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In this paper, we establish an infinite series expansion of Leray–Trudinger inequality,
which is closely related with Hardy inequality and Moser Trudinger inequality. Our
result extends early results obtained by Mallick and Tintarev [A. Mallick and C.
Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20
(2018), 17501034. OP 21] to the case with many logs. It should be pointed out that
our result is about series expansion of Hardy inequality under the case p = n, which
case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis.
Optimal non-homogeneous improvements for the series expansion of Hardy’s
inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However,
we can’t obtain the optimal form by our method.
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1. Introduction

Let Ω be a bounded domain of R
n containing the origin, n � 2 and p > 1, the

classical p-Hardy inequality asserts that

∫
Ω

|∇u|p dx �
∣∣∣∣n − p

p

∣∣∣∣
p ∫

Ω

|u|p
|x|p dx,∀ u ∈ C∞

0 (Ω), (1.1)

with
∣∣∣n−p

p

∣∣∣p being the best constant and never achieved [6, 7, 10, 15, 20, 24].
Many improvements of Hardy inequality can be obtained by adding the error
term in the right side of (1.1) [8, 12]. The first improvement was obtained
by Brezis and Vazquez [8]. When p = 2, they have shown that (1.1) can be
improved by adding subcritical Sobolev term

∫
Ω
|u|q dx(1 � q < 2∗ = 2n

n−2 ). After
that, Chaudhuri and Ramaswamy [9] improved inequality (1.1) by introducing a
subcritical Hardy–Sobolev term

∫
Ω

|u|q
|x|β dx (0 � β < 2, 1 � q < 2∗β := 2(n−β)

n−2 ) [1].
Later, Adimurthi, Chaudhuri and Ramaswamy [2] extended their results to general
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Lp Hardy inequality for 2 � p < n. In [11], Filippas and Tertikas pointed out that
the critical Sobolev type improvement for p = 2 could be established by adding a
logarithmic term. Their result is as follows.

Let Ω be a bounded domain in R
n(n � 3) containing the origin, RΩ := supx∈Ω |x|,

then for any u ∈ H1
0 (Ω) and R � RΩ, there exists a constant Cn > 0 depending only

on n, such that

∫
Ω

|∇u|2 dx −
(

n − 2
2

)2 ∫
Ω

|u|2
|x|2 dx � Cn

(∫
Ω

(
|u|2∗

X
1+ 2∗

2
1

( |x|
R

))
dx

) 2
2∗

.

(1.2)
Here

X1(t) = (1 − logt)−1, t ∈ (0, 1]. (1.3)

Inequality (1.2) was sharp in the sense that X
1+ 2∗

2
1 cannot be replaced by a

smaller power of X1.
In [11], the authors also established the series expansion of Hardy inequality.

Their results were extended to the following general Lp (p �= n) Hardy inequality [5].
Let Ω be a bounded domain in R

n(n � 3) containing the origin, RΩ := supx∈Ω |x|,
then for any u ∈ W 1,p

0 (Ω \ {0}) and R � RΩ, there holds

∫
Ω

|∇u|p dx �
∣∣∣∣n − p

p

∣∣∣∣
p ∫

Ω

|u|p
|x|p dx +

p − 1
2p

∣∣∣∣n − p

p

∣∣∣∣
p−2

×
∞∑

i=1

∫
Ω

|u|p
|x|p X2

1

( |x|
R

)
X2

2

( |x|
R

)
· · ·X2

i

( |x|
R

)
dx. (1.4)

Here

Xk(t) = X1(Xk−1(t)), k � 2. (1.5)

In [11], the authors also proved the following series expansion of Hardy inequality
for p = 2 with critical sobolev term.

∫
Ω

|∇u|2 dx �
(

n − 2
2

)2 ∫
Ω

|u|2
|x|2 dx +

1
4

k∑
i=1

∫
Ω

|u|2
|x|2

i∏
j=1

X2
j

( |x|
R

)
dx

+ Cn

(∫
Ω

|u|2∗
k+1∏
i=1

X
1+ 2∗

2
i

( |x|
R

)
dx

) 2
2∗

. (1.6)

The exponent 1 + 2∗
2 on Xk+1 cannot be decreased.

