Nagoya Math. J., 250 (2023), 470-497
DOI 10.1017/nmj.2022.39

COHOMOLOGY OF THE BRUHAT-TITS STRATA IN THE
UNRAMIFIED UNITARY RAPOPORT-ZINK SPACE OF
SIGNATURE (1,n—1)

JOSEPH MULLER

Abstract. In their renowned paper (2011, Inventiones Mathematicae 184,
591-627), I. Vollaard and T. Wedhorn defined a stratification on the special
fiber of the unitary unramified PEL Rapoport—Zink space with signature
(I,n—1). They constructed an isomorphism between the closure of a stratum,
called a closed Bruhat—Tits stratum, and a Deligne-Lusztig variety which is not
of classical type. In this paper, we describe the ¢-adic cohomology groups over
Qy of these Deligne-Lusztig varieties, where £ = p. The computations involve the
spectral sequence associated with the Ekedahl-Oort stratification of a closed
Bruhat—Tits stratum, which translates into a stratification by Coxeter varieties
whose cohomology is known. Eventually, we find out that the irreducible
representations of the finite unitary group which appear inside the cohomology
contribute to only two different unipotent Harish-Chandra series, one of them
belonging to the principal series.

Introduction

Rapoport—Zink spaces are geometric objects which can be seen as deformation spaces for
a p-divisible group equipped with additional structures. They are formal schemes over the
ring of integers of a p-adic field, and they are constructed by means of a moduli problem
which grants them with commuting actions from some p-adic and Galois groups. Therefore,
the étale cohomology of these spaces carries representations of these groups simultaneously,
and it is expected to realize a local version of the Langlands correspondence. Computing
this cohomology is an arduous problem in general. So far, it has only been entirely described
in a few special cases such as the Lubin—Tate tower or the Drinfeld space; in particular,
both of them correspond to Rapoport—Zink spaces of EL type.

The difficulty in studying the cohomology of the Rapoport—Zink spaces is maybe reflected
by the lack of precise understanding of their geometry in general. However, for some specific
choices of the set of data, the resulting moduli space may display some nice geometric
properties, giving hopes that their cohomology could be accessible. It is the case of the
unitary unramified PEL (Polarization, Endomorphism, Level structure) Rapoport—Zink
space M of signature (1,n— 1), whose special fiber M,qq is described by the Bruhat—Tits
stratification constructed by Vollaard and Wedhorn in a series of two papers [14] and [15].
This stratification { M} has two interesting features. On the one hand, the closed strata
M are indexed by the set of vertices A of the Bruhat—Tits building of a p-adic group of
unitary similitudes J defined by the PEL data. On the other hand, each individual closed
stratum M, is isomorphic to a Deligne-Lusztig variety. They usually show up in Deligne—
Lusztig theory, whose aim is the classification of the irreducible representations of finite
groups of Lie type. In particular, the cohomology of these varieties has been extensively
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studied in the past decades. In a series of two papers, we aim at exploiting these geometric
observations in order to link the cohomology theories of Deligne—Lusztig varieties and of
Rapoport—Zink spaces.

Our strategy in order to examine the cohomology of the Rapoport—Zink space M takes
place in two steps: first, we compute the cohomology groups H2(M,Qy) (with £ = p) of
the closed strata; second, we use the combinatorics of the Bruhat—Tits building to get
information on the cohomology of M. More precisely, in the second stage, we introduce
the analytical generic fiber M®". It is covered by the analytical tubes Uy of the closed
strata M. These are open subdomains of M?®" whose cohomology coincides with the
cohomology of the closed strata up to a suitable Tate twist and shift in degrees. Through the
Cech spectral sequence associated with the open cover {Up}a, we prove the semisimplicity
of the Frobenius action on H2(M?** Q;), and we determine the cuspidal supports of its
irreducible subquotients as a smooth representation of the group of unitary similitudes J.
It also turns out that these cohomology groups are not J-admissible in general. Lastly,
the p-adic uniformization theorem relates the Rapoport—Zink space M?®" with the basic
stratum of an associated PEL unitary Shimura variety through a geometric isomorphism.
It induces a Hochschild—Serre-type spectral sequence on the cohomology, through which we
compute the individual cohomology groups of the basic stratum in the case n = 3 and 4.
In particular, we find out that some automorphic representations occur with a multiplicity
depending on p which is a completely new phenomenon.

In the present paper, we carry out the first step of the strategy described above, namely
we compute the cohomology of the individual closed Bruhat—Tits strata by exploiting
Deligne—Lusztig theory. The second step and the results stated above can be found in the
sequel [13].

Let ¢ be a power of the prime number p. Let G be a connected reductive group over
an algebraic closure F of F,. Assume that G is equipped with an [F -structure induced
by a Frobenius morphism F : G — G. For P a parabolic subgroup of G, the associated
generalized parabolic Deligne-Lusztig variety is defined by

Xp:={gPeG/P|g 'F(9)e PF(P)}.

Usually, parabolic Deligne—Lusztig varieties have been studied with the additional assump-
tion that P contains a Levi complement L such that F(L) = L. Indeed, they are used
to define the Deligne-Lusztig induction and restriction functors between the categories of
representations of LY and of GT' (see, e.g., [3]). However, the closed Bruhat-Tits strata
constructed by Vollaard and Wedhorn are isomorphic to Deligne-Lusztig varieties Xp
associated with parabolic subgroups P which do not satisfy this assumption. We call them
generalized, and to the best of our knowledge, their cohomology has not been studied so far.

The closed Bruhat-Tits strata My, are isomorphic to generalized Deligne-Lusztig
varieties X7(id) associated with finite unitary groups Uggii(p) in an odd number of
variables. Although only the case ¢ = p is relevant in the context of Vollaard and
Wedhorn’s paper [15], we will work in this paper with a general ¢. In [15], the authors
defined yet another stratification on each individual stratum. It is called the Ekedahl-
Oort stratification, and it gives a decomposition X;(id) ~ | |y, X1, (w;) into locally
closed subvarieties. It turns out that each Ekedahl-Oort stratum X, (w¢) is isomorphic
to a Deligne-Lusztig variety which is not generalized. Moreover, they are closely related
to Coxeter varieties whose cohomology is known thanks to the work of Lusztig in [10].
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The Ekedahl-Oort stratification on X;(id) induces a spectral sequence on the cohomology,
through which we are able to entirely compute the individual cohomology groups in terms
of representations of Ugg+1(q). The representations which occur are all unipotent, and these
are classified by partitions of 2d+ 1 or equivalently by Young diagrams (see [5], [12]). Given
a partition A = (A; = --- = \;) of 2d+1 with A, > 0, the associated irreducible unipotent
representation of Usgi1(g) is denoted by py. We may now state our main result, whose
proof covers Section 5 of the paper. In the statement, the prime number ¢ is different from
p, the field IF is an algebraic closure of F,, and Frob is the geometric Frobenius relative to
F,2 acting on the cohomology groups.

THEOREM. The following statements hold.

(1) The cohomology group HL(X;(id) ® F,Q,) is zero unless 0 < i < 2d. There is an
isomorphism H%.(X;(id) ®F,Qy) ~ H24~(X;(id) ®F,Q¢) " (d) which is equivariant for
the actions of Frob and of Usq41(q).

(2) The Frobenius element Frob acts like multiplication by (—q)* on H:(X;(id) ®F,Qy).

(3) For0<i<d, we have

' o min(i,d—3)
sz(Xl(id) ®F,Q) = @ P(2d+1-2s,25)"
s=0
(4) For0<i<d—1, we have
' o min(i,d—1—1)
HgH_l (XI (ld) ®F, Qﬂ) = @ P(2d—2s,25+1)"
s=0

In particular, when the index is even, all the representations in the cohomology groups
contribute to the unipotent principal series, but when the index is odd, the representations
belong to the unipotent series determined by a minimal Levi complement of Usg1(g) which
is not a torus.

NoTATIONS. Throughout the paper, we fix ¢ a power of an odd prime number p. If k is a
perfect field extension of F,, we denote by o : z+— 27 the gth power Frobenius of Gal(k/F,).
We fix an algebraic closure F of F,. Unless specified otherwise, G will denote a connected
reductive group over IF equipped with an [F -structure, induced by a Frobenius morphism
F:G — G.If H is an F-stable subgroup of G, we denote by H := H" ~ H(F,) its group
of Fg-rational points. We fix a pair (T,B) consisting of a maximal torus T contained in a
Borel subgroup B, both of them being F-stable. Such a pair always exists up to G = G*'-
conjugation. We obtain a Coxeter system (W,S) on which F acts, where W = W(T) is
the Weyl group attached to T and S is the set of simple reflexions. It can be identified
with the Weyl group of G as defined in [2]. Let ¢ denote the length function on W relative
to S. For I ¢ S, we write Py, U, Lj, respectively, for the standard parabolic subgroup of
type I, for its unipotent radical, and for its unique Levi complement containing T'. We also
write W7 for the parabolic subgroup of W generated by the simple reflexions in I. Recall
that an element w e W is said to be I-reduced (resp. reduced-I) if for every v e Wy, we
have {(vw) = £(v) +£(w) (resp. {(wv) = £(w)+£(v)). The set of I-reduced (resp. reduced-1)
elements is denoted by W (resp. W!). If I, I’ = S, an element is said to be I-reduced-I’ if
it belongs to TW! :=IW A W'
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§1. The generalized Deligne—Lusztig variety X(id)

We recall the definition of Deligne-Lusztig varieties from [1]. If P is any parabolic
subgroup of G, the associated generalized parabolic Deligne-Lusztig variety is

Xp:={gPeG/P|g " F(g)e PF(P)}.

