
1 Linear Operators and Matrices

We begin our disussion by presenting several facts about the natural transformations

between vector spaces and their representations, i.e., matrices. These form the

foundation for our study of numerical linear algebra. Herein, we will set in place

much of our notation, especially for matrices, that will be used not just for Part I

but for the entirety of the book. Every student using this text should master the

material from Appendix A and this chapter before moving on. The book by Horn

and Johnson [44] is an excellent external reference.

Why is linear algebra so important to numerical analysis? That is a fair question.

The answer is that many algorithms in numerical analysis — for a broad range of

problem types, interpolation, approximation of functions, approximating solutions

to differential or integral equations — require, at some stage in the algorithm, the

investigation of a system of linear equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = f1,

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = f2,

...

am,1x1 + am,2x2 + · · ·+ am,nxn = fm.

Many algorithms will require the solution of such systems. Others, by contrast, may

need some or all of the eigenvalues or singular values of the associated coefficient

matrix for the system.

Before we jump into the topic of how to practically solve such a system of

equations, which we will cover in Chapter 3 — or how to compute singular values

(Chapter 2) and/or eigenvalues (Chapter 8) of the coefficient matrix — we need

to understand the properties of such systems. This will be the topic of this chapter.

Let us get started.

1.1 Linear Operators and Matrices

We study the natural mappings between vector spaces, i.e., those that preserve

the vector space structure.

Definition 1.1 (linear operator). Let V and W be complex vector spaces. The

mapping A : V→W is called a linear operator if and only if

A(αx + βy) = αAx + βAy, ∀α, β ∈ C, ∀x, y ∈ V.
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4 Linear Operators and Matrices

The set of all linear operators from V to W is denoted by L(V,W). For simplicity,

we denote by L(V) the set of linear operators from V to itself. Suppose that

A,B ∈ L(V,W) and α, β ∈ C are arbitrary. We define, in a natural way, the object

αA+ βB via

(αA+ βB)x = αAx + βBx, ∀x ∈ V.

It is straightforward to prove that αA + βB is a linear operator and we get the

following result.

Proposition 1.2 (properties of L(V,W)). Let V andW be complex vector spaces.

The set L(V,W) is a vector space using the natural definitions of addition and

scalar multiplication given in the last definition. If dim(V) = m and dim(W) = n,

then dim(L(V,W)) = mn.

Proof. See Problem 1.2.

Definition 1.3 (m × n matrices). Let K be a field. We define, for any m, n ∈ N,

Km×n = {A = [ai ,j ] | ai ,j ∈ K, i = 1, . . . , m, j = 1, . . . , n} .

The object A is called a matrix and the elements ai ,j ∈ K are called its components

or entries. We call Cm×n the set of complex m × n matrices and Rm×n the set

of real m × n matrices.

To extract the entry in the ith row and jth column of the m×n matrix A ∈ Km×n,

we use the notation

[A]i ,j = ai ,j ∈ K.

The convention is that the entries of a matrix are denoted by the respective

lowercase roman symbol. For example, the matrix C has entries ci ,j . We often

make this identification explicit, as in writing A = [ai ,j ] ∈ Cm×n. We say that there

are m rows and n columns in an m× n matrix A. We naturally define m× n matrix

addition and scalar multiplication component-wise via

[A + B]i ,j = ai ,j + bi ,j , [αA]i ,j = αai ,j , i = 1, . . . , m, j = 1, . . . , n,

where A,B ∈ Km×n are arbitrary m× n matrices and α ∈ K is an arbitrary scalar.

Proposition 1.4 (Km×n is a vector space). With addition and scalar multiplication

defined as above, Km×n is a vector space over K and dim(Km×n) = m · n.

Proof. See Problem 1.3.

Of course, the reader will remember that matrices can be combined in more

exotic ways.

Definition 1.5 (matrix product). Let A = [ai ,k ] ∈ Km×p and B = [bk,j ] ∈ Kp×n.

The matrix product C = AB is a matrix in Km×n whose entries are computed

according to the formula

[C]i ,j = ci ,j =

p∑
k=1

ai ,kbk,j , i = 1, . . . , m, j = 1, . . . , n.
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1.1 Linear Operators and Matrices 5

Next, we define a matrix–vector product, which, the reader will see, is similar to

the last definition.

Definition 1.6 (matrix–vector product). Suppose that x = [xs ] ∈ Kn and A =

[ak,s ] ∈ Km×n. Then the matrix–vector product y = Ax is a vector in Km whose

components are computed via the formula

[y ]k = yk =

n∑
s=1

ak,sxs , k = 1, . . . , m.

