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The birational geometry of moduli of cubic

surfaces and cubic surfaces with a line

SebastianCasalaina-Martin, SamuelGrushevsky and KlausHulek

Abstract

We determine the cones of effective and nef divisors on the toroidal compactification
of the ball quotient model of the moduli space of complex cubic surfaces with a chosen
line. From this we also compute the corresponding cones for the moduli space of
unmarked cubic surfaces.
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1. Introduction

The moduli space M of cubic surfaces is a very classical and well-studied space. By invariant
theory, see [DvGK05] for a modern account, it is isomorphic to an open set in the weighted
projective space P(1, 2, 3, 4, 5), and by the work of Allcock, Carlson and Toledo [ACT02], it also
has a ball quotient model. These identifications extend to the boundary; more precisely, there
are isomorphisms

MGIT ∼= P(1, 2, 3, 4, 5)∼= (B4/Γ)
∗, (1.1)

where Γ denotes a suitable arithmetic unitary group acting on the 4-dimensional ball B4, and
(B4/Γ)

∗ stands for the Baily–Borel compactification of B4/Γ. This isomorphism maps the unique
polystable orbit, which is given by the (unique, up to isomorphism) cubic surface with three A2

singularities, to the unique cusp c.
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Geometric Invariant Theory (GIT) quotients or, if they admit ball quotient models, their
Baily–Borel compactifications, are typically too “small” to be suitable for modular interpreta-
tions. It is often also the case that the polystable orbits or cusps are badly singular points of
compactifications, although in this particular case the cusp c∈ (B4/Γ)

∗ is in fact a smooth point.
For this reason one is naturally led to study “desingularizations”, which, by construction, have
at worst finite quotient singularities. The two obvious candidates for this in our case are the
Kirwan blowup MK of MGIT, and the toroidal compactification B4/Γ (which in the case of a
ball quotient is uniquely determined, since the fan in question is 1-dimensional, and thus no
choices are involved). This gives rise to the diagram

MK f B4/

p

MGIT ∼
(B4/ )∗

(1.2)

and one is naturally led to the question of whether f is an isomorphism. Possible evidence that
this might be the case came from our observation in [CM23] that the Betti numbers bi(MK) =
bi(B4/Γ), i≥ 0 are the same. However, we showed in [CMGHL22] that neither the map f nor its
inverse f−1 extend to a morphism. Moreover, we proved in that paper that MK and B4/Γ are
not isomorphic as abstract varieties. They are, however, equivalent in the Grothendieck ring.

Interestingly enough, the situation changes significantly when one goes to the cover of marked
cubic surfaces, by which we mean an identification of the configuration of the 27 lines on a cubic
surface with a given fixed abstract configuration, see [Nar82]. Then replacing the Kirwan blowup
by the Naruki compactification N , it was shown in [GKS21, Theorem 1.4] that one obtains an
isomorphism

N ∼=B4/Γm, (1.3)

where Γm is the unitary group associated with marked cubic surfaces. The quotient Γ/Γm
∼=

W (E6) is the Weyl group of E6, which acts on the configuration of the 27 lines on a cubic
surface. Clearly, some interesting birational geometry appears here, and the current paper is a
contribution to shed further light on this.

In this paper our main focus will be on cubics with a marked line and we denote Msm,� the
moduli of smooth cubic surfaces with one marked line. There are then forgetful covering maps

Msm,m →Msm,� →Msm, (1.4)

starting with the moduli space of smooth marked cubic surfaces and ending with the moduli
spaces of smooth cubic surfaces. The covering Msm,m →Msm is a Galois cover with deck group
W (E6). The map Msm,m →Msm,� is given by the action of a maximal subgroup W (D5)⊂
W (E6), which is the stabilizer of as fixed line �. Note, however, that this is not a normal
subgroup. Clearly, the map Msm,� →Msm is an unramified 27 : 1 cover, but since W (D5) is not
normal in W (E6), this is not a Galois cover. As we shall discuss in Section 3, these maps extend
to (toroidal) compactifications

N ∼=B4/Γm →M� :=B4/Γ�
�→M :=B4/Γ. (1.5)

The main results of this paper concern the cones of effective and nef divisors of the spaces
M and M�. To state the results, we must introduce some key divisors on these spaces. The
discriminant is the divisor of cubic surfaces with nodal singularities; these are stable, and we
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denote the closure of this locus inMGIT ∼= (B4/Γ)
∗ by D, and its strict transform in B4/Γ by TA1

.
While TA1

is irreducible, its preimage TA1,m in N ∼=B4/Γm consists of 36 components, permuted
by the action of W (E6). The preimage

TA1,� := �−1(TA1
) = T in

A1,� ∪ T out
A1,� ⊂M� (1.6)

of the discriminant TA1
⊂M decomposes into two irreducible components, where T in

A1,�
is the

closure of the locus of cubic surfaces S with a unique node P and a line � containing P (so
that P is in �), and similarly T out

A1,�
is the closure of the locus of nodal cubics S with a line

�⊂ S not containing the node P , so that P is out of �. Further, we denote the (irreducible)
toric boundary of B4/Γ by T3A2

, and denote its preimages in B4/Γ� and B4/Γm by T3A2,� and
T3A2,m, respectively. We shall see that T3A2,� is in fact irreducible, while T3A2,m is known to have
40 irreducible components. Another important class is the class of the Hodge line bundle λ on
(B4/Γ)

∗. We shall also denote the pullbacks of this class to B4/Γ, B4/Γ� and B4/Γm by the same
letter, as it will always be clear on which space we work. The classes TA1

, T3A2
and λ are linearly

dependent on B4/Γ, namely TA1
= 24λ− T3A2

. Another geometrically interesting divisor is given
by the (closure of) the locus of cubic surfaces with an Eckardt point. We denote the closures
of this locus in B4/Γ and MK by TR and DR, respectively. These are irreducible divisors. We
also note that TR = 150λ− 24T3A2

. Finally, we recall that KB4/Γ
= 5λ− 5

6TA1
− 1

2TR − T3A2
. For

a more comprehensive discussion of these relations we refer to Proposition 2.1.
We can now describe the cones of effective and nef divisors, starting with the unmarked case.

Theorem 1.1. The cones of nef and effective divisors on the toroidal compactification M=
B4/Γ are given by

Eff(M) =R≥0TA1
+R≥0T3A2

, (1.7)

and

Nef(M) =R≥0(TA1
+ 2T3A2

) +R≥0(TA1
+ 6T3A2

). (1.8)

The proof of Theorem 1.1 is given at the end of §4 for (1.7) and the end of §5 for (1.8). From
Theorem 1.1 we can immediately obtain the following corollary (see Proposition 2.1 and (2.4)).

Corollary 1.2. The discriminant TA1
and the anti-canonical divisor −KM are effective but

not nef. The toric boundary divisor T3A2
is an extremal effective divisor, and the Hodge line

bundle λ is an extremal nef divisor. The divisor TR of cubic surfaces with an Eckardt point is
both effective and nef.

In our approach we will deduce this from the corresponding result on the moduli space of
cubic surfaces with a line, which is a more refined result, interesting in its own right. Note that
B4/Γm →B4/Γ� is given by a non-normal subgroup and that B4/Γ� →B4/Γ is not Galois. Hence
there is no easy way to obtain results on B4/Γ� from the other two spaces, and vice versa.

Theorem 1.3. The following hold.

(i) The Picard group of the moduli space M� of cubic surfaces has rank 3. The group
PicQ(M�) is generated by T in

A1,�
, T out

A1,�
, T3A2,�.

(ii) The cone of effective divisors is

Eff(M�) =R≥0T
in
A1,� +R≥0T

out
A1,� +R≥0T3A2,�. (1.9)
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(iii) The cone of nef divisors is

Nef(M�) = {aT in
A1,� + bT3A2,� + cT out

A1,� | b≥ a, b/2≥ c≥ b/6, 2a+ 2c≥ b}. (1.10)

The proof of Theorem 1.3 is given at the end of §5. In a recently posted paper Schock [Sch23]
determined the cones ofW (E6)-invariant effective and nef divisors of the Naruki compactification
N , which are given by the following.