Recently, Gkikas and Psaradakis [13] generalized inequality (1.6) to the general
case 1 < p < n and p > n. When 1 < p < n, by adding an optimally weighted critical
Sobolev norm, they obtained the following results.

Let Ω be a bounded domain in R
n containing the origin, n � 2 and 1 <

p < n, RΩ := supx∈Ω |x|, there exist constants Cn > 0 depending only on n and
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264 X. Sun, K. Yu and A. Zhu

B := B(n, p) � 1, such that for any u ∈ W 1,p
0 (Ω), R � BRΩ and k ∈ N, there holds

∫
Ω

|∇u|p dx �
(

n − p

p

)p ∫
Ω

|u|p
|x|p dx +

p − 1
2p

(
n − p

p

)p−2

×
k∑

i=1

∫
Ω

|u|p
|x|p

i∏
j=1

X2
j

( |x|
R

)
dx

+ Cn

(∫
Ω

|u|p∗
k+1∏
i=1

X
1+ p∗

p

i

( |x|
R

)
dx

) p
p∗

. (1.7)

The exponent 1 + p∗

p on Xk+1 cannot be decreased. When p > n, they established
the series expansion of Lp Hardy inequality by adding the optimally weighted Hölder
seminorm.

All the previous results we mentioned are concerning about the case p �= n. When
p = n, Hardy inequality can be stated as follows [2–4, 16].

Let Ω be a bounded domain in R
n(n � 2), containing the origin, then for any

R � RΩ and u ∈ W 1,n
0 (Ω), one has

∫
Ω

|∇u|n dx �
(

n − 1
n

)n ∫
Ω

|u|n
|x|n X1

( |x|
R

)
dx. (1.8)

Barbatis, Filippas and Tertikas [5] established the following series expansion of
Hardy inequality for the case p = n.

Let Ω be a bounded domain in R
n(n � 2) containing the origin, then for any

R > RΩ and for all u ∈ W 1,n
0 (Ω \ {0}), one has

∫
Ω

|∇u|n dx �
(

n − 1
n

)n ∫
Ω

|u|n
|x|n Xn

1

( |x|
R

)
dx +

1
2

(
n − 1

n

)n−1

×
∞∑

i=2

∫
Ω

|u|n
|x|n Xn

1

( |x|
R

)
X2

2

( |x|
R

)
· · ·X2

i

( |x|
R

)
dx. (1.9)

In analogy with inequality (1.1), it is natural to ask whether similar critical
Sobolev term can be added into inequality (1.8). Since the limit case of critical
Sobolev inequality is Moser–Trudinger inequality [17, 18, 22, 23], the natural sub-
stitute of critical Sobolev term is some exponential function. Recently, Psaradakis
and Spector [21] established the following Leray–Trudinger inequality.

Let Ω be a bounded domain in R
n(n � 2) containing the origin, then for any

ε > 0 and R � RΩ, there exist positive constants An,ε and Bn, such that for all
u ∈ W 1,n

0 (Ω) satisfying I1(u) � 1, one has

∫
Ω

eAn,ε(|u|Xε
1( |x|

R ))
n

n−1
dx � Bnvol(Ω), (1.10)
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Series expansion of Leray–Trudinger inequality 265

where I1(u) is defined by

I1(u) :=
∫

Ω

|∇u|n dx −
(

n − 1
n

)n ∫
Ω

|u|n
|x|n Xn

1

( |x|
R

)
dx. (1.11)

Moreover, inequality (1.10) failed for ε = 0.
Inequality (1.10) is closely related with Hardy inequality and Moser–Trudinger

inequality. Subsequently, Mallick and Tintarev [19] extended inequality (1.10) to
the following form:

Let Ω be a bounded domain in R
n(n � 2) containing the origin, then for any

β � 2
n and R � RΩ, there exist positive constants An and Bn, such that for any

0 < c < An and for all u ∈ W 1,n
0 (Ω) satisfying I1(u) � 1, one has∫

Ω

ec(|u|Xβ
2 ( |x|

R ))
n

n−1
dx � Bnvol(Ω), (1.12)

where X2(t) := X1(X1(t)). Moreover, inequality (1.12) failed if β < 1
n for any c > 0.