Remark 1.7 (identification). Suppose that A ∈ Cm×n. Then the (canonical)

mapping A : Cn → Cm defined by y = Ax — where x ∈ Cn, so that the matrix–

vector product y is in Cm — is linear. Mimicking the identification process outlined

in Theorem A.24, we can also identify L(Cn,Cm) with the space Cm×n of matrices

having m rows and n columns of complex entries. This says that all linear mappings

from Cn to Cm are, essentially, matrices. This result can be generalized to identify

L(Kn,Km) with Km×n for a generic field K.

Remark 1.8 (notation). It will be helpful from this point on to always view Ck as a

vector space of column k-vectors, i.e., Ck×1. When we consider x ∈ Ck , we think

x =

 |x
|

 =

x1

...

xk

 .
Upon introducing the transpose operation ·ᵀ : Ck×1 → C1×k as mapping column

k-vectors to row k-vectors, we will often express x ∈ Ck inline as x = [x1, . . . , xk ]ᵀ,

i.e., as the transpose of a row vector. In a related way, given a matrix A ∈ Cm×n we

commonly wish to represent it in a column-wise format (as a collection of column

vectors) via

A =

 | |
c1 · · · cn
| |

 , c j ∈ Cm, j = 1, . . . , n,

or in a row-wise format (as a collection of row vectors) via

A =

− rᵀ1 −
...

− rᵀm −

 , r i ∈ Cn, i = 1, . . . , m.

As a further shorthand, we will often write (inline) A = [c1, . . . , cn] and A =

[r1, . . . , rm]ᵀ. It is important to notice that if we view the matrix A in column-wise

format, then the matrix–vector product y = Ax ∈ Cm is precisely

y =

n∑
k=1

xkck .

In other words, the column vector y is a linear combination of the columns of A.
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6 Linear Operators and Matrices

Thinking about A ∈ Cm×n as a mapping from Cn to Cm, the following definitions

are natural.

Definition 1.9 (range and kernel). Let A ∈ Cm×n. The image (or range) of A is

defined as

im(A) = R(A) = {y ∈ Cm | ∃ x ∈ Cn, y = Ax} ⊆ Cm.

The kernel (or null space) of A is

ker(A) = N (A) = {x ∈ Cn | Ax = 0} ⊆ Cn.

Definition 1.10 (row and column space). Suppose that the matrix A ∈ Cm×n is

expressed column-wise as A = [c1, . . . , cn] and row-wise as A = [r1, . . . , rm]ᵀ. The

row space of A is

row(A) = span({r1, . . . , rm}) ≤ Cn

and the column space of A is

col(A) = span({c1, . . . , cn}) ≤ Cm.

The row rank of A is the dimension of row(A); similarly, the column rank is the

dimension of col(A).

A very important result in linear algebra states that the row and column ranks

coincide. For a proof, see, for example, [44].

Theorem 1.11 (row and column rank). Suppose that A ∈ Cm×n. The row and

column ranks of A are equal.

Since this is an important invariant between the domain and range of an operator,

we give it a name.

Definition 1.12 (rank). The rank of a matrix A ∈ Cm×n is the dimension of its

row/column space. We denote it by the symbol rank(A).

Theorem 1.13 (range and column space). Let A ∈ Cm×n be represented column-

wise as A = [c1, . . . , cn]. Then

im(A) = span({c1, . . . , cn}) = col(A).

In other words, the range of A coincides with its column space.

Proof. (⊆) Let y ∈ im(A) ⊆ Cm. Then, by definition, there is an x ∈ Cn for which

y = Ax , or

y =

n∑
k=1

xkck ,

which implies that y ∈ col(A).

(⊇) On the other hand, if y ∈ col(A), this implies that there are αi ∈ C,

i = 1, . . . , n such that

y =

n∑
i=1

αic i .
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1.1 Linear Operators and Matrices 7

Define x = [α1, . . . , αn]ᵀ ∈ Cn. The previous identity shows that y = Ax , so that

y ∈ im(A).

Corollary 1.14 (range and rank). For any A ∈ Cm×n,

dim(im(A)) = rank(A).

Definition 1.15 (nullity). Suppose that A ∈ Cm×n. The nullity of A is the

dimension of ker(A):

nullity(A) = dim(ker(A)).

Theorem 1.16 (properties of the rank). Let A ∈ Cm×n. Then

1. rank(A) ≤ min{m, n}.
2. rank(A) + nullity(A) = n.

3. For any B ∈ Cn×p, we have rank(AB) ≥ rank(A) + rank(B)− n.

4. For any C ∈ Cm×m with rank(C) = m and any B ∈ Cn×n with rank(B) = n, it

holds that

rank(CA) = rank(A) = rank(AB).

5. rank(AB) ≤ min{rank(A), rank(B)}.
6. rank(A + B) ≤ rank(A) + rank(B).

Proof. Some of these are given as exercises. Otherwise, see, for example, [44].

