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Energy-harvesting systems in complex flow environments, such as floating offshore wind
turbines, tidal turbines and ground-fixed turbines in axial gusts, encounter unsteady
streamwise flow conditions that affect their power generation and structural loads. In
some cases, enhancements in time-averaged power generation above the steady-flow
operating point are observed. To characterize these dynamics, a nonlinear dynamical
model for the rotation rate and power extraction of a periodically surging turbine is derived
and connected to two potential-flow representations of the induction zone upstream
of the turbine. The model predictions for the time-averaged power extraction of the
turbine and the upstream flow velocity and pressure are compared against data from
experiments conducted with a surging-turbine apparatus in an open-circuit wind tunnel
at a diameter-based Reynolds number ReD = 6.3 × 105 and surge-velocity amplitudes up
to 24 % of the wind speed. The combined modelling approach captures trends in both the
time-averaged power extraction and the fluctuations in upstream flow quantities, while
relying only on data from steady-flow measurements. The sensitivity of the observed
increases in time-averaged power to steady-flow turbine characteristics is established,
thus clarifying the conditions under which these enhancements are possible. Finally, the
influence of unsteady fluid mechanics on time-averaged power extraction is explored
analytically. The theoretical framework and experimental validation provide a cohesive
modelling approach that can drive the design, control and optimization of turbines in
unsteady flow conditions, as well as inform the development of novel energy-harvesting
systems that can leverage unsteady flows for large increases in power-generation capacities.
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1. Introduction

Energy-harvesting turbines in atmospheric and oceanic flows are routinely exposed to
unsteady flow conditions from gusts, tides, turbulent fluctuations and other strongly
time-dependent fluid motions. These unsteady effects induce time-varying forces and
loads on the turbine components, which impact the time-averaged efficiency and
operational lifespans of these systems. Oscillations in the streamwise velocity incident
on the turbine are thus of major concern for conventional ground-fixed turbines in axial
gusts, hydrokinetic turbines in tidal flows, and turbines mounted to airborne kites, which
may undergo rapid changes in incident wind speed as they sweep through atmospheric
flow gradients. These dynamic-inflow conditions are also related by means of a reference
frame transformation to the problem of a turbine moving in periodic linear surge motions
in a steady inflow. This problem is of particular interest for emerging offshore wind
technologies, such as floating offshore wind turbines (FOWTs). Since these turbines
are not fixed to the ocean floor, they can move under the influence of wind gusts and
surface waves. Of these motions, the linear-surge oscillation mode tends to exhibit larger
amplitudes relative to other degrees of freedom of motion (Johlas et al. 2019). In certain
forcing scenarios and platform configurations, the velocity amplitude of the turbine
motions may exceed 25 % of the wind speed (Wayman 2006; Larsen & Hanson 2007;
de Vaal, Hansen & Moan 2014). In spite of these complicating factors, FOWTs have the
potential to enable wind-energy conversion in areas of the ocean whose depths prohibit
the installation of conventional fixed-bottom systems, thereby creating additional avenues
for the expansion of wind power as a contributor to global energy demands. They can
capitalize on strong offshore wind resources, are by nature located close to coastal urban
centres, and have fewer constraints on size and placement compared to their land-based and
seafloor-mounted counterparts. The characterization of the aerodynamics of oscillating
turbines, in addition to that of stationary turbines in oscillatory inflow conditions, is thus
of critical importance to the design and control of the next generation of wind-energy
technologies.

Unsteady streamwise flow conditions are particularly intriguing from both a fluid
mechanics and engineering perspective because they have the potential to yield substantial
increases in the time-averaged power extraction of an energy-harvesting system. The
one-dimensional (1-D) axial momentum theory developed by Betz (1920) (as well as
Lanchester, Joukowski and others, cf. van Kuik 2007) posits that the power-conversion
efficiency of an energy-harvesting system may not exceed Cp,Betz = 16/27 ≈ 59.3 %, but
this analysis was conducted under the assumption of steady flow. Dabiri (2020) recently
relaxed that assumption and suggested that the contribution of an unsteady velocity
potential could lead to theoretical efficiencies in excess of the so-called Betz limit. In
parallel with this prediction, several studies have shown relative power enhancements
over the steady operating power for turbines in surge motions or unsteady flows, both
experimentally (Farrugia, Sant & Micallef 2014; El Makdah et al. 2019; Mancini et al.
2020; Wei & Dabiri 2022) and in simulations of varying fidelity (Farrugia, Sant & Micallef
2016; Wen et al. 2017; Johlas et al. 2021). However, the extent to which unsteady flow
physics contributed to these observed power enhancements is unclear. For example, Wen
et al. (2017) and Johlas et al. (2021) found that a quasi-steady model for the time-averaged
power could describe qualitatively the trends in the power enhancements. Mancini et al.
(2020), by contrast, found that data from wind tunnel experiments exceeded the predictions
of their quasi-steady solution, though this solution differed from that of Johlas et al.
(2021). Additionally, both Farrugia et al. (2016) and Wei & Dabiri (2022) found that the
magnitude of the power enhancements depends on the turbine tip-speed ratio, and that
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Dynamics of turbines in unsteady inflow conditions

under certain conditions, time-averaged power losses relative to the steady case are also
possible. A full explanation and parametrization of these divergent observations remains
lacking in the literature, and is needed urgently if the floating offshore wind-turbine
technologies currently under development are to take advantage of these effects for
increased power-generation capabilities.

The 1-D axial momentum theory of Betz also asserts that the deceleration of the
upstream flow approaching a wind turbine, or induction, is coupled with the operation and
power output of a turbine. This induction effect dictates the flow and loading conditions
encountered by the blades of a turbine, and is directly related to the turbine’s thrust force
and efficiency. The induction zone, defined roughly as the region in which the flow velocity
along the turbine’s centreline is below 95 % of the free-stream velocity, extends at least
two turbine diameters upstream of the turbine itself (Medici et al. 2011). These reduced
velocities can thus bias tower-based estimates of the true wind speed by anemometers
and LiDAR systems (e.g. Larsen & Hansen 2014; Howard & Guala 2016; Simley et al.
2016; Borraccino et al. 2017; Mann et al. 2018). For floating turbines, the coupling
between incident wind conditions, blade-pitch control systems and turbine thrust can also
yield negatively damped (i.e. unstable) streamwise surge oscillations that increase fatigue
loading on the turbine blades (Larsen & Hanson 2007; Jonkman 2008; López-Queija et al.
2022). It is therefore instructive for turbine modelling and control to quantify the coupling
between unsteady streamwise flow conditions, the dynamics of the turbine, and the flow
properties in the upstream induction region.

The flow deceleration upstream of a stationary horizontal-axis wind turbine has
been studied thoroughly in the literature, and several parametrizations of the induction
region exist. One frequently used modelling approach treats the wake of the turbine
as a cylindrical vortex sheet (Branlard & Gaunaa 2015). This model lends itself well
to free-vortex wake simulations (Sarmast et al. 2016), and shows good agreement
with experimental data (Medici et al. 2011; Howard & Guala 2016; Bastankhah &
Porté-Agel 2017; Borraccino et al. 2017). It has also been extended to unsteady inflow
conditions (Chattot 2014; Yu et al. 2019). Rather than rely on assumptions regarding
near-wake structure, alternative approaches model the induction effect of the turbine
using potential-flow objects such as Rankine half-bodies (Araya et al. 2014; Gribben &
Hawkes 2019; Meyer Forsting et al. 2021) or porous discs (Modarresi & Kirchhoff 1979).
These models reflect the common practice in both numerical and experimental studies of
modelling the turbine as an actuator disc. Other models, such as the self-similar solution
of Troldborg & Meyer Forsting (2017), are better able to capture the radial dependence
of the streamwise flow velocity in the induction region. To the authors’ knowledge, these
models have not yet been extended to dynamically varying streamwise inflow conditions,
such as axial gusts or turbine surge motions, as most existing studies involving these flow
conditions do not investigate the upstream induction region.

The lack of parametrizations for the time-averaged power enhancements of turbines
in unsteady inflow conditions and their coupled upstream flow properties motivates the
present theoretical and experimental study. The work is structured as follows. First, in § 2,
a nonlinear dynamical model for the power extraction of a periodically surging turbine
is derived, and a method is proposed that couples the time-varying power generated by
the turbine to the turbine induction. This modelling framework is combined with two
induction models to yield time-resolved predictions of the flow field upstream of the
surging turbine. These predictions rely solely on turbine data obtained from steady-flow
measurements, namely the turbine power curve and the streamwise velocity averaged
radially across the face of the rotor. A brief note on the dynamic equivalence between
a surging turbine in a steady inflow and a stationary turbine in an oscillatory inflow is
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also presented. In § 3, velocity and pressure measurements upstream of a surging-turbine
apparatus are described, and the time-averaged power extraction and flow measurements
are compared with the predictions of the modelling framework in § 4. Additional analyses
of the sensitivity of the modelling framework to the steady-flow aerodynamics of the
turbine and the role of unsteady fluid mechanics are presented in § 5. Finally, implications
of the findings for the design, optimization and control of turbines in unsteady flow
environments are discussed.

2. Nonlinear dynamics of a periodically surging turbine

In this section, we derive a nonlinear dynamical model for the power extraction and
flow properties upstream of a periodically surging turbine. We present a nonlinear
ordinary differential equation for the turbine rotation rate as a function of known
steady-flow turbine-aerodynamics and generator characteristics. This model can predict
the time-varying and time-averaged rotation rate, torque and power of the turbine. By
applying 1-D momentum theory, the axial induction factor of the turbine can be estimated
from the instantaneous turbine power, and coupling this estimate with flow models allows
the flow velocity and pressure at any point upstream of the turbine to be predicted. The
modelling framework captures the unsteady dynamics of the surging-turbine problem
using a quasi-steady parametrization of the turbine aerodynamics; potential contributions
from unsteady fluid dynamics are explored later, in § 5.2.

In our notation, time-averaged quantities are marked with overbars, steady-flow or
quasi-steady quantities are labelled with a zero subscript (e.g. P0), spatial averages are
denoted with angle brackets, and amplitudes are denoted with a circumflex (e.g. û).
Additionally, if a flow variable lacks a specified radial dependence, then it refers to a
quantity measured on the turbine centreline (i.e. r = 0).

2.1. A nonlinear model for turbine rotation rate and power extraction
We build upon the linear modelling approach of Wei & Dabiri (2022), who describe the
time-varying dynamics of a turbine using the swing equation (i.e. Newton’s second law
for rotation)

J
dω
dt

= τaero − τgen, (2.1)

where J is the moment of inertia of the turbine system about its axis of rotation, and ω is
the rotation rate of the turbine. Deviations from equilibrium between the aerodynamic and
generator torques τaero and τgen produce changes in the turbine rotation rate. Wei & Dabiri
(2022) model the generator torque using the ordinary differential equation for the torque
from a permanent-magnet motor,

τgen = K2
dω
dt

+ K1ω + K0, (2.2)

where K2 is the moment of inertia of the generator about its axis of rotation, K1 is the
generator constant, and K0 is an empirical offset. These parameters can be established
empirically for a given generator over a range of resistive loads.