The relationship of inequality (1.10) and inequality (1.12) motivates us to inves-
tigate whether inequality (1.12) can be improved to be series expansion. In this
paper, we establish the following series expansion of Leray–Trudinger inequality.
Our main result is as follows.

Theorem 1.1. Let Ω be a bounded domain in R
n containing the origin, n � 2 and

RΩ := supx∈Ω |x|. Then for any k ∈ N, k � 1 and R � RΩ, there exist constants
A(k, n) and B(k, n), such that for any 0 < C < A(k, n) and u ∈ W 1,n

0 (Ω) satisfying
Ik(u) � 1, one has

∫
Ω

e
C

(
|u(x)|

k+1∏
i=2

X
2
n

i ( |x|
R )

) n
n−1

dx � B(k, n)V ol(Ω), (1.13)

where I1(u) is defined by (1.11) and for k � 2, Ik(u) is defined by

Ik(u) := Ik−1(u) − 1
2

(
n − 1

n

)n−1 ∫
Ω

|u|n
|x|n Xn

1

( |x|
R

)
X2

2

( |x|
R

)
· · ·X2

k

( |x|
R

)
dx.

(1.14)
Moreover, if replacing X2

k+1 by Xβ
k+1, one has that inequality (1.13) holds for any

β � 2
n .

Remark 1.2. When k = 1, inequality (1.13) becomes inequality (1.12). Hence our
result extends early results obtained by Mallick and Tintarev [19] to series expan-
sion form. However, in [19], they obtained that inequality (1.12) holds when β � 2

n
and fails when β < 1

n . Here we can’t show that inequality (1.13) fails when β < 1
n .

Moreover, as we mentioned before, Gkikas and Psaradakis [13] obtained series opti-
mal forms of Hardy inequality for 1 < p < n and p > n but didn’t consider p = n,
our result is about this case. However, we can’t obtain optimal forms by our method.

To prove the main result, we follow closely Trudinger’s original proof (see [14]),
which has been used in [21] and [19]. Our main steps are as follows. Firstly, we
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find a suitable function (2.6), which is a supersolution of some Laplace equation
(lemma 2.5). By this function, we define corresponding transform to obtain Lq

estimate (proposition 3.1). After that, we obtain the exponential integrability.
This paper is organized as follows. In § 2, we establish some important prelimi-

naries. In § 3, we give the proof of theorem 1.1.

2. Preliminaries

In this section, we list some important preliminaries.
By the definition of Xk(t)(see (1.5)), we define

Yk(t) :=
k∏

i=2

Xi(t), Zk(t) :=
k∑

i=2

Yi(t), k = 2, 3, · · · . (2.1)

The following proposition is due to the derivative of Xk,Yk and Zk.

Proposition 2.1. For any k ∈ N and k � 2, one has

d

dt

(
Xβ

k (t)
)

=
β

t
X1(t)Yk(t)Xβ

k (t); (2.2)

d

dt
(Yk(t)) =

1
t
X1(t)Yk(t)Zk(t); (2.3)

d

dt
(Zk(t)) =

1
2t

X1(t)

(
Z2

k(t) +
k∑

i=2

Y 2
i (t)

)
. (2.4)

Proof. The first one is proved in [13], lemma 2.2. Since Yk and Zk are different
from definition 2.1 appeared in [13]. We list the proof of (2.3) and (2.4) as follows.

d

dt
(Yk(t)) =

k∑
j=2

⎛
⎝ d

dt
(Xj(t))

k∏
i=2,i �=j

Xi(t)

⎞
⎠

=
1
t
X1(t)

k∑
j=2

⎛
⎝Yj(t)Xj(t)

k∏
i=2,i �=j

Xi(t)

⎞
⎠

=
1
t
X1(t)Yk(t)Zk(t).

