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the principal part and depends on the solution and its gradient. The solution is constructed through an
approximating process based on gradient bounds and regularity up to the boundary. The positivity of
the solution is shown by applying a new comparison principle, which is established here.

Keywords: quasi-linear elliptic equation; (p, q)-Laplacian; convection term; positive solution;
approximation; comparison

2010 Mathematics subject classification: Primary 35J60
Secondary 35J92

1. Introduction

In this paper we study the existence of (positive) solutions for the following quasi-linear
elliptic equation with Dirichlet boundary condition:

−∆pu − µ∆qu = f(x, u,∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (P)

on a bounded domain Ω in R
N with a C1,α-boundary ∂Ω, for some 0 < α � 1. On the left-

hand side of the equation in (P) we have the p-Laplacian ∆p and the q-Laplacian ∆q with
1 < q < p < +∞, and a constant µ � 0. The problem covers the corresponding statement
with the p-Laplacian in the principal part, for which it is sufficient to take µ = 0. Here
−∆p is regarded as the operator −∆p : W 1,p

0 (Ω) → W−1,p′
(Ω), where 1/p + 1/p′ = 1,

defined by

〈−∆pu, v〉 =
∫

Ω

|∇u|p−2∇u∇v dx for all u, v ∈ W 1,p
0 (Ω).

c© 2014 The Edinburgh Mathematical Society 687

https://doi.org/10.1017/S0013091513000576 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000576


688 L. F. O. Faria, O. H. Miyagaki and D. Motreanu

The right-hand side of the equation in (P) is in the form of a convection term, meaning
a nonlinearity f(x, u,∇u) that depends on the point x in the domain Ω, on the solution
u and on its gradient ∇u. The essential feature of this paper is the dependence on the
gradient ∇u, which prevents the use of variational methods.

We assume that f : Ω × R × R
N → R is a continuous function satisfying the growth

condition:

(F) b0|t|r0 � f(x, t, ξ) � b1(1 + |t|r1 + |ξ|r2) for all (x, t, ξ) ∈ Ω×R×R
N , with constants

b0, b1 > 0, r1, r2 ∈ [0, p − 1), r0 ∈ [0, p − 1) if µ = 0 and r0 ∈ [0, q − 1) if µ > 0.

Since we are looking for positive solutions of problem (P), without any loss of generality
we will suppose in the following that f(x, t, s) ≡ 0 for all t � 0 and (x, s) ∈ Ω̄ × R

N .
The (p, q)-Laplacian problems have received much interest due to their rich mathemat-

ical substance and various applications in quantum physics, biophysics, plasma physics
and chemical reaction design (see, for example, [1, 7]). One of the main goals in the
study of such problems has been to show the existence of positive solutions. This has
only been achieved for (p, q)-Laplacian problems in the semilinear case, that is, when
the right-hand side of the equation in problem (P) does not depend on the gradient of
the solution. In such a case, the approach has relied on variational methods using the
variational structure of the semilinear equation (see, for example, [3,7,16]).

The existence of positive solutions for problems with the p-Laplacian (but not the (p, q)-
Laplacian) and a convection term, that is, the case where µ = 0 in (P), has been studied
in [15,17]. In these works the imposed hypotheses are different from (F), assuming among
other things that r0 > p − 1, which is a complementary condition to our requirement in
(F). The approach developed in these works was through fixed-point theorems in cones,
which is also different from ours.

To the best of our knowledge, this paper seems to be the first work dealing simulta-
neously with the (p, q)-Laplacian and the convection term. An important special case is
when we only have the p-Laplacian in the principal part of the elliptic equation, which
corresponds to the case µ = 0 in problem (P). Our main result is the following existence
theorem of positive solutions.

Theorem 1.1. Under (F), problem (P) admits a (positive) solution u ∈ C1
0 (Ω̄).

