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CHAIN RECURRENT POINTS OF A TREE MAP

TAo L1 AND XIANGDONG YE

We generalise a result of Hosaka and Kato by proving that if the set of periodic points
of a continuous map of a tree is closed then each chain recurrent point is a periodic
one. We also show that the topological entropy of a tree map is zero if and only if the
w~limit set of each chain recurrent point (which is not periodic) contains no periodic
points.

By a tree we mean a connected compact one-dimensional branched manifold con-
taining no circle. The dynamics of a tree map, that is, a continuous map from a tree into
itself, have been studied intensively in the recent years (see the references). In this paper
we shall study the set of chain recurrent points of a tree map. It is known that if f is
an interval map and the set of periodic points of f is closed, then each chain recurrent
point is a periodic one {6, 13]. Recently, Hosako and Kato 5] showed that if the set of
non-wandering points of a continuous map of a tree is finite, then each non-wandering
point is a periodic point. We shall generalise the result of [5] and prove some other
results. To be more precise, we need some notation.

A subtree of T is a subset of T, which is itself a tree. For z € T the number of
connected components of T\ {z} is called the valence of z in T. A point of T of valence
1 is called an end of T, and a point of valence different from 2 is called a vertez of T. Let
V(T) be the set of vertices of T. The closure of each connected component of T \ V(T)
is called an edge of T'. The set of ends of T" and the number of ends of T will be denoted
by E(T) and End (T) respectively. Let n > 2. A tree is said to be an n-star if T has a
point b of valence n and the closure of each connected component of T \ b is an interval.
Let A C T. We shall use [A] to denote the smallest closed connected subset containing
A. If A = {a,b} then we use [a,b] to denote [A]. We define (a,b) = [a,b] \ {a, b} and
we similarly define (a, ] and [a,b). For a subset A of T, we use int(A), A and b(A) to
denote the interior, the closure and the boundary of A respectively.

Let f be a tree map. The set of periodic points of f, the set of almost peri-
odic points of f, the set of recurrent points of f, the w—limit set of z, the set of
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non-wandering points of f and the set of chain recurrent points of f will be denoted

by P(f), AP(f), R(f), w(z, f), Q(f) and CR(f) respectively (see [3] for the defini-

tions). It is known that P(f) C AP(f) C R(f) C UTw(z,f) C Qf) € CR(f).
z€

For the notion of no division for a periodic orbit of a tree map, the notion of topolog:-
cal entropy of f (denoted by h(f)) and the notion of minimal set see [1, 11, 9, 12].
It is known that if A is a minimal set of f, then A C AP(f). For z € T, let
a(z, f) = {y € T : there are n; — o0, y; € f~™(z), with y; — y}.

Now we are in the position to state the main results of the paper.

THEOREM A. LetT beatreeand f : T — T be continuous. Then CR(f) = P(f)

if and only if P(f) = P(f).

THEOREM B. Let f: T — T be a continuous map from a tree T into itself. Then
f has zero topological entropy if and only iffor each x € CR(f)\P(f), w(z, f)NP(f) = 0.

REMARK. As there is a continuous map f from a graph G into itself such that Q(f) =
{e,t} with f(e) = e and t ¢ P(f) [2], the conclusions of Theorem A,B do not hold for
graph maps.

2. PROOFS OF THE MAIN RESULTS

In this section we shall give the proofs of Theorem A and B. To do this we need the
following known results.

LeMMA 2.1. [10,11,1] LetT bea tree and f : T — T continuous. Then

1. P(f)=R(.
2. f has a non-divisible periodic orbit if and only if there are some z € T
and some n € N with (n,m) = 1 for each 2 < m < End(T) such that
€ (f*(2), f(2)).
3. h(f) > 0ifand only there isn € N such that f™ has a non-divisible periodic
orbit.

LEMMA 2.2. [8] Let f: T — T be a continuous map of a tree T. Then
h(f) > 0 if and only if there are some n € N and two disjoint closed intervals Jy, J,
contained in some edge of T such that f*(J;) D U Jy fori=1,2.

The following two lemmas will be used in the proof of Lemma 2.5.

LEMMA 2.3. LetT be a compact metric space with metricd and f : T — T be
continuous. If A is an open subset of T such that f('Z) C A, then foreachz € CR(f)\ A
and each n € N we have f*(z) ¢ A.