From the elementary identity

2
k∑

i=2

YiZi = 2
k∑

i,j=2;j�i

YiYj = 2
k∑

i,j=2;j<i

YiYj + 2
k∑

i=2

Y 2
i

=

(
k∑

i=2

Yi

)2

+
k∑

i=2

Y 2
i = Z2

k +
k∑

i=2

Y 2
i ,
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one has

d

dt
(Zk(t)) =

k∑
i=2

d

dt
(Yi(t)) =

1
t
X1(t)

k∑
i=2

Yi(t)Zi(t)

=
1
2t

X1(t)

(
Z2

k(t) +
k∑

i=2

Y 2
i (t)

)
.

Defining Z∞(t) :=
∞∑

i=2

Yk(t), it converges if and only if t ∈ (0, 1), see [13].

Concerning Ik(u), the following results hold, see [5]. �

Proposition 2.2 Theorem B [5]. For any k ∈ N, R � RΩ and u ∈ C∞
c (Ω \ {0}),

one has

Ik(u) � 1
2

(
n − 1

n

)n−1 ∫
Ω

|u|n
|x|n Xn

1

( |x|
R

)
X2

2

( |x|
R

)
· · ·X2

k+1

( |x|
R

)
dx.

The following lemma is a standard representation formula for smooth functions.

Lemma 2.3 [14], Lemma 7.14. Let Ω be any open set in R
n, n � 2, u ∈ C1

c (Ω), then

u(x) =
1

nwn

∫
Ω

(x − y) · ∇u(y)
|x − y|n dy, (2.5)

where wn is the volume of unit ball in R
n.

In [21], let u(x) = X
1−n

n
1 ( |x|R )v(x), the authors obtained the following lower bound

of I1(u). That is,

I1(u) � C1(n)
∫

Ω

|∇v|nX1−n
1 dx,

where C1(n) = 1
2n−1−1 . In the following, we are going to extend their result to

arbitrary k ∈ N. Precisely, we have

Theorem 2.4. For any R � RΩ, k ∈ N and k � 2, set

wk(x) = X
1−n

n
1

( |x|
R

)
X

− 1
n

2

( |x|
R

)
· · ·X− 1

n

k

( |x|
R

)
, x ∈ Ω, (2.6)

then for all u ∈ C∞
c (Ω \ {0}), one has

Ik(u) � C1(n)
∫

Ω

|∇v|nwn
k dx, (2.7)

where v is defined by u(x) := wk(x)v(x).

In order to prove theorem 2.4, the following key lemma is needed.
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Lemma 2.5. For any k ∈ N, the function wk defined by (2.6), is a supersolution of
the following Laplace equation:

−Δnw −
((

n − 1
n

)n

+
1
2

(
n − 1

n

)n−1 k∑
i=2

Y 2
i

( |x|
R

))
Xn

1

( |x|
R

) |w|n−2w

|x|n = 0.

Proof. Let Ak(x) = X1(
|x|
R )(1−n

n − 1
nZk( |x|R )), then by direct calculation, one has

∇wk = wkAk
x

|x|2 .

Hence,

−Δnwk = −div
(|∇wk|n−2∇wk

)
= −div

{ |wk|n−2wk|Ak|n−2Akx

|x|n
}

= −div
{ |wk|n−2wkx

|x|n
}
|Ak|n−2Ak −

{ |wk|n−2wkx

|x|n
}
· ∇ (|Ak|n−2Ak

)
.

