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Composite sweeping-enhanced resolvents, referred to as the R2
s model, are proposed

to predict the space–time statistics of large-scale structures in turbulent channel flows.
This model incorporates two key mechanisms: (i) eddy damping is introduced to
represent random sweeping decorrelation caused by nonlinear forcing, leading to
a sweeping-enhanced resolvent Rs; and (ii) the sweeping-enhanced resolvent Rs is
composited into its iterations R2

s to yield non-zero Taylor time microscales. The resulting
R2

s model can correctly predict the frequency spectra and two-point cross-spectra of
large-scale structures. This model is compared numerically with eddy-viscosity-enhanced
resolvent models. The latter are designed to represent energy transfer instead for time
decorrelation, and thus underpredict the characteristic decay time scales. The R2

s model
correctly yields the characteristic decay time scales in turbulent channel flows.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction

Resolvent analysis (McKeon & Sharma 2010; McKeon 2017) is increasingly used to
study the space–time properties of large-scale structures in turbulent shear flows. In this
analysis, the Navier–Stokes (NS) equations are represented as the sum of a linear part and
nonlinear terms, where the linear part is treated as a resolvent operator, and the nonlinear
terms are treated as nonlinear forcing. In input–output analysis (Jovanović 2021), the
nonlinear forcing acts as the input to generate velocity fluctuations that are output through
the resolvent. Therefore, the modelling of nonlinear forcing essentially determines the
space–time properties of turbulent fluctuations. The present paper addresses the modelling
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of nonlinear forcing for predicting the frequency spectra and two-point cross-spectra of
large-scale structures in wall-bounded turbulent flows.

Nonlinear forcing is usually treated as white noise in the linearized NS equations
(LNSEs) and the resolvent-based methods. White-in-time random forcing (Farrell &
Ioannou 1993), white-in-space random forcing (Semeraro et al. 2016; Schmidt et al. 2018;
Lesshafft et al. 2019) and random forcing that is white in both time and space (Farrell &
Ioannou 1998; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005) have been applied to
study the space–time properties of coherent structures in turbulent flows. In particular, Liu
& Gayme (2020) used white-in-time random forcing to calculate the space–time energy
spectra and convection velocities in turbulent channel flows. The obtained convection
velocities tend to approach a constant value near the wall and are in good agreement with
the direct numerical simulations (DNS) results (Geng et al. 2015). However, it has been
shown (Wu & He 2021a,b) that white-in-time random forcing acting directly on velocity
fluctuations leads to vanishing Taylor time microscales and thus divergent bandwidths of
frequency spectra at fixed wavenumbers, which is inconsistent with the physics of turbulent
flows.

Nonlinear forcing is found to be coloured in both space and time (Towne, Brès & Lele
2017; Morra et al. 2021; Nogueira et al. 2021; Karban et al. 2022). Nogueira et al. (2021)
demonstrated that nonlinear forcing in turbulent Couette flows exhibits coherent structures
such as a streamwise vortex. Morra et al. (2021) showed that nonlinear forcing in turbulent
channel flows is coloured in time and coherent in space. The coherence of nonlinear
forcing implies that coloured random forcing is necessarily introduced to correctly predict
the space–time statistics of turbulence (Moarref et al. 2014; Rosenberg, Symon & McKeon
2019; Martini et al. 2020; McMullen, Rosenberg & McKeon 2020; Towne, Lozano-Durán
& Yang 2020; Yang et al. 2020). Recently, Zare, Jovanović & Georgiou (2017) and Zare,
Georgiou & Jovanović (2020) showed that white-in-time forcing cannot reproduce the
spatial cross-spectra in turbulent channel flows. Therefore, they proposed that nonlinear
forcing is the sum of white-in-time forcing and dynamic filtering of white-in-time forcing.
The obtained nonlinear forcing is equivalent to a modified linearized NS operator with
white-in-time forcing (Zare et al. 2017).

To account for the spatiotemporal coherence of nonlinear forcing, eddy-viscosity-
enhanced random forcing is introduced in the LNSEs and resolvent analysis (Hwang
& Cossu 2010a,b; Moarref & Jovanović 2012; Illingworth, Monty & Marusic 2018;
Pickering et al. 2021; Ran, Zare & Jovanović 2021; Symon, Illingworth & Marusic
2021). The random forcing is assumed to be the sum of the eddy viscosity term and
the white noise, where the Cess model (Cess 1958; Reynolds & Hussain 1972) is used
for the eddy viscosity. Hwang & Cossu (2010a,b) used eddy-viscosity-enhanced LNSEs
to investigate energy amplification in turbulent Couette flows and turbulent channel flows.
The obtained optimal spanwise wavenumbers are in good agreement with the characteristic
length scales of the streaks observed in experiments and numerical simulations. Morra
et al. (2019) used eddy-viscosity-enhanced random forcing to estimate the space–time
energy spectrum and cross-spectrum of buffer-layer structures and large-scale structures
in turbulent channel flows. Their results are superior to those obtained from white
forcing because the projection of eddy-viscosity-enhanced forcing onto resolvent modes
is similar to the projection of DNS forcing onto the same resolvent modes (Morra
et al. 2021). Pickering et al. (2021) used a data-driven approach to determine the
optimal eddy viscosity in a turbulent jet by maximizing the projection of the dominant
resolvent modes onto the leading spectral proper orthogonal decomposition (SPOD)
modes. This approach significantly improved the consistency between the resolvent modes
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and SPOD modes. Gupta et al. (2021) proposed that the eddy viscosity and forcing
intensity depend on the wavelengths and wall distances. The wavelength dependence of
the eddy viscosity causes the small-wavelength fluctuations to not be overdamped, while
the wall-distance dependence of the forcing intensity leads to a wall-normal distribution
of energy production similar to that of the DNS result. As a result, their model can
predict the large-scale velocity fluctuations at several wall-normal locations from the
measurements at a single wall-normal location in the logarithmic region. In the present
paper, we introduce sweeping-enhanced random forcing to predict the frequency spectra
and two-point cross-spectra of large-scale structures.

The sweeping-enhanced random forcing is built on the random sweeping hypothesis
in homogeneous isotropic turbulence. Kraichnan (1964) and Tennekes (1975) assumed
that the inertial-scale eddies are swept past the Eulerian observation point by the
energy-containing eddies, thus the time correlations of Eulerian velocities are determined
by the sweeping velocities (Kraichnan 1964; He, Jin & Yang 2017). The sweeping
velocities are defined as the root mean square (r.m.s.) of velocity fluctuations, giving the
decorrelation time scales of the velocity modes and thus the bandwidths of the frequency
spectra. Consequently, the sweeping velocities can be used to determine the time scales of
random forcing.

Recently, the dynamic autoregressive (DAR) model has been developed to predict the
space–time energy spectra in turbulent channel flows (Wu & He 2021b). Two techniques
are introduced in the DAR model.

First, eddy damping is introduced to represent the random sweeping effect in nonlinear
forcing. It is well-known that this effect dominates the decorrelation process and
consequently the frequency spectra at fixed wavenumbers not only in homogeneous
isotropic turbulence but also in turbulent channel flows (Kraichnan 1964; Tennekes
1975; He & Zhang 2006; Zhao & He 2009; Wilczek & Narita 2012; He et al. 2017).
The decorrelation time scales characterize the decay rates of the time correlations
and determine the spectral broadening of the space–time energy spectrum, which is
crucial to estimate the power fluctuations in wind farms (Bossuyt, Meneveau & Meyers
2017), turbulence noise (Rubinstein & Zhou 1999, 2000; He, Wang & Lele 2004) and
wall-pressure spectra (Slama, Leblond & Sagaut 2018). Therefore, the random sweeping
effect should be taken into account, leading to a sweeping-enhanced resolvent, while the
remaining effect in nonlinear forcing is modelled by random forcing. Second, random
forcing is generated using dynamic regression. That is, the random forcing is the mapping
from the input noise, which is then mapped to the output response. Therefore, the output
response is the double mapping of input noise, thus no white-in-time random forcing acts
directly on the output response. Therefore, the DAR model can reproduce the space–time
statistics at a given wall-normal location. However, it cannot reproduce the cross-spectra
between two different wall-normal locations since the linear part of the DAR model
includes only the convection term and excludes the moment transfer in the wall-normal
direction. In this paper, we use a resolvent operator to replace the linear part of the DAR
model to account for the moment transfer in the wall-normal direction.