When these varieties were first introduced in [2], only the case of Borel subgroups was
considered, hence the adjective parabolic. Moreover, parabolic Deligne-Lusztig varieties
have mostly been studied with the additional assumption that P contains an F-stable Levi
complement (see, e.g., [3]). This is not required by the definition above, hence the adjective
generalized. Using the Coxeter system as above, one may give an equivalent description of
these varieties. For I,I' = S, the generalized Bruhat decomposition is an isomorphism

P[\G/PI/ = |_| P]\P[U)P[//P]/ ZW[\W/W[/.

wel W1’
For w e ITWFW) | the generalized parabolic Deligne-Lusztig varieties is defined by
Xr(w) = {gPre G/P|g~'F(g) e PrwF (Py)}.

The families of varieties Xp and X;(w) are the same, and [1] explains how to go from one
description to the other. The case I = (J corresponds to usual Deligne-Lusztig varieties
in G/B. Moreover, the additional assumption regarding the existence of a rational Levi
complement translates into the equation

w_llwzF(I), (*)

which is a compatibility condition between the parameters w and I. The variety X;(w) is
defined over Fy., where ¢ is the least integer such that F*(I) = I and F*(w) = w.

PROPOSITION 1. For I < S and we !WFW  we have
dlmX](’LU> = E(w) —I—dimG/PImwF(I)w_l - dlmG/P[

Let us introduce a few more notations. If I, I’ = S, the generalized Bruhat decomposition
implies that the G-orbits for the diagonal action on G/P; x G/P. are given by

Or,p(w) := {(gP1,hPr) g~ he PrwPy}

for w € "'W!'. The Deligne Lusztig variety X;(w) can be seen as the intersection of
O p(ry(w) with the graph of the Frobenius F': G/P; — G/Pg(). This intersection is
transverse (see [2, Lem. 9.11], the proof deals with the case I = ¢J, but it generalizes to
any 1) Thus, the proposition is a consequence of the following lemma and the fact that
dimP] = dll’nPF(I)

LEMMA 2. For I.LI' ¢S and we TW!', we have
dimOu/(w) = Z(w) —l—dimG/PIﬁwpw—L

Proof. Recall that for I ¢ S, the standard parabolic subgroup of type I decomposes as a
union of Bruhat cells P; = BW;B, and any Bruhat cell BwB has dimension dim B + ¢(w).
Therefore, dimP; = dim B+ ¢(I) where ¢(I) denotes the maximal length of elements of W7.
Let I,I' and w be as in the lemma. Consider the first projection Oy (w) — G/P, which is
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a surjective morphism with fibers isomorphic to P;wP /Py It is flat since G — G/P; is
faithfully flat, and the pullback Or (w) Xg/p, G is isomorphic to G x P;wP /P, which
is flat over G. We have

P]wP[/ = BW[BUJBW]/B = BW[UJW[!B;
therefore, the dimension of a fiber is given by

dimP;wPp /Py =dimP;wPp —dimPp = max  £(v)—£(I").
VEW rwW p/
Since w is I-reduced-1I’, according to [4, Lem. 3.2.2], any element v € W;wW [ can uniquely
be written as v = zwy such that x € W;,y € Wy and zw is reduced-I’. In particular,
(v) =l(x)+L(w)+£(y). It follows that
/
vevl‘}%}%v[, L(v) =Ll(w) + Iew;ﬁg\}fcﬂwil (x)+£(I").

We prove that W; n Wl w1t = W; AWInwl'w™"

Let € Wy n W w1, and we show that z is reduced-(I nwI’'w™"). Let s€ I nwl'w™!,
so that we can write s = wtw™! for some t € I’. Then xsw = xwt. Since xs € W; and w
is I-reduced, the left-hand side has length ¢(xs) + ¢(w). On the other hand, since t e I’
and zw is reduced-1’, the right-hand side has length ¢(zw) + 1 = ¢(x) + ¢(w) + 1. Therefore,
l(zs) =Ll(x)+ 1 as expected.

For the other inclusion, let y € W; n WInw! "w™ We show that yw is reduced-I’. Toward
a contradiction, assume that £(ywt) < {(yw) for some te I’. Let y = s1...s, and w=uq ... up
be reduced expressions, respectively, of y and of w, with the s; in I and the u; in S. Since
w is I-reduced, the concatenation of both reduced expressions give a reduced expression of
yw. By the exchange condition (see [4, Th. 2.1.2]), we have

Ywt = S1...8;...8,W O YUy ... Uj ... Up

for some 1 <i<ror1<j<r, where” denotes the product with one omitted term. The
second case is impossible, since after simplifying 3 it would contradict the fact that w is
reduced-I'. Let us write s :=y !s1...5;...s, € Wy, so that we have wt = sw. The left-hand
side has length ¢(w) + 1, and the right-hand side has length ¢(s) 4+ ¢(w). It follows that se I
has length 1. Therefore, s = wtw™ ! € I nwl’'w™!. Eventually, we have £(ys) = £(y) + 1 since y
is reduced-(I nwI’w™'). This is absurd, because ys = s1...5;...s, has length 7 —1 = £(y) — 1.

To conclude the proof, we recall the following general fact. If (W, S) is a Coxeter system
and K < S, then the product map WX x Wx = W sending (w®,wg) to wfwg is a
bijection. In particular, we have

max/(w) = max ((w®)+ max Llwg).
weW wEKeWEK WKEW i

We apply this to the Coxeter system (Wp,I) and K = I nwI’w™!. It follows that
max lz) = max 0(z) = (I) — (I nwIw™t).

2eEW AW -1 2EW;AWInwl'w™1
Putting things together, we have proved that

dim Oy p(w) = dimG/P;+ dimP;wP /P

_ . _ . _ _ /
=dimG —dimB E(I)+uev¥ﬁu)%vl,€(v) oI
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=dim G —dimB —¢(I) + ¢(w) + max {(x)
2eEW AW -1

= dimG — dimB — (I nwI’'w™) + f(w)
:dimG/PIme/w—l —i—E(w) D

REMARK 3. In [15, §4.4], the formula given by the authors for the dimension of Or 1 (w),
and as a consequence for the Deligne-Lusztig variety X(w) as well, contained a mistake.

Let d be a nonnegative integer, and let V' be a (2d + 1)-dimensional F-vector space.
Let (-,-) : V xV — F,2 be a nondegenerate Hermitian form on V. This Hermitian structure
on V is unique up to isomorphism. In particular, we may once and for all fix a basis B
of V in which (-,-) is described by the square matrix wg of size 2d + 1, having 1 on the
anti-diagonal and 0 everywhere else. If k is a perfect field extension of F 2, we may extend
the pairing to Vj, := V®Fq2 k by setting

(v®z,w®Y) :=zy° (v,w) €k

for all v,we V and z,y € k. If U is a subspace of V},, we denote by U~ its orthogonal, which
is the subspace of all vectors = € Vj, such that (z,U) = 0. Let J denote the finite group
of Lie type U(V,(:,-)). It is defined as the group of F-fixed points of J := GL(V)r with F
a nonsplit Frobenius morphism. Using the basis B, the group J is identified with GLogy1
with IF-structure induced by the Frobenius morphism F (M) := 1 (M (@) ~*iy, where M ()
denotes the matrix M having all coefficients raised to the power ¢. We may then identify
J with the usual finite unitary group Usg+1(q). The pair (T, B) consisting of the maximal
torus of diagonal matrices and the Borel subgroup of upper-triangular matrices is F-stable.
The Weyl system of (T,B) may be identified with (S2441,S) in the usual manner, where
S is the set of simple transpositions s; := (¢ i+ 1) for 1 <4 < 2d. Under this identification,
the Frobenius acts on W as the conjugation by the element wg, characterized for having
the maximal length. It satisfies w(i) = 2d +2 —1, and a natural representative of wy in the
normalizer of T is no other than wg. Since wy has order 2, the action of the Frobenius on
W is involutive. It also preserves the simple reflexions with the formula F(s;) = Sag+1—-
We define the following subset of S:

I:= {517"'75d75d+2a'--732d} = S\{Sd+1}.

We have F'(I) = S\{sq} = I. We consider the generalized Deligne-Lusztig variety X (id).
It corresponds to the variety denoted Yy in [15, §4.5]. It has dimension d, and it does not
satisfy the compatibility condition (*). According to [15, Lem. 4.5], we have the following.

PROPOSITION 4. The variety X;(id) is defined over F,2, and it is projective, smooth,
geometrically irreducible of dimension d.

Although the proposition in [15] is only stated in the case ¢ = p, the arguments carry over
to general ¢. The geometric irreducibility is a consequence of the criterion proved in [1].

REMARK 5. As mentioned above, the dimension formula for generalized Deligne—Lusztig
varieties in [15] contains a mistake. For example, we may consider the Deligne-Lusztig
variety X7(sgs1) for Ug(FF,) with I = {s;}. It satisfies (*) so that dim X;(s251) = #(s251) =2
according to [3]. However, we have P;p) = B and dim G/B = 3, whereas dimG/P = 2,
so that the formula of [15] says that X (s2s1) would be of dimension 243 —2 = 3.
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Nonetheless, the formula of [15] does give the correct result in the case of X;(id). It is
because for w = id, we have I nwF (I)w™! = I n F(I). Therefore, the validity of the authors’
work is not affected in any way.