While Wei & Dabiri (2022) utilized a linearized model for the aerodynamic torque, in
this work we include explicitly the nonlinear relationship between the turbine coefficient
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of power,

Cp = P
1
2ρπR2u3∞

, (2.3)

and the tip-speed ratio,

λ = Rω
u∞

, (2.4)

where P is the power extracted by the turbine from the flow, ρ is the fluid density, R is
the radius of the turbine, and u∞ is the free-stream flow velocity. Any given turbine has a
power curve defined as Cp = Cp,0(λ), which has a local maximum at a power-maximizing
tip-speed ratio λopt. Note that in this work, we will use the subscript 0 to refer to
steady-flow quantities. Since the turbine power is determined by the product of the torque
on the turbine and its rotation rate, the torque on the turbine can be written in terms of the
power curve as

τ = 1
2
ρπR2u3

∞
Cp,0(λ)

ω
. (2.5)

For a given surge-velocity profile U(t), the effective free-stream velocity is u∞ = u1 −
U(t), where we define u1 as the far-field wind speed relative to a ground-fixed frame. Thus
we may write the aerodynamic torque as

τaero = τaero(ω,U, t) = 1
2
ρπR2 (u1 − U(t))3

ω
Cp,0

(
Rω

u1 − U(t)

)
. (2.6)

Substituting (2.2) and (2.6) into (2.1) results in a nonlinear ordinary differential equation
for the turbine rotation rate that is first-order in time and depends on the surge velocity as
an input forcing parameter:

dω
dt

= 1
J + K2

[
1
2
ρπR2 (u1 − U(t))3

ω
Cp,0

(
Rω

u1 − U(t)

)
− K1ω − K0

]
. (2.7)

This model is a nonlinear and non-autonomous ordinary differential equation,
which precludes straightforward mathematical characterization, but it can be integrated
forward in time from an initial condition ω(t = 0) until it reaches a period-averaged
equilibrium. The model can therefore yield numerical predictions of the time-varying and
time-averaged rotation rate, torque and power of a turbine under surge motions or dynamic
inflow conditions. This stands in contrast to the linearized model developed by Wei &
Dabiri (2022), which can be written as a transfer function for convenient analysis but is
unable to capture changes in time-averaged quantities.

As a limiting case, we may consider a quasi-steady solution to the model in which
dω/dt = 0 and Cp,0 is constant as a function of time. The time-averaged power is
defined as P̄ = τgenω = K1ω2 + K0ω̄, which suggests that for a sinusoidal surge-velocity
waveform with amplitude u∗ = Û/u1, the time-averaged power is

P̄ = f
2π

∫ 2π/f

0

1
2
ρπR2Cp,0 (u1 − U(t))3 dt = P0

(
1 + 3

2
u∗2
)
. (2.8)

This result is identical to that derived by Wen et al. (2017) and Johlas et al. (2021) for
a surging turbine, and is equivalent to that of a stationary turbine with constant Cp in an
oscillating inflow.
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Wind
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Figure 1. Schematic of the parameters and control volumes referenced in § 2. The actuator disc is located
instantaneously at x2(t) and moves with velocity U(t) relative to the inertial frame defined by the x- and r-axes.
Circled numbers denote streamwise interrogation locations (1–4).

2.2. Modelling the relationship between turbine dynamics and upstream flow conditions
The 1-D momentum theory derived by Betz (1920) can be used to infer flow properties
upstream of the turbine rotor plane from the power extracted by the turbine. This
theoretical framework employs conservation relations over a control volume composed
of an axisymmetric streamtube surrounding the turbine, which is modelled as an actuator
disc. An axial induction factor, representing the decrease in velocity from far upstream of
the turbine to the upstream face of the actuator disc (i.e. location 2 in figure 1), is defined
as

a = u1 − u2

u1
. (2.9)

The induction factor is the single free parameter needed to compute the coefficient of
power within this framework, which is given by

Cp = 4a(1 − a)2. (2.10)

This yields a theoretical maximum for the efficiency of a wind-energy system, Cp,Betz =
16/27, which is attained at a = 1/3. For the surging-turbine system, then, we have the
similar relation

τgenω

1
2ρπR2u3

1

= 4a(1 − a)2. (2.11)

One-dimensional momentum theory assumes that the flow is inviscid, incompressible,
irrotational and steady. Upstream of the turbine rotor plane, the first three assumptions
are reasonable to make. If we further assume that the flow upstream of the turbine can
be modelled in a quasi-steady manner, then we can use the rotation rate given by (2.7) to
compute an instantaneous coefficient of power Cp(ω, t), and by inverting (2.11), we can
estimate the time-varying induction factor a(t). Since the induction factor is physically
constrained as a ∈ [0, 1], two solutions are possible for Cp < Cp,Betz. The upper solution
for a represents a heavily loaded turbine, and for a � 0.37, the theoretical framework
breaks down (Wilson & Lissaman 1974). In a majority of cases, including the experiments
presented in this work, the turbine is not heavily loaded. Thus the lower solution for a is
assumed to represent the system.

Equations (2.7) and (2.11) therefore connect the time-varying dynamics of a turbine
under dynamic axial flow conditions to the flow properties just upstream of the rotor disc.
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Dynamics of turbines in unsteady inflow conditions

To propagate these predictions further upstream, an induction model for the turbine is
needed. As mentioned previously, a common modelling approach involves representing the
wake of the turbine as a cylindrical vortex sheet and performing Biot–Savart integration to
compute the induced velocity from this wake model at any point in the domain (Johnson
1980; Branlard & Gaunaa 2015). This is known as vortex-sheet or vortex-cylinder theory
(VCT). Evaluating this integral upstream of the turbine along its rotational axis yields a
model for the induced velocity along the upstream centreline of the turbine (Medici et al.
2011):

u(r = 0, x)
u∞

= 1 − a

⎡
⎣1 + x − x2

R

(
1 +

(
x − x2

R

)2
)−1/2

⎤
⎦ , (2.12)

where x is the streamwise coordinate along the axis of the turbine (originating at the
turbine and positive downstream), and x2 is the instantaneous location of the turbine, as
shown in figure 1. For a surging turbine, the induction effect in the second term should
scale with the effective free-stream velocity u1 − U(t), since in the limiting case where the
turbine is moving downstream at velocity U(t) = u1, the turbine should have no effect on
the flow, and the flow everywhere upstream of the turbine should be equal to u1. Involving
the time-varying induction factor a(t) provided by 1-D momentum theory, we thus obtain
the flow velocity at any upstream location x < x2 and at any time as

u(r = 0, x, t) = u1 − a(t) (u1 − U(t))

⎡
⎣1 + x − x2(t)

R

(
1 +

(
x − x2(t)

R

)2
)−1/2

⎤
⎦ .
(2.13)

To complete the description of flow properties upstream of the surging turbine, the
pressure along the centreline may be modelled by substituting the model for u(r = 0, x, t)
into the steady Bernoulli equation,

p(r = 0, x) = p1 + 1
2
ρ(u2

1 − u(r = 0, x, t)2), (2.14)

where ρ is the density of the fluid, and p1 is the ambient pressure in the free stream.
If the velocity potential of the induction model is known, then the unsteady Bernoulli
equation may be applied instead. For the purposes of this work, however, we maintain
quasi-steady assumptions for the flow physics in the induction zone, in keeping with the
quasi-steady aerodynamics parametrized by the turbine model and 1-D momentum theory.
As mentioned previously, the effect of this unsteady potential will be considered in more
detail in § 5.2. While the expressions presented here have been confined to the centreline,
Branlard & Gaunaa (2015) provide full relations for u(r, x) that can be employed in place
of (2.12) to allow this modelling framework to cover the entire upstream induction zone.

Alternatively, we can model the effect of the surging turbine on the flow using a
porous-disc representation in potential flow, which does not rely on parametrizations of
the turbine wake geometry and vorticity. This is inspired by the work of Taylor (1944) and
Koo & James (1973), which has recently been extended by Steiros & Hultmark (2018) for
flat plates of arbitrary porosity, and by Bempedelis & Steiros (2022) for wind turbines at
arbitrary loading conditions. The porous-disc approach, which has not been investigated
widely in the wind-energy literature, is presented to demonstrate the robustness of the
overall modelling framework put forth in this work to the choice of induction model.
Its velocity potential is also more readily accessible than that of VCT, which will be
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advantageous when we consider the effects of unsteady fluid mechanics in § 5.2. Finally,
the model provides a convenient generalization to rotors with arbitrary radial distributions
of streamwise velocity, which, though not explored in detail in this study, could be
exploited to integrate this model with blade element momentum (BEM) computations that
generate radially varying induction-factor profiles. We will refer to the model throughout
this paper as the porous-disc theory (PDT).

2.3. A porous-disc induction model for a surging turbine
We first consider a circular porous disc with radius R located at streamwise coordinate
ξ = 0, represented as a distribution of sources with velocity potential φ(r, ξ = 0) =
C

√
R2 − r2 for r < R, and φ(r, ξ = 0) = 0 for r > R, where C > 0 is an arbitrary constant

that represents the aggregate strength of the source distribution. Using this distribution as
a boundary condition at ξ = 0, we may solve the Laplace equation ∇2φ = 0 in cylindrical
coordinates to obtain the velocity potential of a porous disc (cf. Lamb 1916; Tranter 1968):

φ (r, ξ) = −
√

π

2
CR3/2

∫ ∞

0
s−1/2 J3/2(Rs) J0(rs) e−sξ ds, ξ > 0. (2.15)

Here, Jν(z) is a Bessel function of the first kind, and s is a dummy integration variable. The
choice C = (2/π)V gives the velocity potential of a solid disc moving at axial velocity V
in a quiescent fluid (Lamb 1916, § 102.4). More generally, the velocity V represents the
velocity of the disc relative to that of the fluid in the far field. For a porous disc, we may
define a representative source term a, corresponding directly to the induction factor defined
in (2.9), such that C = (2/π)aV . The choice of a dictates the porosity of the disc: a = 0
represents a fully permeable disc, a = 1 yields a fully solid disc, and intermediate values
(0 < a < 1) reduce the source strength from the solid disc solution so that a non-zero mass
flux through the disc is established. Evaluating (2.15) along the centreline yields

φ (r = 0, ξ) = −aV
2
π

[
R − ξ arctan

(
R
ξ

)]
, ξ > 0. (2.16)

This solution is valid only for ξ > 0. To describe the other half of the domain as well,
one might follow the ansatz of Taylor (1944) and use the even extension of φ to represent
ξ < 0. The velocity discontinuity across the disc that this extension creates could then be
removed using the base suction correction of Steiros & Hultmark (2018). However, since
in this work we are concerned only with the upstream region, we leave these derivations
for future consideration.

We differentiate the velocity potential with respect to ξ to obtain the streamwise velocity
along the centreline:

u (r = 0, ξ) = −aV
2
π

[
Rξ

ξ2 + R2 − arctan
(

R
ξ

)]
, ξ > 0. (2.17)

This relation emphasizes the effect of the porosity parameter (or equivalently, the induction
factor) on the behaviour of the model. For a = 0, the flow is everywhere unaffected by
the motion of the disc. For a = 1, u(r = 0, ξ → 0+) = V , which satisfies the surface
boundary condition for a moving solid disc.

We now apply this expression in an inertial frame containing a uniform flow with
free-stream velocity u1, in which the disc translates at velocity U(t) relative to the frame.
In this frame, we define the downstream-oriented axial coordinate x and the instantaneous
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position of the disc x2(t) as shown in figure 1, such that ξ = x2 − x and U(t) = dx2/dt. The
velocity of the disc relative to the far-field flow velocity is thus V = U(t)− u1. Applying
these definitions to (2.17), we arrive at the following model for the centreline velocity in
the upstream induction zone (x < x2):

u(r = 0, x, t) = u1 − a(t) (u1 − U(t))
2
π

[
R(x − x2(t))

(x − x2(t))2 + R2
− arctan

(
R

x − x2(t)

)]
.

(2.18)

We reiterate that the model cannot be used to predict the velocity downstream of the porous
disc, given the constraint ξ > 0 on the velocity potential. Additionally, though the solution
is technically valid if the turbine moves downstream faster than the wind speed, i.e. u1 −
U(t) < 0, we expect that the model will cease to be valid in this case because the rotor
will interact with its own wake.