Definition 1.17 (adjoint). Suppose that (V, ( · , · )V) and (W, ( · , · )W) are inner

product spaces over C. Let A ∈ L(V,W). The adjoint of A is a linear operator

A∗ ∈ L(W,V) that satisfies

(Ax, y)W = (x, A∗y)V, ∀x ∈ V, y ∈W.

A linear operator A ∈ L(V) = L(V,V) is called self-adjoint if and only if A = A∗.

For matrices, the adjoint has a familiar definition.

Definition 1.18 (matrix adjoint, conjugate transpose). Let A = [ai ,j ] ∈ Cm×n.

The matrix adjoint (or conjugate transpose) of A is the matrix AH ∈ Cn×m with

entries [
AH
]
i ,j

= āj,i .

The transpose of A is the matrix Aᵀ ∈ Cn×m with entries

[Aᵀ]i ,j = aj,i .

A matrix A ∈ Cn×n is called Hermitian1 if and only if A = AH. A is called skew-

Hermitian if and only if A = −AH. A matrix A ∈ Rn×n is called symmetric if and

only if A = Aᵀ and skew-symmetric if A = −Aᵀ.

Simple calculations yield the following results.

1 Named in honor of the French mathematician Charles Hermite (1822–1901).
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8 Linear Operators and Matrices

Proposition 1.19 (properties of matrix adjoints). Let A ∈ Cm×p and B ∈ Cp×n.

Then (AB)H = BHAH and (AH)H = A.

Proof. See Problem 1.8.

Remark 1.20 (notation). Observe that, above, we have naturally extended the

domain of definition of the operator ·ᵀ. Let x = [x1, . . . , xn]ᵀ ∈ Cn. The conjugate

transpose of x is defined as the row vector xH = [x̄1, . . . , x̄n]. This conforms to

the definition above, provided that we view any column n-vector as a matrix with n

rows and one column. A direct computation shows that (xH)H = x for all x ∈ Cn.

Moreover, upon identifying C1×1 with C, if x , y ∈ Cm,

(x , y)`2(Cm) = (x , y)2 = yHx = xHy = (y , x)2 = (y , x)`2(Cm).

Furthermore, if A ∈ Cm×n, x ∈ Cn and y ∈ Cm, then it follows that

(Ax , y)`2(Cm) = yHAx =
(
AHy

)H
x = (x ,AHy)`2(Cn),

where ( · , · )`2(Cm) is the Euclidean inner product on Cm. For any x ∈ Rn, xH = xᵀ,

and for A ∈ Rm×n, the conjugate transpose coincides with the transpose, Aᵀ.

Theorem 1.21 (properties of the conjugate transpose). Let A ∈ Cm×n. Then

1. rank(A) = rank(AH) = rank(Aᵀ).

2. ker(A) = im(AH)⊥.

3. im(A)⊥ = ker(AH).

Proof. We prove the second result and leave the first and last to exercises; see

Problem 1.10.

(⊆) Let x ∈ ker(A). By definition, Ax = 0 ∈ Cm. Let z ∈ im(AH), i.e., ∃y ∈ Cm
for which z = AHy . Now compute

(z , x)2 = (AHy , x)2 = (y ,Ax)2 = 0,

which shows that x ∈ im(AH)⊥.

(⊇) Conversely, if x ∈ im(AH)⊥, then 0 = (x ,AHy)2 = (Ax , y)2 for every

y ∈ Cm. Thus, Ax = 0.

Definition 1.22 (identity). The matrix In ∈ Cn×n, defined by

[In]i ,j = δi ,j ,

is known as the matrix identity of order n.

Definition 1.23 (inverse). Let A ∈ Cn×n. If there is B ∈ Cn×n such that AB =

BA = In, then we say that A is invertible and call the matrix B an inverse of A.

In light of Problem 1.13, we denote the inverse of A by A−1.

Theorem 1.24 (properties of the inverse). Let A ∈ Cn×n. Then A is invertible if

and only if rank(A) = n. Moreover, if A is invertible,

1. A−1 is invertible and (A−1)−1 = A.
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1.2 Matrix Norms 9

2. AH is invertible and (AH)−1 = (A−1)H. In this case, we write

A−H = (AH)−1.

3. Aᵀ is invertible and (Aᵀ)−1 = (A−1)ᵀ. In this case, we write

A−ᵀ = (Aᵀ)−1.

4. For all α ∈ C? = C\{0}, αA is invertible and (αA)−1 = 1
αA
−1.

5. If B ∈ Cn×n is also invertible, then the product AB is invertible and (AB)−1 =

B−1A−1.

Proof. See Problem 1.14.

Definition 1.25 (unitary matrices). Let A ∈ Rm×m. We say that A is orthogonal

if and only if A−1 = Aᵀ. Similarly, for A ∈ Cm×m, we say that A is unitary if and

only if AH = A−1.