The present work is developed by analogy to the DAR model in the resolvent framework.
Sweeping-enhanced random forcing is introduced to construct the sweeping-enhanced
resolvent operator. The random sweeping effects in the streamwise–spanwise plane and
the wall-normal direction are considered separately. The composite sweeping-enhanced
resolvent operator is proposed to generate space–time coherent random forcing so as
to reproduce correctly the frequency spectra of large-scale structures. The remainder of
this paper is organized as follows. The DAR model is presented briefly in § 2 to better
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understand the composite sweeping-enhanced resolvent. In § 3, the sweeping-enhanced
resolvent is introduced first, then the composite resolvent operators are presented. Then
this new proposed model is compared with the variants of the eddy-viscosity-enhanced
resolvent models. Both sweeping-enhanced and eddy-viscosity-enhanced resolvent models
are investigated by using DNS of turbulent channel flows in § 4. Conclusions and future
work are given in § 5.

2. Composition of the transfer functions for the DAR model

In this section, the DAR model is rewritten as the composition of the sweeping-enhanced
transfer functions. We use the term ‘transfer function’ to denote the map from an input to
an output in the framework of the DAR model. The term ‘transfer function’ is replaced by
the term ‘resolvent’ or ‘resolvent operator’ in resolvent analysis to denote the map from
random forcing to responses.

Consider the streamwise velocity fluctuation u(x, z, t, y) and its spatial Fourier mode
û(k, t, y) at a given wall-normal location y in the channel. In this paper, ·̂ denotes the spatial
Fourier mode, ·̃ denotes the space–time Fourier mode, x, y and z represent the streamwise,
wall-normal and spanwise coordinates, respectively, t denotes time, and k = (kx, kz) is
the wavenumber vector, where kx and kz are the streamwise and spanwise wavenumbers,
respectively. In this section, only a single wall-normal location y is considered, thus for
convenience, y in the independent variables is not expressed explicitly.

The DAR model is written as (Wu & He 2021a,b)

∂tû = −ikxUcû + F̂, (2.1)

∂tF̂ = −ikxUcF̂ − (k2
xV2

x + k2
z V2

z )û − 2
√

k2
xV2

x + k2
z V2

z F̂ + f̂t, (2.2)

where Uc is the convection velocity, and Vx and Vz represent the streamwise and
spanwise sweeping velocities, respectively. The convection velocity is the speed of
downstream movement of eddies that can be determined by the first-order moments
of space–time energy spectra, and is usually approximated by the mean velocity. The
sweeping velocity is the variation velocity of eddies that can be determined by the
second-order moments of space–time energy spectra, and is usually approximated by
the r.m.s. of velocity fluctuations. The original random forcing f̂t in (2.2) is given

by f̂t =
√

2(k2
xV2

x + k2
z V2

z )
3/2

Φ(k) ξ̂(k, t), where ξ̂(k, t) is the white-in-time noise that

satisfies 〈ξ̂∗(k, t)ξ̂(k′, t′)〉 = 2 δ(k − k′) δ(t − t′), with δ being the Dirac delta function,
and where Φ(k) is the spatial energy spectrum.

The velocity mode û is governed by the convection term −ikxUcû and the total random
forcing F̂. The forcing F̂ represents the distortion that causes the decorrelation of velocity
fluctuations, and is determined by convection −ikxUcF̂, sweeping −(k2

xV2
x + k2

z V2
z )û,

damping −2
√

k2
xV2

x + k2
z V2

z F̂ and original random forcing f̂t. Note that both the sweeping

−(k2
xV2

x + k2
z V2

z )û and the damping −2
√

k2
xV2

x + k2
z V2

z F̂ in (2.2) result from the random
sweeping velocities. Therefore, the DAR model can predict the space–time energy
spectrum at a given wall-normal location from the spatial energy spectrum.

We introduce the intermediate random forcing f̂ as an intermediate variable, and write
the total random forcing F̂ as

F̂ = −
√

k2
xV2

x + k2
z V2

z û + f̂ . (2.3)
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Then the DAR model is rewritten as

∂tû = −ikxUcû −
√

k2
xV2

x + k2
z V2

z û + f̂ , (2.4)

∂t f̂ = −ikxUcf̂ −
√

k2
xV2

x + k2
z V2

z f̂ + f̂t. (2.5)

Taking the temporal Fourier transform of (2.4) and (2.5), we obtain

ũ = Rsf̃ , (2.6)

f̃ = Rsf̃t. (2.7)

Here, ·̃ denotes the space–time Fourier mode, and Rs is the sweeping-enhanced transfer
function given by

Rs =
(

−iω + ikxUc +
√

k2
xV2

x + k2
z V2

z

)−1

, (2.8)

where ω is the frequency. Hence the DAR model can be written as

ũ = R2
s f̃t. (2.9)

In (2.6), Rs is the transfer function from the input f̃ to the output ũ. In (2.7), Rs is also
the transfer function from the input f̃ t to the output f̃ . According to (2.9), if we take f̃ t as
the input and ũ as the output, then the transfer function is the composition of two transfer
functions, R2

s .
We calculate the spatial spectrum of F̂ as follows:

〈|F̂|2〉 = (k2
xV2

x + k2
z V2

z )〈|û|2〉 + 〈|f̂ |2〉 − 2
√

k2
xV2

x + k2
z V2

z Re〈ûf̂ ∗〉, (2.10)

where 〈·〉 represents the ensemble average. Therefore,

〈|f̂ |2〉 =
∫

〈|f̃ |2〉 dω =
∫

|Rs|2〈|f̃ t|2〉 dω, (2.11)

〈|û|2〉 =
∫

〈|ũ|2〉 dω =
∫

|Rs|4〈|f̃ t|2〉 dω (2.12)

and

〈ûf̂ ∗〉 =
∫

〈ũf̃
∗〉 dω =

∫
R2

s R∗
s 〈|f̃ t|2〉 dω. (2.13)

Noting that f̃t is white-in-time, we have

〈|f̂ |2〉
Re〈ûf̂

∗〉
=

∫
|Rs|2 dω∫

Re(R2
s R∗

s ) dω

= 2
√

k2
xV2

x + k2
z V2

z (2.14)

and

〈|f̂ |2〉
〈|û|2〉 =

∫
|Rs|2 dω∫
|Rs|4 dω

= 2(k2
xV2

x + k2
z V2

z ). (2.15)
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The substitution of (2.14) into (2.10) gives

〈|F̂|2〉 = (k2
xV2

x + k2
z V2

z )〈|û|2〉, (2.16)

showing that the spatial spectrum of the total random forcing F̂ is equal to that of the

sweeping term −
√

k2
xV2

x + k2
z V2

z û.
The new expressions (2.6) and (2.7) for the DAR model suggest two techniques for

resolvent analysis to reproduce the desired Taylor time microscales. The first is the use
of the sweeping-enhanced transfer function, as defined by (2.8). It can be seen from (2.3)

that the sweeping term −
√

k2
xV2

x + k2
z V2

z û causes temporal decorrelation. Therefore, if the
velocity mode is dominated by the sweeping term, then the characteristic decorrelation

time scale is inversely proportional to the sweeping coefficient
√

k2
xV2

x + k2
z V2

z , which is
consistent with the random sweeping model (Kraichnan 1964; Tennekes 1975; Wilczek,
Stevens & Meneveau 2015b). Therefore, it is reasonable to introduce the sweeping
term into the resolvent analysis. The second technique is the use of composite transfer
functions, as expressed in (2.9). In resolvent analysis, only one transfer function is used
to map white-in-time random forcing to its response, leading to the vanishing Taylor time
microscale of the response. In the DAR model, two transfer functions are used: the first
maps white-in-time random forcing to a coloured random forcing of finite correlation
time scales, and the second maps the coloured random forcing to the response of the
desired correlation time scales. In this way, the composition of the two transfer functions
is introduced rationally into resolvent analysis.

The DAR model can predict the space–time energy spectra at a single wall-normal
location. However, the DAR model cannot reproduce the space–time cross-spectra
between two wall-normal locations because it contains only the mean velocity convection
at a fixed wall-normal location without any coupling between different wall-normal
locations. One solution to this problem is to replace the convection term with the LNSEs
in the resolvent analysis to reproduce the two-point cross-spectra. In the next section,
the resolvent operator enhanced by the sweeping velocities is introduced for space–time
cross-spectra.

3. Composition of the sweeping-enhanced resolvents

In this section, composite resolvent analysis is developed for space–time spectra, such
as the frequency spectra and the two-point cross-spectra of large-scale structures.
The sweeping-enhanced resolvent is introduced in § 3.1, and is compared with the
eddy-viscosity-enhanced resolvent in § 3.3. The composite resolvents are presented in
§ 3.2.