As with the expression obtained from VCT, (2.15) can in principle be integrated at
any point upstream of the porous disc so that the velocity and pressure can be computed
throughout the entire induction zone. We note that in both models, the streamwise velocity
u2 on the upstream face of the rotor plane is predicted to be constant over r, i.e.

u(x = x2, r) = u1 − a(t) (u1 − U(t)). (2.19)

This is generally a poor approximation for real turbines, whose streamwise velocities
typically increase towards the free-stream value with increasing radial distance from the
hub (cf. Medici et al. 2011; Troldborg & Meyer Forsting 2017). An additional advantage
of the porous-disc modelling approach is that arbitrary radial velocity profiles can be
modelled by changing the source strength distribution in (2.15). For example, if the turbine
blade geometry is known, then radial variations in the induction factor can be computed
from BEM theory as a function a(r) and integrated to obtain a modified velocity potential.
A correction factor for the effects of non-uniform velocities at the disc face can then be
derived by defining a rotor-averaged induction factor,

〈a〉 = 2
R2

∫ R

0
a(r) r dr =

[
2

R2

∫ R

0

a(r)
a(r = 0)

r dr
]

a(r = 0) ≡ κ a(r = 0). (2.20)

The scaling constant κ , which maps the centreline induction factor to the equivalent
rotor-averaged induction factor, can be computed from a known velocity-deficit radial
profile, such as the self-similar solution of Troldborg & Meyer Forsting (2017) or a BEM
computation. For a top-hat velocity-deficit profile, κ = 1. If the radial induction-factor
distribution does not change much throughout the surge cycle (i.e. the velocity-deficit
profile remains self-similar), then κ can be assumed to be independent of the surge
kinematics for a given loading condition, and thus can be treated as a constant for that
particular wind speed and mean tip-speed ratio.

The distinction between the centreline and rotor-averaged induction factors is
particularly important for a quantitative comparison between the two-dimensional (2-D)
axisymmetric induction theories developed in this section and the 1-D axial momentum
theory of Betz. Because 1-D momentum theory by definition does not account for
radial differences in streamwise velocity, the induction factor estimated using (2.11) must
represent the rotor-averaged induction factor. By the same logic, the induction factor in the
VCT and PDT expressions for the streamwise velocity is the centreline induction factor,
and is what will be measured by a point anemometer placed along the rotational axis of
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the turbine. The parameter κ thus serves as a bridge between the 1-D and 2-D analyses
employed in this modelling framework.

For the remainder of this paper, we will focus on measurements taken along the
rotational axis of the turbine (r = 0), therefore the flow quantities u(x), p(x) and a will
implicitly refer to these centreline quantities.

The modelling approach presented in this work may be summarized as follows.

(i) Identify the turbine power curve Cp,0(λ), and generator and inertia constants K0, K1,
K2 and J, from steady-flow measurements and manufacturer specifications.

(ii) Integrate (2.7) in time with a given surge-velocity forcing U(t) to obtain the turbine
rotation rate ω(t).

(iii) From ω(t), use (2.2) and (2.11) to predict the coefficient of power Cp(t) and the
rotor-averaged induction factor 〈a(t)〉.

(iv) Calculate the centreline induction factor a(t) using an analytical or empirical
correction factor κ .

(v) Include a(t) in an induction model (e.g. (2.13) for VCT, or (2.18) for PDT) to obtain
the velocity field upstream of the turbine.

(vi) Use the steady Bernoulli equation to obtain the pressure field from the velocity field.

We reiterate that this modelling framework invokes a quasi-steady assumption for the
aerodynamics of the turbine, and the time dependence of the model comes from an
unsteady treatment of the turbine rotation rate as a function of the aerodynamic and
generator torques. The practical benefit of this approach is that time-resolved predictions
of the turbine dynamics and upstream flow properties can be obtained solely on the
basis of steady-flow measurements; the model does not depend on empirical calibrations
from unsteady test cases. From a fluid mechanics perspective, the approach provides
an instructive disambiguation between the rotational dynamics of the turbine and the
actuator-disc aerodynamics associated with the rotor and its motions. Furthermore, this
analytical foundation allows the effects of unsteady flow physics to be characterized more
directly.

2.4. On the problem of a stationary turbine in an oscillating inflow
The preceding analysis has focused on the case of a periodically surging turbine in a
uniform inflow. From the work of Wen et al. (2017), El Makdah et al. (2019), Johlas
et al. (2021) and others, it is apparent that the case of a stationary turbine in an axial
gust can be made equivalent to the surging-turbine case by shifting from a ground-fixed
to a turbine-fixed frame of reference. The time-averaged power is not affected by this
transformation. To determine the effect of non-inertial-frame accelerations, we consider
the force on a body oscillating with velocity Wi(t) in an oscillating inflow Ui(t), which is
given by Brennen (1982) as

Fi = −Mij
dWj

dt
+ (

Mij + ρVDδij
) dUj

dt
; j = 1, 2, 3. (2.21)

Here, Mij is the added-mass tensor of the body, VD is the volume of the body, δij is the
Kronecker delta operator, and the flow is assumed to be inviscid. This expression thus
quantifies the influence of added-mass effects and an unsteady buoyancy force, which
comes from the oscillating pressure gradient that drives the oscillating inflow (Granlund
et al. 2014). We assume that neither the added-mass tensor nor the volume of the body
changes as a function of time for a porous disc, and that Ui(t) and Wi(t) are periodic.
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Since Ui(t) and Wi(t) are periodic, the time averages over a single period of dUj/dt and
dWj/dt are both zero. It thus follows that the time-averaged force on the body due to
these two types of unsteady contributions is also zero, and therefore neither of these
unsteady effects creates a theoretical difference between the time-averaged performance
of an oscillating turbine and a stationary turbine in an oscillating inflow. We also note
that the volume of a 2-D actuator disc is effectively zero, thus the unsteady buoyancy
force that differentiates the two scenarios should be negligible. These considerations do
not exclude the possibility of additional differences between these two cases, for example
due to viscous time-history effects, vortex dynamics, or other flow physics not captured by
the potential-flow assumption.

3. Experimental methods

3.1. Experimental apparatus
To characterize the range of conditions over which the ideal flow model holds, velocity
and pressure measurements were conducted in a 2.88 × 2.88 m2 open-circuit fan-array
wind tunnel at the Caltech Center for Autonomous Systems and Technologies (CAST). A
three-bladed, fixed-pitch horizontal-axis wind turbine (Primus Wind Power AIR Silent X)
with rotor diameter D = 1.17 m was mounted on a traverse that translated along 2 m long
rails (NSK NH-series) and was actuated by a magnetic piston-type linear actuator (LinMot
PS10-70x320U). A diagram of this apparatus is given in figure 2. The hub height of the
turbine was 1.97 m above the floor of the facility, and the farthest downstream position of
the turbine (defined as x = 0) was 3.09 m downstream of the fan array. The electrical load
on the turbine was provided by 10, 20 and 40
 resistors (TE Connectivity TE1000-series).
A rotary torque transducer (FUTEK TRS300) and rotary encoder (US Digital EM2) were
used to measure the power produced by the turbine. The estimated blockage of the swept
area of the turbine and all support structures, relative to the surface area of the fan array,
was 14 %. Further details regarding the dimensions and capabilities of the apparatus may
be found in Wei & Dabiri (2022).

A constant-temperature hot-wire anemometry system (Dantec MiniCTA 54T42) and
differential pressure transducer (MKS Baratron 398-series with Type 270B signal
conditioner) were used to measure flow properties at two locations along the turbine
centreline, one upstream of the turbine at xu = −0.840D, and one downstream at xd =
0.810D. The hot-wire probe was placed approximately on the centreline, while the input
line of the pressure transducer was located 3.8 cm to the side. The transducer’s reference
line was placed in a shielded area outside the flow of the wind tunnel. Data were collected
at sampling rate 20 kHz and were low-pass filtered using a sixth-order Butterworth filter
with cutoff frequency 100 Hz. The hot-wire anemometer was calibrated in the wind
tunnel against a Pitot probe using the same pressure transducer. Because the facility was
exposed to the atmosphere, the temperature and relative humidity were recorded during all
experiments to estimate the air density and correct the hot-wire calibration for temperature
changes.

3.2. Experimental procedure
Experiments were conducted over two nights in March 2022, in which the free-stream
velocities in the wind tunnel were u1 = 7.79 ± 0.10 and 7.96 ± 0.11 m s−1, corresponding
to an average diameter-based Reynolds number ReD = 6.27 × 105. The hot-wire
anemometer was calibrated at the beginning and end of each set of experiments.
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Figure 2. Schematic of the experimental apparatus, including the fan-array wind tunnel (left) and surging
turbine (centre-right). The turbine is illustrated at its maximum upstream position relative to the origin (x =
−0.6 m). The inset (top right) shows the two types of surge-velocity waveforms used in these experiments.

The turbine was operated at three tip-speed ratios, λ0 = 6.48 ± 0.25, 7.84 ± 0.28
and 8.77 ± 0.27, with corresponding coefficients of power Cp,0 = 0.298 ± 0.013 ≈
Cp,max, Cp,0 = 0.248 ± 0.012 and Cp,0 = 0.165 ± 0.010. The generator constants for
these cases were obtained from the data of Wei & Dabiri (2022), as were the
turbine and generator moments of inertia (J = 0.0266 ± 0.0008 kg m2, K2 = 6.96 ×
10−4 kg m2). The operating parameters of the turbine are summarized in table 1. The
turbine was actuated in sinusoidal and trapezoidal motions (see inset of figure 2) with
amplitude A = 0.3 m (0.257D) and periods between T = 1 s and T = 6 s, corresponding
to non-dimensional surge-velocity amplitudes between u∗ ≡ fA/u1 = 0.039 and 0.242.
Data were phase-averaged over 100 motion periods. The amplitudes and phases of each
quantity of interest were computed from a fast Fourier transform of the phase-averaged
signal. Upstream and downstream flow measurements were collected in separate tests.
Additionally, a series of quasi-steady flow measurements was obtained for each tip-speed
ratio by placing the turbine at six equally spaced streamwise locations between x/D =
−0.514 and 0, and recording measurements over 120 s. To correct against differences
in the ambient conditions between measurement sessions, and facilitate more direct
comparisons, quasi-steady measurements taken at x/D = 0 on both sessions were used
to scale the measured velocities and pressures from one session to match those from the
other session.
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Resistive load 10
 20
 40


Case identifier

λ0 6.48 ± 0.25 7.84 ± 0.28 8.77 ± 0.27
Cp,0 0.298 ± 0.013 0.248 ± 0.012 0.165 ± 0.010
K1 (kg m2 s−1) 0.0112 0.00649 0.00376
K0 (N m) 0.119 0.0850 0.0676
a0 (VCT) 0.252 0.267 0.221
a0 (PDT) 0.286 0.301 0.250
κ (VCT) 0.364 0.278 0.222
κ (PDT) 0.320 0.247 0.196

Table 1. Performance characteristics and model constants for the three loading conditions investigated in
this study.

3.3. Determination of model parameters from steady-flow measurements

3.3.1. Power-curve parametrization and model integration
To compare the analytical modelling framework with the experimental data, it was first
necessary to parametrize the steady-flow power curve of the turbine, Cp,0(λ). The data
in the measured power curve of the turbine, shown in figure 3, were fitted to a type of
exponential function used frequently for wind turbine modelling:

Cp =
(

c1

λ+ c2
− c3

)
exp

( −c4

λ+ c2

)
. (3.1)

Several coefficients from the general model form given by Heier (2014) were omitted to
simplify the model; the four remaining fitted coefficients were c1 = 16.784, c2 = −1.510,
c3 = 1.702 and c4 = 8.764. This parametrization was employed (as opposed to e.g.
polynomial fits) to ensure that the slope and concavity at the extremes of the power curve
would be captured reliably, since it will be shown in § 4.1 that the performance of the
modelling framework is sensitive to these factors.