Theorem 1.4 (Schock). The cones of W (E6)-equivariant effective divisors and nef divisors on
the Naruki and toroidal compactification N ∼=B4/Γm are

Eff(B4/Γm) =R≥0TA1,m +R≥0T3A2,m, (1.11)

and

Nef(B4/Γm) =R≥0(TA1,m + T3A2,m) +R≥0(TA1,m + 3T3A2,m). (1.12)

Theorems 1.1 and 1.4 are equivalent to each other, once one notes that N ∼=B4/Γm and that the
map to the unmarked space is W (E6)-equivariant. The difference in the slopes of the cones comes
from the fact that the quotient map B4/Γm →B4/Γ is ramified to order 2 over the discriminant,
but unramified over the toric boundary.

In Sections 6 we shall complete the picture by computing the intersection theory on the
Kirwan blowup MK. We had already determined the intersection theory of divisors, and hence
the ring structure on cohomology for B4/Γ in [CMGHL22]. In Theorem 2.2 we shall do the same
for the Kirwan blowup MK, which immediately tells us that the top self-intersection numbers
of the canonical divisor on MK and on B4/Γ are different. We argued in [CMGHL22] that the
denominators of these intersection numbers are different, whereas we now determine the actual
values of these intersections, and thus reconfirm that MK and B4/Γ are not K-equivalent.

2. The set-up, and the intersection theory

We already recalled that MGIT ∼= (B4/Γ)
∗ ∼= P(1, 2, 3, 4, 5), and introduced the Kirwan blowup

π :MK →MGIT and the toroidal compactification p :B4/Γ→ (B4/Γ)
∗. Both π and p are blowups

supported at the cusp c corresponding to the cubic with 3A2 singularities, given by the equation
F3A2

(x) = x0x1x2 + x33 = 0. We also recall that MK and B4/Γ are smooth (as Deligne-Mumford
(DM) stacks, i.e. up to finite quotient singularities). One of the starting points for our work on
the moduli space of cubic surfaces is the observation from [CM23, Appendix C] that MK and
B4/Γ have the same cohomology (with Q coefficients); it is only non-zero in even degrees, and
the dimensions are as follows.

h0 h2 h4 h6 h8

MK 1 2 2 2 1

B4/Γ 1 2 2 2 1

These spaces are smooth up to finite quotient singularities and hence satisfy Poincaré duality.
The weighted projective space P(1, 2, 3, 4, 5) comes with a natural (Z-) line bundle OP(1,2,3,4,5)(1)
defined as the positive generator of the Picard group of P(1, 2, 3, 4, 5). As a Baily–Borel compact-
ification, this space also carries another natural (Q)-line bundle, namely the Hodge line bundle
λ corresponding to modular forms of weight 1. We recall from [CMGHL22, (5.2)] that

6λ=OP(1,2,3,4,5)(1). (2.1)
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The discriminant divisor D and the divisor of Eckardt cubics R must be multiples of λ. In our
previous paper [CMGHL22, (3.9)] we showed that

D=OP(1,2,3,4,5)(4) (2.2)

and

R=OP(1,2,3,4,5)(25). (2.3)

This follows from classical invariant theory going back to Clebsch and Salomon, see [Dol12,
§9.4.5].

Recalling the notation from (1.2), the exceptional divisors of π and p are called D3A2
and

T3A2
, respectively. Both of these are irreducible. The strict transforms of the discriminant under

π and p are called DA1
and TA1

, respectively. Here, we use the notation T for “toroidal” to
always be clear where we work, but will still think of TA1

as a Heegner divisor. Accordingly, we
denote the strict transforms of R in MK and B4/Γ by DR and TR. Finally λ denotes the Hodge
line bundle on (B4/Γ)

∗ as well as its pullback to the various blowups and covers.
The relationship of the divisors described above is given by

Proposition 2.1. The following holds:

(i) DA1
= π∗D− 6D3A2

= 24λ− 6D3A2
, DR = π∗R− 30D3A2

= 150λ− 30D3A2
;

(ii) TA1
= p∗D− 6T3A2

= 24λ− 6T3A2
, TR = p∗R− 24T3A2

= 150λ− 24T3A2
.

The formulae for B4/Γ were obtained in [CMGHL22, Remark 5.9], whereas the results for MK

are new, and we will deduce them in Section 6.
We thus have

H2(MK,Q) =QDA1
⊕QD3A2

=Qλ⊕QD3A2
;

H2(B4/Γ,Q) =QTA1
⊕QT3A2

=Qλ⊕QT3A2
.

These divisors generate the cohomology rings ofMK and B4/Γ, and can be used to completely
describe the intersection theory of these spaces.

Theorem 2.2. The intersection theory of MK and B4/Γ is given as follows.

(i) On MK: λ4 = 1
5!64 =

1
155520 , λ

aD4−a
3A2

= 0 unless a(4− a) = 0, D4
3A2

=− 1
9·56 .

(ii) On B4/Γ: λ
4 = 1

5!64 =
1

155520 , λ
aT 4−a

3A2
= 0 unless a(4− a) = 0, T 4

3A2
=− 1

63 .

Here, the intersection number λ4 =O4
P(1,2,3,4,5)(1/6) follows from standard results on weighted

projective spaces. The top intersection number T 4
3A2

was computed in [CMGHL22, Lemma 5.1],
while the computation of D4

3A2
is new, and we perform it in §6. The vanishing of the remaining

intersection numbers follows simply from the fact that λ is a pullback from MGIT. A crucial
role is, naturally, also played by the canonical bundles (which like all line bundles on our DM
stacks have to be considered as Q-line bundles). Here, we collect the main expressions for the
canonical bundles

KMGIT = 5λ− 5

6
D− 1

2
R=OP(1,2,3,4,5)(−15) =−90λ ,

KMK = π∗KMGIT + 20D3A2
= 5λ− 5

6
DA1

− 1

2
DR + 40D3A2

,

KB4/Γ
= 5λ− 5

6
TA1

− 1

2
TR − T3A2

= p∗K(B4/Γ)∗ + 16T3A2
.

(2.4)
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The first equation comes from the ball quotient picture, together with the fact that the map
B4 →B4/Γ is ramified, with ramification orders 6 and 2 along the discriminant and the Eckardt
divisor, respectively. The expression for KMGIT in terms of OP(1,2,3,4,5)(1) can be derived from
the theory of weighted projective spaces, and the last equality in that line follows from (2.1).
The first equality for KMK was shown in [CMGHL22, Corollary 6.8], and the second can then be
deduced from this and Proposition 2.1(i). Finally, the first equation for KB4/Γ

is standard from

the theory of toroidal compactifications, and the second follows from this and Proposition 2.1(ii).
Our argument in [CMGHL22] to prove that MK and B4/Γ were not isomorphic, or even

K-equivalent, was by showing that K4
MK 
=K4

B4/Γ
by arguing that these rational numbers (in

reduced form) have different denominators. Knowing the intersection theory of both spaces, we
can now complete this by producing the actual top self-intersection numbers.

Proposition 2.3. The top self-intersection numbers of the canonical divisors are given by

K4
MK =K4

MGIT + (20D3A2
)4 =

3375

8
− 204

9 · 56 =
3375

8
− 20 000

63


=K4
B4/Γ

=K4
(B4/Γ)∗ + (16T3A2

)4 =
3375

8
− 164

63
=

3375

8
− 8192

27
.

Proof. This is an immediate consequence of the previous calculations. �

The above computations allow us to give the following.

Proof of Corollary 1.2. The claims about TA1
follow from Theorem 1.1, using the class compu-

tations from Proposition 2.1. Since the birational map p :B4/Γ→ (B4/Γ)
∗ contracts the effective

divisor T3A2
to a point, it follows that T3A2

is an extremal effective divisor. The Hodge line bun-
dle L is the pullback of an ample line bundle under the map p :B4/Γ→ (B4/Γ)

∗. It is positive on
all curves not contained in the toric boundary, but trivial on curves lying in the boundary. The
claims about the other two divisors follow from standard calculations using the results already
mentioned:

8TR = 150 · 8λ− 24 · 8T3A2
= 150·8

24 (TA1
+ 6T3A2

)− 192T3A2

= 50TA1
+ (300− 192)TA2

= 50TA1
+ 108T3A2

,
(2.5)

so the “slope” of TR (ratio of coefficients) is 108/50 = 2.16, which is between 2 and 6. Further,

−4KB4/Γ
=−4(p∗K(B4/Γ)∗ + 16T3A2

) = 60O(1)− 64T3A2
= 15(TA1

+ 6T3A2
)− 64T3A2

= 15TA1
+ (90− 64)T3A2

= 15TA1
+ 26T3A2

,

so the slope is 26/15 = 1.73< 2. �

3. The moduli space of cubics with a line

In this section we start our detailed investigation of the moduli space M� of cubic surfaces S
with a chosen line �⊂ S.