3.1. Sweeping-enhanced resolvent
We first rewrite the governing equations for the fluctuations in the following form for
resolvent analysis:

∂tu + (u · ∇)U + (U · ∇)u + ∇p − ν ∇2u = −(u · ∇)u + 〈(u · ∇)u〉 ≡ F , (3.1)

∇ · u = 0, (3.2)

where u = [u, v, w]T, with u, v and w the velocity fluctuations in the streamwise,
wall-normal and spanwise directions, respectively, U is the mean velocity, p is the pressure
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fluctuation, and ν is the kinematic viscosity. Here, F arises from the nonlinear term in the
NS equations that is treated as nonlinear forcing in the resolvent analysis.

Taking the spatial (x–z) Fourier transform of (3.1) and (3.2), we obtain

∂

∂t

[
I

0

]
q̂ =

[
L −∇̂

−∇̂T
0

]
q̂ + BF̂ , (3.3)

where q̂ = [û, v̂, ŵ, p̂]T, ∇̂ = [ikx, ∂y, ikz]T, I is the 3 × 3 identity matrix, and the
operators L and B are

L =
⎡
⎣−ikxU + ν ∇̂2 −U′ 0

0 −ikxU + ν ∇̂2 0
0 0 −ikxU + ν ∇̂2

⎤
⎦ , (3.4)

B =
[

I
0

]
, (3.5)

with U′ the mean shear. In this paper, a prime indicates the wall-normal derivative.
Taking the temporal Fourier transform of (3.3), we obtain

ũ = RF̃ , (3.6)

where R is the resolvent that is given by

R = BT

(
−iω

[
I

0

]
−
[

L −∇̂
−∇̂T

0

])−1

B. (3.7)

By analogy to the random forcing in (2.3) for the DAR model, the nonlinear forcing F̂
in (3.3) is modelled as

F̂ = −
√

k2
x V2

x ( y) + k2
z V2

z ( y) û + λy(k, y) ∂y
(
Vy( y) ∂y

)
û + f̂ , (3.8)

where Vx( y), Vy( y) and Vz( y) are the sweeping velocities in the streamwise, wall-normal
and spanwise directions, respectively, and λy(k, y) is the characteristic length scale in the
wall-normal direction.

The first two terms on the right-hand side of (3.8) represent the eddy damping caused
by the random sweeping effect, and the third term, f̂ , represents the remaining effects of
nonlinear forcing. Note that the first term, which is the same as that in (2.3) for the DAR
model, represents the random sweeping in the x–z plane caused by the streamwise and
spanwise motions of energetic eddies. The second term is in the form of wall-normal
dissipation and represents the random sweeping in the wall-normal direction caused
by the wall-normal motion of energetic eddies. This dissipation term is determined by
the characteristic length scale λy(k, y) and the random sweeping velocity Vy( y) that
is associated with wall-normal velocities. The wall-normal dissipation term increases
the wall-normal correlations of turbulent structures. In the present study, the sweeping
velocities are taken as the r.m.s. of velocity fluctuations, i.e. Vx( y) =

√
〈u2( y)〉, Vy( y) =√

〈v2( y)〉 and Vz( y) =
√

〈w2( y)〉. The sweeping velocities depend on the wall-normal
location. In particular, in the logarithmic region, the sweeping velocities decrease with
increasing wall distance, leading to a slower decay of the time correlations. This is
consistent with the physics of turbulent channel flows. However, it cannot be achieved
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by the eddy viscosity because the eddy viscosity in the logarithmic region increases with
increasing wall distance (see the discussion in § 3.3).

In the DAR model, we consider the space–time energy spectra at only one wall-normal
location, and ignore the momentum exchange in the wall-normal direction. Consequently,
the DAR model cannot yield the cross-spectra between two wall-normal locations. To
account for the momentum exchange in the wall-normal direction, the second term on the
right-hand side of (3.8) is introduced, where the wall-normal sweeping velocity Vy and the
characteristic length scale λy(k, y) are used.

Next, we explain how to determine the characteristic length scale λy(k, y).
First, we estimate the spatial spectra of nonlinear forcing. The nonlinear forcing F xz

caused by the streamwise and spanwise velocity fluctuations is given by

F xz ≡ −u ∂xu − w ∂zu + 〈u ∂xu + w ∂zu〉. (3.9)

Meanwhile, the nonlinear forcing F y caused by the wall-normal velocity fluctuations is
given by

F y ≡ −v ∂yu + 〈v ∂yu〉. (3.10)

According to the random sweeping hypothesis, u, v and w in (3.9) and (3.10) can be
represented by the random sweeping velocities vx, vy and vz, respectively, where the
random sweeping velocities are considered to be constant in space. As a result, for the
non-zero wavenumber vectors, the random sweeping hypothesis leads to

F̂ xz ∼ −ikxvxû − ikzvzû (3.11)

and
F̂ y ∼ −vy ∂yû. (3.12)

The random sweeping velocities are usually assumed to be independent of û, leading to
the spatial spectra of nonlinear forcing

〈|F̂ xz(k, y)|2〉 = [k2
x V2

x ( y) + k2
z V2

z ( y)]〈|û|2〉 (3.13)

and
〈|F̂ y(k, y)|2〉 = V2

y ( y) 〈|∂yû|2〉, (3.14)

where V2
x = 〈v2

x 〉, V2
y = 〈v2

y 〉 and V2
z = 〈v2

z 〉.
Second, we estimate the spatial spectra of eddy damping. In (3.8), the eddy damping

caused by the streamwise and spanwise velocity fluctuations is

F̂
d
xz(k, y) = −

√
k2

x V2
x ( y) + k2

z V2
z ( y) û, (3.15)

and the eddy damping caused by the wall-normal velocity fluctuations is

F̂
d
y(k, y) = λy(k, y) ∂y(Vy( y) ∂y) û. (3.16)

Thus we obtain the spatial spectra of eddy damping:

〈|F̂ d
xz(k, y)|2〉 = [k2

x V2
x ( y) + k2

z V2
z ( y)] 〈|û|2〉 (3.17)

and

〈|F̂ d
y(k, y)|2〉 = λ2

y(k, y) 〈|∂y(Vy( y) ∂y) û|2〉. (3.18)
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Composition of resolvents enhanced by random sweeping

Third, we match the spatial spectra of eddy damping with nonlinear forcing. It can be
seen that

〈|F̂ d
xz(k, y)|2〉 = 〈|F̂ xz(k, y)|2〉. (3.19)

That is, the spatial spectra of the eddy damping caused by the streamwise and spanwise
velocity fluctuations are equal to the spatial spectra of nonlinear forcing F xz caused by
the streamwise and spanwise velocity fluctuations, which is similar to (2.16) in the DAR
model. Consistently, we require 〈|F̂ d

y(k, y)|2〉 = 〈|F̂ y(k, y)|2〉 – that is, the spatial spectra
of the eddy damping caused by the wall-normal velocity fluctuations are equal to those of
nonlinear forcing F y caused by the wall-normal velocity fluctuations. Therefore, we obtain

λy(k, y) =
√

V2
y ( y) 〈|∂yû|2〉

〈|∂y(Vy( y) ∂y) û|2〉 . (3.20)

Figure 1 shows λy(k, y) for the turbulent channel flows at Reτ = 180 and 550, where
the wavenumber vector kh = (2, 4) represents large-scale structures, and Reτ = uτ h/ν is
the Reynolds number based on the friction velocity uτ , with h being the half-height of the
channel. We use the semicircle function to fit the wall-normal distribution of λy(k, y):

λy(k, y) = β(k)

√
h2 − y2, (3.21)

where β(k) is determined to minimize the error
∫ h
−h [λDNS

y (k, y) − β(k)
√

h2 − y2]
2

dy.
That is,

β(k) =

∫ h

−h
λDNS

y (k, y)
√

h2 − y2 dy∫ h

−h
(h2 − y2) dy

, (3.22)

where λDNS
y (k, y) is the result obtained from (3.20) through DNS data. For the

wavenumber vector kh = (2, 4), β(k) = 0.075 at Reτ = 180, and β(k) = 0.046 at Reτ =
550. In this paper, β(k) is determined from (3.22) using DNS data. The numerical
examination shows that the results are not sensitive to the parameter λy(k, y). In fact,
the constant λy(k, y) = 0.045h leads to results similar to those obtained from (3.21) and
(3.22).