To obtain time-resolved predictions of the turbine rotation rate, torque and power,
(2.7) was integrated numerically over ten surge periods using a fourth-order Runge–Kutta
scheme. Time steps were kept no larger than 0.001T to maintain numerical stability and
accuracy. The steady-flow turbine rotation rate ω0 was used as the initial condition, and
convergence was established typically within a few forcing periods. The model predictions
for the amplitude, phase and time average of each quantity were computed from the final
period in the simulation.

3.3.2. Steady-flow induction data
To estimate the steady induction-factor values of the turbine at the three tip-speed ratios
tested in this study, quasi-steady measurements of the streamwise velocity u(x) (described
in § 3.2) were plotted as a function of streamwise distance x/D, and two-parameter fits
for the wind speed u1 and centreline induction factor a0 were applied to these data.
Dimensional data for the highest tip-speed ratio tested are shown in figure 4 with fits using
the VCT (2.13) and PDT (2.18) models. This test case demonstrates the slight differences
between the modelling frameworks: for the same data, the PDT model predicts a stronger
induction effect (as x/D → 0) and a slightly lower free-stream velocity (x/D ≤ −2) than
the VCT model. The fit results for all three tip-speed ratios are shown in figures 5(a) (VCT)
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Figure 3. Steady power curve for the turbine used in these experiments, measured over a range of resistive
loads and wind speeds. Some of these data points are reproduced from Wei & Dabiri (2022). The result of the
exponential fit given by (3.1) is shown as a solid red line.

8.0

7.5

7.0

6.5

6.0

5.5
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(x – x2)/D
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 s
–
1
)

λ0 = 8.98, data

VCT fit

PDT fit

Figure 4. Streamwise velocity measurements at six different streamwise distances upstream of the turbine for
the highest tip-speed ratio tested, compared with two-parameter fits based on the VCT (dotted line) and PDT
(dash-dotted line) induction models. The PDT model shows a slightly more aggressive drop in streamwise
velocity close to the turbine and a lower predicted free-stream velocity than the VCT model.

and 5(b) (PDT), where the measured and modelled flow velocities are normalized by the
wind speeds identified by each two-parameter fit. These steady-flow tests demonstrate that
within the range of streamwise distances tested, the agreement of both models with the
trends observed in the data is reasonably good.

The centreline induction-factor values shown in figure 5 were compared with the
rotor-averaged values estimated using (2.11) and a Cp calculated from the average of the
measured turbine torque and rotation rate over all six streamwise locations. The ratio
between these estimates of 〈a0〉 and the fitted values of a0 gave an empirical estimate
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Figure 5. Streamwise velocity measurements at six different streamwise distances upstream of the turbine and
three tip-speed ratios, compared with fits based on (a) the VCT and (b) the PDT induction models. The velocity
data are normalized by the free-stream velocities obtained from the two-parameter fits.

for the correction factor κ for each tip-speed ratio. The estimated values of a0 and κ are
given in table 1 for the two induction model frameworks. For comparison, an analytical
correction factor can be calculated by integrating the self-similar solution of Troldborg
& Meyer Forsting (2017), which yields κ = 0.649. This is larger than the values of
κ estimated empirically. However, the ratio of the turbine hub diameter to the turbine
diameter for the simulations used to calibrate the self-similar solution was 2.4 %, whereas
for the turbine used in this study, the ratio was around 12 %. It is therefore expected that
the flow would decelerate more strongly along the centreline of this particular turbine, due
to the increased blockage effect from the larger hub and nacelle, thus lowering the ratio
between the rotor-averaged and centreline induction factors.

3.3.3. Wind-speed and pressure corrections
Since changes in the turbine tip-speed ratio correspond to changes in the thrust force
on the turbine, the operation of the turbine in the open test section of the wind tunnel
created a blockage effect that influenced the wind speed in the open test section – an
effect that is well-documented in the literature (e.g. Eltayesh et al. 2019). To correct
against this additional source of error, a wind-speed correction was computed for each
unsteady test case by comparing the mean of the streamwise velocity measurements
with the wind speeds measured by the hot-wire anemometer during calibration (where
the turbine was present in the tunnel but was not rotating). The average of these fitted
wind speeds across all of the unsteady and quasi-steady tests for each tip-speed ratio was
then used as an adjusted wind speed for normalizing the recorded velocity and pressure
data.

Further corrections were implemented to reduce the influence of sources of uncertainty
in the pressure data. Since the absolute pressure at the reference of the pressure transducer
was unknown, the mean value of this pressure prediction was scaled to be equal to that
of the data. Additionally, due to the long length of the tubes that connected the pressure
transducer to the measurement location, a first-order low-pass filter with cutoff frequency
2.48 Hz was inferred from the phase of the measured pressure data relative to the velocity
signal. This filter was then applied to the calculated model predictions for pressure.
Remaining discrepancies between the measured and modelled pressure signals could be
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attributed to the true filtering effect of the tubes being of higher order than the first-order
filter model (Bergh & Tijdeman 1965).

4. Experimental results

In this section, the predictions of the nonlinear dynamical model derived in § 2.1 are
compared with experimental measurements of time-averaged and fluctuating quantities.
The induction-factor estimates collected from the nonlinear dynamical model are then
used to predict the streamwise velocity and pressure upstream of the surging turbine.
Predictions based on VCT and PDT are compared with flow measurements to demonstrate
that the proposed modelling framework is able to reproduce trends observed in the
measured response of the system.

4.1. Power generation
The predictions of the nonlinear ordinary differential equation given in (2.7) are compared
with rotation rate, torque and power data collected from the surging-turbine experimental
apparatus. For this purpose, we reuse the experimental torque and power measurements
of Wei & Dabiri (2022), and plot the results of the present modelling framework against
these data. This dataset contained measurements at three lower tip-speed ratios, in addition
to those investigated in the present study, and measurements were conducted over a wider
range of surge-velocity amplitudes and frequencies.

Figure 6 shows the measured torque amplitude and phase from these data, plotted
against surge frequency. The torque amplitude was scaled by the surge-velocity amplitude
u∗ = fA in the manner of a transfer-function gain, and this was non-dimensionalized
by the steady reference torque τgen,0 and the free-stream velocity. The frequency was
non-dimensionalized by a characteristic frequency fc derived from the linear model of
Wei & Dabiri (2022). The trends in the data are relatively well captured by the model
predictions, and the nonlinear model shows some improvement over the linear model at the
lowest tip-speed ratios tested (cf. Wei & Dabiri 2022, figures 7a and 9a). This suggests that
the nonlinear model derived in this work is an effective generalization of the linearization
developed and validated in the preceding study.

The benefit of the nonlinear model is evident when predictions for time-averaged
quantities of interest are required. According to the preceding linearized model, the
time-averaged rotation rate and power of the turbine will not deviate from their
corresponding steady-flow quantities. Departures from this ansatz are clearly evident
in figure 7, as the mean rotation rate and power decrease as a function of increasing
surge-velocity amplitude for low tip-speed ratios, and increase for high tip-speed ratios.
The predictions of the nonlinear model, however, are able to follow these trends. The
largest enhancements in time-averaged power over the steady case are predicted at the
highest tip-speed ratios, while the greatest decreases in time-averaged power occur at the
lowest tip-speed ratios. The nonlinear model still overpredicts these power decreases; it
is likely that these additional losses are a result of the inception of flow separation on
the turbine blades. The turbine stalled and stopped spinning when forced to operate at or
below λ0 ≈ 5, so the decrease in power as a function of decreasing tip-speed ratio was in
reality much sharper than that suggested by the fit to the turbine power curve in figure 3.
The lack of a parametrization for these dynamics in the current modelling framework is
thus probably responsible for the lack of quantitative agreement at lower tip-speed ratios.

The discussion of flow separation and the extent to which stall is captured in the
turbine power curve emphasizes the key point that the critical nonlinearity in (2.7) is

966 A30-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.454


Dynamics of turbines in unsteady inflow conditions

100

0

–10

–20

–30

–40

–50

–60

–70

–80

–90
10–1

λ0 = 5.21
λ0 = 5.33
λ0 = 6.11
λ0 = 6.21
λ0 = 7.72
λ0 = 8.64

λ0 = 5.21
λ0 = 5.33
λ0 = 6.11
λ0 = 6.21
λ0 = 7.72
λ0 = 8.64

10–1

f ∗ = f/fc f ∗ = f/fc

100 10–1 100

ϕ
ge

n 
–
 ϕ

0
 (

d
eg

.)

τ̂ ge
n

fA
τ 0 u 1

/
(b)(a)

Figure 6. Generator torque (a) amplitude and (b) phase, for a series of sinusoidal surge-velocity waveforms,
plotted against normalized frequency and compared with model predictions (dashed lines). Data are reproduced
from Wei & Dabiri (2022).
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Figure 7. Time-averaged (a) rotation rate and (b) power, plotted against surge-velocity amplitude. Data are
reproduced from Wei & Dabiri (2022); model predictions derived from (2.7) are plotted as dashed lines and
coloured by tip-speed ratio. Circles represent sinusoidal surge-velocity waveforms, and diamonds and other
markers represent trapezoidal waveforms. Error bars are plotted on every sixth point for the sake of clarity.

the functional form of the power curve itself. In other words, the present quasi-steady
modelling framework hinges on a reliable characterization of the turbine in steady flow
conditions. This is a considerable advantage of the modelling approach, since it precludes
the need for unsteady calibration and can thus be applied directly to the design of turbines
in unsteady flow conditions when only steady-flow data are available. It also implies,
however, that particular attention must be paid to the parametrization of the steady-flow
power curve of the turbine. This dependence and its implications will be discussed in § 5.1.

4.2. Upstream flow properties
We now investigate the extension of the nonlinear model for the turbine dynamics to
the flow properties in the upstream induction region of the turbine. The unsteady and
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Figure 8. Phase-averaged velocity and pressure profiles for (a,b) a sinusoidal surge-velocity waveform with
λ0 = 6.48, (c,d) a trapezoidal waveform with λ0 = 6.48, and (e, f ) a trapezoidal waveform with λ0 = 8.77.
All surge-velocity waveforms had u∗ = 0.242. The solid red lines represent unsteady measurements, the blue
squares represent quasi-steady (QS) measurements, the dotted lines show the VCT model predictions, and the
dash-dotted lines show the PDT model predictions.

quasi-steady data from three selected experimental cases, all measured at x = xu, are
shown in figure 8. The streamwise velocity signals showed a phase lead and increased
amplitude with respect to the quasi-steady measurements. Also shown in this figure are the
VCT and PDT model predictions, which align well with the shape of the phase-averaged
data and anticipate the increased amplitudes and phase leads as well. For all of these cases,
both models show good agreement with the velocity and pressure data, as well as with each
other.
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Figure 9. Time-averaged induction-factor estimates from (a) the VCT model and (b) the PDT model. For these
and all following figures, circles indicate sinusoidal waveform data, and diamonds denote trapezoidal waveform
data. Points are estimated from measured power data, while lines are estimated from the nonlinear dynamical
model of the turbine.

The differences between the induction predictions of the models is reflected in the
induction factors estimated from the power data. The time-averaged induction factors
estimated using the VCT and PDT models and correction factors are shown in figures 9(a)
and 9(b), respectively. The induction factors all increase with increasing surge-velocity
amplitude, but at different rates depending on tip-speed ratio. The trends are consistent
between the two models; the main difference is that the estimated induction factors from
the PDT model are slightly higher, in accordance with the model’s sharper induction
profile (noted previously in figure 4).