Recall that we have the following covers of the moduli space of cubics, starting with the
moduli space Mm of marked cubic surfaces, ending with the moduli space M of cubics and with
the moduli space M� of cubic surfaces with a line as an intermediate space. Here, the index m
stands for marked, � stands for a chosen line, the subscript sm denotes the moduli of smooth
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cubics only and Δ are the suitable discriminant loci. For details we refer to [Dor04], [DvGK05]
and [GKS21].

Msm,m ∼= (( 2)6 \ sp)// SL(3, ) ∼= (B4 \ m)/ 4,m

16:1

Msm,m/( /2 )4 ∼= DM0(25, 12)/S2 ∼= (B4 \ ′
m)/ ′

4,m

120:1

Msm,�
∼= DM0(25, 12)/(S2 × S5) ∼= (B4 \ sm,�)/ 4,�

27:1

Msm ∼= (H0
sm( 3,O 3(3)))// SL(4, ) ∼= (B4 \ sm)/ 4.

(3.1)

Here, the first two maps arise in the following way. We choose a line �. Then, the stabilizer of �
within W (E6) is W (D5)∼= (Z/2Z)4 � S5, and the first two quotients are given by (Z/2Z)4 and
S5, respectively. There are two ways of associating 5 + 2 points with a marked cubic surface.
Details can be found in [DvGK05, §3]. Here we recall the basic constructions. Given a marked
cubic surface we can think of it as a P2 blown up in 6 ordered points pi, i= 1, . . . 6. If we choose
any pi, there exists a unique conic Ci ⊂ P2 going through the remaining 5 points. Since pi /∈Ci,
there are two tangents lines to Ci going through pi; denote by q1, q2 ∈Ci their points of tangency.
Note that this is an unordered pair as we have no way of ordering the two tangents. Projection
from pi then defines a 2 : 1 map Ci → P1. The images p̄j of the points pj , j 
= i under this map
together with the images q̄i of qi then give an ordered 5-tuple of points on this P1, plus an
unordered pair.

It is crucial for us that this tower of covers establishes a connection to a Deligne–Mostow
variety, namely DM(25, 12). This means that one considers ordered 7-tuples of points in P1

modulo the group SL(2,C). The weights (25, 12), however, mean that one does not take the
standard linearization of the action of SL(2,C), but rather the linearization associated with the
action of SL(2,C) on the line bundle OP1(2)�5 �OP1(1)�2. Using the corresponding notion of
stability one defines

DM(25, 12) := ((P1)7)ss// SL(2,C) .

On this space the groups S5 and S2 act by permuting the corresponding points. The geometric
construction that associates to a marked cubic surface, given by 6 points in P2, a 7-tuple of
points on P1 leads to a 16 : 1 map

Msm,m
∼= ((P2)6 \Δsp)// SL(3,C)→DM0(25, 12)/S2.

In fact there is a group (Z/2Z)4 acting on Msm,m which defines this quotient. Here, DM0(25, 12)
denotes the open subset of DM(25, 12) where no two of the seven points coincide. The group
S5 acts on both spaces, and the map above is S5-equivariant, thus identifying the moduli space
Msm,� with the Deligne–Mostow quotient DM0(25, 12)/(S2 × S5). Under this identification, the
conic Ci corresponds to the marked line �.

Note that the cover Msm,� →Msm is not Galois. Indeed, the Weyl group W (E6), which is the
Galois group of Msm,m →Msm, is not a simple group, but its only non-trivial normal subgroup
has index 2. In particular, there is no normal subgroup of W (E6) which is isomorphic to W (D5).
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Also, geometrically, we have chosen a special line to construct the upper part of the diagram of
covers.

Remark 3.1. The space DM(25, 12) is not in Mostow’s original list and for this reason does not
appear in the tables in [KLW87] either. It is, however, in Thurston’s amended list [Thu98].

Remark 3.2. There is actually another geometric way of describing these 5 + 2 points. For this,
we choose the line �⊂ S given by the exceptional divisor which is obtained by blowing up pi.
The planes through � define a conic bundle S̃ → P1. This conic bundle has 5 singular fibers. This
gives a 5-tuple of points in P1. The singular fibers can be described in terms of lines on the
surface S, and the marking on S then allows to define an ordering on the singular fibers and
hence on the points pj , j 
= i. The conic bundle also has a natural 2-section branched over the
base P1 in two points. These give the unordered pair q1, q2.

Note that there are a priori different ways of defining a ball quotient structure on the various
moduli spaces of cubic surfaces. These are namely (i) the method due to Allcock, Carlson and
Toledo [ACT02] via the intermediate Jacobians of cubic threefolds, (ii) the construction given
by Dolgachev, van Geemen and Kondo [DvGK05, §3] using configurations of 5 + 2 points on a
line, establishing a link to Deligne–Mostow varieties and (iii) the approach via moduli spaces
of certain lattice-polarized K3 surfaces, as explained in [DvGK05, §6]. These constructions lead
to commensurable ball quotients. The comparison between the Allcock–Carlson–Toledo ball
quotient and the Deligne–Mostow approach can be found in [Dor04, Theorem 3], and the rela-
tionship of the Dolgachev–van Geemen–Kondo construction using K3 surfaces with the work of
Allcock–Carlson–Toledo is explained in [DvGK05, §6.14].

The diagram (3.1) is only for the moduli spaces of smooth cubic surfaces. For a discussion
about the extension of the maps from the (decorated) moduli spaces of cubic surfaces to the ball
quotients we refer to [Dor04, §3] and [DvGK05, §3 and §9]. We further note that the constructions
of the toroidal compactifications of B4/Γ4,m and B4/Γ4 are compatible with the group action of
W (E6).

We now proceed to investigate the geometry of the 27 : 1 finite covers

� :B4/Γ� →B4/Γ; � : (B4/Γ�)
∗ → (B4/Γ)

∗. (3.2)

In the end this will be used to deduce the cones of effective and nef divisors on B4/Γ from those
of B4/Γ�. We start with the discriminant divisor. Since we are working with the strict transform
of the discriminant D⊂ (B4/Γ)

∗, we will first work with the Baily–Borel compactification.

Lemma 3.3. The preimage D� ⊂ (B4/Γ�)
∗ of the discriminant divisor D⊂ (B4/Γ)

∗, that is the
locus of nodal cubics with a chosen line, has two irreducible components, which are distinguished
by whether the node of a generic nodal cubic in the component is contained in the chosen line
or not. The same holds for the strict transform TA1,� of D� in B4/Γ�.

Proof. We start with a generic nodal surface, i.e. with a surface S with a unique node P0. By
changing coordinates on P3, we move the node of the cubic to be the point P0 = (1 : 0 : 0 : 0).
Then the cubic must have an equation

G= x0Q(x1, x2, x3) + F3(x1, x2, x3) = 0 .

The space of cubics with a node at P0 is a 16-dimensional linear subspace in the 20-dimensional
space H0(P3,OP3(3)) of all cubics. We first assume that the line � does not contain P0, in which
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case we can assume that

�= {x0 = x1 = 0} .
The condition �⊂ S then imposes another four conditions on the equation of S, namely that the
coefficients of x32, x

2
2x3, x2x

2
3, x

3
3 vanish, giving rise to a 12-dimensional subspace V1. This is acted

upon by the group G1 ⊂GL(4,C) which fixes P0 and the line � (as a set). Thus dimG1 = 9, and
P(V1)//S1 is a 3-dimensional irreducible variety, where S1 :=G1 ∩ SL(4,C).

The case where P ∈ � is treated in the same way. Here we can assume that the line is

�= {x2 = x3 = 0} .
This leads to a 14-dimensional linear space V2 and an 11-dimensional group G2 acting on it, so
that the quotient is again irreducible 3-dimensional.

The claim for TA1,� now follows immediately, as we showed each component is irreducible.�

As discussed in (1.6), we will denote by T in
A1,�

the closure of the set of pairs (S, �), where S

is a cubic surface with one node P , which is in the chosen line �: P ∈ �, and denote T out
A1,�

the
closure of the locus of nodal cubics S with a line P /∈ �⊂ S not containing the node.

We will need to compute the pullback of the divisor TA1
to (B4/Γ�)

∗, for the determination
of the nef cones.