1.2 Matrix Norms

Since, for any two vector spaces V andW, the set L(V,W) is a vector space itself,

we can think of ways of norming it. An immediate way of doing so is by simply

considering elements of Cm×n as a collection of mn numbers, i.e., by identifying

Cm×n with Cm·n.

Definition 1.26 (Frobenius norm2). Let A = [ai ,j ] ∈ Cm×n. The Frobenius norm

is defined via

‖A‖2
F =

m∑
i=1

n∑
j=1

|ai ,j |2.

Definition 1.27 (max norm). The matrix max norm is defined via

‖A‖max = max
1≤i≤m
1≤j≤n

|ai ,j |

for all A = [ai ,j ] ∈ Cm×n.

However, it turns out that it is often more useful when the norms on L(V,W)

are, in a sense, compatible with those of V and W.

Definition 1.28 (induced norm). Let (V, ‖ · ‖V) and (W, ‖ · ‖W) be complex, finite-

dimensional normed vector spaces. The induced norm on L(V,W) is

‖A‖L(V,W) = sup
x∈V?

‖Ax‖W
‖x‖V

, ∀A ∈ L(V,W),

where V? = V\{0}. When V =W it is understood that ‖ · ‖V = ‖ · ‖W as well.

2 Named in honor of the German mathematician Ferdinand Georg Frobenius (1849–1917).
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10 Linear Operators and Matrices

Remark 1.29 (convention). Regarding the last point, in our presentation, the

following object would not define an induced matrix norm:

‖A‖L(`p(Cn),`q(Cn)) = sup
x∈Cn?

‖Ax‖`q(Cn)

‖x‖`p(Cn)
, ∀A ∈ Cn×n

for p 6= q. While this definition is meaningful for every p, q ∈ [1,∞], and it indeed

defines a norm, we will only consider it to be an induced norm for p = q.

Definition 1.30 (matrix p-norm). Let A ∈ Cm×n be given and p ∈ [1,∞]. The

induced L(`p(Cn), `p(Cm)) norm, called simply the induced matrix p-norm, is

denoted ‖A‖p and is defined as

‖A‖p = sup
x∈Cn?

‖Ax‖`p(Cm)

‖x‖`p(Cn)

.

Proposition 1.31 (matrix 1-norm). Let A = [ai ,j ] = [ai ,j ] = [c1, . . . , cn] ∈ Cm×n
be arbitrary. The induced matrix 1-norm, which is, by definition,

‖A‖1 = sup
x∈Cn?

‖Ax‖`1(Cm)

‖x‖`1(Cn)

,

may be calculated via the following formula:

‖A‖1 =
n

max
j=1

(
m∑
i=1

|ai ,j |

)
.

Proof. Given any x = [x1, . . . , xn]ᵀ ∈ Cn,

‖Ax‖`1(Cm) =

∥∥∥∥∥∥
n∑
j=1

xjc j

∥∥∥∥∥∥
`1(Cm)

≤
n∑
j=1

|xj |‖c j‖`1(Cm)

≤ n
max
j=1
‖c j‖`1(Cm)

n∑
j=1

|xj |

=
n

max
j=1
‖c j‖`1(Cm)‖x‖`1(Cn).

This shows that

‖A‖1 ≤
n

max
j=1
‖c j‖`1(Cm) =

n
max
j=1

(
m∑
i=1

|ai ,j |

)
.

On the other hand, there must be an index j0 where the maximum in the previous

inequality is attained. Choose x = e j0 , the j0th canonical basis vector, and notice

then that

‖Ax‖`1(Cm) = ‖c j0‖`1(Cm).
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1.2 Matrix Norms 11

It is not difficult to see that the supremum in the definition of induced norm

is attained at this vector. This implies that the norm is the maximum absolute

column sum, i.e.,

‖A‖1 =
n

max
j=1

(
m∑
i=1

|ai ,j |

)
.

Definition 1.32 (sub-multiplicativity). Suppose that ‖ · ‖ : Cn×n → R is a matrix

norm, i.e., a norm on the vector space L(Cn). We say that the norm is sub-

multiplicative if and only if

‖AB‖ ≤ ‖A‖ ‖B‖ , ∀A,B ∈ Cn×n.

Definition 1.33 (consistency). Suppose that ‖ · ‖Cn : Cn → R and ‖ · ‖Cm : Cm →
R are norms, and ‖ · ‖ : Cm×n → R is a matrix norm. We say that ‖ · ‖ is consistent

with respect to the norms ‖ · ‖Cn and ‖ · ‖Cm if and only if

‖Ax‖Cm ≤ ‖A‖ ‖x‖Cn

for all A ∈ Cm×n and x ∈ Cn.