Finally, we substitute the model (3.8) for nonlinear forcing into the governing equation
(3.3) for resolvent analysis, and take the temporal Fourier transform of the resultant
equation, giving the space–time Fourier mode ũ of velocity fluctuation as

ũ = Rsf̃ . (3.23)
The operator Rs is given by

Rs = BT

(
−iω

[
I

0

]
−
[

Ls −∇̂
−∇̂T

0

])−1

B, (3.24)

Ls =
⎡
⎣ −ikxU + ν ∇̂2 + Ds −U′ 0

0 −ikxU + ν ∇̂2 + Ds 0
0 0 −ikxU + ν ∇̂2 + Ds

⎤
⎦ , (3.25)

Ds = −
√

k2
x V2

x ( y) + k2
z V2

z ( y) + λy(k, y) ∂y(Vy( y) ∂y). (3.26)
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Figure 1. Characteristic length scale λy(k, y) of the turbulent channel flows at kh = (2, 4) for large-scale
structures. (a) Plots for Reτ = 180, where the red solid line shows the DNS result, and the blue dashed line
shows 0.075

√
h2 − y2. (b) Plots for Reτ = 550, where the red solid line shows the DNS result, and the blue

dashed line shows 0.046
√

h2 − y2.

The operator Rs is called the sweeping-enhanced resolvent, analogous to the
sweeping-enhanced transfer function Rs in the DAR model. In fact, it is the conventional
resolvent operator augmented by the eddy damping term that appears on the diagonal of
matrix Ls. In § 3.3, we discuss the difference between the sweeping-enhanced resolvent
and the eddy-viscosity-enhanced resolvent. Therefore, the space–time cross-spectrum of
velocity fluctuations is given by

Φ ũũ = RsΦ f̃ f̃ R∗
s , (3.27)

where Φ ũũ = 〈ũ(k, ω, y) ũ∗(k, ω, y′)〉 is the space–time cross-spectrum of velocity
fluctuations, and Φ f̃ f̃ = 〈f̃ (k, ω, y) f̃

∗
(k, ω, y′)〉 is the space–time cross-spectrum of

nonlinear forcing.

3.2. Composition of the resolvents
By analogy to (2.7) in the DAR model, the sweeping-enhanced resolvent Rs defined in
(3.24) is applied to white-in-time random forcing f̃ t, yielding an intermediate random
forcing f̃ of finite correlation time

f̃ = Rsf̃ t. (3.28)

Subsequently, the obtained random forcing f̃ is used as the input to the same
sweeping-enhanced resolvent as that in (3.28), leading to

ũ = Rsf̃ . (3.29)

Therefore, the velocity fluctuation ũ is determined by the random forcing f̃ t through the
composition of the sweeping-enhanced resolvent Rs, that is,

ũ = R2
s f̃ t. (3.30)

It follows that the space–time cross-spectrum of velocity fluctuations is given by

Φ ũũ = R2
s Φ f̃ t f̃ t

R∗2
s , (3.31)

956 A31-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.39


Composition of resolvents enhanced by random sweeping

where Φ f̃ t f̃ t
= 〈f̃ t(k, ω, y) f̃

∗
t (k, ω, y′)〉 is the space–time cross-spectrum of the

white-in-time random forcing f̃ t. It is observed from (3.30) and (3.31) that the output and
input are related by the composition of the sweeping-enhanced resolvent, R2

s . Accordingly,
this composite resolvent is referred to as the R2

s model.
The space–time cross-spectrum Φ f̃ t f̃ t

of the random forcing f̃ t is calculated from

Φ f̃ t f̃ t
(k, ω, y, y′) = I[k2

x V2
x ( y) + k2

z V2
z ( y)]3/2〈v2( y)〉 δ( y − y′). (3.32)

The space–time cross-spectrum depends on the variance of the wall-normal velocity
fluctuations 〈v2( y)〉 but is independent of the variances of streamwise and spanwise
velocity fluctuations, 〈u2( y)〉 and 〈w2( y)〉. In fact, the wall-normal velocity fluctuations
depend only on external forcing, as described by the Orr–Sommerfeld equation. However,
the streamwise and spanwise velocity fluctuations depend on the wall-normal vorticity.
According to the Squire equation, the wall-normal vorticity depends not only on external
forcing but also on the energy production due to mean shear. The latter can be taken into
account by the resolvent. Note that while the DAR model needs the spatial energy spectra
of streamwise velocity fluctuations, the present R2

s model needs only the variances of the
velocity fluctuations. In the R2

s model, the mean velocity U( y), the r.m.s. of the velocity
fluctuations

√
〈u2( y)〉,

√
〈v2( y)〉 and

√
〈w2( y)〉, and the factor β(k) are taken from the

DNS data.
Finally, we justify that the resolvent used in (3.28) is the same as that used in (3.29).

In fact, the nonlinear forcing is found to exhibit space–time structures similar to those in
turbulent flows (Morra et al. 2021; Nogueira et al. 2021), such as the streamwise vortices
that are reminiscent of the streamwise vortex structures of velocity fluctuations. A different
resolvent can be introduced to replace that used in (3.28). This offers more flexibility but
definitely increases the number of undetermined parameters.

3.3. Comparison of sweeping-enhanced and eddy-viscosity-enhanced resolvents
The sweeping-enhanced resolvent is proposed in terms of the decorrelation
process with the aim of predicting the space–time energy spectra. However, the
eddy-viscosity-enhanced resolvent is based mainly on energy transfer. Although it is
not yet used to predict space–time energy spectra, the eddy-viscosity-enhanced resolvent
successfully reproduces the amplifications of coherent streaks and linear non-normal
energy (Hwang & Cossu 2010a,b) and predicts the spatial energy spectra in the streamwise
and spanwise directions (Gupta et al. 2021). In fact, Hwang & Cossu (2010a,b) introduced
the eddy viscosity νt and random forcing f to represent the energy dissipation and
extraction in the nonlinear forcing F , leading to

F = ∇·[νt(∇u + ∇uT)] + f . (3.33)

In turbulent channel flows, the Cess model is used widely for eddy viscosity. It should
be noted that the eddy viscosity can also be calculated from the mean velocity and the
Reynolds-averaged NS equations (Hwang & Cossu 2010a). The Cess model is written as

νt( y) = ν

2

√
1 + κ2 Re2

τ

9

(
1 − y2

h2

)2(
1 + 2y2

h2

)2

(1 − exp(−y+/A))2 − ν

2
, (3.34)
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where κ = 0.426 is the Kármán constant, A is a constant with A = 25.4, y ∈ [−h, h] is the
wall-normal location, and y+ = Reτ (1 − |y|/h). The eddy viscosity in the Cess model is
independent of the length scales of turbulent eddies.

Gupta et al. (2021) proposed that the eddy viscosity should depend on the length scales
of turbulent eddies as

νt(λ, y) = λ

λ+ λm( y)
νt( y), (3.35)

λm( y)
h

= 50
Reτ

+
(

2 − 50
Reτ

)
tanh

[
6
(

1 − |y|
h

)]
, (3.36)

where λ = 2π/

√
k2

x + k2
z is the wavelength. Here, νt(λ, y) becomes νt( y) for sufficiently

large wavelengths λ→ ∞, and νt(λ, y) becomes zero for sufficiently small wavelengths
λ→ 0.

Taking the spatial (x–z) Fourier transform of (3.33), we obtain the spatial Fourier mode
F̂ of the nonlinear forcing. Then substituting F̂ into (3.3) and taking the temporal Fourier
transform of (3.3) leads to the space–time Fourier mode ũ of the velocity fluctuations:

ũ = Rνt f̃ , (3.37)

where Rνt is referred to as the νt-enhanced resolvent that is given by

Rνt = BT

(
−iω

[
I

0

]
−
[

Lνt −∇̂
−∇̂T

0

])−1

B, (3.38)

Lνt =
⎡
⎣−ikxU + νT ∇̂2 + ν′

T∂y −U′ + ikxν
′
T 0

0 −ikxU + νT ∇̂2 + 2ν′
T∂y 0

0 ikzν
′
T −ikxU + νT ∇̂2 + ν′

T∂y

⎤
⎦ , (3.39)

with νT = ν + νt. Note that the νt-enhanced resolvent Rνt in (3.38) with νt = 0 becomes
the resolvent R in (3.7). Therefore, the space–time cross-spectrum of the velocity is

Φ ũũ = RνtΦ f̃ f̃ R∗
νt
. (3.40)

In LNSEs and resolvent-based methods, white forcing is used widely (Farrell & Ioannou
1998; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005; Liu & Gayme 2020; Gupta
et al. 2021). The forcing intensity is usually taken as constant in the wall-normal direction
(Morra et al. 2019):