Rational points of Deligne-Lusztig varieties associated with a unitary group U over F,
can be described in terms of vectorial flags, in a certain relative position with respect to
their image by the Frobenius. Let £ be a perfect field extension of 2. According to [14,
Lem. 2.12], the Frobenius acts on a flag F in V, by sending it to its orthogonal flag F*.
Explicitly, we have

F : {0}c FL € F Vg,

Ft: {0} cFrtc---cF V.

r

Here, given our choice of I, a k-rational point of X;(id) corresponds to a flag of the type
F:A{0}cUcCV,

with U having dimension d+ 1, and which is of relative position id with respect to F=*.
This precisely means that U must contain U™,

PROPOSITION 6. The k-rational points of X;(id) are given by
X;(id) (k) ~{U c V}| dimU = d+1 and U+ c U}.

In [15, §5.3], the authors defined the Ekedahl-Oort stratification on the Deligne-Lusztig
variety X;(id). By [15, Cor. 5.12], it turns out that each stratum is itself isomorphic to a
Deligne—Lusztig variety which is not generalized. For 0 <t < d, we define the subset

It = {817‘ <oy Sd—t—1,Sd+t+2,-- '752d} cS.

It consists of all 2d simple reflexions in S, except that we removed the 2t + 2 ones in the
middle. Thus, it has cardinality 2(d —¢—1). In particular, it is empty for ¢ =d or d —1.
We also define the cycle w; :== (d+t+1 d+t...d+1). Its decomposition into simple
reflexions is wy = Sq4+1..-Sq+¢- When t = 0, it is the identity. We note that even though
Iy =11 =, we still have wg = wg—1. One may check that F'(I;) = I and that w; belongs
to 1*Wt. Moreover, the compatibility condition (*) is satisfied for the pair (I;,w;). Indeed,
the reduced decomposition for w; does not use any simple reflexion that is adjacent to those
in I;. By [15, §3.3 and §5.3], we have the following result.

PROPOSITION 7. The Deligne-Lusztig variety Xy, (we) is defined over Fp and has
dimension t. There is a natural immersion Xj, (w;) — X;(id) inducing a stratification

Xr(id) = | | X, (wy).

o<t<d
The closure of the stratum Xj, (wy) is the union of all the strata X (ws) for s <t.

Following the proof of Theorem 2.15 of [14], we can describe the stratification at the level
of rational points. Let k be a perfect field extension of F, .. By the choice of I, a k-point
of X, (wy) is a flag

F: {0cFyaccFicFhiccFuacl
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with dim(F_;) =d+1—1i and dim(F;) = d+i for 1 <i <t+1, and which is in relative
position w; with respect to F. It means that we have a diagram of the following type.

Fi:Fyq1ccFyac Lo F o coc Fyo© Fi

HAYASIAY

.7:L:.7-"+1c c]—"l c 7(F1) < 7(F2) c 7(F) < 7(Fig1)

Here, 7:=0?-id is an F-linear automorphism of Vj, and it satisfies 7(U) = (U+)*
for every subspace U < (Vj),. This diagram implies that 7(F;) = F;—1 + 7(F;—1) for all
2 <i<t+ 1. This rewrites as F; = F;_1 + 7 }(Fi_1). We deduce that

i—1
J—“,‘ = Z Tﬁl(fl)
=0

for all 1 <i <t+1. Thus, the whole flag is determined by the subspace Fi, which has
dimension d+ 1 and contains its orthogonal. The immersion Xy, (w;) — X;(id) maps the
flag F to JFi.

Conversely, a k-point of X;(id) is given by a subspace U < Vj of dimension d + 1
containing its orthogonal. For ¢ > 1, we define

fi = ZT_I(U)CVk.

Then (F;);>1 is a nondecreasing sequence of subspaces of V. Let t be the smallest integer
such that Fyi1 = Fyyo. It follows that 0 <t < d and that ¢ is also the smallest integer
such that F;,1 = 7(Fy41). Moreover, the orthogonal U+ has dimension d, and we have
Ut c U, so that U+ < (U+)t = 7(U). In particular, if ¢ > 0, then U n7(U) = U+, Thus,
we have dim(F3) = d+ 2. Similarly, we have dim(F;) = d+ for all 1 <7 <t+ 1. By setting
F_; = F;-, we obtain a flag F that is the k-rational point of X7, (w;) associated with U.

The Deligne-Lusztig varieties X, (w;) are related to Coxeter varieties for smaller unitary
groups as we now explain. We define

Ky = {S1,...8d—t—1,Sd—t+1,- - -+ Sd+ts Sd+t+2---»52d} = S\{Sd—t>Sd+t+1}-

The set K; is obtained from I; by adding the 2t simple reflexions in the middle. It has
cardinality 2d — 2 and satisfies F'(K;) = K;. We have [; ¢ K; with equality if and only if
t=0.

PROPOSITION 8. There is a Usgy1(q)-equivariant isomorphism
L
X1, (wi) ~ Usay1(q)/ Uk, X1, Xp." (wy),

where X};K’f (wi) is a Deligne-Lusztig variety for Lg,. The zero-dimensional variety
Usa+1(q)/Uk, has a left action of Usqr1(q) and a right action of Lk,.

Proof. This is an application of [3, Prop. 7.19], which is the geometric identity behind
the transitivity of the Deligne-Lusztig functors. It applies to the varieties X, (w;) because
they satisfy the compatibility condition (*), as well as the following conditions: K; contains
I;, it is stable by the Frobenius, and w; belongs to the parabolic subgroup Wk, ~ &4_ x
Gat11 X Ggqt © Gagy1. 0
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The Levi complement Ly, is isomorphic to the product GLg—; x GLa+1 x GLg—¢ as
a reductive group over F. Given a matrix M = diag(A,C,B) € Lg,, we have F(M) =
diag(F(B),F(C),F(A)), where we still denote by F' the Frobenius morphism for smaller
linear groups. Writing H for the product of the two GL4_; factors, we have Ly, ~
H x GLy¢4+1 and both factors inherit an [Fg-structure by means of F. We have Lk, ~
GLg_¢(q?) x Uas41(q), the first factor corresponding to H. The Weyl group of L, is
isomorphic to Wy X Go;41 where Wy ~ &4 x &4 is the Weyl group of H. Via this
decomposition, the permutation w; corresponds to id x w;, where wy is the restriction of w;
to{d—t+1,...,d+t+1}. Similarly, the set of simple reflexions S decomposes as Sy L g, the
second term corresponding to the simple reflexions in Go441. Then, we have I; = Sy L .
The Deligne-Lusztig variety for Lx, decomposes accordingly as the following product:

X7 (we) = XE (id) x X 209 (@),

(Q)(

The variety XgH (id) is just a point, whereas Xg““ wy) is a Deligne-Lusztig variety for
the unitary group of size 2t + 1. We observe that the permutation wy; is a Cozeter element in
G241, that is, the product of exactly one simple reflexion for each orbit of the Frobenius.
Deligne—Lusztig varieties attached to Coxeter elements are called Coxeter varieties, and
their cohomology with coefficients in Q, where ¢ is a prime number different from p are
well understood thanks to the work of Lusztig in [10]. Before stating his results, we recall

parts of the representation theory of finite unitary groups.

§2. Irreducible unipotent representations of the finite unitary group

In this section, we recall the classification of the irreducible unipotent representations of
the finite unitary group and we explain the underlying combinatorics. For w e W, let w
be a representative of w in the normalizer Ng(T) of T. By the Lang-Steinberg theorem,
one can find g € G such that w = g~ 1F(g). Then 9T := gTg~! is another F-stable maximal
torus, and w e W is said to be the type of 9T with respect to T. Every F-stable maximal
torus arises in this manner. According to [2, Cor. 1.14], the G-conjugacy class of 9T only
depends on the F-conjugacy class of the image w of the element g~ 'F(g) € Ng(T) in the
Weyl group W. Here, two elements w and w’ in W are said to be F-conjugates if there
exists some element u € W such that w = vw'F(u)~!. For every we W, we fix T, an F-
stable maximal torus of type w with respect to T. The Deligne-Lusztig induction of the
trivial representation of T, is the virtual representation of G defined by the formula

Ry = ) (1) HL(Xg(w)).

120

According to [2, Th. 1.6], the virtual representation R,, only depends on the F-conjugacy
class of w in W. An irreducible representation of G is said to be unipotent if it occurs in
R, for some w e W. The set of isomorphism classes of unipotent representations of G is
usually denoted £(G, 1) following Lusztig’s notations.

Assume that the Coxeter graph of the reductive group G is a union of subgraphs of type
Ay, (for various m). Let W be the set of isomorphism classes of irreducible representations
of its Weyl group W. The action of the Frobenius F' on W induces an action on \\7\/7, and we
consider the fixed point set WF. Then, [12, Th. 2.2] establishes the following classification.
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THEOREM 9. There is a bijection between W and the set of isomorphism classes of
irreducible unipotent representations of G = GF .

We recall how the bijection is constructed. If V e W7 is an irreducible F-stable
representation of W, according to [12], there is a unique automorphism F' of V of finite
order such that

R(V) 1= —

= W Z Trace(wo F | V)R,

weW

is an irreducible representation of G. Then the map V +— R(V) is the desired bijection.