Proposition 1.34 (property of induced norms). Suppose that ‖ · ‖Cn : Cn → R is

a norm on Cn and ‖ · ‖ : Cn×n → R is the induced matrix norm

‖A‖ = sup
x∈Cn?

‖Ax‖Cn
‖x‖Cn

, ∀A ∈ Cn×n.

Then ‖ · ‖ is a sub-multiplicative norm, and it is consistent with respect to ‖ · ‖Cn .

Proof. See Problem 1.27.

Example 1.1 Let A ∈ C1×n, i.e., A = aH for some a ∈ Cn. Then Ax = (x , a)2,

so that

|Ax | = |(x , a)2| ≤ ‖x‖2‖a‖2.

In addition,

|Aa| = |(a, a)2| = ‖a‖2
2,

from which we may conclude that ‖A‖2 = ‖a‖2. This matrix A : Cn → C is a

prototype of an object called a linear functional.

Proposition 1.35 (norm of a unitary matrix). Let A ∈ Cm×n be arbitrary and

Q ∈ Cm×m be unitary. Then we have

‖QA‖2 = ‖A‖2.

Proof. Recall that, owing to Problem 1.16, for any unitary matrix we have ‖Qx‖2 =

‖x‖2. The result follows from this fact.
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12 Linear Operators and Matrices

1.3 Eigenvalues and Spectral Decomposition

As a final topic in this chapter we discuss eigenvalues and spectral decomposition

of square matrices. We begin with a definition.

Definition 1.36 (spectrum). Let A ∈ Cn×n. We say that λ ∈ C is an eigenvalue

of A if and only if there exists a vector x ∈ Cn? = Cn\{0} such that

Ax = λx .

This vector is called an eigenvector of A associated with λ. The spectrum of A,

denoted by σ(A), is the collection of all eigenvalues of A. The pair (λ, x) is called

an eigenpair of A.

Theorem 1.37 (properties of the spectrum). Let A ∈ Cn×n. Then

1. λ ∈ σ(A) if and only if λ̄ ∈ σ(AH).

2. A is invertible if and only if 0 6∈ σ(A).

3. The eigenvectors corresponding to distinct eigenvalues are linearly independent.

4. λ ∈ σ(A) if and only if χA(λ) = 0, where χA is a polynomial of degree n, defined

via

χA(λ) = det(λIn − A).

χA is called the characteristic polynomial.

5. There are at most n distinct complex-valued eigenvalues of A.

Proof. See Problem 1.28.

Since we are dealing with matrices with complex entries, the fundamental

theorem of algebra (see [18, Section 2.8]) implies that the characteristic polynomial

can be written as a product of factors, i.e.,

χA(λ) =

L∏
i=1

(λ− λi)mi (1.1)

with n =
∑L

i=1mi .

Definition 1.38 (algebraic multiplicity). Let A ∈ Cn×n be given. The number mi
in (1.1) is called the algebraic multiplicity of the eigenvalue λi .

Definition 1.39 (geometric multiplicity). Let A ∈ Cn×n and λ ∈ σ(A). Define the

eigenspace

E(λ,A) = {x ∈ Cn | Ax = λx} .

This is a vector subspace of Cn; its dimension dim(E(λ,A)) is called the geometric

multiplicity of λ.

The following result gives a relation between the algebraic and geometric

multiplicities of an eigenvalue. For a proof of this result, see [44].

Theorem 1.40 (relation between multiplicities). Let A ∈ Cn×n and λ ∈ σ(A). The

geometric multiplicity of λ is not larger than the algebraic multiplicity of λ.
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Definition 1.41 (triangular matrices). The square matrix A = [ai ,j ] ∈ Cn×n is called

upper triangular if and only if ai ,j = 0 for all i > j . A is called lower triangular

if and only if ai ,j = 0 for all i < j . A matrix is called triangular if and only if it

is either upper or lower triangular. A is called diagonal if and only if ai ,j = 0 for

all i 6= j . A matrix A = [ai ,j ] ∈ Cn×n is called unit lower triangular (unit upper

triangular) if and only if it is lower (upper) triangular and ai ,i = 1, i = 1, . . . , n.

Definition 1.42 (similarity). Let A,B ∈ Cn×n. We say that A and B are similar,

denoted by A � B, if and only if there is an invertible matrix S such that

A = S−1BS.

We say that matrix A is diagonalizable if it is similar to a diagonal matrix.

Proposition 1.43 (spectrum of similar matrices). Let A,B ∈ Cn×n be such that

A � B. Then χA = χB and, consequently, σ(A) = σ(B). Furthermore, det(A) =

det(B) and tr(A) = tr(B).

Proof. See Problem 1.34.

Definition 1.44 (defective matrix). A matrix A ∈ Cn×n is called defective if and

only if there is an eigenvalue λk with geometric multiplicity strictly smaller than

the algebraic multiplicity. Otherwise, the matrix is called nondefective.