Φ f̃ f̃ (k, ω, y, y′) = I δ( y − y′), (3.41)

which is used in the B model (see § 4).
Gupta et al. (2021) further proposed that the forcing intensity depends on the eddy

viscosity as
Φ f̃ f̃ (k, ω, y, y′) = I ν2

t ( y) δ( y − y′), (3.42)

where the Cess model is used for νt. The forcing spectra in (3.42) are used in the W model
(see § 4). Similarly, the Cess model can be replaced by the wavelength-dependent eddy
viscosity (3.35) and (3.36), giving

Φ f̃ f̃ (k, ω, y, y′) = I ν2
t (λ, y) δ( y − y′). (3.43)

The forcing spectra in (3.43) are used in the λ model (see § 4).
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Composition of resolvents enhanced by random sweeping

Therefore, both eddy viscosity and random forcing depend not only on the wall-normal
locations but also on the wavenumbers. Consequently, the λ model proposed by Gupta
et al. (2021) with νt(λ, y) and the wall-distance dependence of the forcing intensity
accounts for the energy transfer along the wall-normal direction, and the energy transfer
between different length scales in space. Therefore, this model correctly predicts the
two-dimensional spatial spectra. However, this cannot ensure the correct prediction of
frequency spectra and time correlations.

The eddy viscosity and sweeping velocity lead to different characteristic decay times,
as shown in figures 7 and 8, while both give rise to temporal decorrelation of coherent
structures. In fact, as the wall distance increases, the eddy viscosity in the logarithmic
region becomes larger and thus gives rise to smaller characteristic decay time scales.
This is in contrast to the decorrelation process in turbulent channel flows, where the
characteristic decay time scales become larger with increasing wall distance. It is noted
in (3.34) that the eddy viscosity in the logarithmic region is νt( y) = uτ κd, where the
wall distance is given by d = 1 − |y|/h, and κd is the mixing length. However, as the
wall distance increases, the sweeping velocities decrease and thus give rise to larger
characteristic decay time scales. This is consistent with the observation that the time
correlations in turbulent channel flows decay more slowly with increasing wall distance.

Van Atta & Wyngaard (1975) pointed out that the high-order spectra are related to the
energy spectra of velocity fluctuations through the random sweeping velocity. This result
was justified theoretically and validated by Praskovsky et al. (1993), Katul et al. (2016)
and Huang & Katul (2022). Note that the spectra of nonlinear forcing are the fourth-order
moments of velocity fluctuations, and the energy spectra are the second-order moments
of velocity fluctuations. Therefore, the spectra of nonlinear forcing are related to the
velocity spectra through the random sweeping velocity, supporting the sweeping-enhanced
resolvent in the present study.

4. Numerical results

Two sets of DNS of turbulent channel flows at Reτ = 180 and 550 are performed in this
work. The NS equations are solved using a pseudo-spectral method with a 3/2 de-aliasing
rule. Periodic boundary conditions are applied in the streamwise and spanwise directions,
and no-slip conditions are applied at the walls. For the case Reτ = 180, the computational
domain is 8πh × 2h × 4πh in the streamwise (x), wall-normal (y) and spanwise (z)
directions. The 384 × 128 × 384 grid is used. The time step is 5 × 10−3h/Ub, where Ub
is the bulk velocity. In the statistically stationary state, the instantaneous flow fields are
stored every 10 steps, and a total of 5000 steps are stored. For the case Reτ = 550, the
computational domain is 4πh × 2h × 2πh in the streamwise, wall-normal and spanwise
directions, respectively. The 576 × 256 × 576 grid is used. The time step is 1 × 10−3h/Ub.
In the statistically stationary state, the instantaneous flow fields are stored every 50 steps,
and a total of 5400 steps are stored. The NS solver and dataset have been validated in
previous studies (Wu et al. 2017; Wu & He 2020, 2021b).

To perform the temporal Fourier transform, the Hanning window is used with a 50 %
overlap and window length 51.2h/Ub. The spanwise length scale of large-scale structures
in wall turbulence is λz ≈ h–1.5h, and the streamwise length scale is λx ≈ 2λz (Kim
& Adrian 1999; Smits, McKeon & Marusic 2011; Morra et al. 2019). Therefore, the
wavenumber range of large-scale structures is kzh = 2πh/λz ≈ 4–6 and kx ≈ kz/2. In this
paper, the wavenumber vector (kxh, kzh) = (2, 4) is taken for the analysis of the large-scale
structures.
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Model Resolvent Forcing spectra

ν model R Iδ( y − y′)
see (3.7) see (3.41)

B model Rνt with νt( y) I δ( y − y′)
see (3.34) and (3.38) see (3.41)

W model Rνt with νt( y) I ν2
t ( y) δ( y − y′)

see (3.34) and (3.38) see (3.42)
λ model Rνt with νt(λ, y) I ν2

t (λ, y) δ( y − y′)
see (3.38) and (3.35) see (3.43)

R2
s model R2

s with Ds I [k2
x V2

x ( y) + k2
z V2

z ( y)]3/2〈v2( y)〉 δ( y − y′)
see (3.24), (3.26) and (3.31) see (3.32)

Table 1. Summary of the resolvent-based models used in the present study.

Five resolvent-based models are used in this work, and the settings (i.e. resolvent and
forcing spectra) of these models are shown in table 1. The model with neither eddy
viscosity nor sweeping is referred to as the ν model (Morra et al. 2019), and the three
models with eddy viscosity are referred to as the B model, W model and λ model (Gupta
et al. 2021). We use the following symbols for the eddy-viscosity-enhanced models in
Gupta et al. (2021): ‘B’ in the B model refers to baseline, where the forcing spectrum
is uniform in the wall-normal direction; ‘W’ in the W model refers to wall-distance
dependence, where the forcing spectrum depends on the wall distance; and ‘λ’ in the λ
model indicates that the eddy viscosity and forcing spectrum depend on the wavelength λ.
The R2

s model refers to the proposed model in this paper. In the following, we use these
models to predict the space–time statistics of the large-scale structures in turbulent channel
flows, and compare these predictions with the DNS results.

The space–time energy spectrum, or one-point wavenumber–frequency spectrum, of the
streamwise velocity fluctuation is expressed as

Φ(k, ω, y) = 〈ũ(k, ω, y) ũ∗(k, ω, y)〉, (4.1)

where ũ(k, ω, y) is the space–time Fourier mode of the streamwise velocity fluctuation.
The space–time cross-spectrum, or two-point wavenumber–frequency cross-spectrum, of
the streamwise velocity fluctuation is expressed as

Φ(k, ω, y, y′) = 〈ũ(k, ω, y) ũ∗(k, ω, y′)〉. (4.2)

In the numerical calculation, ũ is a column vector of size 3N, given by

ũ = [
ũ(y1), . . . , ũ(yi), . . . , ũ(yN), ṽ(y1), . . . , ṽ(yi), . . . , ṽ(yN),

w̃(y1), . . . , w̃(yi), . . . , w̃(yN)
]T

, (4.3)

where yi is the wall-normal coordinate of the ith grid point (i = 1, . . . , N), N is the
number of wall-normal grid points, and 3 denotes the number of velocity components;
Φ ũũ in (3.31) and (3.40) is a matrix of size 3N × 3N. In the matrix Φ ũũ, the (i, j)th
element represents the space–time cross-spectrum Φ(k, ω, yi, yj), and the (i, i)th element
represents the space–time energy spectrum Φ(k, ω, yi).

We focus on the streamwise velocity spectral distribution in the frequency (ω) and
wall-normal (y) directions. Integrating the space–time energy spectrum over ω and y, we
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Figure 2. Frequency spectral distributions in the wall-normal direction, Φ(k, ω, y)/ΦI(k), at kh = (2, 4) for
large-scale structures at Reτ = 180: (a) DNS, (b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s
model.

obtain the total streamwise velocity energy

ΦI(k) =
∫ h

−h
dy
∫ ∞

−∞
dω Φ(k, ω, y), (4.4)

which is used as the normalization factor to obtain the streamwise velocity spectral
distribution. We note that the spectral distributions from the DNS and those models are
normalized by their corresponding integrated spectrum in (4.4).