Lemma 3.4. The pullback of the divisor TA1
under � is

�∗TA1
= 2T in

A1,� + T out
A1,�. (3.3)

Proof. Since � :B4/Γ� →B4/Γ is a finite map, the pullback of TA1
is given as

�∗TA1
=AT in

A1,� +BT out
A1,�

for some integers A, B > 0. Also, since the map � :B4/Γm →B4/Γ is branched of order 2 along
the discriminant ([Nar82], see also [CMGHL22, Theorem 4.6]), we must have A, B ∈ {1, 2}. We
recall that a general nodal cubic surface contains 21 lines, 6 of which go through the node,
while the remaining 15 lie in the smooth locus of the surface, see e.g. [Dol12, §9.2]. The latter
implies that there can be no ramification of order 2 along the divisor T out

A1,�
, and hence B = 1.

This only leaves the option of A= 2 to account for the total degree of � over TA1
being equal

to 27. We remark that this also fits with the fact that the 6 lines through the node are counted
with multiplicity 2 in the Fano scheme of lines on S. �

Remark 3.5. We denote the preimage of the Eckardt locus by

TR,� := �−1(TR).

It is clear that this locus has at least two components depending on whether the chosen line
goes through the Eckardt point or not. We write this as

TR,� = T in
R,� ∪ T out

R,� ,

where T in
R,� denotes the locus of cubic surfaces with an Eckardt point and the chosen line con-

taining this point, and T out
R,� means that the chosen line does not contain the Eckardt point. We

shall see in the proof of Proposition 4.3 that T in
R,� is irreducible. Every Eckardt cubic admits an

involution fixing a given Eckardt point. For a generic Eckardt cubic, both the Eckardt point and
the involution are unique, and there are no further automorphisms. This involution fixes each
line through the Eckardt points as a set, but not pointwise, whereas it permutes the 24 lines not

9
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going through the Eckardt point pairwise. This can be proved analogously to [CMMZ23, Lemma
1.16], which deals with Eckardt cubic threefolds. This implies that the map Msm,� →Msm send-
ing (S, �) to S is not ramified over the component parameterizing pairs (S, �) where � is a line
through the Eckardt point, since (S, �) and S both have automorphism group of order 2. But
it is ramified over the locus parameterizing lines (S, �) with � not through the Eckardt point,
because (S, �) has trivial automorphism group, but S has automorphism group of order 2. One
can also see this ramification via a point count: if one has (S, �) with � not through the Eckardt
point, then the Eckardt involution gives that (S, �)∼= (S, �′), where �′ is the image of � under the
Eckardt involution, so that the preimage of a generic point in TR with T out

R,� consists of 12 points
(rather than 24). We thus obtain that

�∗(TR) = T in
R,� + 2T out

R,� . (3.4)

Unlike the corresponding result Lemma 3.4 for the pullback of the discriminant divisor, we shall
not need this in our proofs.

4. The effective cones

The various moduli spaces of cubic surfaces are closely related to moduli spaces of points on
P1. This will be crucial for our calculations, and thus we recall the relevant facts here. One
of the main results of the paper [GKS21] is their Theorem 1.1, which identifies the toroidal
compactification of the Deligne–Mostow variety DM(25, 12) with the compactified Hassett space
M(1/6+ε)2,(1/3+ε)5 of weighted points on a projective line. For further use we denote this by

H :=M(1/6+ε)2,(1/3+ε)5 , (4.1)

where H stands for Hassett’s space. We recall that there is a divisorial contraction M0,7 →H.
Indeed, Hassett spaces for different weights admit a morphism, if each weight in one is greater
or equal than the corresponding weight in the other, and the Deligne–Mumford compactification
M0,7 =M(1+ε)7 is itself a Hassett space. Further recall that the Hassett space requires marked
points to stay away from the nodes of a stable curve, but allows marked points to come together
at a smooth point of a nodal curve as long as the total weight of any merged collection of points is
at most 1; the stability condition (we are only interested in genus 0, so all curves are of compact
type, and every irreducible component is rational) is to say that on each rational component the
total weight of special points is greater than two, where the nodes count with weight 1, and the
marked points with the weight prescribed.

The Picard group of M0,n was computed by Keel [Kee92]: it is generated by the classes of
the boundary divisors, and Keel determined all the linear relations they satisfy. Using this work,
Rulla [Rul06] studied the Picard group and cones of effective divisors of quotients M0,n/Sm,
where Sm, m≤ n acts on the set of n ordered points. In particular, Rulla showed that for the rank

of the Picard group dimQ PicQ(M0,7/S5) = 7, there is one relation among the eight irreducible
components of the boundary of this space, and that the cone of effective divisors Eff(M0,7/S5)
is generated by the irreducible components of the boundary. Following Rulla, we think of points
labeled 1 and 2 as the ones not permuted by S5, and denote by Di

12 ⊂M0,7/S5 the boundary
divisor whose generic point has two irreducible components, with the first component containing
points 1 and 2, and i− 2 other unlabeled points. Similarly, denote Di

1 as the divisor the generic
point of which has two irreducible components, one containing point 1, and i− 1 other unlabeled
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points. Then the only relation in PicQ(M0,7/S5) is given in [Rul06, Corollary 3.2] as

5∑
i=2

(7− i)(7− i− 1)Di
12 =

5∑
i=2

(i− 1)(7− i− 1)Di
1. (4.2)

The coefficients of this relation are crucial for us, and one has to be very careful as to whether
such a relation is to be read as a relation between reduced divisors, or in a stacky sense, where
each divisor is weighted by 1/k where k is the order of the stabilizer group of a generic point.
In fact, Rulla’s relation refers to the reduced divisors, whereas we require the stacky version of
this relation.

To be safe, we (re)derive this from Keel’s relation, making sure that we write all relations
as relations among stacky divisors. In particular, we recall from [Sch22, Equation (1.5)] that,
on a quotient M0,n/G, for G⊂ Sn, the only boundary divisors whose generic point has a non-
trivial automorphism are those parameterizing two-component stable rational curves, where one
component contains only two marked points, such that the transposition of these two points is
contained in G. This amounts to saying that the only divisor on M0,7/S5 with a non-trivial
stabilizer of a generic point is D5

12, while on the quotient M0,7/S2 × S5 this also holds for the
image of D2

12 (which we will later denote by D2◦◦). We now deduce the relations among the
(stacky) divisors on these quotients by pushing forward Keel’s relation from M0,7.

Recall that Keel’s relation among divisors on M0,7 is given by∑
1,2∈T ��3,4

DT =
∑

1,3∈T ��2,4
DT , (4.3)

where the sum on each side is taken over all subsets T ⊂ {1, . . . , 7}. Furthermore, the stabilizer
of a generic point of any divisor on M0,7 is trivial, so there are no stacky issues here. We
now pushforward this relation under the quotient map P :M0,7 →M0,7/S5. Boundary divisors
DT map under P to boundary divisors, and we need to compute for a given boundary divisor
of M0,7/S5 how many DT appearing in (4.3) map to it, and the degree of the map on each
component of the preimage.

We start by computing the coefficient of D2
12 in the pushforward of (4.3) under P . It only

appears in the pushforward of the left-hand side, for those T with #T = 2. This is to say T =
{1, 2}, and then the degree of the map P :DT →D2

12 is equal to 5!, corresponding to arbitrarily
relabeling the 5 points on the component of the curve containing points {3, 4, 5, 6, 7}. For D3

12,
it appears in the pushforward of terms with T = {1, 2, a} with a 
= 3, 4. There are of course 3
such terms, and for each one the degree of the map P |DT

is equal to 4!, for relabeling the points
not in T . For D4

12, this is the pushforward of all DT with T = {1, 2, a, b} with 4<a< b≤ 7. Thus
there are 3 such T , and the degree of P on each of them is 2 (for permuting a and b) times 3!
for permuting the other 3 points. For D5

12, the only DT on the left in (4.3) mapping to it is for
T = {1, 2, 5, 6, 7}. The degree of P |DT

is then 3! for relabeling the points 5, 6, 7. However, there
is here no extra factor of 2 for permuting the points 3 and 4, since the component of the stable
rational curve containing points 3, 4 is anyway parameterized by M0,3, i.e. is a point; this is
precisely where the stackiness appears.

To compute the pushforward of the right-hand-side of (4.3), note that the preimage of D2
1 is

only the divisor D{1,3}, the degree of P on which is 4! for permuting the points 4, 5, 6, 7. For D3
1,

the preimage consists of those DT where T = {1, 3, a} for a= 5, 6, 7. So there are 3 such divisors,
and the degree is 2 (for permuting a and 3) times 3! for each of them. By the symmetry of points
1 and 2, the coefficients of D5

1 and D4
1 are the same as those of D2

1 and D3
1, respectively. Thus
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finally the pushforward P∗ of (4.3) is given by

5!D2
12 + 3 · 4!D3

12 + 3 · 2 · 3!D4
12 + 3!D5

12 = 4!D2
1 + 3 · 2 · 3!D3

1 + 3 · 2 · 3!D4
1 + 4!D5

1.