We recall that C1
0 (Ω̄) stands for the Banach space of functions u ∈ C1(Ω̄) vanishing on

∂Ω. The convection term means that problem (P) does not have a variational structure,
so it is not applicable for the variational methods. Here the existence of a solution to
problem (P) is established through an approximating process by means of a Schauder
basis, a priori estimates and passing to the limit. It is worth mentioning that these
steps in the proof are made in the presence of the (p, q)-Laplace operator and of another
nonlinearity depending on the solution and its gradient. In our argument an essential part
is played by the gradient bounds and the regularity of the solution up to the boundary,
for which we refer the reader to [9,10].

The fact that the solution obtained is positive is proven on the basis of a generalized
version of the strong maximum principle (see [14]). In this respect, we present here a
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new comparison principle stated as Theorem 2.2, which is the second main result of the
paper. This theorem is of independent interest, allowing comparison of a subsolution
and a supersolution for nonlinear elliptic problems whose principal part is −∆pu−µ∆qu

with µ � 0. In turn, our comparison principle is obtained from a slightly extended version
of [6, Lemma 2] (see also [5]). In order to show that the solution constructed in the proof
of Theorem 1.1 is positive, we apply our comparison principle to a suitable auxiliary
problem related to the growth condition in (F). Here we show that the assumptions of
Theorem 2.2 are satisfied with the aid of the Hopf boundary point lemma in the strong
maximum principle adapted to the operator −∆pu − µ∆qu.

The rest of the paper is organized as follows. Section 2 presents our comparison princi-
ple. Section 3 is devoted to the construction of approximate solutions. Section 4 contains
the proof of Theorem 1.1.

2. Comparison principle

The Sobolev space W 1,p
0 (Ω) with 1 < p < ∞ is endowed with the norm

‖u‖ =
( ∫

Ω

|∇u|p dx

)1/p

, u ∈ W 1,p
0 (Ω).

Throughout the paper, the solutions of the elliptic boundary-value problems are in the
weak sense.

The following result is a slightly extended version of [6, Lemma 2].

Lemma 2.1. Let w1, w2 ∈ L∞(Ω) satisfy wi � 0 almost everywhere (a.e.) in Ω,
w

1/q
i ∈ W 1,p(Ω), ∆pw

1/q
i ∈ L∞(Ω) for i = 1, 2 and w1 = w2 on ∂Ω, where 1 < q < p <

+∞. If w1/w2, w2/w1 ∈ L∞(Ω), then it holds that

∫
Ω

(
−∆pw

1/q
1 + µ∆qw

1/q
1

w
(q−1)/q
1

+
∆pw

1/q
2 + µ∆qw

1/q
2

w
(q−1)/q
2

)
(w1 − w2) dx � 0.

Proof. We introduce the functional J : L1(Ω) → R ∪ {+∞} by

J(u) =

⎧⎨
⎩

∫
Ω

|∇u1/q|p dx if u � 0 and u1/q ∈ W 1,p(Ω),

+∞ otherwise.

We claim that J is convex. To this end, let w1, w2 ∈ L1(Ω) satisfy w1, w2 � 0 and
w

1/q
1 , w

1/q
2 ∈ W 1,p(Ω). Hence, we have w

1/q
1 , w

1/q
2 ∈ W 1,q(Ω). It is shown in the proof

of [6, Lemma 1] that

|∇(tw1 + (1 − t)w2)1/q|q � t|∇w
1/q
1 |q + (1 − t)|∇w

1/q
2 |q for all t ∈ [0, 1].

Since 1 < q � p < +∞, the function s 
→ sp/q is convex on [0, +∞). Then the above
inequality implies that

|∇(tw1 + (1 − t)w2)1/q|p � t|∇w
1/q
1 |p + (1 − t)|∇w

1/q
2 |p for all t ∈ [0, 1].
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Therefore, the function J is convex. Now the monotonicity of the differential of J on
its domain, in conjunction with [6, Lemma 2] (note that µ � 0), ensures the desired
conclusion. �

Lemma 2.1 enables us to establish a comparison principle for a subsolution and a
supersolution of the Dirichlet problem