Figures 2 and 3 plot the frequency spectral distributions in the wall-normal direction,
Φ(k, ω, y)/ΦI(k), at kh = (2, 4) for large-scale structures at the two Reynolds numbers
Reτ = 180 and 550, respectively. The R2

s model reproduces the curved ribbon region in the
DNS, in which the coloured contours of the same levels have similar locations, areas and
shapes. The red-ribbon region of the largest level in the ν model is relatively narrow, as
was also observed by Morra et al. (2019). The regions of coloured ribbons in the B model,
the W model and the λ model are spread over broader ranges of frequencies compared
to the DNS results because the eddy viscosity gives rise to smaller decorrelation time
scales and thus larger energy-contained frequencies. In particular, the red ribbons in the
B model are concentrated in the near-wall region because the eddy viscosities used in
this model are incorrectly larger in the outer-layer region and smaller in the near-wall
region. The forcing intensity used in the W model depends on the wall-normal locations,
balancing the effect of the eddy viscosity dependent on the wall-normal locations, and
leading to red and yellow regions that are similar to those for the DNS results. However,
the eddy viscosity in the λ model is smaller than that in the W model and thus reduces the
extent of the ribbon-like frequency regions. We note that both the sweeping term and the
forcing intensity in the R2

s model depend on the wall-normal locations and characteristic
length scales of the turbulent eddies, and that the frequency spectral distribution in the
wall-normal direction is consistent with that for the DNS results.

The differences between the space–time energy spectra obtained by the above models
and by the DNS can be quantified using the Hellinger distance (Wu & He 2020, 2021b)
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Figure 3. Frequency spectral distributions in the wall-normal direction, Φ(k, ω, y)/ΦI(k), at kh = (2, 4) for
large-scale structures at Reτ = 550: (a) DNS, (b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s
model.

1.5

1.0

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

0.5

0

1.5

1.0

0.5

0

ν model λ model

R2

s  modelB model

W model

dH

y/h y/h

(a) (b)

Figure 4. Hellinger distance dH(k, y) at kh = (2, 4) for large-scale structures: (a) Reτ = 180, (b) Reτ = 550.

that is defined as

dH(k, y) =

⎡
⎢⎣∫

⎛
⎝
√

Φmodel(k, ω, y)
Φmodel(k, y)

−
√

ΦDNS(k, ω, y)
ΦDNS(k, y)

⎞
⎠

2

dω

⎤
⎥⎦

1/2

. (4.5)

Figure 4 shows the Hellinger distance dH(k, y) at kh = (2, 4) for large-scale structures.
The Hellinger distances between the ν model and the DNS results are the largest. In the
near-wall region, the Hellinger distances from the W model, λ model and R2

s model are
similar. However, in most regions of the channel, the Hellinger distances from the R2

s
model are significantly smaller than those from other models, implying that the R2

s model
is more consistent with the DNS results.
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Figure 5. Amplitude of the time correlations |R(k, τ, y)| at kh = (2, 4) for large-scale structures and at three
wall-normal locations at Reτ = 180. Red solid lines, y+ = 180; blue dashed lines, y+ = 50; brown dash-dotted
lines, y+ = 5. (a) DNS, (b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s model.

The resolvent models are examined in terms of the time correlations of the spatial
Fourier modes at a fixed wavenumber and one wall-normal location that are given by

R(k, τ, y) =

∫ ∞

−∞
Φ(k, ω, y) exp(−iωτ) dω∫ ∞

−∞
Φ(k, ω, y) dω

. (4.6)

Figures 5 and 6 show the time correlations |R(k, τ, y)| at kh = (2, 4) for large-scale
structures and at three wall-normal locations: y+ = 5, 50 and 180 for Reτ = 180, and
y+ = 5, 92 and 550 for Reτ = 550. The time correlations in the two cases exhibit
consistent decay behaviours. Accordingly, we discuss only the case for Reτ = 550. It is
observed from the DNS that the time correlation at y+ = 92 decays more rapidly than
that at y+ = 550, while the time correlation at y+ = 5 shows the fastest decays. The
R2

s model reproduces the DNS results, where the decay becomes slower with increasing
wall-normal distance. However, the resolvent model without eddy viscosity (ν model)
and the eddy-viscosity-enhanced models (B model, W model and λ model) give decay
behaviours that are inconsistent with the DNS results, where the time correlations at
y+ = 92 decay more slowly than those at y+ = 550. Furthermore, due to the composition
of the sweeping-enhanced resolvent, the time correlations in figure 6( f ) gradually decrease
over a short time, which is in agreement with the DNS results. However, the time
correlations obtained from the ν model, B model, W model and λ model fall steeply at
short times since the white-in-time external forcing acts on the velocity modes and thus
leads to vanishing Taylor time microscales.

To quantify the short-time decay of the time correlations predicted by the resolvent
models, we introduce the characteristic decay time scales as follows:

|R(k, τ = Td, y)| = Rd. (4.7)

The characteristic decay time scale Td(k, y) is that for which the time correlations decay
to a certain value Rd, and describes the effects of white-in-time external forcing on time
correlations. In this paper, we take Rd = 0.9. Different values of Rd (e.g. Rd = 0.95 and
0.8) are also taken, and the obtained results (not shown in this paper) do not change the
conclusions.

Figures 7 and 8 compare the characteristic decay time scales obtained from the
resolvent-based models and the DNS at kh = (2, 4) for Reτ = 180 and 550, respectively.
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Figure 6. Amplitude of the time correlations |R(k, τ, y)| at kh = (2, 4) for large-scale structures and at three
wall-normal locations at Reτ = 550. Red solid lines, y+ = 550; blue dashed lines, y+ = 92; brown dash-dotted
lines, y+ = 5. (a) DNS, (b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s model.

To illustrate the necessity of composite resolvents, we compare the compositions of the
resolvents, such as the ν2 model, B2 model, W2 model, λ2 model and R2

s model, with
the resolvents themselves, the ν model, B model, W model, λ model and Rs model. The
characteristic time scales in the DNS increase with increasing wall distance. However,
the characteristic time scales for the ν model are significantly larger than those for the
DNS results. The eddy-viscosity-enhanced resolvent models, such as the B model, the
W model and the λ model, significantly underpredict the DNS results. Furthermore, the
obtained time scales increase in the near-wall region and incorrectly decrease in other
regions. In the outer region, the characteristic time scales of the Rs model increase with
increasing wall distance, which is consistent with the DNS results. However, they are
one order of magnitude smaller than the DNS results. The characteristic time scales
of the composite resolvents are significantly larger than those of the single resolvents.
Consequently, the ν2 model yields larger characteristic time scales than those obtained
using the ν model. The characteristic time scales of the B2 model, W2 model and λ2

model increase with increasing wall distance, which is consistent with the DNS results.
Therefore, compared with eddy-viscosity-enhanced resolvents, their composite models
improve the characteristic time scales. However, the characteristic time scales obtained
from these models are larger than those obtained from the DNS. Since the eddy viscosity
of the λ2 model is smaller than that of the W2 model, the characteristic time scales
from the λ2 model are between the results of the W2 model and the results of the ν2

model. The characteristic time scales obtained from the R2
s model are in good agreement

with the DNS results. In fact, the R2
s model includes the three essential elements: LNSE,

random sweeping and random forcing. Therefore, it can reproduce the time correlations
in the central region where random sweeping is dominant, and the time correlations in
the near-wall region where in addition to random sweeping the mean shear, molecular
viscosity and pressure play important roles.

In addition to the wavenumber vector kh = (2, 4), we calculate the frequency spectral
distributions and characteristic time scales at kh = (1, 2) and kh = (4, 8) for large-scale
structures. The results (see Appendix A) show that the frequency spectral distributions
and wall-normal variation trends of the characteristic time scales obtained using the
R2

s model are consistent with the DNS results. We further calculate the characteristic
time scales obtained from the resolvent-based models at kh = (2, 4) for Reτ = 1000
(see Appendix B). The results are similar to those at Reτ = 180 and 550, implying the

956 A31-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.39


Composition of resolvents enhanced by random sweeping

20

16

12

8

4

4

3

2

8

6

4

2

2

1

00

1

0

4

3

2

1

00
–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

0.4

0.3

0.2

0.1

0
–1 0 1

T d
U
b/
h

T d
U
b/
h

y/h y/h

y/h y/h y/h

(a) (b) (c)

(d ) (e)

Figure 7. Comparison of the characteristic decay time scales obtained by the resolvent-based models with the
DNS at kh = (2, 4) for Reτ = 180. Red solid lines, the DNS results; blue dashed lines, the results of the (a) ν

model, (b) B model, (c) W model, (d) λ model, and (e) Rs model; brown dash-dotted lines, the results of the
(a) ν2 model, (b) B2 model, (c) W2 model, (d) λ2 model, and (e) R2

s model. The inset in (e) shows an enlarged
view of the result of the Rs model.