While

−div
{ |wk|n−2wkx

|x|n
}

= (1 − n)
|wk|n−2wkAk

|x|n

and

∇ (|Ak|n−2Ak

)
= (n − 1)|Ak|n−2∇Ak,

thus

−Δnwk =
|wk|n−2wk|Ak|n−2

|x|n
(
(1 − n)A2

k − (n − 1)x · ∇Ak

)

=
|wk|n−2wk

|x|n Xn
1

∣∣∣∣1 − n

n
− Zk

n

∣∣∣∣
n−2

(
(1 − n)

(
1 − n

n
− Zk

n

)2

− (n − 1)

(
1 − n

n
− Zk

n
− 1

2n

(
Z2

k +
k∑

i=2

Y 2
i

)))

=
|wk|n−2wk

|x|n Xn
1

(
n − 1

n

)n−2 ∣∣∣∣1 +
Zk

n − 1

∣∣∣∣
n−2

×
(

(1 − n)2

n2
+

(n − 1)(2 − n)
n2

Zk +
(n − 1)(n − 2)

2n2
Z2

k +
n − 1
2n

k∑
i=2

Y 2
i

)
.
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In order to prove the result, we should prove that∣∣∣∣1 +
Zk

n − 1

∣∣∣∣
n−2( (1 − n)2

n2
+

(n − 1)(2 − n)
n2

Zk

+
(n − 1)(n − 2)

2n2
Z2

k +
n − 1
2n

k∑
i=2

Y 2
i

)

�
(

n − 1
n

)2

+
n − 1
2n

k∑
i=2

Y 2
i . (2.8)

When n = 2, inequality (2.8) naturally holds true. In the following, we just con-

sider the case of n > 2. Let t = Zk

n , h = 1−n
n and λ = n−1

2n

k∑
i=2

Y 2
i , then inequality

(2.8) can be written by

(
h2 + λ

)(
1 −

∣∣∣∣1 − t

h

∣∣∣∣
2−n
)

+ h(n − 2)t +
(n − 2)(n − 1)

2
t2 � 0. (2.9)

Consider function g(x) = |1 − x|2−n, by Taylor expansion at x = 0 (see [13]), one
has

g(x) = 1 + (n − 2)x +
(n − 1)(n − 2)

2
x2 +

n(n − 1)(n − 2)
6

x3 + O(x4).

Therefore, inequality (2.9) is equivalent to

− n − 2
h

(
n(n − 1)

6
t3 + λt

)
+ O(λt2) � 0. (2.10)

While inequality (2.10) holds since n > 2 and h < 0. Therefore, we complete our
proof. �

The proof of theorem 2.4. Setting u(x) = wk(x)v(x), from the following inequality
(see [13, 21])

|a + b|p � |a|p + C1(p)|b|p + p|a|p−2a · b, ∀ a, b ∈ R
n, p � 2, (2.11)

and integrating by parts, we deduce that∫
Ω

|∇u|n dx =
∫

Ω

|v∇wk + wk∇v|n dx

�
∫

Ω

[|v|n |∇wk|n + C1(n)|∇v|n |wk|n + (∇|v|n)

· (|∇wk|n−2wk∇wk

)]
dx

= C1(n)
∫

Ω

|∇v|n|wk|n −
∫

Ω

|u|nw−1
k |wk|2−nΔnwk dx. (2.12)

Therefore, we obtain inequality (2.7) from lemma 2.5.
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3. Proof of theorem 1.1

In this section, we give the proof of theorem 1.1. Firstly, we prove the following Lq

estimate.

Proposition 3.1. Let u ∈ W 1,n
0 (Ω), for any q > n and R � RΩ, we have

(∫
Ω

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
q

dx

) 1
q

� C(k, n)
(

1 +
q(n − 1)

n

)1− 1
n + 1

q

(vol(Ω))
1
q (Ik(u))

1
n , (3.1)

where C(k, n) = ( 1

C1(n)
1
n

+ 2
1
n C

′
(k, n)( n

n−1 )
n−1

n ) 1

nw
1
n
n

.