PROOF: As CR(f™) = CR(f) for each n € N we only need to show that f(z) ¢ A
for each z € CR(f)\ A. Assume the contrary. That is, there is € CR(f) \ A such that
f(z) € A. Let

€= inf{d(y,z) :y€T\A, z¢€ f(Z)}.
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By our assumption, € > 0. As z € CR(f) there are zo,z,,...,z, such that zy =z, =z
and d(f(z;),zi41) <eforeachi=0,...,n—1. As f(z¢) = f(z) € A we have , € A
and inductively we have z; € A for 1 £ i < n. That is, z € A, a contradiction. 0

LEMMA 2.4. Letn € Nandn > 2. Then there is l(n) € N such that for every
m € N there ism’ € {m+ 1,...,m+l(n)} such that (m/,7) =1 for each 2 < i < n.
PROOF: The lemma can be checked by taking I(n) = n!. 0

The key lemma for the proofs of the main theorems will be the following. Note that
we use F(f) to denote the set of fixed points of f.

LEMMA 2.5. LetT be a tree and f : T —> T be continuous. If there is an
z € CR(f) \ P(f) such that w(z, f) N F(f) # 0, then h(f) > 0.
ProOF: Let z € CR(f)\ P(f) and e € w(z, f) N F(f). l

(A) if there are z; € (z,e) and some n € N such that f*(z;) = z then h(f) > 0.

As f™[z1, €] D [z, €], there is x5 € (21, e) with f*(z2) = z;. Inductively, for each i > 3
there is z; € (z;-1,e) with f*(z;} = z;_,. Since e € w(z, f) we have that e € w(z, f").
Let S be the component of T'\ {x,(n)} which contains z. Then there is m € N such that
f™(z) & S. We have:

z; € (f"(xi),f("'“)"(x,-)), i=1,2,...,l(n).

By Lemma 2.4 we know that there is 1 € ig < I(n) such that (m +4,5) = 1 for each
j=2,...,End (T). By Lemma 2.1, h(f") > 0, and hence h(f) > 0.

Let T} be the component of T\ {z} containing e and assume that for each n € N
there is no y € (z,e) with f*(y) = z.
(B) There is y € Ty such that f(y) = z.

Assume the contrary. That is, there is no y € T; such that f(y) = z. Then
f(Tl) C T, contradicting Lemma 2.3 as e € T} and e € w(z, f).

Let n € Nand W, = T\ N ( ¥ f‘j(z)>. Let V, be the component of T \ W,

j=1
containing e. As for each n € N there is no y € (z,e) with f*(y) = z, we have that
z € V,. Moreover, E(Vn) C E(T)uU U f¥(z).
j=1

(C) For each n € N there is y, € Vj, such that y, € f~®*)(z).

Note that V, is an open subset of T as CJ f3(z) is closed. If there is no y € V,,

j=1

such that y € f~+V(z) then we have f(V,,) C V., as e € V, and T is uniquely arc-wise
connected. This contradicts Lemma 2.3 since e € w(z, f) and e € V,,.

Let W =TI N (U f‘j(z)) and V be the component of T; \ W containing e. It

J

is easy to see that V contains a degenerate interval. Let P = V Na(z, f). Then P C
E(V) U V(Ty) is finite. We claim:
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(D) P isnot empty and f(P) C P.

If P =0, then V = V,, for some n € N. By (C), there is y, € V such that
yn € f7"*1(z), a contradiction.
Let y € P. Then f(y) € a(z, f) and there are y,, € f~™(z) such that y,, — y
and yn, ¢ V. Assume that f(y) ¢ V. Then there is p € P such that p € (e,f(y)).
(y

Ifp e .U f73(z), then there is z € (y,e) such that f(z) = p. This implies that z €
j=

U ~J(z), and hence y ¢ V, a contradiction. Thus we have p ¢ U f (). If (p, f(y)) N

i=1

(oLj ) # 0, then there is z € (y,€) such that f(2) = p. This implies that y ¢

V, a contradiction. We must have ( ,f(y)) N (.Ulf‘j(:c)) = 0. Thus f(y) € V, a
]:

contradiction. Hence f(y) € V Na(z, f). That is, P is invariant under f.

As P is a finite invariant subset, there is n such that f™(y) = y for each y € P. Let
g = f" and y; € P. Then there are y,, € f™(z) with y,, — y1. It is easy to see that
there is 1 < 4o < n such that fi(y;) € f~™*%°(z) and —n; + io|n. Let y = f*(y1). Then
y € oz, g) and g(y) = y. We have:

(E) Therearez € T, m 2 2 with (m,7) =1 for each 2 < i < End(T), 1 <t £ Val(y)
such that z € ( t(z), ‘”‘(z)).