applicability of the R2
s model at higher Reynolds numbers. Although this paper focuses on

the streamwise velocity fluctuations, we also calculate the frequency spectral distributions
and characteristic time scales of the spanwise and wall-normal velocity fluctuations of the
wavenumber vectors kh = (1, 2), kh = (2, 4) and kh = (4, 8) (see Appendix C), and the
results obtained from the R2

s model are also consistent with the DNS results.
Figure 9 compares the Taylor time microscales obtained using the R2

s model with the
DNS results at kh = (2, 4). According to Wu & He (2021b), the Taylor time microscales
obtained by the direct imposition of white-in-time random forcing are zero. Due to the
composition of resolvents, the R2

s model can yield non-zero Taylor time microscales
λT(k, y) of the time correlation |R(k, τ, y)|, where Taylor time microscale λT(k, y) is
defined as

λT(k, y) = [− (1/2)∂2
ττ |R(k, τ, y)|

∣∣∣
τ=0

]−1/2. (4.8)

The Taylor time microscales obtained by the R2
s model are in good agreement with the

DNS results, particularly at Reτ = 550.
Figure 10 compares the integral time scales TI at kh = (2, 4) for the R2

s model with the
DNS results. The integral time scale TI of the time correlation is defined as

TI =
∫ τ0

0
|R(k, τ, y)| dτ , (4.9)

where τ0 is determined by |R(k, τ0, y)| = 0.2. Due to the limited number of samples, the
time correlations |R(k, τ, y)| of the DNS oscillate at large separations. Therefore, the upper
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Figure 9. Comparison of the Taylor time microscales λT (k, y) from the R2
s model with the DNS results

at kh = (2, 4). Red solid lines, the DNS results; blue dashed lines, the results of the R2
s model. Plots for

(a) Reτ = 180, (b) Reτ = 550.

limit of the integration in (4.9) is taken as τ0 for |R(k, τ0, y)| = 0.2. The results of the R2
s

model are close to those obtained by the DNS, with only slight differences.
Figures 11 and 12 show the cross-spectral distribution |Φ(k, ωp, y, y′)|/ΦI(k) of

the streamwise velocity modes at kh = (2, 4) for large-scale structures, and the peak
frequencies ωph/Ub = 2.1 for Reτ = 180, and ωph/Ub = 2 for Reτ = 550. It is noted
that the cross-spectral distribution at the given wavenumber vector and frequency is the
correlation of the space–time Fourier modes at two wall-normal positions. The peak
frequency is determined by maximizing the total frequency spectral distribution at the
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Figure 11. Amplitude of the cross-spectral distribution |Φ(k, ωp, y, y′)|/ΦI(k) of the streamwise velocity
modes at kh = (2, 4) for large-scale structures and the peak frequency ωph/Ub = 2.1 for Reτ = 180: (a) DNS,
(b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s model.

given wavenumber:

ΦT(k, ω) =

∫ h

−h
Φ(k, ω, y) dy

ΦI(k)
. (4.10)

The cross-spectral distributions in the two Reynolds numbers exhibit similar behaviours.
Accordingly, we discuss only the case for Reτ = 550. It is observed from the DNS that
the cross-spectral distribution is maximal along the diagonal line y = y′ and decays most
rapidly in the direction normal to the diagonal line. The R2

s model reproduces the results
observed for the DNS. In particular, it reproduces the coloured contours of different levels,
namely their elliptical shapes and areas. The eddy-viscosity-enhanced model improves
the predictions of the shapes and areas of coloured contours (see figures 12c,d)), and the
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Figure 12. Amplitude of the cross-spectral distribution |Φ(k, ωp, y, y′)|/ΦI(k) of the streamwise velocity
modes at kh = (2, 4) for large-scale structures and the peak frequency ωph/Ub = 2 for Reτ = 550: (a) DNS,
(b) ν model, (c) B model, (d) W model, (e) λ model, ( f ) R2

s model.
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Figure 13. Errors Ec(k, ωp, y) in the cross-spectral distributions obtained by different models relative to the
DNS results at kh = (2, 4): (a) Reτ = 180, (b) Reτ = 550. Two vertical lines are shown at |y/h| = 0.63 to
indicate the peaks of the cross-spectral distributions.

gradual changes of the coloured contours (see figure 12e). However, the spectral peaks
are underpredicted in figure 12(c) and overpredicted in figure 12(e). Note that the DAR
model cannot predict the wall-normal two-point cross-spectra. However, the prediction of
the cross-spectra can be achieved by the R2

s model, where an LNSE is used to replace
Taylor’s frozen-flow model in the DAR model.

The differences in the cross-spectral distribution between the models and the DNS can
be quantified using the function Ec(k, ωp, y), defined as

Ec(k, ωp, y) =
∫ ∣∣∣∣∣ |Φ

model(k, ωp, y, y′)|
Φmodel

I (k)
− |ΦDNS(k, ωp, y, y′)|

ΦDNS
I (k)

∣∣∣∣∣ dy′. (4.11)
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Figure 14. Frequency spectral distributions at (a,c) kh = (1, 2) and (b,d) kh = (4, 8) in the turbulent channel
flows at Reτ = 180: (a,b) DNS results; (c,d) Results of the R2

s model.

The function Ec(k, ωp, y) measures the error in the cross-spectral distribution of the model
relative to the DNS result. Figure 13 plots Ec(k, ωp, y) of the different models at kh =
(2, 4). The error of the ν model is largest, and the errors for the W model and R2

s model
are smaller. At the peak of the cross-spectral distributions (|y/h| ≈ 0.63), the error of the
R2

s model is smallest.

5. Conclusions and remarks

A composite sweeping-enhanced resolvent is developed in the present paper to predict
the frequency spectra at a given wall-normal location and two-point cross-spectra
of large-scale structures. The sweeping-enhanced resolvent is the standard resolvent
operator augmented with eddy damping. The eddy damping can capture the decorrelation
time scales of velocity fluctuations, whereas the eddy viscosity cannot represent the
decorrelation process of velocity fluctuations. In the composite resolvents, the output
of one resolvent is used as the input of another resolvent. In other words, a resolvent
operator maps white-in-time random forcing to space–time coherent forcing, and then
maps coherent forcing to the desired responses. Therefore, the composite resolvent avoids
the incorrect prediction of the vanishing Taylor time microscales caused by white-in-time
random forcing, and thus correctly reproduces the bandwidths of the frequency spectra at
fixed wavenumbers.

The composite sweeping-enhanced resolvent (R2
s model) is evaluated in turbulent

channel flows and compared with the standard resolvent (ν model) and the
eddy-viscosity-enhanced resolvent (B model, W model and λ model). The main results
are summarized as follows.
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Figure 15. Frequency spectral distributions at (a,c) kh = (1, 2) and (b,d) kh = (4, 8) in the turbulent channel
flows at Reτ = 550: (a,b) DNS results; (c,d) Results of the R2

s model.
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Figure 16. Comparison of the characteristic decay time scales obtained using the R2

s model with the DNS at
(a) kh = (1, 2) and (b) kh = (4, 8) for Reτ = 180. Red solid lines: the DNS results. Blue dashed lines: the
results of the R2

s model.

(i) The ν model can predict the peaks of the frequency spectra at a single wall-normal
location, even though it treats the nonlinear forcing as white noise for simplicity.
This is consistent with the previous results for the convection velocity in turbulent
channel flows (Liu & Gayme 2020). However, the ν model underestimates the decay
of time correlations, and the resultant characteristic time scales are substantially
larger than the DNS results. Furthermore, the peaks of the two-point cross-spectra
in the ν model are larger, and the cross-spectra decay faster than the DNS results.

(ii) The eddy-viscosity-enhanced models (B model and W model), particularly those
with refined eddy viscosity and random forcing (λ model), improve the predictions
on one-point frequency spectra, two-point cross-spectra and characteristic decay
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Figure 18. Frequency spectral distributions using the models at kh = (2, 4) for large-scale structures at
Reτ = 1000: (a) ν model, (b) B model, (c) W model, (d) λ model, (e) R2

s model.

time scales. However, as the wall distance increases, the characteristic decay time
scales from the eddy-viscosity-enhanced models decrease over a large portion of the
channel. This is in contrast to the DNS results, because the eddy viscosity is not
designed to represent the decorrelation mechanism in turbulent channel flows.