Dividing all the coefficients by 6, we obtain

20D2
12 + 12D3

12 + 6D4
12 +D5

12 = 4D2
1 + 6D3

1 + 6D4
1 + 4D5

1. (4.4)

This agrees with Rulla’s formula (4.2) except we have 1 in front of D5
12 instead of Rulla’s 2, due

to taking the stackiness into account.
For ease of notation, we will denote the quotient of the Deligne–Mumford

compactification by

M̃0,7 :=M0,7/S2 × S5. (4.5)

Similarly, we denote the corresponding quotient of the Hassett space H=M(1/6+ε)2,(1/3+ε)5 by

H̃ :=H/S2 × S5. (4.6)

It is crucial for us that the Hassett space is closely related to the moduli space of cubic
surfaces with a line. Indeed, the diagram (3.1) of covers of Msm, can be extended over the
discriminant locus and to the toroidal compactifications. This follows from [GKS21, Theorem
1.4], which gives an isomorphism between the Naruki compactification N and B4/Γm, and then
taking quotients. In particular, we then have an isomorphism

ϕ : H̃ ∼=B4/Γ� (4.7)

between the Hassett space and the toroidal compactification of the moduli space Msm,� of
smooth cubics with a line. We further refer the reader to the discussion of this extension given
in [DvGK05] and [Dor04].

Let σ :M0,7/S5 →M̃0,7 be the double cover (denoted σ as we are thinking of this as a
quotient by the involution), and (anticipating the future weights in H) we call the first two
points (labeled 1 and 2 by Rulla) light , and mark them as ◦ on the sketches of our curves below,
and the remaining five permuted points we call heavy , and mark them by •.

We now compute the pushforward of (4.4) under σ∗, similarly to how we dealt with P∗ above.
We denote by Di◦◦ the image of Di

12 under σ, and note that σ−1(Di◦◦) =Di
12 and that σ|Di

12
has

degree two for permuting the points 1 and 2, except for i= 2, where the degree is equal to 1,
as the irreducible component containing the node and points 1 and 2 is already parameterized
by M0,3. Similarly, we note that Di◦ := σ(Di

1) = σ(D7−i
1 ), and both of these divisors are mapped

generically one-to-one to their image under σ.
Then the pushforward of (4.4) under σ gives the relation

20D2
◦◦ + 24D3

◦◦ + 12D4
◦◦ + 2D5

◦◦ = 8D2
◦ + 12D3

◦ ∈PicQ(M̃0,7) . (4.8)

As the six6 divisors appearing in this formula are images of all generators of PicQ(M0,7/S5), it
follows that

dimQ PicQ(M̃0,7) = dimQ PicQ(M0,7/S5)− 2 = 5 ,

and that this Picard group is generated by divisors D2◦◦, D3◦◦, D4◦◦, D5◦◦, D2◦, D3◦, subject to the
one relation (4.8). (We note that the above can also be computed using admcycles [DSvZ21],
provided one carefully tracks the generic automorphisms for the correct stacky coefficients.)

We now describe the divisorial contraction h : M̃0,7 →H̃. We note that the product of sym-
metric groups still acts on the Hassett space, as the corresponding weights are equal. Thus, we
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simply need to determine which boundary divisors of M̃0,7 are contracted by the morphism h,
which is the question of stability of the generic point of each boundary divisor, with the chosen
weights. Indeed, on Di◦◦ the weight of the component containing 1,2 is equal to

2 · 1
6
+ (i− 2) · 1

3
+ 1+ i · ε= i+ 2

3
+ i · ε,

(where the extra +1 is for the node). Thus for i= 2, 3 this component is unstable, while, since
the sum of the weights of all the points is 2 + 7ε, for i= 5 the other component is unstable. In all
of these cases the unstable rational component will be contracted. If we contract a component
(of course attached to the rest of the curve at one node), and if that component contains j ≥ 3
marked points, the dimension of the stratum in the moduli space decreases, as we are mapping
M0,j+1 to a point. Thus h contracts the divisor D3◦◦ to a codimension 2 locus. However, the

divisors D2◦◦ and D5◦◦ are mapped under h to divisors in H̃, where we simply think that a generic
point represents now an irreducible rational point where two light points (respectively two heavy
points) have collided. Furthermore, the generic point ofD4◦◦ is stable for our choice of the weights,
and thus there is no contraction there, either. For brevity we denote δi := h(Di◦◦).

For a generic point of D2◦, the total weight of the points on the component containing only
one heavy • point (and one light ◦ point) is 1

6 +
1
3 + 1+ 2ε < 2, so this component of the rational

nodal curve gets contracted, but again this means we replace M0,3 by a point, and simply think
of the corresponding point in the Hassett space as an irreducible rational curve where a light and
a heavy point have collided. Finally, the total weight of the component containing two heavy •
points and one light ◦ point, at a generic point of D3◦ is equal to 5

6 + 1+ 3ε < 2, so h contracts the
divisor D3◦. (The interested reader will observe how our description parallels conditions (i)–(iii)
described in [DvGK05, p. 113].) We denote γ := h(D2◦). For further use, in Figure 1, we give the

schematic pictures of the generic points of all boundary divisors in M̃0,7 and their images in H̃.
We can summarize the above discussion as follows.

Theorem 4.1. The Picard group of H̃ is given by

PicQ(H̃) =Qδ2 ⊕Qδ4 ⊕Qδ5 ⊕Qγ/∼, (4.9)

where the unique relation ∼ is

20δ2 + 12δ4 + 2δ5 = 8γ ∈PicQ(H̃). (4.10)

Figure 1. The images of boundary divisors under the map h.
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Proof. The relation is obtained by pushing (4.8) under h, resulting in (4.10). Here we use that all
other classes of divisors are contracted under h. The rest follows from the discussion preceding
the theorem. �

Here, we note that crucially there is only one term on the right-hand side, i.e. one boundary
divisor on H̃ can be expressed as a positive linear combination of other divisorial boundary
strata.

It is now not difficult to determine the effective cone of H̃.

Theorem 4.2. The cone of effective divisors of H̃ is

Eff(H̃) =R≥0δ2 +R≥0δ4 +R≥0δ5 . (4.11)

Proof. Let E ∈Eff(H̃) and denote its preimage in M0,7/S5 by Ẽ. By [Rul06], the class Ẽ, being
that of an effective divisor, must then be equal to some linear combination of Di◦ and Di◦◦ with
non-negative coefficients. Pushing such an expression for Ẽ under the map h ◦ σ expresses the
class of E as a non-negative linear combination of the classes h∗ ◦ σ∗(Di◦) and h∗ ◦ σ∗(Di◦◦),
which, by the above discussion is thus a linear combination of δ2, δ4, δ5, γ with non-negative
coefficients. Using (4.10) we can eliminate γ from such an expression. �

Since H̃ ∼=B4/Γ�, we have thus determined the cone of effective divisors of the toroidal com-
pactification of the moduli space of cubic surfaces with a line. In order to make this geometrically
meaningful, we now explore the meaning of the divisors δ2, δ4, δ5 in terms of the moduli of cubic
surfaces. For this we use the geometric discussions in [DvGK05, §3] and [Dor04].

Proposition 4.3. Under the isomorphism ϕ : H̃ ∼=B4/Γ� from (4.7) we have

ϕ(δ2) = T in
A1,�, ϕ(δ4) = T3A2,�, ϕ(δ5) = T out

A1,�, ϕ(γ) = T in
R,�. (4.12)

Proof. In [DvGK05, §3] the authors investigate the geometry of the collisions of the 5 + 2 points
and their relations to the nodal cubic surfaces, and we will now deduce all the claims above
except for the one about δ4 (which does not correspond to nodal cubics) from the lists from
the preprint arXiv version of [DvGK05],

1

which contains additional helpful information beyond
what is covered in the journal version.