The increases in time-averaged induction factor with surge-velocity amplitude are tied
to increases in the thrust force exerted by the turbine on the incoming flow. According to
1-D momentum theory, the thrust coefficient of the turbine is given as

Ct ≡ Ft
1
2ρπR2u2∞

= 4〈a〉 (1 − 〈a〉) , (4.1)

which, for the relatively low values of 〈a〉 considered in this study, increases with
increasing 〈a〉. The induction-factor estimates in figure 9 therefore suggest that the thrust
force on the turbine increases with increasing surge-velocity amplitude.

This aligns with a simplified analysis of the thrust force of a turbine in an oscillating
inflow. If Ct is held constant and the dimensional thrust is integrated over a sinusoidal
surge-velocity waveform, as done for Cp in (2.8), then the time-averaged thrust
enhancement is

Ft

Ft,0
= 1 + 1

2
u∗2
, (4.2)

which is also an increasing function with u∗. Although direct thrust measurements were
not possible in this study due to the large inertial forces associated with the turbine
motions, the induction-factor estimates and constant-Ct analysis both suggest that unsteady
surge motions increase the time-averaged thrust loading on the turbine rotor. In accordance
with the trends observed in the time-averaged power data in figure 7(b), the time-averaged
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Figure 10. (a) Amplitude and (b) phase of the estimated induction factors using the PDT model, plotted
against surge-velocity amplitude. Model predictions are given as dash-dotted lines.
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û/
u 1

ϕ
(u

) 
(d

eg
.)

0

25

20

15

10

5

0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25

λ0 = 6.51, data
λ0 = 6.51, PDT
λ0 = 7.86, data
λ0 = 7.86, PDT
λ0 = 8.86, data
λ0 = 8.86, PDT

λ0 = 6.51, data
λ0 = 6.51, PDT
λ0 = 7.86, data
λ0 = 7.86, PDT
λ0 = 8.86, data
λ0 = 8.86, PDT

u∗ = fA/u1 u∗ = fA/u1

(b)(a)

Figure 11. (a) Amplitude and (b) phase of the measured flow velocity at x = xu, plotted against surge-velocity
amplitude. PDT model predictions are given as dash-dotted lines. Error bars are plotted on every fourth point
for clarity.

thrust may decrease with increasing surge-velocity amplitudes for tip-speed ratios lower
than those investigated here.

The case studies in figure 8 and induction-factor estimates in figure 9 suggest that the
VCT and PDT models produce very similar results. For the sake of clarity, figures 10–12
will show only PDT predictions. The VCT predictions are qualitatively similar, and are
provided for completeness in Appendix A.

In figure 10, the amplitude and phase (relative to the surge-velocity waveform) of
the estimated induction factors are presented as a function of surge-velocity amplitude.
The induction-factor amplitudes and phase offsets decrease in magnitude with increasing
tip-speed ratio; the highest amplitudes observed in the measured data do not exceed 12 %
of the time-averaged values. Good agreement between the estimates from the measured
data and the estimates from the nonlinear dynamical model is observed.

Good agreement between the model predictions and measured data is also observed
in the streamwise velocity data, shown in terms of amplitude and phase (relative to the
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Figure 12. (a) Amplitude and (b) phase of the measured relative pressure at x = xu, plotted against
surge-velocity amplitude. PDT model predictions are given as dash-dotted lines. Error bars are plotted on
every fourth point.

quasi-steady measurements) in figure 11. As noted previously, the surge motions slightly
increase the amplitude of the velocity oscillations above the quasi-steady case, and a slight
phase lead accrues with increasing surge-velocity amplitude. There is some quantitative
mismatch between the phase measurements and model predictions, including a plateau in
the phase data at the highest surge-velocity amplitude that is not reflected by the model.
Given the large experimental uncertainties in the streamwise velocity measurements, this
is not surprising. However, the slopes of the model prediction lines still align with the
slopes of the measured data (except for the highest surge-velocity amplitude tested), which
differ slightly across tip-speed ratios. This suggests that the modelling framework is able
to capture some of the more subtle differences in flow properties in the upstream induction
region as the tip-speed ratio of the turbine changes.

Similar agreement in trend is observed in the pressure data, shown in amplitude
and phase (relative to the quasi-steady measurements) in figure 12. The slight increase
in pressure amplitude as a function of surge-velocity amplitude is generally reflected
in the model predictions, and as in the streamwise velocity phase data, the model
predictions of the pressure phase follow slopes similar to those evident in the data.
Again, some quantitative differences are apparent in the plots, but given the measurement
uncertainties and the relatively small magnitude of the signals being quantified and
predicted, the qualitative agreement between the model predictions and measured data
suggests that the modelling framework is parametrizing the salient dynamics of the
system.

Finally, the time-averaged difference between the upstream and downstream pressure
measurements at x = xu and x = xd, respectively, is shown as a function of surge-velocity
amplitude in figure 13 for both the VCT and PDT models. The corresponding model
predictions are calculated by evaluating the model at x = xu and x = −xd, and assuming
that the pressure exhibits odd symmetry about the turbine rotor plane so that p(x =
−xd) = −p(x = xd), as is the case for 1-D momentum theory. For a real turbine with a
low-pressure wake region, this is likely not a tenable assumption. However, the model
predictions still follow the trends in the data within measurement uncertainty. The
measured pressure difference can be understood as an analogue to the thrust force on
the turbine, and as implied previously by the time-averaged induction-factor estimates,
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Figure 13. Pressure difference across the turbine, �p = p(x = xu)− p(x = xd), normalized by the
quasi-steady pressure difference and plotted against surge-velocity amplitude. Model predictions are given
as dotted lines for the VCT model in (a), and as dash-dotted lines for the PDT model in (b). Error bars are
shown on every fourth point.

it increases with increasing surge-velocity amplitude. As well as further demonstrating
the predictive capabilities of the modelling framework, these data suggest that the
model could also be extended to serve as an initial condition for wake models of
the surging turbine, which will depend on the thrust force and pressure drop across
the rotor.

In summary, both induction model frameworks are able to reproduce the trends observed
in the centreline flow measurements recorded upstream of the turbine, and the modelling
approach may have some bearing on the near-wake region downstream of the turbine as
well. This observed agreement implies that the proposed modelling framework is capturing
the dominant dynamics of the surging-turbine system, in spite of incorporating only
empirical data from the turbine power curve and the induction-factor correction parameter
κ – both of which can be obtained from steady-flow theories, simulations or experiments.
While the nonlinear dynamical model accounts for unsteady rotation accelerations of the
turbine, the aerodynamics of the turbine itself is treated in a quasi-steady manner, as a
function of the power curve and the induction models. The fact that this quasi-steady first
principles model still manages to align with data collected from a real surging turbine
might suggest that unsteady flow physics is not strongly present in this system. However,
the uncertainties in these experiments preclude us from ruling out this possibility, and we
will thus present a theoretical analysis of the effects of unsteady flows in § 5.2.

5. Further theoretical considerations

The experimental results presented in § 4 establish the predictive capabilities of the
modelling framework outlined in § 2. In this section, we address remaining considerations
regarding the sensitivity of the unsteady turbine performance to its steady-flow
aerodynamics and the influence of unsteady flow physics on the system. These analyses
highlight potential design strategies for maximizing unsteady power enhancements with
wind-energy systems in dynamic-inflow conditions.
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5.1. Time-averaged power enhancements
The results presented in § 4.1 suggested that the amount of enhancement in the
time-averaged power extraction of a surging turbine relative to the steady case depends
on the characteristics of the power curve of the turbine. To explore this connection further,
a parametric survey using simulations of the turbine model from (2.7) with simplified
power curves was instantiated. For four known equilibrium points along the power curve,
corresponding to four of the tip-speed ratios tested in experiments, local quadratic power
curves were constructed with the form

Cp(λ) = Cp(λ0)+ dCp

dλ

∣∣∣∣
λ0

(λ− λ0)+ 1
2

d2Cp

dλ2 (λ− λ0)
2, (5.1)

where the local slope dCp/dλ|λ0 was taken from the fitted power curve in (3.1), and the
concavity d2Cp/dλ2 was varied between −0.1 and 0.02. The four tip-speed ratios used in
this exploration were λ0 = 5.47, 6.33, 7.67 and 8.69, and the local slope of the second
tip-speed ratio was approximated as zero. This parametrization created a set of power
curves for each equilibrium point with identical local slope but different concavities,
and the effect of changing local slope could be ascertained by comparing the simulation
results across tip-speed ratios. A fixed surge-velocity amplitude of u∗ = 0.24 was used
for the simulations; other relevant parameters were u1 = 8 m s−1, ρ = 1.19 kg m−3 and
�t = 0.001 s. As before, a fourth-order Runge–Kutta scheme was used to integrate the
model forward in time over ten surge-oscillation periods. A strict convergence metric
required the difference between successive periods to decrease monotonically; test cases
that failed this criterion were deemed unstable and were not plotted.

The results of these simulations are shown in figure 14, where the relative power
enhancement Cp/Cp,0 − 1 is plotted as a function of power curve concavity for the four
selected tip-speed ratios. Filled circles show the concavity of the full power curve from
(3.1), corresponding approximately to the power gains and losses observed in figure 7(b)
at u∗ ≈ 0.24. At zero slope and zero concavity, the system reduces to the quasi-steady
prediction derived by Wen et al. (2017) and Johlas et al. (2021) (i.e. (2.8), shown as
a red × in the figure). Where the concavity is zero, differences are still evident across
local slopes: the two highest tip-speed ratios have negative local slopes and larger power
enhancements relative to the constant-Cp case. Conversely, the lowest tip-speed ratio
(which has a positive local slope) exhibits the lowest power enhancement. As concavity
decreases from zero, these power gains decrease and eventually become losses, finally
becoming unstable below some critical concavity. Positive concavities, by contrast, show
increasing power enhancements.

The influence of power curve concavity can be understood geometrically. The dynamics
of the turbine is constrained in the present model to its power curve, and thus periodic
forcings represent periodic excursions along the power curve centred at some equilibrium
point λ0. First, let us assume that the local slope at λ0 is zero. If the curve is concave down
in a neighbourhood about λ0, then the value of Cp at λ0 ± ε will be lower than Cp(λ0).
Therefore, the integrated value over a periodic excursion away from λ0 will be lower than
the equilibrium value at λ0. The opposite is true when the power curve is concave up;
since Cp(λ0) is now a local minimum, non-zero perturbations away from λ0 will lead to
an increased time-averaged Cp. These arguments also hold qualitatively for a non-zero
local slope at λ0, though the local slope does have an influence on the time-averaged value
across a periodic perturbation.
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Figure 14. Fractional enhancements in the time-averaged coefficient of power, plotted against the concavity of
the power curve (approximated as a quadratic function with fixed local slope and variable concavity), for four
tip-speed ratios. A sinusoidal surge-velocity waveform with u∗ = 0.24 was used for these simulations. The red
× shows the constant-Cp solution given in (2.8), and the solid circles denote the approximate concavity of the
actual power curve at each reference tip-speed ratio.

This analysis underscores the point that the geometry of the steady power curve and the
equilibrium operating point of the turbine dictate the time-averaged power enhancements
or losses that a surging turbine will experience relative to the steady-flow case. In general,
it will be favourable to operate in regions of a power curve that have minimal concavity. In
terms of turbine design, this implies that turbines whose power curves exhibit a relatively
flat maximal region will benefit the most from time-averaged power enhancements relative
to the steady case. Flattening the curve in this manner may be achieved through traditional
turbine design methods; alternatively, the pitch of the turbine blades could be varied within
a single oscillation period to produce the same topological effect on the Cp manifold.
Finally, while concave-up power curves are not found typically in current wind-energy
systems, this analysis does suggest that such designs (if physically possible) would lead to
even greater power enhancements in unsteady flow conditions.