Let U be a small connected neighbourhood of y such that U is homeomorphic to
some n—star with n = Val(y) and z & U. Let by,...,b, be the connected components
of U\ {y}. Asy is a fixed point of g, there is a small connected neighbourhood V
of y such that ¢*(V) c U fori = 0,1,...,n+ 1. Since y € a(z,g) there is n; such
that yn, € g”™(z) N V. Then there is ¢ € V such that ¢,g(q),...,¢'(g) € U with

€ (y,g‘(q)) C bn, and g*(q) € Orb(yn,,9) for some 1 <t < n, 1 < ng < n. Then we
have g;41 € by, such that g;41 € (y,¢;) and ¢*(gi+1) = ¢; for each ¢ € N. (Set ¢ = ¢;.)
By using the same idea as in the proof of (A) and the fact that e € w(z, g) we get the
conclusion of (E).
By Lemma 2.2 we have h(g) = (h(g‘))/t > 0, and a consequently A(f) > 0.

COROLLARY 2.6. Let f : T — T be a continuous map from a tree T into
itself. If CR(f) # P(f), then AP(f) # P(f) and consequently, P{f) is not closed.

ProorF: If h(f) > 0, then by Lemma 2.2 there are two disjoint closed intervals J, J
contained in some edge E of T and n € Nsuch that f*(J;) N f*(J;) D J1 U Jo. Hence
there are a closed invariant (under f™) subset X of £ and a continuous surjective map ¢ :
X — 5, such that ¢o f® = f*og, where (£2, o) is the one-sided shift with two symbols.
Moreover, ¢ is one-to-one except on a countable subset of X (see [3]). Then using [12] we
get a non-trivial minimal set of f. That is, AP(f") # P(f") and hence AP(f) # P(f).
Now we assume that A(f) = 0 and z € CR(f)\ P(f). If w(z, f) N P(f) # @, then there
is y € w(z, f) N P(f) with period n for some n € N. Thus there is i € N such that
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fiy) € w(z, f*) as w(z, f) = ithlw(f"(z), ) and f(w(fi(@), 7)) = w(f7*(@), f*) for
each j € N. Note that f'(y) is a fixed point of f*. By Lemma 2.5, we have A(f") > 0, a
contradiction. Hence we have w(z, f) N P(f) = 0. Let A be a minimal set contained in
w(z, f). Then A is not trivial. That is, AP(f) # P(f).

As P(f) € AP(f) C R(f) = P(f), we have that P(f) is not closed. 1]

Proor or THEOREM A: It is clear CR(f) = P(f) implies P(f) is closed. Now
assume that P(f) is closed. By Corollary 2.6, we have CR(f) = P(f). This ends the
proof.

To prove Theorem B we need the following lemma.

LEMMA 2.7. Let f: T — T be a continuous map from a tree T into itself. If
h{}) > U, then there 15z € CH(})\ F{J) such that t"{z) € P(}) tor some n € N.

PRrROOF: By Lemma 2.2 there are two disjoint closed intervals J;, J; contained in
some edge E of T and n € N such that f*(J;) N f*(J2) D J1UJs. Let g = f*, J; = [a;, bi]
and give an orientation of £ such that for each z; € J;, ; < z,. Then there are a fixed
point e € J) of g and z € J; such that g(z) = b,. Without loss of generality we assume
that e < z and (e,2) N F(g) = @. Take a point z < w € E such that g(w) = e. Then
w ¢ P(f) and w € Q(g) C CR(f). Hence w € CR(f) \ P(f) and f*(w) € P(f). 0

PROOF OF THEOREM B: Assume that A(f) = 0 and there is z € CR(f) \ P(f)
with w(z, f) N P(f) # 0. Let y € w(z, f) N P(f) and let the period of y be n. As

n—-1 . . .
w(z,f) = U w(f(z), f*), there is ¢ such that y € w(f’(z:),f"). Hence f*~*(y) €
1=0
w(z, f*). Note that f*~(y) is a fixed point of f™ and z € CR(f)\P(f) = CR(f")\P(f"),
a contradiction. 1]
The sufficiency of the theorem follows from Lemma 2.7.
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