One of the main results in the spectral theory of matrices is the following.

Theorem 1.45 (diagonalizability criterion). Let A ∈ Cn×n be nondefective. Then

it is diagonalizable.

Proof. Let σ(A) = {λk}Lk=1, where λk 6= λj , k 6= j . For each k ,

E(λk ,A) = span({x (k)
1 , . . . , x (k)

mk
}) = span(Sk),

where the set Sk = {x (k)
1 , . . . , x

(k)
mk
} is linearly independent. Then S = ∪Lk=1Sk is

a basis of Cn. Indeed, item 3 of Theorem 1.37 shows that the set S is linearly

independent. Moreover, #(S) =
∑L

k=1mk = n, since the matrix A is nondefective.

Now set D = diag (λ1, . . . , λ1, . . . , λL, . . . , λL) and

X =

 | | | |
x

(1)
1 · · · x

(1)
m1 · · · x

(L)
1 · · · x

(L)
mL

| | | |

 ,
where in D each eigenvalue λk appears exactly mk times. Notice now that, since

all the columns of X are linearly independent, we have rank(X) = n and this implies

that X is invertible.

Since, for all j = 1, . . . , mk , we have Ax (k)
j = λkx

(k)
j , we see that

AX = A [x1, . . . , xn] = [Ax1, . . . ,Axn] and XD = [λ1x1, . . . , λnxn] .

This implies that AX = XD, or, since X is invertible, A = XDX−1. In conclusion, A
is diagonalizable.
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14 Linear Operators and Matrices

An important class of nondefective matrices are those that are self-adjoint, or

Hermitian. To investigate these, we use the Schur factorization. For a proof, again,

we refer to [44].

Lemma 1.46 (Schur normal form3). Let A ∈ Cn×n. There are, not necessarily

unique, matrices U,R ∈ Cn×n, with U unitary and R upper triangular, such that

A = URUH.

Notice that, in the setting of Lemma 1.46, we have that A � R and that, since

R is upper triangular, its diagonal entries coincide with its spectrum.

Proposition 1.47 (Spectral Decomposition Theorem). Let A ∈ Cn×n be self-

adjoint (Hermitian), i.e., AH = A. Then σ(A) ⊆ R and there is a unitary U ∈ Cn×n
such that

A = UDUH,

where the matrix D = diag(λ1, . . . , λn). Furthermore, there exists an orthonormal

basis B = {u1, . . . , un} of eigenvectors of A for the space Cn and Au i = λiu i ,

i = 1, . . . , n.

Proof. From Lemma 1.46 we are guaranteed that there is a unitary matrix U ∈
Cn×n and an upper triangular matrix D ∈ Cn×n such that

A = UDUH.

But, since A is self-adjoint,

AH = UDHUH = UDUH = A.

This implies that DH = D, i.e., D is self-adjoint. Since D is triangular, it must

be diagonal. Furthermore, the diagonal elements of D must be real. Otherwise, D
could not be self-adjoint. Therefore, we have the desired factorization.

Now the eigenvalues of a diagonal matrix are precisely its diagonal entries. Since

A is similar to the diagonal matrix D, the eigenvalues of A are precisely λi = di ,i ∈ R,

i = 1, . . . , n.

Finally, observe that the columns of U form an orthonormal basis for Cn. Indeed,

suppose that the kth column of U is denoted uk . Then AU = UD if and only if

Auk = dk,kuk = λkuk .

Thus, the eigenvectors of A, namely uk , k = 1, . . . , n, form an orthonormal basis

for Cn: (uk , u j)2 = uH
j uk = δk,j , k, j = 1, . . . , n.

Notice that the previous result shows that, for A self-adjoint, there exists an

orthonormal basis of Cn consisting of eigenvectors of A. This is a result that is

used countless times in the text.

There are numerous generalizations of the last theorem. We will be interested in

one that is rather straightforward to establish. First, we need what is perhaps an

obvious definition.

3 Named in honor of the Russian-born German–Israeli mathematician Issai Schur (1875–1941).
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Definition 1.48 (eigenvalue). Suppose that V is a complex vector space and A ∈
L(V). The scalar λ ∈ C for which there is w ∈ V \ {0} such that

Aw = λw,

is called an eigenvalue of A and w is a corresponding eigenvector. The spectrum

of A, σ(A), is the set of all eigenvalues of A. The pair (λ,w) is called an

eigenpair of A.

For self-adjoint operators we have the following general result.

Theorem 1.49 (Spectral Decomposition Theorem). Suppose that (V, ( · , · )) is

an n-dimensional complex inner product space and A ∈ L(V) is self-adjoint. Then

there are precisely n eigenvalues, counting multiplicities, and σ(A) ⊆ R. Moreover,

there is an orthonormal basis B = {w1, . . . , wn} of eigenvectors of A for the space

V: (wi , wj) = δi ,j , i , j = 1, . . . , n.