In the case G = GL, with the Frobenius morphism F' being either standard or twisted
(i.e., G = GL,(q) or U,(q)), we have an equality WF = W. Moreover, the automorphism
F is the identity in the former case and multiplication by wy on the latter, where wyg
is the element of maximal length in W. Thus, in both cases, the irreducible unipotent
representations of G are classified by the irreducible representations of the Weyl group W ~
S, which in turn are classified by partitions of n or equivalently by Young diagrams. We
now recall the underlying combinatorics behind the representation theory of the symmetric
group. A general reference is [9].

A partition of n is a tuple A = (A = --- = \;) with » > 1, and the \;’s are positive
integers such that Ay +---+ A, = n. The integer n is called the length of the partition,
and it is also denoted by |A|. If a partition has a series of repeating integers, it is common
to write it shortly with an exponent. For instance, the partition (3,3,2,2,1) of 11 will be
denoted (32,22,1). Partitions of n are naturally identified with Young diagrams of size n.
The diagram attached to A has r rows consisting successively of \1,..., A, boxes.

To any partition A of n, one can naturally associate an irreducible representation x of
the symmetric group &,,. An explicit construction is given, for instance, by the notion of
Specht modules as explained in [9, §7.1]. In particular, the character X(n) 18 trivial, whereas
the character x(;») is the signature.

We recall the Murnaghan—Nakayama rule, which gives a recursive formula to evaluate
the characters y,. We first need to introduce skew Young diagrams. Consider a pair A and
1 of two partitions, respectively, of integers n+ k and k. Assume that the Young diagram of
1 is contained in the Young diagram of A. By removing the boxes corresponding to u from
the diagram of A, one finds a shape consisting of n boxes denoted by A\u. Any such shape
is called a skew Young diagram of size n. It is said to be connected if one can go from a
given box to any other by moving in a succession of adjacent boxes.

For example, consider the partition A = (32,22,1) and let us define the partitions p; =
(22), po = (3,12), and pg = (2,1). The diagrams below correspond, from left to right, to the
skew Young diagrams A\pu; for i =1,2,3.

. N
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The skew Young diagram A\p; is not connected, whereas the others are connected. A
skew Young diagram is said to be a border strip if it is connected and if it does not contain
any 2 x 2 square. The height of a border strip is defined as its number of rows minus 1. For
instance, among the three skew Young diagrams above, only A\us is a border strip. Its size
is 6, and its height is 3.

The characters ) are class functions, so we only need to specify their values on conjugacy
classes of the symmetric group &,,. These conjugacy classes are also naturally labeled by
partitions of n. Indeed, up to ordering any permutation, ¢ € &,, can be uniquely decomposed
as a product of r = 1 cycles ¢y, ..., ¢, with disjoint supports. We denote by v; the cycle length
of ¢;, and we order them so that v1 = --- > v,.. We allow cycles to have length 1, so that the
union of the supports of all the ¢;’s is {1,...,n}. Thus, we obtain a partition v = (v1,...,v,)
of m, which is called the cycle type of the permutation o. Two permutations are conjugates
in 6, if and only if they share the same cycle type. We denote by x(v) the value of the
character x, on the conjugacy class labelled by v.

THEOREM 10. Let A and v be two partitions of n. We have

Xa(v) = D (=1)" Sy s (),
S

where S runs over the set of all border strips of size vy in the Young diagram of X\, such
that removing S from A gives again a Young diagram. Here, the integer ht(S) € Z=q is the
height of the border strip S, the Young diagram A\S is the one obtained by removing S from
A, and v\vy is the partition of n— vy obtained by removing vy from v.

Applying the Murnaghan—Nakayama rule in successions results in the value of x\(v).
We see, in particular, that x(,) is the trivial character, whereas x(i» is the signature. We
illustrate the computations with A\ = (32,22,1) and v = (42,3). There are only two eligible
border strips of size 4 in the diagram of A, as marked below.

and
x | x
X X
x | x X
X

Both border strips have height 2. Thus, the formula gives

X(32,22,1)(4273) = X(32,1)(4,3) + X(3,14)(4,3).
In each of the two Young diagrams obtained after removal of the border strips, there is

only one eligible strip of size 4, and eventually the three last remaining boxes form the final
border strip of size 3.
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— [x[x[x] [ | D[]
x| x| x X
X X
X
X
Taking the heights of the border strips into account, we find
X32,1)(4,3) = =Xx(3)(3) = —xgz = —1, X(3,14)(4,3) = —x(3)(3) = —xgz = —1.

Here, J denotes the empty partition. The computation finally gives X(32,22,1)(42»3) = -2

The irreducible unipotent representation of U, (q) (resp. GL,(q)) associated with x» by
the bijection of Theorem 9 is denoted by pY (resp. pi¥). The partition (n) corresponds to
the trivial representation and (1") to the Steinberg representation in both cases. We will
omit the superscript when the group we are talking about is clear from the context. The
degrees of the representations pf\;L and p}\I are given by expressions known as hook formula.
Given a box [] in the Young diagram of A\, its hook length h(l:l) is 1 plus the number of
boxes lying below it or on its right. For instance, in the following figure, the hook length of
every box of the Young diagram of \ = (32,22,1) has been written inside it.

N | Ot

’»-anxc»\l

PROPOSITION 11. Let A = (Ay = --- = \.) be a partition of n. The degrees of the
irreducible unipotent representations p§¥ and pY (resp. of GLn(q) and U,(q)) are given
by the following formulas:

aLy_ a1l @' —1 Uy _ a(\) [lisig' = (=1
deg(p)\ ) q HDE)\qh(D)—17 deg(p)\) q . h( )_(_1)h( )

where a(X) =Y. (1 —1)\;.

We recall from [6, §3.1 and §3.2] some definitions on classical Harish-Chandra theory. A
parabolic subgroup of G is a subgroup P c G such that there exists an F-stable parabolic
subgroup P of G with P = P¥. A Levi complement of G is a subgroup L < G such that
there exists an F-stable Levi complement L of G, contained inside some F-stable parabolic
subgroup, such that L = L¥. Any parabolic subgroup P of G has a Levi complement L.
Let U = UF be the F-fixed points of the unipotent radical U of P. The Harish-Chandra
induction and restriction functors are defined by the following formulas.
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RY_p : Rep(L) — Rep(G) *Rf<p : Rep(G) — Rep(L)
o C[G/U]®c[r) 0 p— Homg(C[G/U], p)

Here, Rep(G) is the category of complex representations of G, and similarly for Rep(L).
These two functors are adjoint, and up to isomorphism, they do not depend on the choice of
the parabolic subgroup P containing the Levi complement L. For this reason, we will denote
the functors R(L; and *Rg instead. An irreducible representation of G is called cuspidal if its
Harish-Chandra restriction to any proper Levi complement is zero. We consider pairs (L, X)
where L is a Levi complement of G and X is an irreducible representation of L. We define
an order on the set of such pairs by setting (L,X) < (M,Y) if L © M and if X occurs in
the Harish-Chandra restriction of Y to L. A pair is said to be cuspidal if it is minimal with
respect to this order, in which case X is a cuspidal representation of L. If (L, X) is a cuspidal
pair, we will denote by [L, X] its conjugacy class under G. Given a cuspidal pair (L, X) of
G, its associated Harish-Chandra series £(G,(L,X)) is defined as the set of isomorphism
classes of irreducible constituents in the induction of X to G. Each series is nonempty. Two
of them are either disjoint or equal, the latter occurring if and only if the two cuspidal pairs
are conjugates in G. Thus, the series are indexed by the conjugacy classes [L, X ] of cuspidal
pairs. Moreover, the isomorphism class of any irreducible representation of G' belongs to
some Harish-Chandra series. Thus, Harish-Chandra series form a partition of the set of
isomorphism classes of irreducible representations of G. If p is an irreducible representation
of G, the conjugacy class [L, X] corresponding to the series to which p belongs is called
the cuspidal support of p. If T denotes a maximal torus in G, then the series £(G, (T,1)) is
called the unipotent principal series of G.

For the general linear group GL,(q), there is no unipotent cuspidal representation
unless n =1, in which case the trivial representation is cuspidal. Moreover, the unipotent
representations all belong to the principal series. The situation for the unitary group is
very different. First, by [11, Prop. 9.2 and Prop. 9.4], there exists an irreducible unipotent
cuspidal representation of U,(q) if and only if n is an integer of the form n = %
for some x > 0, and when that is the case it is the one associated with the partition
A, :=(z,z—1,...,1), whose Young diagram has the distinctive shape of a reversed staircase.
Here, as a convention, Uy(gq) denotes the trivial group.

For example, here are the Young diagrams of Ay, As, and Az. Of course, the one of Ag
is the empty diagram.

