological entropy if and only if for each x € CR{f)\P(f), LJ(X, f)nP(f) - 0.

REMARK. AS there is a continuous map / from a graph G into itself such that fl(f) =
{e, t} with /(e) = e and t £ P(f) [2], the conclusions of Theorem A,B do not hold for
graph maps.

2. PROOFS OF THE MAIN RESULTS

In this section we shall give the proofs of Theorem A and B. To do this we need the
following known results.

LEMMA 2 . 1 . [10, 11, 1] Let T be a tree and f :T —> T continuous. Then

1. Pjf) = Rjf).
2. f has a non-divisible periodic orbit if and only if there are some x € T

and some n G N with (n, m) = 1 for each 2 ^ m $J End (T) such that
xe (fn(x)J(x)).

3. h(f) > 0 if and only there is n 6 N such that fn has a non-divisible periodic
orbit.

LEMMA 2 . 2 . [8] Let f : T —> T be a continuous map of a tree T. Then
h(f) > 0 if and only if there are some n 6 N and two disjoint closed intervals J\, J2

contained in some edge ofT such that f"{Ji) D J\ U Ji for i — 1,2.

The following two lemmas will be used in the proof of Lemma 2.5.

LEMMA 2 . 3 . Let T be a compact metric space with metric d and f : T —> T be
continuous. If A is an open subset ofT such that f(A) C A, then for each x € CR(f) \ A
and each n 6 N we have fn{x) £ A.

PROOF: AS CR{fn) = CR{f) for each n € N we only need to show that f(x) g A

for each x € CR(f) \ A. Assume the contrary. That is, there is x e CR(f) \ A such that
f(x) € A. Let

e = inf{d(y,z):yeT\A, z
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By our assumption, e > 0. As a: € CR(f) there are XQ,xx,... ,xn such that XQ = xn = x

and d(f (li), xi+i) < e for each i — 0 , . . . , n - 1. As f(x0) = f(x) £ A we have xx £ A

and inductively we have X{ £ A for 1 ^ i ^ n. That is, x £ A, a contradiction. D

LEMMA 2 . 4 . Let n £ N and n ^ 2. Then tiere is Z(n) € N suci that for every

m £ N there is m' £ | m + 1 , . . . , m + l(n) J such that (m', i) = 1 for each 2 ^ i ^ n.

P R O O F : The lemma can be checked by taking l(n) = n\. D

The key lemma for the proofs of the main theorems will be the following. Note that

we use F(f) to denote the set of fixed points of / .

LEMMA 2 . 5 . Let T be a tree and f : T —> T be continuous. If there is an
x € CR(f) \ P(f) such that w{x, / ) n F(f) ^ 0, then h{f) > 0.

PROOF: Let x e CR{f) \ P(f) and e € u(x, f) n F(f). U

(A) if there are X\ £ (x, e) and some n 6 N such that fn{x\) = x then /i(/) > 0.

As fn[xi,e] D [x, e], there is i 2 € ( i i , e) with /n(x2) = i i . Inductively, for each i ^ 3

there is Xi € (a;;_i,e) with /"(a;,-) = Xi_i. Since e S u>(x,f) we have that e € u>(x,f).

Let 5 be the component of T \ {z<(n)} which contains x. Then there is m € N such that

fmn(x) <£ S. We have:

By Lemma 2.4 we know that there is 1 ^ i0 < l(n) such that {m + io,j) = 1 for each

j - 2 , . . . , End (T). By Lemma 2.1, / i ( / n ) > 0, and hence h{f) > 0.

Let T\ be the component of T \ {x} containing e and assume that for each n s N

there is no y € {x,e) with / n (y ) = x.

(B) There is y € 7\ such that / (y) = x.

Assume the contrary. That is, there is no y £ T\ such that f(y) = x. Then

f(r~i) C Tu contradicting Lemma 2.3 a s e e T , and e £ LJ{X, f).

Let n £ N and Wn = Tx n (\J f~j(x)j. Let Vn be the component of 7\ \ Wn

containing e. As for each n £ N there is no y € (z,e) with /" (y) = x, we have that

i £ K. Moreover, E(K) C E{TX) U U /"J'(a:)-

(C) For each n € N there is yn G Vn such that ?/„ e /-(n+1>(a;).
n

Note that K is an open subset of T as U f~3{x) is closed. If there is no y € Vn
j=i

such that y € /~( n + 1 '(x) then we have / (K, ) C Vn, as e € Vn and T is uniquely arc-wise
connected. This contradicts Lemma 2.3 since e £ ui(x,f) and e S K,.

Let W = Ti D ( U /~ ; (z) I and V be the component of 7\ \ W containing e. It
V,=i / _

is easy to see that V contains a degenerate interval. Let P = V D a(x, / ) . Then P C

E(7) U V(T!) is finite. We claim:
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(D) P is not empty and f{P) C P.

If P = 0, then V — Vn for some n G N. By (C), there is yn G V such that
yn G f~n+1(x), a contradiction.