We start with the divisor γ. This is where one light and one heavy point collide, which
corresponds to case (2) in [DvGK05, pp. 14–15]. The special situation is that one of the two
tangents to Ci through pi meets the conic in a point pk. This still leads to a smooth cubic. Blowing
up in pk we see that we obtain an Eckardt point, namely the point where the exceptional line
and the strict transforms of the conic Ci and the tangent at pk meet. Hence, we land in the
Eckardt locus TR,�. The marked line on the cubic surface S is the strict transform of Ci and goes
through the Eckardt point. Hence ϕ maps γ to T in

R,�. One gets the generic point of T in
R,� in this

way. Indeed, we can assume that the marked line corresponds to Ci. By inspection of the lines
on S, or equivalently analyzing the conic bundle associated to the pencil of planes containing
the marked line �, we see that the only way in which an Eckardt point with � an Eckardt line
can arise, is, that one of the tangents to Ci through pi goes through one of the other points pj .
Hence we get that ϕ(γ) = T in

R,�.

1See I. Dolgachev, B. van Geemen and S. Kondō, A complex ball uniformization of the moduli space of cubic
surfaces via periods of K3 surfaces. Preprint (2003), arXiv: https://arxiv.org/abs/math/03103421v1, 14–16.
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The divisor δ2 is where two light points collide. If we denote the binary forms which give
the 5 + 2 points by F5 and F2, then this means that F2 has a double root (which is generically
disjoint from the roots of F5). This is case (4) in [DvGK05, pp. 14–15]. As is explained there,
this means geometrically that Ci degenerates into two lines Cj =L1 ∪L2 with one line, say L1,
containing3 three of the points pj and the other line L2 containing the remaining two2 of the
points pj . Then L1 is contracted to give a node on the cubic S. The sixth blown up point pi
lies outside L1 ∪L2 and the tangent to the conic is the line joining pi and the intersection of L1

and L2. The marked line is again the image of the conic Ci which, in this case, is mapped to
the image of the line L2 which goes through the node. Hence ϕ maps δ2 to T in

A1,�
and since this

locus is irreducible we obtain that ϕ(δ2) = T in
A1,�

.
We now consider δ5. Here, two heavy points, say pj , pk, collide and this is (5) in [DvGK05].

Then, the lines Lj , Lk coincide and pi, pj , pk lie on a line which gets contracted to a node. The
marked line is the strict transform of the conic Ci and this does not contain the node, thus giving
us a point in T out

A1,�
. Again, by irreducibility of T out

A1,�
, it follows that ϕ(δ5) = T out

A1,�
.

Finally, we turn to the divisor δ4, which does not correspond to nodal cubics (i.e. those
with only A1 singularities). For this we observe that the isomorphism ϕ : H̃ ∼=B4/Γ� sends the
boundary to the boundary. In particular, there must be a boundary divisor in H̃ that maps to
the toroidal boundary T3A2,�. By the above discussion this can only be the irreducible boundary

divisor δ4 of H̃. This further implies that T3A2,� is irreducible. The latter can also be seen purely
group theoretically and amounts to the statement that the Weyl group W (D5)∼= (Z/2Z)4 � S5

acts transitively on the 40 cusps of B4/Γm. This follows immediately from comparing the orders
of possible stabilizers of a cusp in W (D5) with the stabilizers of W (E6), which, by Naruki [Nar82,
p. 22], are an S3-extension of S3

3 and thus have order 64. �

Remark 4.4. There is a non-trivial numerical check of our results. Identifying the classes δ2 and δ5
with their corresponding divisors in B4/Γ� and pushing the relation (4.10) under �∗, we obtain

�∗(δ2) = �∗(T in
A1,�) = 6TA1

, �∗(δ5) = �∗(T out
A1,�) = 15TA1

. (4.13)

The factor 6 comes form the fact that T in
A1,�

→ TA1
has degree 6 (there are 6 lines through a

node) and that T out
A1,�

→ TA1
has degree 15 (there are 15 lines in the smooth locus of a generic

nodal cubic surface), as discussed in the proof of Lemma 3.4. Since the map � is unramified
along the boundary and has degree 27, we find that

�∗(δ4) = �∗(T3A2,�) = 27T3A2
. (4.14)

Finally, since there are 3 lines through an Eckardt point we have

�∗(γ) = �∗(T in
R,�) = 3TR . (4.15)

Using these formulae we obtain

�∗(20δ2 + 12δ4 + 2δ5) = (20 · 6 + 2 · 15)TA1
+ 27 · 12T3A2

= 150TA1
+ 324T3A2

. (4.16)

Similarly

�∗(8γ) = 24TR , (4.17)

and hence (4.10) becomes

150TA1
+ 324T3A2

= 24TR , (4.18)

which is exactly (2.5).
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The cover � :B4/Γ� →B4/Γ is not Galois, so a priori it could be quite difficult to use this cover
to determine Eff(B4/Γ). In this case we are, however, in a fortunate situation, as we shall explain
now.

Proof of Theorem 1.1 determining Eff(B4/Γ). As discussed in the introduction, T3A2
is an

extremal ray of the cone Eff(B4/Γ), as it is contracted under the map to the Baily–Borel
compactification. Thus it suffices to prove that TA1

is an extremal effective divisor. Suppose
for contradiction that the effective divisor TA1

∈Eff(B4/Γ) were not extremal, so that its class
could be written as TA1

=E1 +E2. We know from Lemma 3.4 that �∗TA1
= 2T in

A1,�
+ T out

A1,�
. From

Theorem 4.1 we know that δ2, δ4, δ5 are a Q-basis of the Picard group of B4/Γ�, and generate
the cone of effective divisors (again, since the other potential generator γ turns out to be their
linear combination with positive coefficients). But since the preimage of T3A2

is the irreducible
divisor δ4, pushing and pulling these classes is linearly independent from TA1

, and δ2, δ5. Thus
�∗(E1) and �∗(E2) must be non-negative linear combinations of δ2 and δ5 only, not including δ4.
Pushing forward under �∗ shows that the Ei are then positive multiples of the class of TA1

, and
this completes the proof. �

5. The nef cones

In this section we determine the cone of nef divisors Nef(B4/Γ�) and use it to also deduce
Nef(B4/Γ). Similarly to the determination in the previous section, this will use the identification

from [GKS21] of B4/Γ� with the Hassett moduli space H̃, which is obtained from M̃0,7 by a
divisorial contraction described above. Recall that Keel and McKernan [KM13] showed that the
cone of effective curves Eff1(M0,7) is generated by the 1-dimensional boundary strata, which

implies that this also holds for the cone of effective curves on the quotient Eff1(M̃0,7). By
definition the cone of nef divisors is dual to the cone of effective curves, which is simply to say
that a divisor is nef if and only if its intersection with every effective curve is non-negative.

Using admcycles [DSvZ21], Johannes Schmitt has kindly enumerated for us the 1-dimensional

boundary strata in M̃0,7. There are 24 of them, of course subject to a host of linear relations.
For our purposes we will not need to list these 24 curves (by drawing the corresponding dual

graphs), but we note that some of them are contracted under h : M̃0,7 →H̃: such a 1-dimensional
boundary stratum is contracted to a point under h if and only if the generic point is a stable
curve that has an irreducible component that is a P1 with one node and three marked points,
at least one of which is light. By inspection, there are 6 contracted curves among 24, numbered
1, 4, 6, 14, 16, 23 in the spreadsheets available at http://www.math.stonybrook.edu/∼sam/
IntersectionNumbers.pdf and http://www.math.stonybrook.edu/∼sam/SageWorksheet.pdf and
in the table below. For example, the 1-dimensional boundary stratum number 1 parameterizes a
chain of 4 P1 values, where one of the outside P1 values contains two light points and one heavy
point (and so for stability the P1 next to it has to have one heavy point, the next one has to have
one heavy point and the last one has two heavy points). Similarly, the 1-dimensional stratum
number 4 parameterizes a chain of 4 P1 values where the first one contains one light and two
heavy points, the second contains one light point, the third contains one heavy point and the
last contains two heavy points; these are depicted in Figure 2.