−∆pu − µ∆qu = g(u) in Ω,

u = 0 on ∂Ω,

}
(2.1)

where 1 < q < p < +∞, µ � 0 and g : R → R is a continuous function.
We recall that u1 ∈ W 1,p(Ω) is a subsolution of problem (2.1) if u1 � 0 a.e. on ∂Ω

and ∫
Ω

(|∇u1|p−2∇u1∇ϕ + µ|∇u1|q−2∇u1∇ϕ) dx �
∫

Ω

g(u1)ϕ dx

for all ϕ ∈ W 1,p
0 (Ω) with ϕ � 0 a.e. in Ω, while u2 ∈ W 1,p(Ω) is a supersolution of (2.1)

if the reversed inequalities are satisfied with u2 in place of u1 for all ϕ ∈ W 1,p
0 (Ω) with

ϕ � 0 a.e. in Ω.

Theorem 2.2. Let g : R → R be a continuous function such that t1−qg(t) is decreasing
for t > 0 if µ > 0, and t1−pg(t) is decreasing for t > 0 if µ = 0. Assume that u1 ∈
W 1,p

0 (Ω) and u2 ∈ W 1,p
0 (Ω) are a positive subsolution and a positive supersolution of

problem (2.1), respectively. If ui ∈ L∞(Ω) ∩ C1,α(Ω), ∆pui ∈ L∞(Ω), ui/uj ∈ L∞(Ω)
for i, j = 1, 2, then u2 � u1 in Ω.

Proof. We only give the proof for µ > 0, because the case µ = 0 can be handled
in the same way and is in fact simpler. Arguing by contradiction, suppose that the set
Ω0 = {x ∈ Ω : u1(x) > u2(x)} is non-empty. Let U be an open connected subset of
Ω0 such that u1 = u2 on ∂U . Using the fact that u1 and u2 are a subsolution and a
supersolution of problem (2.1), respectively, we derive that

uq−1
2 (∆pu1 + µ∆qu1) − uq−1

1 (∆pu2 + µ∆qu2) � g(u2)u
q−1
1 − g(u1)u

q−1
2

= uq−1
1 uq−1

2

(
g(u2)
uq−1

2

− g(u1)
uq−1

1

)
(2.2)

in Ω. Then the monotonicity assumption on g enables us to obtain

−∆pu2 + µ∆qu2

uq−1
2

+
∆pu1 + µ∆qu1

uq−1
1

� g(u2)
uq−1

2

− g(u1)
uq−1

1

> 0 in U. (2.3)

Since u1 > u2 in U , from (2.3) we infer that∫
U

(
−∆pu2 + µ∆qu2

uq−1
2

+
∆pu1 + µ∆qu1

uq−1
1

)
(uq

1 − uq
2) dx > 0. (2.4)

On the other hand, note that we can apply Lemma 2.1 with wi = uq
i , i = 1, 2, and

U in place of Ω. The conclusion obtained from the application of Lemma 2.1 with these
choices contradicts (2.4) in the case where U is non-empty. Consequently, Ω0 = ∅. This
completes the proof. �
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3. Approximate solutions

In order to prove Theorem 1.1, we approximate problem (P) with problems possessing
positive solutions that are uniformly bounded from below away from 0. Towards this
aim, for every ε > 0, we associate to (P) the following Dirichlet problem:

−∆pu − µ∆qu = f(x, u + ε, ∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (Pε)

In problem (Pε) the data Ω, p, q, µ and f satisfy the same conditions as in problem (P).

Theorem 3.1. Assume that condition (F) holds true. Then, for every ε > 0, the
approximate problem (Pε) has at least a (positive) solution u ∈ C1

0 (Ω̄).

Proof. Fix ε > 0 and let {e1, . . . , em, . . . } be a Schauder basis of W 1,p
0 (Ω) (see [2,

p. 146] and [4]). For each positive integer m, we set

Vm = span{e1, . . . , em}.

This is an m-dimensional vector subspace of W 1,p
0 (Ω) that we endow with the norm given

by

‖v‖m =
m∑

j=1

|ξj |, where v =
m∑

j=1

ξjej ∈ Vm.