]

Furthermore, the unipotent representations decompose nontrivially into various Harish-
Chandra series, as we recall from [6, §4.3]. We consider an integer z > 0 such that
n decomposes as n = 2a + w for some a = 0. We also consider the standard Levi

complement L, ~ GL;(¢?)% x U+ (q), which corresponds to the choice of simple reflexions
2

Sa+1s---sSn—a—1- We write p, for the inflation of pXI to an irreducible representation of
L,. Then £(U,(q),1) decomposes as the disjoint union of all the Harish-Chandra series
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E(U,(q),(Lz,ps)) for all possible choices of z. With these notations, the principal unipotent
series corresponds to x = 0 if n is even and to x = 1 if n is odd. Given an irreducible unipotent
representation py of U, (q), there is a combinatorial way of determining the Harish-Chandra
series to which it belongs. We consider the Young diagram of A\. We call domino any pair of
adjacent boxes in the diagram. It may be either vertical or horizontal. We remove dominoes
from the rim of the diagram of A so that the resulting shape is again a Young diagram, until
one cannot proceed further. This process results in the Young diagram of the partition A,
for some z > 0, and it is called the 2-core of A. It does not depend on the successive choices
for the dominoes. Then, the representation py belongs to the series £(U,(q),(Lz,p:)) if and
only if A has 2-core A,.

For instance, the diagram \ = (32,22,1) has 2-core A1, as it can be determined by the
following steps. We put crosses inside the successive dominoes that we remove from the
diagram. Thus, the unipotent representation py of U;;(q) belongs to the unipotent principal

series £(U11(q), (L1,p1)).

[ ]

X | X X|X‘

= _ _ — F=[]

83. Computing Harish—Chandra induction of unipotent representations in the
finite unitary group

We recall from [6, §3.2] how Harish-Chandra induction of unipotent representations can
be explicitly computed. Let W = W' be the Weyl group of G. It is still a Coxeter group,
whose set of simple reflexions S is identified with the set of F-orbits on S. Let (L,X) be
a cuspidal pair of G. The relative Weyl group of L is given by Wg(L) := Ng(L)¥'/L c W.
The relative Weyl group of the pair (L, X), also called the ramification group of X in [8], is
the subgroup We (L, X) of Wg (L) consisting of elements w such that wX ~ X, where wX
denotes the representation wX (g) := X (wgw™!) of L. It is yet again a Coxeter group if G
has a connected center or if X is unipotent. Theorem 3.2.5 of [6] establishes an isomorphism
between the endomorphism algebra of the induced representation Rf(X ) and the complex
group ring of the ramification group W (L, X). In particular, this gives an bijection between
the Harish-Chandra series £(G, (L, X)) and the set Irr(Wg(L, X)) of isomorphism classes
of irreducible complex characters of W (L, X). These bijections for G and for various Levi
complements in G can be chosen to be compatible with Harish-Chandra induction. This is
known as Howlett and Lehrer’s comparison theorem, which was proved in (see also [6, Th.
3.2.7)).

THEOREM 12. Let (L,X) be a cuspidal pair for the finite group of Lie type G. For
every Levi complement M in G containing L, the bijection between Irr(Wy (L, X)) and

https://doi.org/10.1017/nmj.2022.39 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2022.39

484 J. MULLER

E(M,(L,X)) can be taken so that the diagrams

Z2E(G,(L, X)) ———— ZIrr(We (L, X)) ZE(G,(L, X)) ————— ZIrr(We (L, X))
REJ }nd *RﬁJ JRes
ZEM,(L, X)) ————— ZIrr(Wn (L, X)) ZEM,(L, X)) ————— ZIrr(Wn (L, X))

are commutative. Here, Ind and Res on the right-hand side of the diagrams are the classical
induction and restriction functors for representations of finite groups.

In other words, computing Harish-Chandra induction and restrictions of representations
in G can be entirely done at the level of the associated Coxeter groups. In order to
use this statement for unitary groups, we need to make the horizontal arrows explicit
and to understand the combinatorics behind induction and restriction of the irreducible
representations of the relevant Coxeter groups. This has been explained consistently in [5]
for classical groups.

We focus on the case of the unitary group. Let > 0 such that n = 2a + w for some
a > 0. We consider the cuspidal pair (L, p,) with L, = GL;(¢?)® x Uw (). The relative
Weyl group Wy, (o) (L) is isomorphic to the Coxeter group of type B,, which is usually

denoted by W,. Indeed, the Weyl group Wy, (4)(L.) admits a presentation by elements

01,...,0q4—1 and @ of order 2 satisfying the relations
90’100'120'100'10, 00’1‘20'1'0, V2<i<m—1,
0;0;4+10; = 0;4+10;0;+1, 005 =040, V|Z—j| 22

Explicitly, the element o; is represented by the permutation matrix of the double
transposition (i i+1)(n—i n—i+1) and the element 6 by the matrix of the transposition
(1 n), all of which belong to Ny, (4)(Lz). This presentation coincide with the Coxeter group
W, of type B, (see in [7, §1.4.1]). Moreover, the ramification group Wy (q)(Lx,p) is equal
to the whole of Wy (4)(Lz) =~ W,. The identification between the ramification group and
the Coxeter group W, is naturally induced by the isomorphism between the absolute Weyl
group W and the symmetric group &,,. In order to proceed further, we need to explain the
representation theory of the group W,. For 1 <¢ < a—1, we define 8; = 0;...016001...0;.
In particular, 6y = 6. Following [7, §3.4.2], we define signed blocks to be elements of the
following form. Given k > 0 and e > 1 such that k + e < a, the positive (resp. negative)
block of length e starting at & is

+ o - =
by o 1= Ok+10k42- .- Okte—1, by = 0kOkt10k+2. . Okge—1.

A bipartition of a is an ordered pair (o, ) where « is a partition of some integer 0 < j < a
and f is a partition of a — j. Given a bipartition (a, ) of a and writing a = (ay,...,a;)
and 8 = (B1,...,0s), we define the element

o - o+ +
Wa,p - = bklvﬁl T bksvﬁs bks+17041 T bks+7‘aar’

where k1 =0, ki1 =k +6; if 1<i<s,and kjo1 =k;+a;—s if s+1<i<s+r—1.1In
particular, we have k,i s+ o, = a. According to [7, Prop. 3.4.7], the conjugacy classes
in W, are labeled by bipartitions of a, and a representative of minimal length of the
conjugacy class corresponding to the bipartition (¢, ) is given by wq, 5. Thus, the irreducible
representations of W, can be labeled by bipartitions of a as well. An explicit construction of
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these irreducible representations is given in [7, §5.5]. We will not recall it; however, we may
again give a method to compute the character values, similar to the Murnaghan-Nakayama
formula. The character of the irreducible representation of W, associated in [7] with the
bipartition («, ) of a will be denoted x4 g. If (7,0) is another bipartition of a, we denote
by Xa,5(7,9) the value of the character x, s on the conjugacy class of W, labeled by (v,4).

One can think of a bipartition («,f) of a as an ordered pair of two Young diagrams of
combined size a. A border strip of a bipartition («, 3) is a border strip either of the partition
« or of 8. The height of a border strip is defined in the same way.

THEOREM 13. Let (o, ) and (v,0) be two bipartitions of a. If v = &, let e =1 and let
x be the last integer in the partition ~v. If v = &, let e = —1 and let = be the last integer of
the partition 6. We have

Xas(7,8) = D (1) efsx o 5((7,0)\),
S

where S runs over the set of all border strips of size x in the bipartition («,3), such that
removing S from («,B) gives again a pair of Young diagrams. Here, the pair of Young
diagrams («, B)\S is the one obtained after removing S, and (v,0)\z is the bipartition
obtained by removing x from (v,8). Eventually, the integer fs is 0 if S is a border strip
of a, and it is 1 if S is a border strip of 3.

Applying this formula in successions results in the value of x4, gy(7,9). In particular, one
sees that x(,) g is the trivial character and that X (e is the signature character of Wj,.
We illustrate the computations with («, 3) = ((3,12),(4,2)) and (v,d) = ((4),(5,2)). There
is only eligible border strip of size 4 in the pair of diagrams («, ), as marked below.

|| T+

This border strip S has height 1. It was taken in the diagram of 3, so fg = 1. Since
v = &, we have e = 1. Applying the formula, we obtain

X(3,12),(4,2)((4),(5,2)) = —X(3,12),(12) (T, (5,2)).

We are now looking for border strips of size 2 in the pair of diagrams of the bipartition
(3,12),(12). Three of them are eligible, as marked below.

[ ] x| %] [ ]
I aand_ ,Hand% ,H

These three border strips have respective heights 1,0, and 1. The corresponding values
of fg are, respectively, 1, 0, and 0. Moreover, the partition v is now empty, so € = —1. The
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formula gives

X(3,12),12) (D (5,2)) = x(3,12), (T (5)) + X(13),12) (T (5)) — X(3),(12) (T (5))-

In the bipartitions ((1%),(12)) and ((3),(1?)), there is no border strip of size 5 at all. Thus,
the formula tells us that the corresponding character values are 0. On the other hand, the
bipartition ((3,12), ) consists of a single border strip of size 5 and height 2. The formula,
gives

X(3,12),5(,(5)) =xg = 1.

Putting things together, we deduce that x (3 12),(4,2)((4),(5,2)) = —1.

We may now describe the horizontal arrows in Theorem 12 for the unitary group.
To do this, we need an alternate labeling of the irreducible unipotent representations of
the unitary group. We refer to [5] for the details. The new labeling of the irreducible
unipotent representations of U,(q) involves triples of the form (A,,«,3) where z is a
nonnegative integer such that n = 2a + @ for some integer a > 0, and where («, ) is
a bipartition of a. The corresponding representation will be denoted pa, . With this
labeling, the unipotent Harish-Chandra series £(U,(q),(Ls,p.)) consists precisely of all
the representations pa, o5 with («,() varying over all bipartitions of a. The bijection
2E(Un(q), (L, pe)) — ZIrr(Wy, (4)(Le, p)) involved in the Comparison theorem simply
sends pa, a,5 0 Xa,s. Here, we made use of the identification Wy (4)(La,pz) =~ W.