Proof. Let u ∈ C∞
c (Ω \ {0}), we define u(x) = wk(x)v(x), then inequality (2.5)

implies that

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
=
∣∣∣∣v(x)X

1−n
n

1

( |x|
R

)
Y

1
n

k

( |x|
R

)
X

2
n

k+1

( |x|
R

)∣∣∣∣
=

∣∣∣∣∣∣∣
1

nwn

∫
Ω

(x − y) · ∇
(
v(y)X

1−n
n

1

(
|y|
R

)
Y

1
n

k

(
|y|
R

)
X

2
n

k+1

(
|y|
R

))
|x − y|n dy

∣∣∣∣∣∣∣
� 1

nwn

∫
Ω

|∇v(y)|X
1−n

n
1

(
|y|
R

)
Y

1
n

k

(
|y|
R

)
X

2
n

k+1

(
|y|
R

)
|x − y|n−1

dy

+
1

nwn

∫
Ω

v(y)
|x − y|n−1

∣∣∣∣∇
(

X
1−n

n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

))∣∣∣∣ dy.

By proposition 2.1, we get

∣∣∣∣∇
(

X
1−n

n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

))∣∣∣∣
� 1

|y|X
1
n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

)

×
∣∣∣∣∣n − 1

n
+

1
n

k∑
i=2

Yi

( |y|
R

)
+

2
n

Yk+1

( |y|
R

)∣∣∣∣∣
� C

′
(k, n)

1
|y|X

1
n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

)
.
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Hence we deduce

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣ � 1
nwn

∫
Ω

|∇v(y)|wk

(
|y|
R

)
|x − y|n−1

dy +
1

nwn
C

′
(k, n)

×
∫

Ω

|v(y)|
|y||x − y|n−1

X
1
n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

)
dy

:=
1

nwn

(
S(x) + C

′
(k, n)T (x)

)
,

where

S(x) =
∫

Ω

|∇v(y)|wk

(
|y|
R

)
|x − y|n−1

dy,

and

T (x) =
∫

Ω

|v(y)|
|y||x − y|n−1

X
1
n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

)
dy.

Then for q > n, one has

∥∥∥uY
2
n

k+1

∥∥∥
Lq(Ω)

� 1
nwn

(
‖S‖Lq(Ω) + C

′
(k, n)||T ||Lq(Ω)

)
. (3.2)

Define r by 1
n + 1

r = 1 + 1
q . In order to estimate ‖S‖Lq(Ω), we write

|∇v(y)|wk

(
|y|
R

)
|x − y|n−1

=
(

1
|x − y|(n−1)r

) 1
r − 1

q
(
|∇v(y)|nwn

k

( |y|
R

)) 1
n− 1

q

×
⎛
⎝ |∇v(y)|nwn

k

(
|y|
R

)
|x − y|(n−1)r

⎞
⎠

1
q

,

and define

hr(x) :=
∫

Ω

1
|x − y|(n−1)r

dy.

Then by Hölder’s inequality, we get

S(x) � hr(x)
1
r − 1

q

(∫
Ω

|∇v(y)|nwn
k

( |y|
R

)
dy

) 1
n− 1

q

⎛
⎝∫

Ω

|∇v(y)|nwn
k

(
|y|
R

)
|x − y|(n−1)r

dy

⎞
⎠

1
q

.
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Integrating S(x) and using Tonelli’ Theorem, one has

‖S‖Lq(Ω) � ‖hr‖1− 1
n

L∞(Ω)

(∫
Ω

|∇v(y)|nwn
k

( |y|
R

)
dy

) 1
n− 1

q

×
(∫

Ω

|∇v(y)|nwn
k

( |y|
R

)
hr(y) dy

) 1
q

� ‖hr‖
1
r

L∞(Ω)

(∫
Ω

|∇v(y)|nwn
k

( |y|
R

)
dy

) 1
n

. (3.3)

From theorem 2.4, we get

‖S‖Lq(Ω) � 1
(C1(n))

1
n

‖hr‖
1
r

L∞(Ω)(Ik(u))
1
n . (3.4)