5.2. The role of unsteady flow physics
Until this point, we have neglected the contribution of unsteady fluid mechanics to
the system in question. We now investigate these effects analytically. The analysis in
this subsection is purely theoretical, and is included to complete the conceptual picture
of wind-energy systems in dynamic-inflow conditions that has been presented in this
work. Thus quantitative predictions and comparisons with the experimental results shown
previously are not pursued.

5.2.1. Specifying velocity potentials for an unsteady extension to 1-D momentum theory
To characterize the influence of streamwise unsteadiness on the theoretical efficiency of
wind-energy systems, we extend the analytical framework of Dabiri (2020) using the
potential-flow modelling approach proposed in § 2.3. This unsteady extension to the 1-D
momentum theory of Betz uses the same control volume shown in figure 1, but makes use
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of two additional unsteady terms:

d
dt

[KE] = d
dt

[
−1

2
ρ

∫∫
A2

φn̂ · ∇φ dA
]
, (5.2)

which represents the unsteady power associated with changes in the streamwise kinetic
energy of the actuator disc, and

Φt = ∂φ2

∂t
− ∂φ3

∂t
, (5.3)

which is the difference in the unsteady potential across the face of the actuator disc. These
quantities are accounted for in energy conservation relations to obtain expressions for the
time-averaged unsteady power. Note that we use Ai to refer to the cross-sectional area at
streamwise location i; this is not to be confused with the surge-motion amplitude A used
elsewhere in this work.

By specifying a velocity potential for the moving actuator disc, we aim to close these
two terms and parametrize the instantaneous and time-averaged coefficients of power as a
function of the induction factor (as in the steady Betz analysis) and the surge kinematics
of the actuator disc. For the sake of simplicity, we will assume that the induction factor a
varies in a quasi-steady manner, and will not consider time derivatives of a. Additionally,
we consider only the velocity potential associated with the surge velocity U(t), and
assume that the velocity potential connected to the free-stream velocity u1 has no unsteady
contribution. We begin by completing the analysis for a moving porous disc, and then
explore the effects of more general classes of velocity potentials. For the sake of brevity,
we omit intermediate steps in the derivations here; several of these details are provided in
Appendix B.

From (2.15), the velocity potential for a moving porous disc located instantaneously at
x = x2 can be written as

φ(r, x) = a(u1 − U)

√
2
π

R3/2
∫ ∞

0
s−1/2 J3/2(Rs) J0(rs) es(x−x2) ds, x < x2, (5.4)

and from this expression, the kinetic energy of the disc moving at velocity U can be derived
as

KEdisc = 4
3
ρa2U2R3 (5.5)

(cf. Lamb 1916, Art. 102, Eq. (20)). The time derivative is therefore
d
dt

[KEdisc] = 8
3
ρR3a2U

dU
dt
. (5.6)

The unsteady-potential term Φt can be computed by applying the chain rule to (5.4),
which gives

∂φ2

∂t
= − 2

π
a
√

R2 − r2 dU
dt

+ aU2. (5.7)

Using the odd extension to model the region immediately downstream of the disc, we
obtain an expression for ∂φ3/∂t that is identical except that the first term is positive.
Averaging this over the area of the disc gives

〈Φt〉 ≡ Φt,disc = −8R
3π

a
dU
dt
. (5.8)

These results may now be introduced into the framework of Dabiri (2020), with some
additional considerations that reduce the parameter space of the theory. The unsteady
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power associated with the motion of the disc leads to a difference between the available
power upstream and downstream of the disc (cf. Dabiri 2020, Eq. (11)):

1
2
ρA2(u3

2 − u3
3) = d

dt
[KE]. (5.9)

Defining additional induction factors b = 1 − u3/u1 and c = 1 − u4/u1, this expression
can be written as

(1 − a)3 − (1 − b)3 = 2
ρA2u3

1

d
dt

[KE], (5.10)

which we can solve for b in terms of a:

b = 1 −
[
(1 − a)3 − 2

ρA2u3
1

d
dt

[KE]

]1/3

. (5.11)

A non-dimensional form of the momentum equation for this problem can be written by
means of the unsteady Bernoulli equation as

− 2c(1 − a) = (1 − c)2 + (1 − a)2 − (1 − b)2 − 1 + 2Φt

u2
1
, (5.12)

which can be solved for the remaining induction factor c as

c = a ±
√

2a − 1 + (1 − b)2 − 2Φt

u2
1
. (5.13)

In this expression, the larger root is taken to satisfy the physical requirement that the
flow must slow down between locations 2 and 4, which implies c > a. Having written
the additional induction factors b and c in terms of the original induction factor a and
the known unsteady contributions (d/dt)[KE] and Φt, we can find the instantaneous
coefficient of power using the relation

Cp = 1
2
(4c − 4c2 + c3)+ 1

2
(2 − c)[(1 − b)2 − (1 − a)2] − (2 − c)

(
Φt

u2
1

)
. (5.14)

This expression is limited by the physical constraints b ∈ [0, 1], c ∈ [0, 1] and Cp ≥ 0,
which enforce that the velocities at locations 3 and 4 cannot be negative or exceed
the free-stream velocity, and that the power extracted from the actuator disc cannot be
negative. Note that this analysis does not account for quasi-steady changes in Cp due
to the normalization by the effective inflow velocity u1 − U(t); therefore, changes in
Cp predicted by this theoretical framework will appear in practice as adjustments to the
time-averaged power predictions of the quasi-steady modelling approach outlined in § 2.1.

5.2.2. Phase-plane analysis of a surging porous disc
While Dabiri (2020) assumed that the parameters a, b, c and Φt were independent, we
now have a theoretical framework that depends only on the induction factor a and the
surge kinematics of the actuator disc, U and dU/dt. For a given induction factor, we may
therefore use the system of equations described above to construct a phase portrait for Cp
in terms of the surge kinematics. Contours of Cp in the U–dU/dt phase plane are shown
for four values of a (0.21, 0.27, 1/3 and 0.40) in figure 15. The orange contour marks the
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Figure 15. Contours of Cp/Cp,Betz calculated from (5.14) for a moving porous disc, plotted in the surge
kinematics phase plane as a function of surge velocity and acceleration for induction factors (a) 0.21, (b) 0.27,
(c) 1/3, and (d) 0.40. The orange line indicates Cp = Cp,Betz, and grey regions denote dynamics that violate one
or more assumptions of the theoretical framework. To non-dimensionalize the surge acceleration, T is taken to
be 1 s.

Betz efficiency (Cp/Cp,Betz = 1), and grey regions represent locations in the phase plane
where one of the physical constraints on Cp is violated.

If a is constant, then a surge waveform will appear as a periodic loop in the phase plane
that must be centred on the origin so that the turbine has no net displacement. A sinusoidal
waveform will follow an elliptical trajectory about the origin, while a trapezoidal waveform
will appear as a rectangular trajectory. The time-averaged coefficient of power is calculated
by evaluating the line integral of Cp along one closed cycle of this trajectory. The depiction
of Cp in the phase plane thus allows the effects of the unsteady velocity potential and power
terms from the porous disc to be evaluated by topological reasoning.

To illustrate this line of argument, we consider the case where a = 1/3 (figure 15c). A
trajectory that is centred on the origin will experience instantaneous values of Cp in excess
of the steady-flow Betz limit for positive surge accelerations, while Cp will decrease below
Cp,Betz for negative surge accelerations. However, the slope of the contours of Cp is greater
below the Betz-limit contour than above it. Thus for a non-zero surge trajectory, the lower
Cp values sampled below the zero-acceleration axis will outweigh the higher Cp values
sampled above the axis, and the time-averaged coefficient of power will be lower than
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the steady coefficient of power. This mathematical effect is qualitatively similar to the
concavity-based arguments described in § 5.1.

For values of a that are above or below the steady-flow optimal value 1/3, the same
arguments hold: the topology of Cp in the phase plane implies that non-trivial surge
motions will yield a decrease in time-averaged efficiency as a result of unsteady effects.
Furthermore, if a is allowed to vary in a quasi-steady manner, the surge trajectory will exist
in a three-dimensional phase space spanned by U, dU/dt and a. Ascertaining the precise
differences in time-averaged power extraction may be done numerically for a given profile
of a(t), e.g. one obtained from the amplitude and phase data shown in figure 10. Still, as
the region in the phase plane where efficiencies above the steady Betz limit occur moves
away from the origin for a /= 1/3, it is apparent that oscillations in a will further decrease
the time-averaged efficiency of the system.

5.2.3. General velocity potentials and the effects of fore–aft asymmetry
We have shown that the unsteady contribution to the time-averaged efficiency of a
wind-energy system modelled as a surging porous disc is negative. However, efficiency
enhancements may be attained with a different choice of velocity potential. Consider a
general velocity potential for a moving body with translation velocity U , angular velocity
Ω , and circulation Γ , located instantaneously at a point x = x0 in an otherwise quiescent
fluid:

φ(x) = U · Ξ + Ω · Θ + Γ

(
θ

2π
+ ψ

)
(5.15)

(Batchelor 2000, Eq. (6.4.10)). Here, boldfaced variables refer to vectors in 3-space. The
functions Ξ , Θ and ψ are geometric descriptors that depend only on location relative
to the body, x − x0. For bodies producing zero circulation, Γ = 0. We also ignore the
effect of rotation, and set Ω = 0. (The effect of rotation is explained in Appendix B.) The
translational kinetic energy associated with such a moving body scales as U2, thus the
unsteady power term will always scale as

d
dt

[KE] ∼ U
dU
dt
, (5.16)

irrespective of the body geometry parametrized by the function Ξ .
The time derivative of the velocity potential, on the other hand, is affected by body

geometry. This can be written as

∂φ

∂t
= dU

dt
· Ξ − U · u (5.17)

(Batchelor 2000, Eq. (6.4.22)), where u is the local flow velocity at x. To computeΦt from
the unsteady theoretical framework, we note that the local flow velocity in the quiescent
fluid frame at streamwise locations 2 and 3 scales with the velocity of the body, U.
Additionally, since the velocity on either side of the translating body must decrease with
increasing distance from the body, the geometric function Ξ must exhibit odd symmetry
about the body plane.

For a translating symmetric body in potential flow, u on either side of the body will be
identical. Therefore, when taking the difference of the unsteady-potential terms upstream
and downstream of the body, the U · u term will cancel. The odd symmetry of the
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geometric function Ξ will retain the acceleration-dependent term, thus for a symmetric
body, we have

Φt ∼ R
dU
dt
. (5.18)

For a body that exhibits fore–aft asymmetry about its flow-normal centre plane, however,
u may differ across the upstream and downstream sides of the body. In this case, the
quadratic velocity term may not cancel, suggesting that

Φt ∼ R
dU
dt

± U2. (5.19)

The additional dependence on U2 will change the topology of Cp in the phase plane
and affect the time-averaged coefficients of power that are possible in the theoretical
framework.

To illustrate these effects, we conduct a phase-plane analysis by assuming the existence
of a velocity potential for a moving asymmetric body that yields

Φt = − 8
3π

a
(

R
dU
dt

+ U2
)
. (5.20)

We keep the same scaling coefficients as for the surging porous disc for the sake of
comparison, and use the same expression for the kinetic energy of the body, (5.6).
Contours of Cp for the same four values of a shown previously are given for this
representative model in figure 16. We again first consider the case where a = 1/3
(figure 16c). Here, we observe that the addition of the U2 term in the expression for Φt
has curved the contours of Cp such that the region where Cp > Cp,Betz now extends below
the zero-acceleration axis. This implies that a trajectory centred on the origin can have a
time-averaged efficiency that exceeds the steady Betz limit. This may also be possible if
we allow for small oscillations in a, depending on the surge kinematics applied and their
corresponding trajectories in the phase space.