More generally, if M is a standard Levi complement in U, (q) containing L,, we may
write M ~ Uy(q) x GLq, (¢?) x -+ x GLq, (¢%) where n =2(a; +-+-+a,)+b and b > %
The irreducible unipotent representations of M in the Harish-Chandra series £(M, (L, ps))
are those of the form pa, o3 pSlegiL where \; is a partition of a; for 1 <i <

r and («,f) is a bipartition of the integer ¢ := %(b— x(mTH)) On the other hand, the

relative Weyl group W (L, p..) can be identified with the subgroup of Wu.(q) (L, pz) =W,
isomorphic to the product W, x &,, x--- x &, . (Note that c+ay +---+a, = a.) Concretely,
the W,.-component is generated by the elements 6,01,...,0.—1, the &, ,-component by the
elements 0ci1,...,0¢44,—1, and so on. Irreducible characters of Wy, (L, p,) have the shape
Xa,3x A, - - <X xa, where (o, ) is a bipartition of ¢ and A, is a partition of a; for 1 <i <r.
Then, according to [5, §4], the bijection ZE (M, (Ly, p,)) — ZIrt(Wps(Ly, p.)) involved in
Theorem 12 sends pa, a8 pflL e pr t0 Xa,g XX, X - -XIxA,-

We explain how the two different labelings of the irreducible unipotent representations
of U,(q) are related. To do this, one needs the notion of 2-quotient. For the following
definitions, we allow partitions to have 0 terms at the end. Thus, let us write A = (A1 >

- = A) with A, = 0. The -set of A is the sequence of decreasing nonnegative integers
Bi =X +r—1ifor 1 <i<r. Mapping a partition A to its 5-set gives a bijection between the
set of partitions having r terms and the set of decreasing sequences of nonnegative integers
of length r. The inverse mapping sends a sequence (31 > -+ > (3, = 0) to the partition A
given by \; = 8; +i—r. Let X be a partition of n as above, and let § be its g-set. We let
Beven (resp. Poda) be the subsequence consisting of all even (resp. odd) integers of 5. Then,
we define the following sequences:

(B, [ Bi—1
/80'_<2 BZEBEVQH>7 /81‘_< 2

Bi € ﬁodd> .
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The sequences 3° and B! are the f(-sets of two partitions, which we call u° and u!,
respectively. Then, the 2-quotient of X is the bipartition (u°, ut) if r is odd, and (p!, u) if r
is even. We note that the ordering of ;1 and p! in the 2-quotient may vary in the literature.
Here, we followed the conventions of §1 of [5]. A different ordering is used in [9, §2.7]. In [9,
Th. 2.7.37], another construction of the 2-quotient using Young diagrams is proposed. Let
N be another partition which differs from X only by 0 terms at the end. While the -sets of
A and X are not necessarily the same, the resulting 2-quotients are equal up to 0 terms at
the end of the partitions. Thus, from now on, we identify all partitions differing only from
0 terms by removing all of them. The 2-quotient of a partition is then well defined. By [9,
Th. 2.7.30], we have the following result.

THEOREM 14. A partition A is uniquely characterized by the data of its 2-core A, and
its 2-quotient (A\°,\'). Moreover, the lengths of these partitions are related by the equation

A= 1Az +2(1A% +[AY)
and |A,| = x(mTH)

For instance, the 2-quotient of the partition A = (32,22,1) is (22,1). Recall that the 2-
core of A is A;. Thus, the equation on the lengths of the partitions is satisfied, as we have
11=1+2(4+1).

We may now relate the two labelings {pY} and {pa, a.s} of the irreducible unipotent
representations of U, (q) together (see [5, Appendix]).

PROPOSITION 15. Let A be a partition of n. Denote by A, its 2-core and by (A°,\!)
its 2-quotient. On the other hand, let x = 0 be such that n = 2a + w for some a =0
and let (a, B) be a bipartition of a. Then the irreducible representations p§ and pa,.a.p are
equivalent if and only if v =y and (\°,\') = (o, B) if z is even or (\O,\V) = (B,a) if z is

odd.

For instance, for A = (32,22,1), the representation p}\I is equivalent to pa, (1),(22)-

In order to apply the comparison theorem for unitary groups, it remains to understand
how to compute inductions in Coxeter groups of type B. Such computations are carried out
in §6.1 of [7]. It turns out that we will only need one specific case of such inductions, and
the corresponding method is known as the Pieri rule for groups of type B (see [7, §6.1.9]).

PROPOSITION 16. Let a > 1 and consider r,s = 0 such that v+ s = a. We think of the
group W,. x &4 as a subgroup of W,.

— Let (o, ) be a bipartition of r. Then the induced character

Ind® s, (X(a) B X(s))

is the multiplicity-free sum of all the characters x. s such that for some 0 <k <'s, the
Young diagram of v (resp. §) can be obtained from that of a (resp. ) by adding k boxes
(resp. s—k boxes) so that no two of them lie in the same column.

— Let (v,0) be a bipartition of a. The restricted character

RGS%: (X'y,&)
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is the multiplicity-free sum of all the characters x(4,p) such that for some 0 <k < s, the
Young diagram of o (resp. ) can be obtained from that of v (resp. §) by deleting k boxes
(resp. s —k boxes) so that no two of them lie in the same column.

We will use this rule on concrete examples in the sections that follow.

84. The cohomology of the Coxeter variety for the unitary group

In this section, we describe the cohomology of the Coxeter varieties for the unitary groups
in odd dimension in terms of the classification of unipotent representations that we recalled
in the previous sections. The cohomology groups are entirely understood by the work of
Lusztig in [10]. Let ¢t = 0. The Cozeter variety for Ugsi1(q) is the Deligne-Lusztig variety
X (cox), where cox is any Coxeter element of the Weyl group W ~ Gg;4;. Recall that a
Coxeter element is a permutation which can be written as the product, in any order, of
exactly one simple reflexion for each F-orbit on S. The variety X (cox) does not depend
on the choice of the Coxeter element. It is defined over IF > and is equipped with commuting
actions of both Uy 1 (q) and F2.

NOTATION. We write X! = X (cox) for the Coxeter variety attached to the unitary
group Us41(g). We also write H?(X?) instead of H?(X g (cox) ®F,Qy), where £ = p.

We first recall known facts on the cohomology of X* from Lusztig’s work.
THEOREM 17. The following statements hold.

(1) The variety Xt has dimension t and is affine. The cohomology group HLT (X?) is zero
unless 0 <@ <t.

(2) The Frobenius F? acts in a semisimple manner on the cohomology of X*.

3) The group H?(X?) is one-dimensional, the unitary group Ussiq acts trivially on it

( group HZ y group Uz11(g y
and F? has a single eigenvalue ¢*t.

(4) The group HEFH(X) for 0 <i <t is the direct sum of two eigenspaces of F?, for the
eigenvalues ¢** and —q**'. Each eigenspace is an irreducible unipotent representation
of Uat11(q)- '

(5) If 0 < a <2t, the dimension of the eigenspace of (—q)* inside the sum Y, HLT (X?)
is given by the formula

t—a qa+j _ (_1)a+j

¢ —(=1)7

2
(2t—a)(2t+1—a)
q 2
j=1
(6) The sum ;- H! (X)) is multiplicity-free as a representation of Ugy1(q).

We wish to identify these unipotent representations of Us;y1(g) occurring in the
cohomology of X*®. To this purpose, we start by defining the following partitions. If
0 <a<2t, weput Al :=(1+a,1279). Note that A} = (1271) and N, = (2t +1).

LEMMA 18. For 0 <i<t, the 2-core of Ay, is Ay and its 2-quotient is ((1'77),(4)). For
0<i<t, the 2-core of Ns; 1 is Ao and its 2-quotient is ((i),(1*7"71)).

In particular, according to Proposition 15, the irreducible unipotent representation py.
of Uai4+1(q) is equivalent to the representation PAL (i), (1t-7), and Prs, ., Y0 Py (), (1t-i-1)-

Proof. The Young diagram of the partition A} has the following shape.
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[ ] |

The first row has an odd number of boxes when a is even, and an even number of boxes
when a is odd. To compute the 2-core, one removes horizontal dominoes from the first
row, right to left, and vertical dominoes from the first column, bottom to top. The process
results in Ay when a is even and A, when «a is odd.

The partition A\! has 2t + 1 —a nonzero terms. Its 3-set is given by the sequence

B=2t+1,2t—a,2t—a—1,...,1).
Assume that a = 2i is even. Then the sequences 3° and 3! are given by
BO=(t—it—i—1,...1), pl=(t,t—i—1,t—i—2,...,0).

The sequence 3° has length t —i, whereas B! has length t —i+ 1. The associated
permutations are then, respectively, ug = (1°7%) and pu; = (i). Since 2t +1—a is odd, the
2-quotient is given by (uo, 1) as claimed.

Assume now that a = 2i + 1 is odd. Then the sequences 3° and 3! are given by

o= (t—i—1,t—i—2,...1), pl=(t,t—i—1,t—i—2,...,0).

The sequence B° has length t —i — 1, whereas B' has length t —i + 1. The associated
permutations are then, respectively, po = (1°7%71) and p; = (7). Since 2t + 1 —a is even,
the 2-quotient is given by (u1, 1) as claimed. 0

We may now identify the irreducible unipotent representations occurring in the cohomol-
ogy of the Coxeter variety X°.