Proof. A proof for this is, for instance, furnished by the theory developed in

Chapter 7.

Finally, the class of normal matrices, which contains as a proper subset the class

of Hermitian matrices, is sometimes important.

Definition 1.50 (normal matrix). The square matrix A ∈ Cn×n is called normal if

and only if AHA = AAH.

We will need the following technical lemma.

Lemma 1.51 (normal and triangular). Suppose that A ∈ Cn×n is normal and upper

triangular. Then it must be diagonal.

Proof. See Problem 1.45.

Theorem 1.52 (diagonalization of normal matrices). Suppose that A ∈ Cn×n is

normal. Then A is unitarily diagonalizable, i.e., there is a unitary matrix U ∈ Cn×n
and a diagonal matrix D ∈ Cn×n such that

A = UDUH.

Proof. Use the Schur factorization and Lemma 1.51. See Problem 1.46.

Corollary 1.53 (orthonormal basis). Suppose that A ∈ Cn×n is normal. There is

an orthonormal basis of eigenvectors of A for Cn.

Proof. Repeat the construction of Proposition 1.47.

Problems

1.1 Let (V, ‖ · ‖) be a finite-dimensional normed space and A ∈ L(V). Does

‖ · ‖A = ‖A · ‖ : V→ R

define a norm? Why or why not?

1.2 Prove Proposition 1.2.
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16 Linear Operators and Matrices

1.3 Prove Proposition 1.4.

1.4 For A ∈ Cm×n, prove that im(A) ≤ Cm (i.e., im(A) is a vector subspace

of Cm) and ker(A) ≤ Cn (i.e., ker(A) is a vector subspace of Cn).

1.5 Suppose that A ∈ Cm×n. Prove that im(A) = CA, where im(A) is the range

of A and CA is its column space.

1.6 Suppose that A ∈ Cm×n with m ≥ n. Prove that the following are equivalent:

a) rank(A) = n.

b) A maps no two distinct vectors in Cn to the same vector in Cm.

c) ker(A) = {0}.
1.7 Let A ∈ Cm×n. Prove that im(A)⊥ = ker(AH).

1.8 Prove Proposition 1.19.

1.9 Show that the definitions “adjoint” and the “conjugate transpose” coincide

for matrices when we use the canonical inner product

(x , y)`2(Cm) = (x , y)2 = yHx

for Cm.

1.10 Complete the proof of Theorem 1.21.

1.11 Show that In ∈ Cn×n acts as multiplicative identity with respect to matrix

multiplication. In other words, for every A ∈ Cn×n, we have

AIn = InA = A.

1.12 Suppose that C ∈ Cn×n is invertible and the set S = {w1, . . . ,w k} ⊆
Cn is linearly independent. Prove that CS = {Cw1, . . . ,Cw k} ⊆ Cn is linearly

independent.

1.13 Suppose that A ∈ Cn×n is invertible. Prove that its inverse must be unique.

1.14 Prove Theorem 1.24.

1.15 Let A ∈ Cm×n. Prove that rank(A) = rank(AB) for any B ∈ Cn×n that is

invertible.

1.16 Let U ∈ Cn×n be unitary. Show that, for any x , y ∈ Cn, we have (Ux ,Uy)2 =

(x , y)2, so that ‖Ux‖2 = ‖x‖2.

1.17 Show that the Frobenius and matrix max norms are indeed norms on the

vector space L(Cn,Cm).

1.18 Show that

‖A‖2
F = tr(AHA) = tr(AAH),

where, for any square matrix, M = [mi ,j ] ∈ Cn×n, tr(M) =
∑n

i mi ,i denotes its

trace.

1.19 Let V and W be finite-dimensional complex-normed vector spaces. Show

that the induced norm is indeed a norm on the vector space L(V,W). Prove that

‖A‖L(V,W) = sup {‖Ax‖W | x ∈ V, ‖x‖V = 1} .

1.20 Let, for a, b ∈ R,

A =

[
a b

b a

]
.

Show that ‖A‖1 = ‖A‖2 = ‖A‖∞.
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1.21 Let, for a, b ∈ R,

A =

[
a b

b −a

]
.

Show that ‖A‖2 = (a2 + b2)1/2.

1.22 Show that

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai j |, ∀A ∈ Cn×n,

and also that ‖A‖1 =
∥∥AH

∥∥
∞.

1.23 Show that, for every A ∈ Cn×n,

1√
n
‖A‖2 ≤ ‖A‖∞ ≤

√
n‖A‖2.

1.24 Show that

‖A‖2
2 ≤ ‖A‖1‖A‖∞, ∀A ∈ Cn×n.