Since the norms ‖ · ‖m and ‖ · ‖ on Vm are equivalent, there exist positive constants c(m)
and k(m) such that

c(m)‖v‖m � ‖v‖ � k(m)‖v‖m for all v ∈ Vm.

We identify the normed spaces (Vm, ‖ · ‖m) and (Rm, | · |s), where |ξ|s =
∑m

j=1 |ξj | for
ξ = (ξ1, . . . , ξm), by the isometric linear isomorphism

v =
m∑

j=1

ξjej ∈ Vm 
→ (ξ1, . . . , ξm) ∈ R
m.

Via this identification, we define the map T = (T1, . . . , Tm) : R
m → R

m by

Tj(ξ) =
∫

Ω

|∇v|p−2∇v∇ej dx + µ

∫
Ω

|∇v|q−2∇v∇ej dx −
∫

Ω

f(x, |v| + ε, ∇v)ej dx,

j = 1, . . . , m. (3.1)

We see that

〈T (ξ), ξ〉 =
∫

Ω

(|∇v|p + µ|∇v|q) dx −
∫

Ω

f(x, |v| + ε, ∇v)v dx for all ξ ∈ R
m. (3.2)
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Using assumption (F), we obtain∫
Ω

f(x, |v| + ε, ∇v)v dx � b1

∫
Ω

(1 + (|v| + ε)r1 + |∇v|r2)|v| dx. (3.3)

Let us estimate the terms on the right-hand side of (3.3). The Sobolev embedding theorem
yields ∫

Ω

|v| dx � c‖v‖

and ∫
Ω

(|v| + ε)r1 |v| dx � c(‖v‖r1+1 + ‖v‖),

with a constant c > 0. By the Hölder inequality we have∫
Ω

|∇v|r2v dx �
( ∫

Ω

|∇v|p dx

)r2/p( ∫
Ω

|v|p/(p−r2) dx

)(p−r2)/p

.

We note that p/(p − r2) < p. Then the Sobolev embedding theorem ensures that∫
Ω

|∇v|r2v dx � c‖v‖r2+1,

with a constant c > 0. Gathering the above inequalities leads to∫
Ω

f(x, |v| + ε, ∇v)v dx � c(‖v‖ + ‖v‖r1+1 + ‖v‖r2+1). (3.4)

Now, combining (3.2) and (3.4) entails

〈T (ξ), ξ〉 � ‖v‖p − c(‖v‖ + ‖v‖r1+1 + ‖v‖r2+1)

� C1(m)|ξ|ps − C2(m)(|ξ|s + |ξ|r1+1
s + |ξ|r2+1

s ),

with constants C1(m), C2(m) > 0. Then, we derive that for every r > 0 it holds that

〈T (ξ), ξ〉 � r whenever |ξ|s = ρm,

provided ρm > 0 is sufficiently large. This is true because r1 + 1, r2 + 1 < p, as supposed
in (F). By a well-known consequence of Brouwer’s fixed-point theorem, it follows that
there exists ξm ∈ R

m such that

T (ξm) = 0 and |ξm|s � ρm.

Consequently, through the isometric identification between (Rm, | · |s) and (Vm, ‖ · ‖m)
and also invoking (3.1), we can find um ∈ Vm, with ‖um‖m � ρm, satisfying∫

Ω

(|∇um|p−2∇um + µ|∇um|q−2∇um)∇v dx =
∫

Ω

f(x, |um| + ε, ∇um)v dx (3.5)

for all v ∈ Vm.
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The main step in the proof is to show that a subsequence of {um} is strongly convergent
in W 1,p

0 (Ω). To this end, substituting v = um into (3.5) and using (3.4) yields

‖um‖p � c(‖um‖ + ‖um‖r1+1 + ‖um‖r2+1), (3.6)

where the constant c > 0 is independent of m. Since r1 + 1, r2 + 1 < p, it turns out
from (3.6) that the sequence {um} is bounded in W 1,p

0 (Ω). Therefore, along a relabelled
subsequence, we can assume that

um ⇀ u in W 1,p
0 (Ω) and um(x) → u(x) for a.e. in Ω as m → ∞, (3.7)

with some u ∈ W 1,p
0 (Ω).