Furthermore, Johannes Schmitt used admcycles to compute for us the intersection numbers
of these curves with the six boundary divisors. The admcycles package in fact uses Pixton’s
original code for intersection computations, and since proper symmetrization has not yet been
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Figure 2. Two 1-dimensional boundary strata in M̃0,7 contracted to points under h.

implemented, this means that each of the boundary divisors used for these intersection compu-
tations is in fact some multiple of one of Di◦◦ or Di◦. However, since the six6 divisors satisfy a
unique linear relation, all of these scaling factors can be determined uniquely up to an overall
factor. Rescaling the admcycles numbers (by dividing them by 120, 48, 24, 12, 24, 12 respectively
for the six divisors below, in the order listed), the resulting intersection matrix is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D2◦◦ 2 2 −2 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D3◦◦ −1 0 2 0 1 −1 1 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
D4◦◦ 0 −1 −1 0 −1 0 2 1 0 2 2 −1 −1 0 0 0 1 1 −1 −1 −1 −1 0 0
D5◦◦ 0 −2 2 2 0 0 −4 −2 −4 0 0 6 6 2 2 2 −2 −2 6 6 6 6 2 2
D2◦ 2 0 0 2 0 2 0 1 −1 0 0 0 0 2 −1 2 1 −2 0 0 0 0 2 −1
D3◦ 0 2 0 −1 1 0 0 0 2 0 0 0 0 −1 1 −1 0 2 0 0 0 0 −1 1

.

(5.1)

This intersection matrix determines the nef cone Nef(M̃0,7), but we will not need this full infor-
mation, as we will use the following (probably well-known) lemma about nef cones to determine
the nef cone of the Hassett space. For the reader’s sake we recall the following lemma.

Lemma 5.1. Let X and Y be irreducible Q-factorial varieties and let f :X → Y be a morphism
which is either birational or dominant and finite. Then the following holds:

f∗(Nef(Y )) =Nef(X)∩ f∗(NS(Y ).

Proof. It follows immediately from the projection formula that the pullback of a nef divisor is
again nef, which shows the inclusion f∗(Nef(Y ))⊂Nef(X)∩ f∗(NS(Y )). To see the converse, we
fist assume f to be a birational morphism. Let D be a divisor class on Y such that f∗(D) is nef
on X. We want to show that D is nef on Y . Let C be an irreducible curve on Y . We want to
prove that D.C ≥ 0. This follows from the projection formula

(f∗D).C̃ =D.f∗(C̃),

provided one finds a curve C̃ ⊂X such that f∗(C̃) =mC for some positive multiple m. If C is
not contained in the exceptional locus, then we can simply take the strict transform C̃ of C
in X.

If C is contained in the exceptional locus, then choose an irreducible component E of the
preimage f−1(C) that dominates C. By embedding E in some projective space and by taking
repeated hyperplane sections, one can construct an algebraic subset H of E which intersects a
generic fiber of the restriction f |E :E →C in a finite number of points. In particular, we can
find a component of H which is an irreducible curve C̃ such that f |

˜C : C̃ →C is finite.
The proof for a finite surjective morphism is even easier as one can simply take the full

preimage of C. �
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We will of course want to apply this lemma to h to determine the nef cone of the Hassett
space, but doing so requires first determining the pullbacks of divisors under h∗.

Lemma 5.2. The pullbacks of the boundary divisors under the map h are as follows:

h∗δ2 =D2
◦◦ + 2D3

◦◦; h∗δ4 =D4
◦◦; h∗δ5 =D5

◦◦ + 2D3
◦; h∗γ =D2

◦ + 2D3
◦ + 2D3

◦◦ .

We note that of course (4.10) expresses γ in terms of the other divisors, and thus allows us to
compute its pullback, but the proof below gives an extra numerical cross-check.

Proof. In the previous section we determined the images of all boundary divisors under h, in
particular observing that h contracts D3◦◦ and D3◦ to codimension 2 loci, as pictured in Figure 1.
We now check which boundary divisors of H̃ contain these codimension 2 strata. The image
h(D3◦) parameterizes P1 with three marked heavy points, one marked light point and one point
where one light and two heavy points collided. Such a P1 with weighted points is a degener-
ation of either the P1 where a light and a heavy point collided (and the other heavy point
is separate), which is a generic point of h(D2◦), or of a P1 where two heavy points collided,
but a light point is separate, which is a generic point of h(D5◦◦). Thus h(D2◦)⊂ h(D3◦), h(D5◦◦).
Similarly h(D3◦◦)⊂ h(D2◦◦), h(D2◦). The pullback of each boundary divisor under h∗ is a linear
combination of the irreducible components of its preimage, and thus we know which divisors
on M̃0,7 enter in each pullback. Since the images of those boundary divisors that are not con-
tracted by h are all distinct, we know that they appear in the pullbacks of their images with
coefficient one, and it remains to determine the coefficients with which the contracted divisors
appear.

While of course it is possible to determine the multiplicities by local computations, there
is an easier way. Indeed, recall that the map h contracts six 1-dimensional boundary strata.
By inspection of (5.1), we see that the contracted curves number 1 and 6, and respectively the
curves number 4, 14, 16, 23 are numerically equivalent. Each curve contracted under h must
have zero intersection number with each divisor pulled back from H̃. Denoting the classes of
these contracted curves C1 and C4, suppose that h∗δ2 =D2◦◦ + αD3◦◦. Then 0 = h∗δ2.C1 = 2− α,
which gives α= 2. Similarly 0 = h∗γ.C1 shows that the coefficient of D3◦◦ in this pullback is also
2. Then 0 = h∗δ5.C4 determines the pullback of δ5, and finally 0 = h∗γ.C4 gives the coefficient of
D3◦ in h∗γ. �

This allows us to complete the determination of the nef cone of B4/Γ�.

Proposition 5.3. The nef cone Nef(H̃) consists of divisors of the form aδ2 + bδ4 + cδ5, where
a, b, c, satisfy the inequalities

b≥ a; b/2≥ c≥ b/6; 2a+ 2c≥ b.

(we note that b≥ 2c, 2a+ 2c≥ b together imply that a≥ 0, and thus b≥ 0 and thus c≥ 0).
Equivalently, this nef cone is generated by the divisors

2δ4 + δ5; 2δ2 + 2δ4 + δ5; 2δ2 + 6δ4 + δ5; 6δ2 + 6δ4 + δ5. (5.2)

Proof. Applying the lemma above to our situation of h : M̃0,7 →H̃, this simply says that a

divisor N on H̃ is nef if and only if its pullback h∗N is nef. By using Lemma 5.2, we compute
the intersection numbers of the pullback of the basis of the space of divisors on H̃ with all
1-dimensional boundary strata on M̃0,7:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

h∗δ2 0 2 2 0 2 0 0 0 2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
h∗δ4 0 −1 −1 0 −1 0 2 1 0 2 2 −1 −1 0 0 0 1 1 −1 −1 −1 −1 0 0
h∗δ5 0 2 2 0 2 0 −4 −2 0 0 0 6 6 0 4 0 −2 2 6 6 6 6 0 4

= column 2 2 ≈ 8 10 12 8 12 12 12 12 15

.

(5.3)

Here, we have labeled red the zero columns, which correspond to those curves that are contracted
under h, and have labeled blue those columns that are proportional to another column, and we
have written below which column that is.

Thus the remaining black columns are the ones that impose distinct conditions for the
pullback of a linear combination aδ2 + bδ4 + cδ5 to have a non-negative intersection with the
corresponding curve. After dividing by the greatest common divisor (gcd) of the entries in each
column, intersecting with these generators of the cone of effective curves gives the following set
of inequalities defining Nef(H̃):

column 2 : 2a− b+ 2c≥ 0

column 8 : b− 2c≥ 0

column 9 : a≥ 0

column 10 : b− a≥ 0

column 12 : 6c− b≥ 0

column 15 : c≥ 0

column 18 : b+ 2c≥ 0.

(5.4)

As noted in the statement of the proposition, the fact that a, b, c≥ 0 (and thus also b+ 2c≥ 0) is
implied by the other inequalities, and thus the four inequalities defining the cone of nef divisors
are as stated. To find the extremal rays of the cone, two (or, in principle, more) out of four of these
inequalities must become equalities, while the other inequalities must be satisfied. Inspecting all
six possibilities gives the generators: for example, if b= a and b= 2c, then we get the generator
(2, 2, 1), while if b= a and 2a+ 2c= b, this would imply c=−b/2, and depending on signs, one
of the inequalities 6c≥ b≥ 2c would fail.

We can now use this to finish the determination of Nef(B4/Γ�) and Nef(B4/Γ). �

Proof of Theorem 1.3 and Theorem 1.1 for nef divisors. Proposition 5.3 together with the geo-
metric interpretation of the boundary divisors δ given in Proposition 4.3 immediately imply the
result for Nef(B4/Γ�).

We recall from Lemma 3.4 and from Proposition 4.3 (where we also use that the quotients
are unramified over the boundary) that for the non-Galois cover � :B4/Γ� →B4/Γ the pullbacks
of the boundary divisors are, viewed from the point of view of H̃,

�∗TA1
= 2δ2 + δ5; �∗T3A2

= δ4 .