1.25 Show that, for every A ∈ Cn×n,

‖A‖max ≤ ‖A‖∞ ≤ n ‖A‖max , (1.2)

where ‖ · ‖∞ is the induced matrix ∞-norm, and recall that

‖A‖max = max
1≤i ,j≤n

|ai ,j |

is the matrix max norm.

1.26 Let A ∈ Rn×n be such that Aᵀ = A and tr A = 0. Show that

‖A‖2
2 ≤

n − 1

n
‖A‖2

F .

Is the assumption that tr A = 0 essential? You may justify your answer with an

example or counterexample.

1.27 Prove Proposition 1.34.

1.28 Prove Theorem 1.37.

1.29 Show that, for every A ∈ Cn×n,

‖A‖2 = max
λ∈σ(AHA)

√
λ.

Hint: You need some facts about the eigenvalues and eigenvectors of Hermitian

matrices.

1.30 Suppose that ‖ · ‖ : Cm×n → R is the induced norm with respect to the

vector norms ‖ · ‖Cm and ‖ · ‖Cn and that A ∈ Cm×n. Prove that the function

‖A( · )‖Cm : Cn → R is uniformly continuous. Use this fact to prove that there is a

vector x ∈ Sn−1
Cn such that

‖A‖ = ‖Ax‖Cm .
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18 Linear Operators and Matrices

1.31 Suppose that ‖ · ‖ : Cn×n → R is the induced norm with respect to the

vector norm ‖ · ‖ : Cn → R. Let A ∈ Cn×n be invertible. Prove that

1

‖A−1‖ = min
y∈Cn?

‖Ay‖
‖y‖ .

1.32 Let Tk ,T ∈ Cn×n, k = 1, 2, be lower triangular matrices.

a) Show that T1T2 is lower triangular.

b) If T1 and T2 are unit lower triangular, show that T1T2 is unit lower triangular.

c) If [T]i ,i 6= 0, show that T is invertible and T−1 is lower triangular.

d) If T is unit lower triangular, prove that it is invertible and T−1 is unit lower

triangular.

e) If [T]i ,i > 0, show that
[
T−1

]
i ,i

= 1
[T]i ,i

> 0.

1.33 Show that if A ∈ Cn×n is both unitary (i.e., AAH = AHA = In) and triangular,

then it is diagonal.

Hint: You need a fact about the inverse of a triangular matrix.

1.34 Prove Proposition 1.43.

1.35 Let A ∈ Cn×n. Suppose that λ1, . . . , λk are distinct eigenvalues of A and

suppose that x1, . . . , xk are eigenvectors associated with the respective eigenvalues.

Prove that {x1, . . . , xk} is linearly independent.

1.36 Let A ∈ Cn×n. Prove that if A has n distinct eigenvalues, then A is

diagonalizable.

1.37 Let A ∈ Cn×n be Hermitian, i.e., AH = A.

a) Prove directly that all eigenvalues of A are real.

b) Prove that if x and y are eigenvectors associated with distinct eigenvalues,

then they are orthogonal, i.e., xHy = 0.

1.38 Let A ∈ Cm×n and B ∈ Cn×m. Show that σ(AB)\{0} = σ(BA)\{0}, i.e.,

the nonzero eigenvalues of AB and BA coincide.

1.39 Let A ∈ Cm×n. Show that σ(AHA) ∪ σ(AAH) ⊆ [0,∞).

1.40 Let A ∈ Cn×n and λ ∈ σ(A). The vector y ∈ Cn? is called a left eigenvector

associated with λ if and only if yHA = λyH. Now suppose that λ, µ ∈ σ(A) are

distinct. Let y be a left eigenvector associated with λ and x be a right (usual)

eigenvector associated with µ. Prove that yHx = 0.

1.41 Let A ∈ Cn×n be skew-Hermitian.

a) Prove directly that the eigenvalues of A are purely imaginary.

b) Prove that if x and y are eigenvectors associated with distinct eigenvalues,

then they are orthogonal, i.e., xHy = 0.

c) Show that I− A is nonsingular.

d) Prove that Q = (I− A)−1(I + A) is unitary.

1.42 Let u, v ∈ Cn. Set A = In + uvH ∈ Cn×n.

a) Suppose that A is invertible. Prove that A−1 = In + αuvH for some α ∈ C.

Give an expression for α.

b) For what u and v is A singular, i.e., not invertible?

c) Suppose that A is singular. What is the kernel space of A, ker(A), in this case?

1.43 Suppose that q ∈ Cn, ‖q‖2 = 1. Set P = I− qqH.

a) Find im(P).
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b) Find ker(P).

c) Find the eigenvalues of P.

1.44 Characterize the eigenvalues of a unitary matrix.

1.45 Prove Lemma 1.51.

1.46 Prove Theorem 1.52.
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