It is important to note that if the sign of the U2 term in (5.20) were reversed, then the
concavity of the contours would also be reversed, leaving the region where Cp > Cp,Betz
on the interior of a concave-up parabola with respect to the surge velocity. In this scenario,
a periodic trajectory will spend less time in the efficiency-enhancing region relative to the
efficiency-depleting region, and the time-averaged efficiency will therefore drop below
the steady Betz limit. Thus fore–aft asymmetry in the velocity potential is a necessary but
not sufficient condition for enhancements in the time-averaged efficiency of a periodically
translating actuator body.

This conceptual exercise demonstrates that for symmetric bodies in potential flow, the
unsteady contribution to time-averaged efficiency will be negative. As the modelling
efforts and experiments presented previously seem to suggest that a moving porous-disc
model captures the dominant dynamics of a periodically surging horizontal-axis wind
turbine, it is likely that unsteady effects would act against the time-averaged power
enhancements described in § 5.1. This hypothesis appears to be consistent with the
time-averaged power data shown in figure 7(b), which at high surge-velocity amplitudes
tend to be overpredicted by the nonlinear turbine model (which assumes quasi-steady
aerodynamics). However, wind-energy systems need not be symmetric. Streamwise
asymmetries across the rotor plane could be introduced either mechanically, through the
geometry of the turbine, or dynamically, through intracycle blade-pitch or generator-load
control. These non-traditional design and control paradigms could create beneficial
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Figure 16. Contours of Cp/Cp,Betz for a moving porous asymmetric body (parametrized by (5.20)), plotted in
the surge-kinematics phase plane as a function of surge velocity and acceleration for induction factors (a) 0.21,
(b) 0.27, (c) 1/3, and (d) 0.40. The orange line indicates Cp = Cp,Betz, and grey regions denote dynamics that
violate one or more assumptions of the theoretical framework.

asymmetries in the equivalent velocity potential of the system that could be leveraged
to achieve higher time-averaged efficiencies than steady-flow or quasi-steady analyses
would suggest. In the case of dynamic induction control schemes, the influence of
unsteady induction-factor variations da/dt may no longer be negligible, and the analysis
presented here would need to be expanded to include these variations in a four-dimensional
phase space. Still, the present analysis can serve as a helpful theoretical framework
for characterizing trends in unsteady contributions to the efficiency of wind-energy
systems.

6. Conclusions

In this work, a nonlinear dynamical model for the power generation of a periodically
surging wind turbine was paired with a potential-flow model for the flow properties
upstream of the turbine. This modelling framework was shown to reproduce trends in
experimental measurements of both the time-averaged power extraction and upstream flow
velocity and pressure, at surge-velocity amplitudes of up to 24 % of the wind speed. These
results are posited to be equally applicable to stationary turbines in dynamically varying
inflow conditions, such as axial gusts. A key advantage of this approach is that the entire
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modelling approach is calibrated only by steady-flow quantities: the turbine power curve
and the radial induction profile of the turbine at the rotor plane. The theoretical analyses
also identified and parametrized contributions to power-extraction enhancements over the
steady-flow case, such as a dependence on the local concavity of the turbine power curve
and the role of streamwise asymmetries in unsteady power gains. This work thus not
only informs the design, characterization and control of wind and hydrokinetic turbines in
unsteady flow environments, such as floating offshore wind farms and tidal currents, but
also yields fundamental insights into the relative influences of quasi-steady and unsteady
fluid mechanics in energy-harvesting systems.

While similar theoretical tools have been applied widely to the analysis of wind turbines
in steady flow, a major contribution of this work is the extension of these methods
to unsteady flow contexts. The porous-disc model is also similar in principle to the
actuator-disc models often used in numerical simulations of large wind farms (e.g. Calaf,
Meneveau & Meyers 2010; Stevens & Meneveau 2017), thus this study could inform
modifications of existing actuator-disc simulations for surging-turbine or dynamic-inflow
conditions. This may be particularly useful for large-eddy simulations of floating offshore
turbine arrays, where the analytical turbine model can help to parametrize the coupling
between turbine inflow conditions, sea-surface waves and floating-platform dynamics.
Additionally, the induction and thrust-force predictions of this modelling framework
could be used as initial conditions for wake models of turbines in dynamic-inflow
conditions, which could further improve parametrizations of turbine aerodynamics in
numerical simulations. Such a connection was developed recently for yawed turbines
by Heck, Johlas & Howland (2023), whose modelling philosophy was influential in
the development of the present analytical approach. These wake-modelling initiatives
would further benefit from the work of Steiros & Hultmark (2018) and Bempedelis &
Steiros (2022), particularly for capturing wake-pressure effects in highly loaded turbine
configurations.

This work has several implications for full-scale wind-energy systems in real-world flow
conditions. First, the analytical model for flow properties upstream of a surging turbine
can be used in conjunction with nacelle-mounted LiDAR units for improved load control
and wind-speed estimation in floating offshore applications. The same principles can be
applied to stationary turbines in gusty environments and kite-mounted aerial turbines.
Second, these analytical and experimental results reinforce and parametrize the evidence
collected by Wen et al. (2017), El Makdah et al. (2019), Johlas et al. (2021) and Wei
& Dabiri (2022) that streamwise unsteadiness (either in the flow or in the turbine itself)
can lead to increases in power extraction above the reference steady case. The present
investigations suggest both quasi-steady and unsteady mechanisms that can be exploited
to capitalize on these power-extraction enhancements. Future work can investigate turbine
design and control strategies, such as active blade pitching and intracycle load control
(e.g. Strom, Brunton & Polagye 2017), that may further increase the time-averaged
power extraction of floating offshore wind turbines and other systems that can operate in
inherently unsteady flows. The modelling framework also provides a means to estimate
thrust loads on turbines from dynamic inflow conditions, which may increase fatigue
loading on turbine blades and support structures. The analytical tools outlined in this
study can inform control strategies that anticipate the changes in thrust and blade loading
as a function of changing inflow conditions and dynamically adjust the blade pitch or
generator load to mitigate the unsteady loads of unwanted disturbances and oscillations.
Whether these models are used to enhance unsteady power conversion gains or extend
the operational lifespan of energy-harvesting systems by controlling unsteady loads, this
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Figure 17. (a) Amplitude and (b) phase of the estimated induction factors using the VCT model, plotted
against surge-velocity amplitude. Model predictions are given as dotted lines.

work makes the case that unsteady flow phenomena should be at the forefront of design
considerations for structures operating in the atmosphere and ocean.
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Appendix A. Vortex-cylinder theory results

Since figures 10–12 in § 4.2 omitted the predictions of VCT, these results are included
in this appendix. The data in figures 17–19 are identical to those in the aforementioned
figures, but VCT model predictions are shown instead of PDT predictions. Similar trends
are observed, though slight quantitative differences exist between the two sets of model
predictions. Overall, both models appear to capture the trends observed in the data
reasonably well.
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Figure 18. (a) Amplitude and (b) phase of the measured flow velocity at x = xu, plotted against surge-velocity
amplitude. VCT model predictions are given as dotted lines. Error bars are plotted on every fourth point.

0.11
5

0

–5

–10

–15

0.10

0.09

0.08

0.07

0.06

0.05
0.050 0.10 0.15

u∗ = fA/u1

0.20 0.25 0.050 0.10 0.15

u∗ = fA/u1

0.20 0.25

p̂/
1 – 2
 ρ

u2 1

φ
(p

) 
(d

eg
.)

λ0 = 6.51, data
λ0 = 6.51, VCT
λ0 = 7.86, data
λ0 = 7.86, VCT

λ0 = 8.86, data
λ0 = 8.86, VCT

(b)(a)

Figure 19. (a) Amplitude and (b) phase of the measured relative pressure at x = xu, plotted against
surge-velocity amplitude. VCT model predictions are given as dotted lines. Error bars are plotted on every

fourth point.

Appendix B. Derivations from the unsteady theoretical analysis

B.1. Porous-disc derivations
The kinetic energy associated with the motion of a solid disc is given by

KEdisc = −1
2
ρ

∫∫
A
φn̂ · ∇φ dA, (B1)

where the flux integral is taken on an infinitesimally thin control surface surrounding the
disc. Across this surface, ∇φ = Uî. The kinetic energy of the disc can thus be written as

KEdisc = −1
2
ρU

∫∫
A
φ
(

n̂ · î
)

dA

= −1
2
ρU

[
−
∫ R

0
4U
√

R2 − r2 r dr −
∫ R

0
4U
√

R2 − r2 r dr
]
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= 4ρU2
∫ R

0
r
√

R2 − r2 dr

= 4
3
ρU2R3. (B2)

The odd extension to the upstream velocity potential given in (5.4) is

φ(r, x) = −a(u1 − U)

√
2
π

R3/2
∫ ∞

0
s−1/2 J3/2(Rs) J0(rs) e−s(x−x2) ds, x > x2. (B3)

We may differentiate the expression for φ at streamwise location 3 in time, noting that
x3 represents a fixed spatial coordinate with zero time derivative, while x2 represents the
instantaneous position of the actuator disc such that dx2/dt = U:

∂φ3

∂t
= a

dU
dt

[
R
(

2R
π

)1/2 ∫ ∞

0
s−1/2 e−s(x3−x2) J0(rs) J3/2(Rs) ds

]

+ aU
∂

∂t

[
R
(

2R
π

)1/2 ∫ ∞

0
s−1/2 e−s(x3−x2) J0(rs) J3/2(Rs) ds

]

= a
2
π

√
R2 − r2 dU

dt
+ aUR

(
2R
π

)1/2 ∫ ∞

0
s−1/2 d

dt

[
e−s(x3−x2)

]
J0(rs) J3/2(Rs) ds

= a
2
π

√
R2 − r2 dU

dt
+ aUR

(
2R
π

)1/2 ∫ ∞

0
s−1/2

[
s

dx2

dt
e−s(x3−x2)

]
J0(rs) J3/2(Rs) ds

= a
2
π

√
R2 − r2 dU

dt
+ aUR

(
2R
π

)1/2 ∫ ∞

0
s1/2U e−s(x3−x2) J0(rs) J3/2(Rs) ds

= a
2
π

√
R2 − r2 dU

dt
+ aU2. (B4)

The following integrals are used in this derivation:∫ ∞

0
s−1/2 J0(rs) J3/2(Rs) ds =

√
2
π

√
R2 − r2 R−3/2, 0 ≤ r ≤ R, (B5)

and ∫ ∞

0
s1/2 J0(rs) J3/2(Rs) ds =

√
π

2
R−3/2, 0 ≤ r ≤ R. (B6)

By a similar process, we obtain

∂φ2

∂t
= −a

2
π

√
R2 − r2 dU

dt
+ aU2. (B7)

Combining these two unsteady potentials, we arrive at the relation

Φt = − 4
π

a
√

R2 − r2 dU
dt
, (B8)

which may be averaged across the face of the actuator disc to obtain

〈Φt〉 = 2π

A2

∫ R

0

[
− 4

π
a
√

R2 − r2 dU
dt

]
r dr = −8R

3π
a

dU
dt

≡ Φt. (B9)
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B.2. Rotating actuator bodies
We consider the case of a purely rotating actuator body, for which U = 0 and Ω /= 0.
Equation (5.15) becomes

φ(x) = Ω · Θ, (B10)

where Ω is an axial vector. The kinetic energy of the rotating body scales as |Ω|2, so that
in the quasi-1-D formulation, we find

d
dt
(KE) ∼ Ω

dΩ
dt
, (B11)

ignoring geometric constants. This is analogous to the case of a purely translating body,
for which the time derivative of the kinetic energy scales as U(dU/dt).