By Lemma 5.1 a divisor class αTA1
+ βT3A2

is nef if and only if its pullback under �∗ is
nef. Rescaling the (necessarily positive) coefficient α to 1, we need to determine under which
conditions on β the class

�∗(TA1
+ βT3A2

) = 2δ2 + βδ4 + δ5,

lies in Nef(B4/Γ�). By luck, we precisely hit the two generating extremal rays (2, 2, 1) and (2, 6, 1)
of Nef(B4/Γ�) found in Proposition 5.3, for the values of β equal to 2 and 6, respectively. �
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Remark 5.4. As a major numerical check for all of our computations above, note that the pullback
p∗O(1) of the polarization from (B4/Γ)

∗ is definitely a nef, but not ample, line bundle on B4/Γ,
as it is a pullback of a nef bundle, and restricts to a trivial bundle on T3A2

. As computed
above

4p∗O(1) = �∗(TA1
+ 6T3A2

) = 2δ2 + 6δ4 + δ5,

is indeed one extremal ray of the nef cone Nef(B4/Γ�).

6. Intersection theory on the Kirwan blowup

In this section we determine the intersection theory of divisors on MK, proving Theorem 2.2.
For this we choose D3A2

and L= π∗(OP(1,2,3,4,5)(1)) as the generators of Pic(MK) =NS(MK).
As discussed after the statement of Theorem 2.2, it suffices to determine the top intersection
numbers L4, which we already know to be 1/5!64, and D4

3A2
.

Proposition 6.1. The top self-intersection of the exceptional divisor D3A2
on MK is

given by

D4
3A2

=− 1

9 · 56 .

Proof. We start with a brief recollection of the construction of MK and D3A2
. In particular,

setting Z to be the orbit of the 3A2 cubic in the Hilbert scheme of cubic surfaces H = P19, we
have a commutative diagram

Ess

/ SL4

(BlZ(
19)ss)ss

p̃ / SL4

( 19)ss

p / SL4

D3A2 MK MGIT

(6.1)

where we have blown up the semistable locus (P19)ss along the orbit Z, and then taken the
semistable locus in the blowup with respect to the polarization given by Kirwan. In our case the
Kirwan desingularization is obtained by a single blowup. Indeed, there is only one closed orbit
with positive dimensional stabilizer to begin with, and one can show by a direct computation
that after the first blowup there are no closed orbits with positive dimensional stabilizers (see
[Kir89, §3, §5] and [Zha05, §6] for more details, as well as [CM23, §2.3.2] which reviews how
this follows more generally from the fact that there is only one closed orbit to begin with). In
particular, after the first blowup every semistable point is in fact stable (i.e. every point has
finite stabilizers). We descend O(BlZ(P19)ss)ss(E

ss) to a Q-line bundle OMK(D3A2
), and in turn,

further descend O(BlZ(P19)ss)ss(E
ss)|Ess to a Q-line bundle OMK(D3A2

)|D3A2
.

We also have another description of D3A2
, as D3A2

∼= P5//O
P5 (3)

G3A2
, where P5 is the excep-

tional divisor in the blowup at the origin of an explicit C6 Luna Slice for the 3A2 cubic surface,
and G3A2

is the stabilizer of the 3A2 cubic surface acting on this projectivization via an explicit
linearization of the action of OP5(3) (all of this is induced by the action on the Luna Slice). This
Luna Slice construction is compatible with the global construction in the sense that one can
view the blowup of the Luna Slice as sitting in the blowup of the ambient P19, and after restric-
tion, O(BlZ(P19)ss)ss(E

ss)|P5 ∼=OBl0 C6(P5)|P5 ∼=OP5(−1). In other words, under the isomorphism
D3A2

∼= P5//O
P5 (3)

G3A2
, we have that OP5(−1) descends to D3A2

to give OMK(D3A2
)|D3A2

.
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We now recall the quotient D3A2
∼= P5//O

P5 (3)
G3A2

in a little more detail. Indeed, G3A2
is an

extension of S3 by (C∗)2, so that we may first consider XPa
:= P5//O

P5 (3)
(C∗)2 and then take the

finite S3 quotient, D3A2
∼=XPa

/S3. We have previously described XPa
as an explicit toric variety

given by a rational polytope Pa (see [CMGHL22, Lemma 8.2]), whose volume is vol Pa =
3
56 .

2

We in fact translate our projective GIT problem into an affine GIT problem, and the polytope
Pa and the corresponding lattice M giving the toric data we obtain from the process in [CLS11,
Chapter 14]. Indeed, [CLS11, Theorem 14.2.13] gives, in our language an identification of the
invariant ring as R(P5,OP5(3))G3A2 =C[C(Pa)∩ (M ⊕Z)] (this notation on the right means the
graded ring obtained by placing Pa at height 1, so to speak, and then taking the cone through
the origin). In other words, OP5(3) descends to the Q-line bundle La on XPa

given by the “O(1)”
on the toric variety dictated by the polytope. (To reduce to the standard situation, by taking
Veronese subrings, one may assume the polytope is a lattice polytope; keeping track of the scaling
and the Veronese subring, one obtains the stated result.) In summary, recalling that OP5(−1)
descends to give OMK(D3A2

)|D3A2
on D3A2

, we note that OP5(−1) descends to XPa
to give the

Q-line bundle −1
3La. Observing that L3

a is given by the normalized volume of the polytope Pa

(again, to see this, take a Veronese subring to get an integral polytope, and then keep track of
the scaling and the Veronese subring), we have

L3
a = 3! vol Pa = 6 · 3

56
.

Since the map XPa
→XPa

/S3 =D3A2
has degree 6, we finally obtain

D4
3A2

= (D3A2
|D3A2

)3 =
1

6
· (−1

3
La)

3 =
1

6
· −1

27
· 6 · 3

56
=−1

9
· 1

56
.

�

We next use the commutative diagram (6.1) to compute the pullbacks

π∗D=DA1
+ 6D3A2

,

π∗R=DR + 30D3A2
.

Indeed, we have p∗D=Δ, where Δ⊆Hss = (P19)ss is the discriminant in the Hilbert scheme of
cubic surfaces. Then locally, Δ looks like the product of three cusps, times some smooth factors,
so has multiplicity 6. So we have π̃∗Δ= Δ̃+ 6E, where E is the exceptional divisor. On the
other hand, p̃∗(DA1

+ αD3A2
) = Δ̃ + αE. We conclude that α= 6.

The computation for the strict transform of the Eckardt divisor is similar, except that here
we have ramification, i.e. p∗R= 2RH , where RH is the Eckardt divisor on Hss. Locally, we
saw in [CMGHL22, Lemma 3.5] that RH had multiplicity 15 along the 3A2 locus. So we have
that π̃∗p∗R= 2R̃H + 30E. On the other hand, p̃∗(DR + αD3A2

) = 2R̃H + αE. One concludes that
α= 30.

Given these computations, and the fact that we have expressed D and R in terms of the
Hodge class λ (and abusing notation by writing λ= π∗λ), we have

DA1
= 24λ− 6D3A2

and DR = 150λ− 30D3A2
.

For the slopes this means that

s(DA1
) = 4< 5 = s(DR),

2We thank Mathieu Dutour Sikirić for computing this for us.
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compared with

s(TA1
) = 4< 6.25 = s(TR),

for the toroidal compactification.

Proof of Proposition 2.3. Recall from [CMGHL22, Proposition 5.8, Corollary 6.8] that we have

KMK = π∗KMGIT + 20D3A2
=−15

4
π∗D+ 20D3A2

,

KB4/Γ
= p∗KMGIT + 16T3A2

=−15

4
p∗D+ 16T3A2

.

It follows that

K4
B4/Γ

= (p∗K(B4/Γ)∗ + 16T3A2
)4 =K4

(B4/Γ)∗ + 164T 4
3A2

= 3375
8 − 164

63 = 3375
8 − 8192

27 ,

K4
MK = (p∗KMGIT + 20D3A2

)4 =K4
MGIT + 204D4

3A2
= 3375

8 − 204

9·56 =
3375
8 − 20000

63 . �

We note that this fully agrees with our argument in [CMGHL22, §7] that the two varieties are
not K-equivalent. There we argued that that the prime factor 54 from the coefficient 204 cannot
be canceled by the denominator. For this we described the possible orders of automorphism
groups, which are all products of prime powers of 2 and 3, except for Z21 which fits with the
denominators 8 and 63.
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