To estimate ‖T‖Lq(Ω), we use similar steps. Firstly, we write that

|v(y)|
|y||x − y|n−1

X
1
n
1

( |y|
R

)
Y

1
n

k

( |y|
R

)
X

2
n

k+1

( |y|
R

)

=
(

1
|x − y|(n−1)r

) 1
r − 1

q
( |v(y)|n

|y|n X1

( |y|
R

)
Yk

( |y|
R

)
X2

k+1

( |y|
R

)) 1
n− 1

q

×
( |v(y)|n
|y|n|x − y|(n−1)r

X1

( |y|
R

)
Yk

( |y|
R

)
X2

k+1

( |y|
R

)) 1
q

Applying Hölder’s inequality and taking the Lq-norm of the both sides, we obtain

‖T‖Lq(Ω) � ‖hr‖
1
r

L∞(Ω)

(∫
Ω

|v(y)|n
|y|n X1

( |y|
R

)
Yk

( |y|
R

)
X2

k+1

( |y|
R

)
dy

) 1
n

= ‖hr‖
1
r

L∞(Ω)

(∫
Ω

|u(y)|n
|y|n Xn

1

( |y|
R

)
Y 2

k

( |y|
R

)
X2

k+1

( |y|
R

)
dy

) 1
n

.

Using the conclusion of proposition 2.2, one has

‖T‖Lq(Ω) � 2
1
n

(
n

n − 1

)n−1
n

‖hr‖
1
r

L∞(Ω) (Ik(u))
1
n . (3.5)

Thus using the following estimate ([19],(3.4))

‖hr‖
1
r

L∞(Ω) � w
1− 1

n
n

(
1 +

(n − 1)q
n

)1− 1
n + 1

q

vol(Ω)
1
q , (3.6)

we get

∥∥∥uY
2
n

k+1

∥∥∥
Lq(Ω)

� C(k, n)
(

1 +
(n − 1)q

n

)1− 1
n + 1

q

vol(Ω)
1
q (Ik(u))

1
n , (3.7)

where C(k, n) is defined by C(k, n) = ( 1

C1(n)
1
n

+ 2
1
n C

′
(k, n)( n

n−1 )
n−1

n ) 1

nw
1
n
n

. Thus,

we complete the proof of proposition 3.1. �
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In the following, we prove theorem 1.1.

Proof. Let u ∈ W 1,n
0 (Ω) such that Ik(u) � 1. Applying proposition 3.1 with q =

ns
n−1 , s ∈ {n, n + 1, · · · }, we have

∫
Ω

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
ns

n−1

dx � (C(k, n))
ns

n−1 vol(Ω)(1 + s)1+s.

Given C > 0, multiplying both sides by Cs

s! and adding from n to m (m � n), it
yields

∫
Ω

m∑
s=n

1
s!

[
C

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
n

n−1
]s

dx

�
m∑

s=n

(
C (C(k, n))

n
n−1

)s

vol(Ω)
(1 + s)1+s

s!
.

Clearly, the right side above inequality converges as m → ∞ if and only if

C <
1

e (C(k, n))
n

n−1
. (3.8)

While each term of the finite sum

S =
∫

Ω

n−1∑
s=0

1
s!

[
C

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
n

n−1
]s

dx (3.9)

is bounded by a constant depending only on k, n due to Hölder inequality. And so,
there exist constants A(k, n) and B(k, n) such that for any 0 < C < A(k, n), there
has ∫

Ω

∞∑
s=0

1
s!

[
C

∣∣∣∣u(x)Y
2
n

k+1

( |x|
R

)∣∣∣∣
n

n−1
]s

dx � B(k, n)vol(Ω). (3.10)

The left side inequality (3.10) is the power series expansion of e
C

∣∣∣∣u(x)Y
2
n

k+1(
|x|
R )

∣∣∣∣
n

n−1

.
Thus, theorem 1.1 is valid, and for β > 2

n , the result is also valid because of
Xk+1(

|x|
R ) < 1. �
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