We claim that
um → u in W 1,p

0 (Ω) as m → ∞. (3.8)

Using the fact that {e1, . . . , em, . . . } is a Schauder basis of W 1,p
0 (Ω), u can be uniquely

expressed as the sum of a series
∑

n�1 αnen in W 1,p
0 (Ω), with a sequence {αn}n�1 in R,

so

wm :=
m∑

j=1

αjei → u in W 1,p
0 (Ω) as m → ∞. (3.9)

Since um, wm ∈ Vm, we can substitute v = um − wm into (3.5), which gives

∫
Ω

(|∇um|p−2∇um + µ|∇um|q−2∇um)∇(um − wm) dx

=
∫

Ω

f(x, |um| + ε, ∇um)(um − wm) dx. (3.10)

By (3.7), (3.9) and hypothesis (F), the Lebesgue dominated convergence theorem leads
to

lim
m→∞

∫
Ω

f(x, |um| + ε, ∇um)(um − wm) dx = 0 (3.11)

and

lim
m→∞

∫
Ω

(|∇um|p−2∇um + µ|∇um|q−2∇um)∇(u − wm) dx = 0. (3.12)

Then (3.9)–(3.12) imply that

lim
m→∞

∫
Ω

|∇um|p−2∇um∇(um − u) dx = 0.

Now it is sufficient to apply the (S+)-property of −∆p (see, for example, [13, Proposi-
tion 3.5]) to obtain (3.8).

Fix k � 1 and v ∈ Vk. For each m � k, we know from (3.5) that∫
Ω

(|∇um|p−2∇um + µ|∇um|q−2∇um)∇v dx =
∫

Ω

f(x, |um| + ε, ∇um)v dx.
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Letting m → ∞, on account of (3.8) we arrive at
∫

Ω

(|∇u|p−2∇u + µ|∇u|q−2∇u)∇v dx =
∫

Ω

f(x, |u| + ε, ∇u)v dx. (3.13)

As k is arbitrary, we see that (3.13) is valid for every v ∈
⋃

k�1 Vk. Actually, (3.13) holds
true for every v ∈ W 1,p

0 (Ω) because
⋃

k�1 Vk is dense in W 1,p
0 (Ω). Then we may test

(3.13) with v = −u− = − max{−u, 0}, which yields
∫

Ω

(|∇u−|p + µ|∇u−|q) dx = −
∫

Ω

f(x, |u| + ε, ∇u)u− dx. (3.14)

By assumption (F), we see that f � 0. Hence, (3.14) shows that u � 0 in Ω. This and
(3.13) show that u is a weak solution of the equation in (Pε).

The first inequality in hypothesis (F) and the equation in (Pε) guarantee that u 
= 0.
Here the presence of ε > 0 is needed. Next, we observe that hypothesis (F) allows us
to refer to [8, Theorem 7.1], from which we infer that u ∈ L∞(Ω). Furthermore, the
regularity result up to the boundary in [9, Theorem 1] and [10, p. 320] ensures that
u ∈ C1,β(Ω̄) with some β ∈ (0, 1). We also note that we may apply the strong maximum
principle in [14, Theorem 5.4.1] (see also [12, Theorem B]) by taking therein the function
A(t) = tp−2 + µtq−2 for t > 0. Indeed, we find that

c := lim
t→0+

tA′(t)
A(t)

=

{
q − 2 if µ > 0,

p − 2 if µ = 0
(3.15)

is strictly bigger than −1 because p � q > 1. Thus hypothesis (5.4.3) in [14, Theo-
rem 5.4.1] is satisfied. In addition, with the constant c in (3.15), we obtain