PropoOSITION 19. For 0 <i <t, the cohomology group of the Coxeter variety for the
finite unitary group Usry1(q) is given by
HIPH(XT) = pay, @pag

2i4+1

with the first summand corresponding to the eigenvalue ¢** of F? and the second to —q?* 1.
Moreover, H¥(X?) = Py, with eigenvalue q*t.

Before going to the proof, one may notice that the statement is consistent with the
dimensions. Indeed, the formula given in Theorem 17(5) coincides with the hook formula
for the degrees of the representations p[;t given in Proposition 11.

Proof. First, the statement on the highest cohomology group H2!(X?) follows from
Theorem 17(3). It is the only cohomology group in the case ¢t = 0. We will prove the
formula by induction on ¢. Let us now assume that ¢ > 1 and that the proposition is known
for t—1. If 0 <i <t—1, we know that H;"(X?) is the sum of two irreducible unipotent
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representations. So let us write
HZJFZ(Xt) = Pu; Dpv,

where p; and v; are two partitions of 2¢ + 1, so that p,, corresponds to the eigenvalue ¢
of F2, whereas p,, corresponds to —g* 1.

We consider the standard Levi complement L ~ GL;(¢?) x Ug;_1(q) < Uas11(q). Let V
denote the unipotent radical of the standard parabolic subgroup containing L. According
to [10, Cor. 2.10], one can build a geometric isomorphism between the quotient variety
X'/V and the product of the Coxeter variety for L and of a copy of G,,. Even though
this geometric isomorphism is not L-equivariant, Lusztig proves that the induced map on
cohomology is L-equivariant. The Coxeter variety for L is isomorphic to the Coxeter variety
X1 for Uys—1(q). We write *Rf_; for the composition of the Harish-Chandra restriction
from Ust41(q) to L, with the usual restriction from L to the subgroup Us;—1(q). For any
nonnegative integer i, the Usg;_1(q), F2-equivariant induced map on the cohomology is an
isomorphism

*Rifl (HiJrz(Xt)) ~ Hifl+i<thl) @HiflJr(ifl)(thl)(l)_ (**)

Here, (1) denotes the Tate twist. (The action of F? on a twist M (n) is obtained from the
action on the space M by multiplication with ¢?".) The right-hand side of this identity is
given by the induction hypothesis. Let us look at the left-hand side.

We fix 0 <i<t—1, and we denote by (A;,«a,8) and by (A,,7,d) the alternative
labeling of the representations p,, and p,,, respectively, as in Proposition 15. By the
Comparison Theorem 12 and by the Pieri rule of Proposition 16, we know that the restriction
*R_, (pa,.a.p) is the multiplicity-free sum of all the representations pa, o g where the
bipartition (¢/,3") can be obtained from («,3) by removing exactly one box, of either a or
3. The similar description also holds for *R{_, (pAy7%5).

By using Lemma 18 and the induction hypothesis, we may write down the identity (**)
explicitly. Moreover, as it is F2-equivariant, we can identify the components corresponding
to the same eigenvalues on both sides. We distinguish four different cases depending on the
values of ¢ and .

— Case t = 1. We only need to consider ¢ = 0. On the right-hand side of (**), the second
term is 0 because t —1+4 (i —1) = —1 < 0. On the other hand, the first term is Prg =
pa,.z.o and it corresponds to the eigenvalue (—q)° = 1. By identifying the eigenspaces,
we have *R} (PAL.0.8) > PA, 7.z and *RY (pAym(;) = 0. The second equation implies that
there is no box to remove from + nor from §. Thus, v = d = &. The value of y is given by
the relation 2t+1=3=2(04+0) + w, that is, y = 2. This corresponds to the partition
vp = A\}. We notice in passing that the representation p,, is the unique unipotent cuspidal
representation of Usz(q).

As for pg, the equation *R{(pa,.a8) ~ pa,.z.o tells us that there is only one
removable box from («, ). After removal of this box, both partitions are empty. Thus,
we deduce that x =1 and («,f) = (1,) or (F,1). This corresponds, respectively, to
to = A3 or po = A}. That is, p,, is either the trivial or the Steinberg representation of
Us(q). We can deduce which one it is by comparing the degree of the representations
with the formula of Theorem 17(5). According to this formula, the dimension of the
eigenspace for (—¢q)? is ¢3. This is precisely the degree of the Steinberg representation
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Py as given by the hook formula in Proposition 11, and it excludes the possibility of p,,,
being trivial. Thus, we have pg = A} as claimed.

From now, we assume t > 2.

— Case i =0. On the right-hand side of (**), the second term is 0 because t —1+4 (i —1) =
t—2 <t—1. The first term is Pt @p)\ifl ~ Py, z,(10-1) D Pa,, g, (10-2)- Identifying the
eigenspaces, we have *R | (pa,.a.8) = pa, g, (10-1) and *RE | (pa, 4.5) = pa,, g, (10-2)- We
deduce that x = 1 and y = 2. Moreover, it also follows that there is only one removable
box in (a, 3) and in (,d). After removal, we should obtain, respectively, (&, (1¢71)) and
(7, (1172)). The only possibility is that («,3) = (&, (1%)) and (v,6) = (&, (1*71)). This
corresponds to pup = A and vy = A as claimed.

— Case i=t—1. On the right-hand side of (**), the first term is PGy, = Pan(t-1).0
and the second term is N (—Bpxg(?_gm >~ pALL(t—2),(1) D PAs,(t—2),z- Identifying the
eigenspaces while taking the Tate twist into account, we have *Rl_;(pa,.ap) ~
PALL(t—1),5 P PAL(t—2),(1) and *R%_l (PAy,'y,é) >~ PA,,(t—2),0- We deduce that x =1 and
y = 2. Moreover, there are two removable boxes in (a,/3) and only one removable box
in (v,0). After removal of one of the two boxes in (a, ), we can get either ((t—1),)
or ((t—2),(1)), and after removal of the box in (v,d), we obtain ((¢—2),). The only
possibility is that (a,8) = ((t —1),(1)) and (v,0) = ((¢t —1),&F). This corresponds to
Ht—1 = )\t2(t—1) and v4_q = )\é(t_l)H as claimed.

— Case 1<i<t—2. On the right-hand side of (**), the first term is pr1 @
PALL, = PAL(0), (1) @ Py (i), (1-2-1)- The second term is N @p,\%{lm ~
PAL(i—1),(1t-1) D Pay,(i-1),(1t-1-+). ldentifying the eigenspaces while taking the Tate
twist into account, we have *R{_;(pa,.a.8) = Pa,@),(1t-1-) @ Pa, (i—1),(1t—) and
*Rifl (pAy,%é) > PAo, @), (10-2-1) D PA,,(i—1),(1t-1-4)- We deduce that z =1 and y = 2.
Moreover, there are exactly two removable boxes from (a, ) and from (v,6d). After
removal of one of the two boxes in (a,8), we can get either ((i),(1*717%)) or
((i —1),(1*7%)), and after removal of one of the two boxes in (v,d), we can get either
((3),(1*727%)) or ((i —1),(1*717%)). The only possibility is that (a,3) = ((3),(17%)) and
(7,6) = ((2),(1*=17%)). This corresponds to p; = Ay, and v; = A\, | as claimed. 0

§5. The cohomology of the variety X (id)

We go on with the computation of the cohomology of the variety X;(id). We use the same
notations as in Section 1. We first compute the cohomology of each Ekedahl-Oort stratum
X1, (wy), before using the spectral sequence associated with the stratification to conclude.
Recall that X;(id) has dimension d, is defined over 2, and is equipped with an action of
J ~Usg11(q). As before, we will write H2(X(id)) as a shortcut for H2 (X (id) @ F,Qy).

THEOREM 20. The following statements hold.
(1) The cohomology group H:(X;(id)) is zero unless 0 <i < 2d. There is an isomorphism

Hi(X7(id)) ~ H24(X;(id))V (d), which is equivariant for the actions of F? and of

Uzat1(q)- _ _
(2) The Frobenius F? acts like multiplication by (—q)* on Hi(X;(id)).
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(3) For0<i<d, we have

min(¢,d—3)

Hii(Xz(id))= (‘B P(2d+1-2s,2s)"
s=0

For0<i<d—1, we have

min(i,d—1—1)

HziH(XI(id)) = @ P(2d—2s,25+1)"
s=0
Thus, in the cohomology of X;(id), all the representations associated with a Young
diagram with at most two rows occur, and there is no other. Such a diagram has the
following general shape.

We may rephrase the result by using the alternative labeling of the irreducible unipotent
representations as in Proposition 15. The partition (2d+ 1 —2s,2s) has 2-core A; and 2-
quotient (&, (d—s,s)), whereas the partition (2d —2s,2s+ 1) has 2-core Ay and 2-quotient
((d—1—s,8),). Thus, we have

P(2d+1—-2s,25) = PA1,(d—s,s),D> P(2d—25,25+1) == PAy,(d—1—s,5),F"

In particular, all irreducible representations in the cohomology groups of even index belong
to the unipotent principal series £(Usg+1(q),(L1,p1)), whereas all the ones in the groups of
odd index belong to the Harish-Chandra series £(Uzg+1(q), (L2, p2)).