(iii) The R2
s model can reproduce the features of the one-point frequency spectra and

two-point cross-spectra, such as their peaks, areas and shapes. The characteristic
decay time scales obtained from the R2

s model are in agreement with the DNS
results. This is because eddy damping is introduced to represent the random
sweeping decorrelation in turbulent channel flows, and the composite resolvent is
introduced to avoid the direct action of white-in-time random forcing on the output
velocities.
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Figure 19. Characteristic decay time scales obtained using the models at kh = (2, 4) for large-scale
structures at Reτ = 1000: (a) ν model, (b) B model, (c) W model, (d) λ model, (e) R2

s model.
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Figure 20. Frequency spectral distributions of the spanwise velocity fluctuations at Reτ = 180: (a–c) DNS
results; (d–f ) results of the R2

s model. Plots for (a,d) kh = (1, 2), (b,e) kh = (2, 4), (c, f ) kh = (4, 8).

Random sweeping decorrelation was originally proposed for homogeneous and isotropic
turbulence (Kraichnan 1964; Tennekes 1975) and generalized to turbulent shear flows
in physical space (He & Zhang 2006; Zhao & He 2009) and Fourier space (Wilczek,
Stevens & Meneveau 2015a; Wilczek et al. 2015b). In the present work, eddy damping is
introduced to represent the random sweeping decorrelation caused by nonlinear forcing in
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Figure 21. Frequency spectral distributions of the spanwise velocity fluctuations at Reτ = 550: (a–c) DNS
results; (d–f ) results of the R2

s model. Plots for (a,d) kh = (1, 2), (b,e) kh = (2, 4), (c, f ) kh = (4, 8).
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Figure 22. Frequency spectral distributions of the wall-normal velocity fluctuations at Reτ = 180: (a–c) DNS
results; (d–f ) results of the R2

s model. Plots for (a,d) kh = (1, 2), (b,e) kh = (2, 4), (c, f ) kh = (4, 8).

the framework of the resolvent, while eddy viscosity is conventionally used to represent
the energy dissipation caused by nonlinear forcing. In particular, sweeping velocities in
the eddy-damping model are proposed and used to reproduce the frequency spectra.

The underlying mechanism of the R2
s model for capturing the decorrelation time scales

is as follows. (i) Composition of resolvents: one action of a resolvent on white-in-time
random forcing yields vanishing Taylor time microscales of velocity fluctuations, while
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Figure 23. Frequency spectral distributions of the wall-normal velocity fluctuations at Reτ = 550: (a–c)
DNS results; (d–f ) results of the R2

s model. Plots for (a,d) kh = (1, 2), (b,e) kh = (2, 4), (c, f ) kh = (4, 8).
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Figure 24. Comparison of the characteristic decay time scales of the spanwise velocity fluctuations obtained
using the R2

s model with the DNS at Reτ = 180. Red solid lines, the DNS results; blue dashed lines, the results
of the R2

s model. Plots for (a) kh = (1, 2), (b) kh = (2, 4), (c) kh = (4, 8).
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Figure 25. Comparison of the characteristic decay time scales of the spanwise velocity fluctuations obtained
using the R2

s model with the DNS at Reτ = 550. Red solid lines, the DNS results; blue dashed lines, the results
of the R2

s model. Plots for (a) kh = (1, 2), (b) kh = (2, 4), (c) kh = (4, 8).
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Figure 26. Comparison of the characteristic decay time scales of the wall-normal velocity fluctuations
obtained using the R2

s model with the DNS at Reτ = 180. Red solid lines, the DNS results; blue dashed lines,
the results of the R2

s model. Plots for (a) kh = (1, 2), (b) kh = (2, 4), (c) kh = (4, 8).
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Figure 27. Comparison of the characteristic decay time scales of the wall-normal velocity fluctuations
obtained using the R2

s model with the DNS at Reτ = 550. Red solid lines, the DNS results; blue dashed lines,
the results of the R2

s model. Plots for (a) kh = (1, 2), (b) kh = (2, 4), (c) kh = (4, 8).

two actions of the resolvent on white-in-time random forcing yield non-zero Taylor time
microscales. (ii) Inclusion of the random sweeping effect: the random sweeping dominates
the time decorrelation of velocity fluctuations in the logarithmic region (Zhao & He 2009;
Wilczek et al. 2015b; Wu & He 2021b) and is taken into account by the R2

s model; the
random sweeping cannot be represented by the eddy-viscosity-enhanced resolvent models.

Two-resolvent composition is used for predicting the frequency spectra of
large-scale structures in turbulent channel flows. Multiple-resolvent composition can
be constructed for a higher approximation, where either the sweeping-enhanced or
the eddy-viscosity-enhanced resolvent is used. The multiple-resolvent composition can
be considered as a deep resolvent that includes more desired physics. Planned future
work will focus on the development of the multiple-resolvent composition to successive
approximation to space–time statistics in turbulent flows, such as wall-bounded turbulence
(Jiménez 2018; Wang, Wang & He 2018; Wang & Gao 2021), turbulent jets (Jordan &
Colonius 2013; Schmidt et al. 2018) and wakes (De Cillis et al. 2022; Dong et al. 2022).
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Appendix A. Frequency spectral distributions and characteristic decay time scales at
kh = (1, 2) and kh = (4, 8)

We calculate the frequency spectral distributions and the characteristic decay time scales at
the wavenumber vectors kh = (1, 2) and kh = (4, 8) for large-scale structures. For kh =
(1, 2), the factor is β(k) = 0.083 at Reτ = 180, and β(k) = 0.051 at Reτ = 550. For kh =
(4, 8), the factor is β(k) = 0.061 at Reτ = 180, and β(k) = 0.038 at Reτ = 550.

Figures 14 and 15 plot the frequency spectral distributions at kh = (1, 2) and kh =
(4, 8). The results show that the spectral distributions obtained using the R2

s model are
consistent with the DNS results. Figures 16 and 17 compare the characteristic decay time
scales from the R2

s model with the DNS results at kh = (1, 2) and kh = (4, 8). For kh =
(1, 2), the characteristic decay time scales from the R2

s model are slightly larger than those
from the DNS. For kh = (4, 8), the characteristic decay time scales for the R2

s model are
slightly smaller than those from the DNS. Despite these slight differences, the wall-normal
variation trends of the characteristic decay time scales from the R2

s model are consistent
with the DNS results.

Appendix B. Frequency spectral distributions and characteristic decay time scales
obtained using the resolvent-based models at kh = (2, 4) for large-scale structures at
Reτ = 1000

We calculate the frequency spectral distributions and characteristic decay time scales
obtained using the resolvent-based models at kh = (2, 4) for large-scale structures at
Reτ = 1000, where the mean velocity and r.m.s. are from the DNS results of Lee &
Moser (2015). In the R2

s model, β(k) is taken as the same value at Reτ = 550, that is,
β(k) = 0.046.

Figure 18 plots the frequency spectral distributions at kh = (2, 4) for large-scale
structures at Reτ = 1000. The results at this higher Reynolds number are similar to those
at Reτ = 180 and 550. Figure 19 plots the characteristic decay time scales obtained by the
models at Reτ = 1000. For a large region in the channel, as the wall distance increases,
the characteristic decay time scales obtained by the B model and W model decrease. The
characteristic time scales in the centre of the channel obtained by the λmodel are less than
those in the near-wall region. Similar to the results at Reτ = 180 and 550, the characteristic
time scales in the centre of the channel from the R2

s model are larger than those in the
near-wall region. The above observations at Reτ = 1000 are consistent with the results at
Reτ = 180 and 550.

Geng et al. (2015) showed that in turbulent channel flows at Reτ = 932, Taylor’s
frozen-flow hypothesis becomes more applicable with increasing wall distance, implying
that the characteristic decay time scales increase with increasing wall distance. This result
implies that the R2

s model is still valid for the higher Reynolds number Reτ = 1000.

Appendix C. Frequency spectral distributions and characteristic decay time scales of
the wall-normal and spanwise velocity fluctuations

Figures 20 and 21 plot the frequency spectral distributions of the spanwise velocity
fluctuations. Figures 22 and 23 plot the frequency spectral distributions of the wall-normal
velocity fluctuations. For the wall-normal and spanwise velocity fluctuations, the
frequency spectral distributions from the R2

s model are consistent with the DNS results.
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Figures 24 and 25 compare characteristic decay time scales of the spanwise velocity
fluctuations from the R2

s model with the DNS results. Figures 26 and 27 compare
characteristic decay time scales of the wall-normal velocity fluctuations for the R2

s
model with the DNS results. For the wall-normal and spanwise velocity fluctuations, the
wall-normal variation trends of characteristic decay time scales for the R2

s model are also
consistent with the DNS results.
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