Taking the time derivative of (B10) yields

∂φ

∂t
= ∂Ω

∂t
· Θ + Ω · ∂Θ

∂t
= ∂Ω

∂t
· Θ + Ω ·

(
∂(x − x0)

∂t
· ∇Θ

)
. (B12)

Noting that (∂(x − x0))/∂t = −U = 0, the second term vanishes. For the quasi-1-D
case, we write the vector-valued functions Ω and Θ as scalar-valued functions and obtain
the result

∂φ

∂t
= Θ

dΩ
dt
. (B13)

Comparing (B11) and (B13) with the results obtained previously for a purely translating
body with a locally symmetric flow field, we see that there is no symmetry-breaking term
for a purely rotating body that will yield time-averaged efficiencies in excess of the Betz
limit. This aligns with intuition, as changes in the rotation rate of an actuator body should
affect the flow on either side of the body symmetrically, which, as we have seen, will not
lead to net improvements in efficiency. It is possible that in a real wind turbine, changes
in the rotation rate would lead to unsteadiness at the turbine blade level, potentially due
to dynamic stall or other kinds of vortex-shedding events. These effects, however, would
manifest themselves as streamwise unsteadiness (e.g. changes in induced velocities) rather
than rotational unsteadiness. Thus streamwise unsteadiness remains the primary parameter
of interest for these investigations.

REFERENCES

ARAYA, D.B., CRAIG, A.E., KINZEL, M. & DABIRI, J.O. 2014 Low-order modeling of wind farm
aerodynamics using leaky Rankine bodies. J. Renew. Sustain. Energy 6, 063118.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2017 Wind tunnel study of the wind turbine interaction with a
boundary-layer flow: upwind region, turbine performance, and wake region. Phys. Fluids 29 (6), 065105.

BATCHELOR, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
BEMPEDELIS, N. & STEIROS, K. 2022 Analytical all-induction state model for wind turbine wakes. Phys.

Rev. Fluids 7 (3), 034605.
BERGH, H. & TIJDEMAN, H. 1965 Theoretical and experimental results for the dynamic response of pressure

measuring systems. Tech. Rep. NLR-TR F.238. National Aerospace Laboratory NLR.
BETZ, A. 1920 Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren.

Z. gesamte Turbinenwesen 26, 307–309.
BORRACCINO, A., SCHLIPF, D., HAIZMANN, F. & WAGNER, R. 2017 Wind field reconstruction from

nacelle-mounted lidar short-range measurements. Wind Energy Sci. 2 (1), 269–283.
BRANLARD, E. & GAUNAA, M. 2015 Cylindrical vortex wake model: right cylinder. Wind Energy 18 (11),

1973–1987.
BRENNEN, C.E. 1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010. Naval Civil

Engineering Laboratory.

966 A30-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.454


N.J. Wei and J.O. Dabiri

CALAF, M., MENEVEAU, C. & MEYERS, J. 2010 Large eddy simulation study of fully developed wind-turbine
array boundary layers. Phys. Fluids 22 (1), 015110.

CHATTOT, J.-J. 2014 Actuator disk theory – steady and unsteady models. Trans. ASME: J. Sol. Energy Engng
136 (3), 031012.

DABIRI, J.O. 2020 Theoretical framework to surpass the Betz limit using unsteady fluid mechanics. Phys. Rev.
Fluids 5 (2), 022501.

EL MAKDAH, A.M., RUZZANTE, S., ZHANG, K. & RIVAL, D.E. 2019 The influence of axial gusts on the
output of low-inertia rotors. J. Fluids Struct. 88, 71–82.

ELTAYESH, A., HANNA, M.B., CASTELLANI, F., HUZAYYIN, A.S., EL-BATSH, H.M., BURLANDO, M. &
BECCHETTI, M. 2019 Effect of wind tunnel blockage on the performance of a horizontal axis wind turbine
with different blade number. Energies 12 (10), 1988.

FARRUGIA, R., SANT, T. & MICALLEF, D. 2014 Investigating the aerodynamic performance of a model
offshore floating wind turbine. Renew. Energy 70, 24–30.

FARRUGIA, R., SANT, T. & MICALLEF, D. 2016 A study on the aerodynamics of a floating wind turbine rotor.
Renew. Energy 86, 770–784.

GRANLUND, K., MONNIER, B., OL, M. & WILLIAMS, D. 2014 Airfoil longitudinal gust response in
separated vs attached flows. Phys. Fluids 26 (2), 027103.

GRIBBEN, B.J. & HAWKES, G.S. 2019 A potential flow model for wind turbine induction and wind farm
blockage. Tech. Rep. Frazer-Nash Consultancy.

HECK, K.S., JOHLAS, H.M. & HOWLAND, M.F. 2023 Modelling the induction, thrust and power of a
yaw-misaligned actuator disk. J. Fluid Mech. 959, A9.

HEIER, S. 2014 Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems. John Wiley &
Sons.

HOWARD, K.B. & GUALA, M. 2016 Upwind preview to a horizontal axis wind turbine: a wind tunnel and
field-scale study. Wind Energy 19 (8), 1371–1389.

JOHLAS, H.M., MARTÍNEZ-TOSSAS, L.A., CHURCHFIELD, M.J., LACKNER, M.A. & SCHMIDT, D.P. 2021
Floating platform effects on power generation in spar and semisubmersible wind turbines. Wind Energy
24 (8), 901–916.

JOHLAS, H.M., MARTÍNEZ-TOSSAS, L.A., SCHMIDT, D.P., LACKNER, M.A. & CHURCHFIELD, M.J. 2019
Large eddy simulations of floating offshore wind turbine wakes with coupled platform motion. J. Phys.:
Conf. Ser. 1256 (1), 012018.

JOHNSON, W. 1980 Helicopter Theory. Princeton University Press.
JONKMAN, J. 2008 Influence of control on the pitch damping of a floating wind turbine. In 2008 ASME

Wind Energy Symposium Reno, NV, USA. NREL/CP-500-42589. American Institute of Aeronautics and
Astronautics.

KOO, J.-K. & JAMES, D.F. 1973 Fluid flow around and through a screen. J. Fluid Mech. 60 (3), 513–538.
VAN KUIK, G.A.M. The Lanchester–Betz–Joukowsky limit. Wind Energy 10 (3), 289–291.
LAMB, S.H. 1916 Hydrodynamics, 4th edn. University Press.
LARSEN, G.C. & HANSEN, K.S. 2014 Full-scale measurements of aerodynamic induction in a rotor plane.

J. Phys.: Conf. Ser. 555, 012063.
LARSEN, T.J. & HANSON, T.D. 2007 A method to avoid negative damped low frequent tower vibrations for a

floating, pitch controlled wind turbine. J. Phys.: Conf. Ser. 75, 012073.
LÓPEZ-QUEIJA, J., ROBLES, E., JUGO, J. & ALONSO-QUESADA, S. 2022 Review of control technologies

for floating offshore wind turbines. Renew. Sustain. Energy Rev. 167, 112787.
MANCINI, S., BOORSMA, K., CABONI, M., CORMIER, M., LUTZ, T., SCHITO, P. & ZASSO, A. 2020

Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion.
Wind Energy Sci. 5 (4), 1713–1730.

MANN, J., PEÑA, A., TROLDBORG, N. & ANDERSEN, S.J. 2018 How does turbulence change approaching
a rotor? Wind Energy Sci. 3 (1), 293–300.

MEDICI, D., IVANELL, S., DAHLBERG, J.-Å. & ALFREDSSON, P.H. 2011 The upstream flow of a wind
turbine: blockage effect. Wind Energy 14 (5), 691–697.

MEYER FORSTING, A., RATHMANN, O., VAN DER LAAN, M.P., TROLDBORG, N., GRIBBEN, B., HAWKES,
G. & BRANLARD, E. 2021 Verification of induction zone models for wind farm annual energy production
estimation. J. Phys.: Conf. Ser. 1934 (1), 012023.

MODARRESI, K. & KIRCHHOFF, R.H. 1979 The flow field upstream of a horizontal axis wind turbine. Tech.
Rep. Paper 10. University of Massachusetts Wind Energy Center.

SARMAST, S., SEGALINI, A., MIKKELSEN, R.F. & IVANELL, S. 2016 Comparison of the near-wake between
actuator-line simulations and a simplified vortex model of a horizontal-axis wind turbine. Wind Energy
19 (3), 471–481.

966 A30-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.454


Dynamics of turbines in unsteady inflow conditions

SIMLEY, E., ANGELOU, N., MIKKELSEN, T., SJÖHOLM, M., MANN, J. & PAO, L.Y. 2016 Characterization
of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars.
J. Renew. Sustain. Energy 8 (1), 013301.

STEIROS, K. & HULTMARK, M. 2018 Drag on flat plates of arbitrary porosity. J. Fluid Mech. 853, R3.
STEVENS, R.J.A.M. & MENEVEAU, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid

Mech. 49 (1), 311–339.
STROM, B., BRUNTON, S.L. & POLAGYE, B. 2017 Intracycle angular velocity control of cross-flow turbines.

Nat. Energy 2 (8), 17103.
TAYLOR, G.I. 1944 The aerodynamics of porous sheets. Tech. Rep. 2237. Aeronautical Research Council.
TRANTER, C.J. 1968 Bessel Functions with Some Physical Applications. Hart.
TROLDBORG, N. & MEYER FORSTING, A.R. 2017 A simple model of the wind turbine induction zone derived

from numerical simulations. Wind Energy 20 (12), 2011–2020.
DE VAAL, J.B., HANSEN, M.O.L. & MOAN, T. 2014 Effect of wind turbine surge motion on rotor thrust and

induced velocity. Wind Energy 17 (1), 105–121.
WAYMAN, E.N. 2006 Coupled dynamics and economic analysis of floating wind turbine systems. Thesis,

Massachusetts Institute of Technology, Cambridge, MA.
WEI, N.J. & DABIRI, J.O. 2022 Phase-averaged dynamics of a periodically surging wind turbine. J. Renew.

Sustain. Energy 14 (1), 013305.
WEN, B., TIAN, X., DONG, X., PENG, Z. & ZHANG, W. 2017 Influences of surge motion on the power and

thrust characteristics of an offshore floating wind turbine. Energy 141, 2054–2068.
WILSON, R.E. & LISSAMAN, P.B.S. 1974 Applied aerodynamics of wind power machines. Tech. Rep.

PB-238595. Oregon State University.
YU, W., TAVERNIER, D., FERREIRA, C., VAN KUIK, G.A.M. & SCHEPERS, G. 2019 New dynamic-inflow

engineering models based on linear and nonlinear actuator disc vortex models. Wind Energy 22 (11),
1433–1450.

966 A30-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.454

	1 Introduction
	2 Nonlinear dynamics of a periodically surging turbine
	2.1 A nonlinear model for turbine rotation rate and power extraction
	2.2 Modelling the relationship between turbine dynamics and upstream flow conditions
	2.3 A porous-disc induction model for a surging turbine
	2.4 On the problem of a stationary turbine in an oscillating inflow

	3 Experimental methods
	3.1 Experimental apparatus
	3.2 Experimental procedure
	3.3 Determination of model parameters from steady-flow measurements
	3.3.1 Power-curve parametrization and model integration
	3.3.2 Steady-flow induction data
	3.3.3 Wind-speed and pressure corrections


	4 Experimental results
	4.1 Power generation
	4.2 Upstream flow properties

	5 Further theoretical considerations
	5.1 Time-averaged power enhancements
	5.2 The role of unsteady flow physics
	5.2.1 Specifying velocity potentials for an unsteady extension to 1-D momentum theory
	5.2.2 Phase-plane analysis of a surging porous disc
	5.2.3 General velocity potentials and the effects of fore--aft asymmetry


	6 Conclusions
	Appendix A. Vortex-cylinder theory results
	Appendix B. Derivations from the unsteady theoretical analysis
	B.1 Porous-disc derivations
	B.2 Rotating actuator bodies

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