Proof. Point (1) of the statement follows from a general property of the cohomology
groups, namely Poincaré duality. It is due to the fact that X;(id) is projective and smooth.
It also implies the purity of the Frobenius F? on the cohomology: we know at this stage
that all eigenvalues of F? on H:(X/(id)) have complex modulus ¢ under any choice of an
isomorphism Q; ~ C.

We prove the points (2) and (3) by explicit computations. As in Lemma 18, we denote
by AL the partition (1+a,127%) of 2t + 1. Let 0 <t < d. For 0 < a < 2t, we will write

R := Rz (p(GdL,t) =P ) :

Recall that Proposition 8 gives an isomorphism between the Ekedahl-Oort stratum X7, (w;)
and the variety Uszit1(q)/Uk, XLy, X};Kf (w¢). It implies that the cohomology of the
Ekedahl-Oort stratum is the Harish-Chandra induction of the cohomology of the Deligne—
Lusztig variety XILth (wt). This cohomology is related to that of the Coxeter variety for
Usat+1(q). Combining with the formula of Proposition 19, for 0 <i <t¢—1, it follows that

HLM (X, (wr)) = RE @RS 1. HE! (X, (wr) = R

The representation RY in this formula is associated with the eigenvalue (—q)® of F2.
We first compute R explicitly. By the combination of the Comparison Theorem 12 and
the Pieri rule for groups of type B as in Proposition 16, one can compute the Harish-Chandra
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induction R!, by adding d —t boxes to the bipartition corresponding to the representation pgt
with no two added boxes in the same column. Recall from Lemma 18 that the representatio;l
Pt of Uaz11(q) is equivalent to the representation PAL(6),(1t-7), and that PrL, . is equivalent
80 Pa,, (i), (1t-1-4)-

In order to illustrate the argument, let us say that we want to add N boxes to a bipartition
of the shape as in the figure below, so that no two added boxes lie in the same column.

(TTLI] [

We will add N7 boxes to the first diagram and N5 to the second, where N = N; + Ns. In
the first diagram, the only places where we can add boxes are in the second row from left
to right, and at the end of the first row. Because no two added boxes must be in the same
column, the number of boxes we add on the second row must be at most the number of
boxes already lying in the first row. Of course, it must also be at most N;. In the second
diagram, the only places where we can add boxes are at the bottom of the first column and
at the end of the first row. Because no two added boxes must be in the same column, we
can only put up to one box at the bottom of the first column and all the remaining ones
will align at the end of the first row.
At the end of the process, we will obtain a bipartition of the following general shape.

L)L

We colored in yellow the boxes that were already there before we added new ones. The
box with a question mark may or may not be placed there. We now make the result more
precise, and write down exactly what the irreducible components of R! are depending on
the parity of a.

— For 0 <14 <t, the representation R}, is the multiplicity-free sum of all the representations
PA,.,p Where the bipartition («, 3) satisfies, for some 0 < x < d—t,

a = (i+x—s,s) for some 0 < s < min(z,i),
B=(d—t—x,1") or (d—t—x+1,1171).
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RS,

d—1 d d
Rys"s —— R 2®R3q

R2 —— —— RIT'@RITT ——— R{®RY

R} —— RZ®R3 —— —— RITORITT ——— RIORS

R} — > RA®R! — > R2ZOR? — —— R{T'@®R{" ——— R{@®R{
Figure 1.

The first page of the spectral sequence.

~ For 0 <i <t—1, the representation R}, 41 is the multiplicity-free sum of all representa-
tions pa,.«,s where the bipartition (o, ) satisfies, for some 0 <z < d—t,

a=(i+x—s,s) for some 0 < s < min(z,1),
B=(d—t+1—z,1" ") or (d—t+2—z,1727%).

In our notations, we used the convention that the partitions (0) and (1°) are the empty
partition ¢ZJ. The integer x corresponds to the number of boxes we add to the first partition.
We notice that if ¢ takes the maximal value, there is only one possibility for 5 that is,
respectively, (d —t —x) in the first case and (d—t+ 1—z) in the second case.

Recall from Proposition 7 that the variety X;(id) is the union of the Ekedahl-Oort strata
X1, (wy) for 0 <t < d and the closure of the stratum for ¢ is the union of all strata X;_(ws)
for s <t. At the level of cohomology, it translates into the following F'?, Usgy1(q)-equivariant
spectral sequence:

B HEY (X, (wr) = HEY (X (id)).

The first page of the sequence is drawn in Figure 1, and it has a triangular shape.

The representation R} corresponds to the eigenvalue (—q)® of F? as before. The only
eigenvalues of F2 on the ith row of the spectral sequence are ¢%* and —¢%*!. In particular,
the eigenvalues on two distinct rows are different. Since the differentials in deeper pages of
the sequence map terms from different rows, their F?2-equivariance implies that they vanish.
Therefore, the sequence degenerates on the second page. Moreover, by the machinery of
spectral sequences, for 0 < k < 2d, there exists a filtration by Usgy1(q) x (F?)-modules on
H*(X;(id)) whose graded components are the terms of the second page lying on the anti-
diagonal ¢+ = k. Since the group algebra Q;[Usz441(q)] is semi-simple, the filtration splits,
meaning that H*(X;(id)) is actually the direct sum of the graded components. The purity
of H¥(X7(id)) then implies that all the terms of the second page lying on the antidiagonal
t +1 = k, which are associated with an eigenvalue whose modulus is not equal to ¢*, must
be zero. Therefore, the second page has the shape described in Figure 2. The Frobenius F?
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d,d
E2

Eg—1,d—1 Eg,d—1
Ey’ Eo" 0 0
E° E;" 0 0 0

Figure 2.
The second page of the spectral sequence.

acts via ¢?' on the term E5’, and via —¢%*! on the term E5""". Point (2) of the theorem
readily follows.

By the previous computations, we understand precisely all the terms in the first page of
the spectral sequence. The key observation to compute the second page is that two terms
on the first page, which lie on the same row, but are separated by at least two arrows, do
not have any irreducible component in common. We make the argument more precise in
the following two paragraphs, distinguishing the cohomology groups of even and odd index.

We first compute the cohomology group H* (X (id)) for 0 < ¢t < d. We look at the following
portion of the first page:

R, —— Ry ®R —— RyPORGY
By extracting the eigenspaces corresponding to ¢?!, we actually have the following sequence:

t u t+1 v t+2
R5, > RS, > Ro[“.

The representation Rb, is the sum of all the representations pa, s Where for some 0 < z <
d—t and for some 0 < s < min(z,t), we have o = (t +x —s,s) and f = (d—t—x).

The representation R5f! is the sum of all the representations pa, s where for some 0 <
' <d—t—1 and for some 0 < s < min(2’,t), we have o/ = (t +2' —s,s) and 8 = (d—t—2')
or (d—t—a'—1,1).

The quotient space Ker(v)/Im(u) is isomorphic to the eigenspace of ¢2! in EL™M' which
is zero. In addition, in the representation R;ﬂ, all the irreducible components have the
shape pa, o~ g with 8" a partition of length 2 or 3. In particular, all the representations
pA, orpr of REFY with B a partition of length 1 automatically lie inside Ker(v) = Im(u).
Such representations correspond to all the irreducible components pa, o, of R, having
& = d—t. Thus, none of them lies in Ker(u) ~ E5".

The remaining components of R}, are those having z = d —¢, and they do not occur in

the codomain of u so that they lie in Ker(u). By the previous argument, they must form
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the whole of Ker(u). Thus, we have proved that

min(t,d—t)
Ey' ~H(X1(id) ~Ker(u) = @D a5
s=0
and it coincides with the formula of point (3).
We now compute the cohomology group H2:"1 (X (id)) for 0 <t < d—1. We look at the
following portion of the first page:

t t+1 t+1 t+2 t+2 t+3 t+3
R2t R2t @RZt-‘rl R2t @RQt-‘rl R2t ®R2t+1‘

2t+1

By extracting the eigenspaces corresponding to —¢g , we actually have the following

sequence:

t+1 u t+2 v
0 R2t+1 1%21%%-1 R2t+1'

The representation R5T!; is the sum of all the representations pa,..,s where for some

0<z<d—t—1 and for some 0 < s <min(z,t), we have « = (t+x—s,s) and § = (d—t—z).

The representation jo{fl is the sum of all the representations pa, o,z Where for some
0<2'<d—t—2 and for some 0 < s < min(2/,t), we have o/ = (t+2' —s,s) and §' =
(d—t—1—2a',1) or (d—t—2a').

The quotient space Ker(v)/Im(u) is isomorphic to the eigenspace of —g?'™! in E;H’t,
which is zero. In addition, in the representation R4 ?;, all the irreducible components have
the shape pa, o~ g7 with 3” a partition of length 2 or 3. In particular, all the representations
Pas,ep of REFZ with B a partition of length 1 automatically lie inside Ker(v) ~ Im(u).
Such representations correspond to all the irreducible components pa, o, of R5}; having
& =d—t—1. Thus, none of them lies in Ker(u) ~ E5"".

The remaining components of R4}, are those having x = d—t— 1, and they do not occur
in the codomain of u so that they lie in Ker(u). By the argument above, they must form

the whole of Ker(u). Thus, we have proved that

min(d—t—1,t)

E;-i_l’t = Hit—i_l(XI(ld)) = Ker(u) = @ pAQ,(t—l—s,s),Qa
s=0
and one may check that it coincides with the formula of point (3). O
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