2 + c + 2
√

1 + c

|c| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q + 2
√

q − 1
|q − 2| if µ > 0, q 
= 2,

p + 2
√

p − 1
|p − 2| if µ = 0, p 
= 2,

which is strictly bigger than 1. Therefore, hypothesis (5.4.4) in [14, Theorem 5.4.1] is
also satisfied because, using the notation therein, in our setting we have Λ(t) = λ(t) ≡ 1
for all t � 0. We are thus in a position to apply [14, Theorem 5.4.1], concluding that
u > 0 in Ω because we know that u � 0 but u 
= 0; thus, u is a solution of problem (Pε).
This completes the proof. �

4. Proof of Theorem 1.1

We start with an auxiliary result that is useful in conjunction with our comparison
principle in Theorem 2.2 and hypothesis (F).
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Lemma 4.1. Let 1 < q < p < +∞ and µ � 0. For any constants b > 0 and
0 < r < p − 1, with 0 < r < q − 1 if µ > 0, the problem

−∆pu − µ∆qu = bur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (4.1)

admits a solution u0 ∈ C1
0 (Ω̄).

Proof. Given the constants b > 0 and 0 < r < q − 1, we define the functional
I : W 1,p

0 (Ω) → R by

I(u) =
1
p

∫
Ω

|∇u|p dx +
µ

q

∫
Ω

|∇u|q dx − b

r + 1

∫
Ω

(u+)r+1 dx for all u ∈ W 1,p
0 (Ω),

where u+ = max{0, u}. Note that I is of class C1. By using the Sobolev embedding
theorem, we have the estimate

I(u) � 1
p
‖u‖p − c‖u‖r+1 for all u ∈ W 1,p

0 (Ω),

with a constant c > 0. Since p > r + 1, I is bounded from below and coercive. Taking
into account that the first two terms in the expression of I are convex and continuous on
W 1,p

0 (Ω) and that the embedding of W 1,p
0 (Ω) into Lr+1(Ω) is compact, we infer that I

is sequentially weakly lower semicontinuous. Therefore, there exists u0 ∈ W 1,p
0 (Ω) such

that
I(u0) = inf

u∈W 1,p
0 (Ω)

I(u)

(see, for example, [11, Theorems 1.1, 1.2]). Hence, u0 is a critical point of I that reads
as ∫

Ω

|∇u0|p−2∇u0∇v dx + µ

∫
Ω

|∇u0|q−2∇u0∇v dx = b

∫
Ω

(u+
0 )rv dx (4.2)

for all v ∈ W 1,p
0 (Ω). Applying to (4.2) the regularity up to the boundary in [9, Theorem 1]

and [10, p. 320] shows that u0 ∈ C1,β(Ω̄) with some β ∈ (0, 1).
It remains to justify that u0 > 0. Inserting v = −u−

0 = − max{0,−u0} into (4.2) leads
to u−

0 = 0, so u0 � 0 in Ω. We observe that the condition 0 < r < q − 1 ensures that
I(tu) < 0, provided u 
= 0 and t > 0 is sufficiently small, which implies that u0 
= 0.
Finally, as in the proof of Theorem 2.2, we can verify that the strong maximum principle
in [14, Theorem 5.4.1] applies in the case of equation (4.2). At this point we need to have
0 < r < q −1 if µ > 0. We conclude that u0 > 0 in Ω, so u0 is a solution of problem (4.1)
and belongs to C1

0 (Ω̄). The case where µ = 0 can be handled in the same way. �

We proceed with the proof of Theorem 1.1. For every ε ∈ (0, 1), Theorem 3.1 provides
a solution uε ∈ C1

0 (Ω̄) of problem (Pε). This allows us to obtain∫
Ω

(|∇uε|p + µ|∇uε|q) dx =
∫

Ω

f(x, uε + ε, ∇uε)uε dx.
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Then, through hypothesis (F) and reasoning as in the proof of Theorem 3.1, we derive
the estimate