Let y G P. Then /(y) € a(x,f) and there are ynj G f~ni{x) such that t/nj —> ?/
and yni 0 V. Assume that /(y) £ V. Then there is p G P such that p G (e, / (y)) .

oo

If P € U f~j(x), then there is z € (y, e) such that /(z) = p. This implies that 2 €
OO . OO . / v

U f~3(x), and hence y £ V, a contradiction. Thus we havepg \J f~J{x). If [p, f[y))C\

( U f~jix)) 7̂  0> then there is z G (y,e) such that f(z) = p. This implies that y g
\j=i J

V, a contradiction. We must have (p,f(y)) D f U /"^(z)) = 0- Thus /(y) G V, a

contradiction. Hence /(y) G V n a ( i , / ) . That is, P is invariant under / .

As P is a finite invariant subset, there is n such that fn(y) = y for each y € P. Let
g = fn and 2/1 G P . Then there are yni G f~Ui(x) with yni —^ J/J. It is easy to see that
there is 1 ^ i0 ^ n such that f(yi) G /~"i+i°(x) and - n { + io\n. Let j / = f'(yi). Then
y G a(a;, g) and (7(3/) = ?/. We have:

(E) There are z € T, m ^ 2 with (m, i) = 1 for each 2 ^ 2 ^ End (T), 1 ^ t ^ Val(y)

such that z G (s*(z), £/tm(z)).

Let U be a small connected neighbourhood of y such that U is homeomorphic to
some n—star with n = Val(y) and x £ U. Let b\,... ,bn be the connected components
of U \ {y}. As y is a fixed point of g, there is a small connected neighbourhood V
of y such that <?!(V) C U for i = 0 ,1 , . . . ,n + 1. Since y G 0(1,5) there is n* such
that yni G ^""'(a;) D V. Then there is q G V such that q,g(q), • • • ,gl{q) G [/ with
9 G (y,^^)) C 6no and 5((?) 6 Orb(yni,g) for some 1 ^ t ^ n, 1 ^ n0 ^ n. Then we
have qi+l G 6no such that qi+\ € (j/,gi) and gl(qi+\) = ft for each i G N. (Set g = g^)
By using the same idea as in the proof of (A) and the fact that e G u>(x, g) we get the
conclusion of (E).

By Lemma 2.2 we have h(g) = (/i(3())/f > 0, and a consequently h(f) > 0.

COROLLARY 2 . 6 . Let f : T —> T be a continuous map from a tree T into

itself. IfCR(f) ^ P(f), then AP{f) ^ P{{) and consequently, P(f) is not closed.

P R O O F : If h(f) > 0, then by Lemma 2.2 there are two disjoint closed intervals J\, J-i
contained in some edge E of T and n G N such that /"(J\) D / n ( J2) D J\ U J2. Hence
there are a closed invariant (under / " ) subset X of E and a continuous surjective map 4>:
X —> E2 such that cj>ofn = f o g , where (E2,<7) is the one-sided shift with two symbols.
Moreover, cj> is one-to-one except on a countable subset of X (see [3]). Then using [12] we
get a non-trivial minimal set of / " . That is, AP(fn) ^ P(f") and hence AP(f) ^ P(f).
Now we assume that h(f) = 0 and x G CR{f) \ P{f). If w(x, f) n P{f) ^ 0, then there
is y G w(a;, / ) fl P ( / ) with period n for some n G N. Thus there is i G N such that
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/ i ( y ) g U ( i , / » ) a s U ( i , / ) = U i u ( / i ( i ) , / " ) and /(u> (/ '(*),/")) = a, (/ '+1 (*),/") for

each j G N. Note that f'(y) is a fixed point of / " . By Lemma 2.5, we have h(fn) > 0, a

contradiction. Hence we have uj(x,f) n P(f) = 0. Let A be a minimal set contained in

u(x, / ) . Then A is not trivial. That is, AP(f) ^ P(/).

As P(/) C AP(f) C Rjfj = P(7)> we have that P(/) is not closed. D

PROOF OF THEOREM A: It is clear CR(f) = P(f) implies P(f) is closed. Now
assume that P(f) is closed. By Corollary 2.6, we have CR(f) = P(f). This ends the
proof. D

To prove Theorem B we need the following lemma.

LEMMA 2 . 7 . Let f : T —> T be a continuous map from a tree T into itself. If

h(j) > U, then Were is x e (JK(f) \ f[j) such that f"(x) G f(J) tor some n G N.

PROOF: By Lemma 2.2 there are two disjoint closed intervals J\, J2 contained in
some edge £ of T and n G N such that /"(Jx) n /"(J2) D J\ U J2. Let g - / " , J{ = [m, h]
and give an orientation of E such that for each X{ € Ji, X\ < x2- Then there are a fixed
point e e J\ of g and z € Ji such that g(z) = 62- Without loss of generality we assume
that e < z and (e,z) (~l F(g) = 0. Take a point z < w G E such that g(w) = e. Then
u; ^ P{f) and w G Sl{g) C CR(f). Hence u; G CR{f) \ P{f) and fn{w) G P{f). D

PROOF OF THEOREM B: Assume that h(f) - 0 and there is x G Cfl(/) \ P(f)
with w( i , / ) n P(f) ^ 0. Let y G u(x,f) D P ( / ) and let the period of y be n. As

w( i , / ) = X M / ^ 1 ) ' / " ) ' there is i such that y G w ( / ' ( x ) , / n ) . Hence /""'(j/) G

w(a;,/n). Note tha t /" - ' (y) is a fixed point of / " and 2; G CR(f)\P(f) = CR{fn)\P(fn),
a contradiction. D

The sufficiency of the theorem follows from Lemma 2.7.
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