‖uε‖p � C(‖uε‖ + ‖uε‖r1+1 + ‖uε‖r2+1),

with a constant C > 0 that is independent of ε. The latter is the consequence of the fact
that we argue with ε in a bounded set, namely ε ∈ (0, 1). Since 1, r1 + 1, r2 + 1 < p, we
infer that

‖uε‖ � C0 (4.3)

for a constant C0 > 0 independent of ε.
In view of (4.3), we can argue as for (3.8), to find a sequence εn → 0+ such that the

corresponding sequence {un = uεn} is strongly convergent:

un → u in W 1,p
0 (Ω) as n → ∞, (4.4)

with some u ∈ W 1,p
0 (Ω). Then, from (4.4) and the fact that un solves (Pεn

), it is straight-
forward to infer that u is a solution of the equation

−∆pu − µ∆qu = f(x, u,∇u) in Ω,

u = 0 on ∂Ω.

The regularity up to the boundary in [9, Theorem 1] and [10, p. 320] ensures that
u ∈ C1,β(Ω̄) with some β ∈ (0, 1). In order to complete the proof, we have to prove that
u > 0 in Ω. Since at this point we cannot guarantee that u is non-trivial, we develop a
comparison argument.

Lemma 4.1 with b = b0 and r = r0 ensures the existence of a solution u ∈ C1
0 (Ω̄) to

the problem
−∆pu − µ∆qu = b0u

r0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (4.5)

The positive constants b0 and r0 are those in hypothesis (F). In the following, the solu-
tion u of problem (4.5) will be regarded as a subsolution of (4.5). Let us observe that
hypothesis (F) implies that uε is a supersolution of problem (4.5) for each ε ∈ (0, 1).

Now we apply the comparison principle in Theorem 2.2 to problem (4.5), that is, with
the function g(t) = b0t

r0 for t > 0, and by taking the subsolution u1 = u and the
supersolution u2 = uε. Complying with assumption (F), if µ > 0, the function t1−qg(t) is
decreasing for t > 0 because r0 < q − 1, and if µ = 0, the function t1−pg(t) is decreasing
for t > 0 because r0 < p − 1. We emphasize that in order to apply Theorem 2.2 the
information from Theorem 3.1 that uε > 0 in Ω is essential.

In order to apply Theorem 2.2 we also need to check that
uε

u
,

u

uε
∈ L∞(Ω).

To this end it suffices to show that whenever x → x0 ∈ ∂Ω with x ∈ Ω, one has

max
{

lim sup
x→x0

u(x)
uε(x)

, lim sup
x→x0

uε(x)
u(x)

}
< +∞. (4.6)
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The property stated in (4.6) will be established on the basis of the Hopf boundary point
lemma in the strong maximum principle for both Dirichlet problems (4.5) and (Pε) with
corresponding solutions u and uε, which means having

∂u

∂ν
(x0) < 0,

∂uε

∂ν
(x0) < 0 for all x0 ∈ ∂Ω, (4.7)

where ν denotes the exterior normal unit vector to ∂Ω. The Hopf boundary point lemma
holds true for problems (4.5) and (Pε) by virtue of [14, Theorem 5.5.1], where all the
required conditions are satisfied. In this respect, conditions (5.4.3) and (5.4.4) in [14,
Theorem 5.5.1] need to be satisfied. In the proof of Theorem 3.1 these conditions have
already been shown to be true by arguing with the function A(t) = tp−1 + µtq−1, t > 0.
At this point, recalling that uε, u ∈ C1(Ω̄), it is clear from l’Hôpital’s theorem and (4.7)
that the property in (4.6) is satisfied. Therefore, Theorem 2.2 allows the comparison of
the solution u (regarded as a subsolution) of (4.5) with the supersolution uε of (4.5),
implying that

uε(x) � u(x) > 0 for all x ∈ Ω and ε ∈ (0, 1). (4.8)

Using (4.4), we can pass to the limit in (4.8) along a sequence εn → 0. This leads
to u(x) � u(x) > 0 for all x ∈ Ω, so u is a solution of problem (P). The proof is thus
complete.
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