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A Lower Bound for the Length of Closed
Geodesics on a Finsler Manifold

Wei Zhao

Abstract. In this paper, we obtain a lower bound for the length of closed geodesics on an arbitrary
closed Finsler manifold.

1 Introduction

The study of closed geodesics is a classical and important problem in differential
geometry. There are many important results, which in turn to lead to a better under-
standing of the global geometry of differential manifolds. In Riemannian geometry,
following Klingenberg[K], Cheeger [Ch] gives a lower bound for the length of simple
closed geodesics in terms of an upper bound for the diameter and lower bounds for
the volume and the sectional curvature. Finsler geometry is a natural generalization
of Riemannian geometry. The analogue of sectional curvature in Finsler geometry is
the so-called the flag curvature. It is a natural question whether Cheeger’s theorem
still holds in the Finslerian case. However, even to most trivial Finsler metrics, such
as Berwald–Randers metrics, the answer is negative.

Example 1.1 ([BCS]) Let α be the canonical Riemannian product metric on S2×S
and let β be a parallel 1-form. Denote by (r, θ) and t the spherical coordinates of S2

and S, respectively. Then β = dt . For each ε ∈ [0, 1), Fε := α + εβ is a Berwald–
Randers metric with the flag curvature Kε ≥ 0, diamε(M) ≤ 3π and the Holmes–
Thompson volume µε(M) = 8π2. However, σ(t) = (0, 0,−t) is a geodesic of Fε with
the length 2π(1− ε)→ 0 (as ε→ 1).

The purpose of this paper is to study the length of simple geodesics on a closed
Finsler manifold. Given a Finsler manifold (M, F), let T and ΛF be the T-curvature
and the uniformity constant, respectively (see [E, S] or Section 2). These quantities
are non-Riemannian quantities. In fact, T = 0 if only if F is Berwaldian, while
ΛF = 1 if and only if F is Riemannian. Our main result is the following theorem.

Theorem 1.2 Let (M, F) be a closed Finsler m-manifold with K ≥ δ, T ≤ ς , ΛF ≥ Λ,
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and diameter≤ d. Then for any simple closed geodesic γ,

LF(γ) ≥ µ(M)

cm−2Λ
3m
2

[
s

m−1
δ (min{d,π/(2

√
δ)})

m−1 + max{0, ς}
∫ d

0 sm−1
δ (t)dt

] ,
where µ(M) is either the Busemann–Hausdorff volume or the Holmes–Thompson vol-
ume of M, LF(γ) is the length of γ, and cm−2 := Vol(Sm−2).

According to Theorem 1.2, a lower bound for the length of the simple closed
geodesics in Example 1.1 is 8/(9πΛ

9/2
Fε ). Note that ΛFε ≥ (1 + ε)2(1− ε)−2. Hence,

LFε(σ) ≥ 8/(9πΛ
9/2
Fε ) −→ 0

(as ε→ 1). In fact, by a better estimate for Randers manifolds (see Theorem 6.3), we
have LFε(γ) ≥ 8(1− ε)4/(9π(1 + ε)) for any simple closed geodesic γ in Example 1.1.

We remark that Cheeger’s argument in [Ch] was carried out using Toponogov’s
comparison theorem. But Toponogov’s comparison theorem does not hold in a non-
Riemannian Finsler manifold. In [HK], Heintze and Karcher gave a more direct proof
of Cheeger’s theorem by studying the normal bundle of a simple closed geodesic.
However, in the general case, the normal bundle of a Finsler submanifold is not a
vector bundle but a cone-bundle [Ru, S]. Apparently, it is rather hard to handle this
cone-bundle due to nonlinearity. The principal idea in the proof of Theorem 1.2 is to
investigate the conormal bundle, which is the homeomorphic image of the normal
bundle under the Legendre transformation. In fact, our method works for Finsler
submanifolds with arbitrary codimensions. This will be discussed elsewhere.

2 Preliminaries

In this section, we recall some definitions and properties about Finsler manifolds.
See [BCS, S] for more details.

Let (M, F) be a (connected) Finsler m-manifold with Finsler metric F : TM →
[0,∞). Define SxM := {y ∈ TxM : F(x, y) = 1} and SM := ∪x∈MSxM. Let
(x, y) = (xi , yi) be local coordinates on TM. Define

`i :=
yi

F
, gi j(x, y) :=

1

2

∂2F2(x, y)

∂yi∂y j
, Ai jk(x, y) :=

F

4

∂3F2(x, y)

∂yi∂y j∂yk
,

γi
jk :=

1

2
g il
( ∂g jl

∂xk
+
∂gkl

∂x j
−
∂g jk

∂xl

)
, N i

j :=
(
γi

jk`
j − Ai

jkγ
k
rs`

r`s
)
· F.

The Chern connection ∇ is defined on the pulled-back bundle π∗TM and its forms
are characterized by the following structure equations:

(1) Torsion freeness: dx j ∧ ωi
j = 0;

(2) Almost g-compatibility: dgi j − gk jω
k
i − gikω

k
j = 2

Ai jk

F (dyk + Nk
l dxl).

From the above, it is easy to obtain ωi
j = Γi

jkdxk, and Γi
jk = Γi

k j .

https://doi.org/10.4153/CMB-2012-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-035-8


196 W. Zhao

The curvature form of the Chern connection is defined as

Ωi
j := dωi

j − ωk
j ∧ ωi

k =:
1

2
Ri

j kldxk ∧ dxl + Pi
j kldxk ∧ dy l + N l

sdxs

F
.

Given a non-zero vector V ∈ TxM, the flag curvature K(y,V ) on (x, y) ∈ TM\0 is
defined as

K(y,V ) :=
V i y jR jikl y lV k

gy(y, y)gy(V,V )− [gy(y,V )]2
,

where R jikl := gisRs
j kl.

Given y, v ∈ TxM with y 6= 0, define the T-curvature T as

Ty(v) := gy(∇V
v V, y)− gy(∇Y

v V, y),

where V (resp. Y ) is a vector field with Vx = v (resp. Yx = y). And we say T ≤ ς if

Ty(v) ≤ ς
[√

gy(v, v)− gy

(
v,

y

F(y)

)] 2

F(y),

for all y, v ∈ TM\0.

Remark 2.1 We modify the definition of T ≤ ς here, because the original one in
[S] is not well defined when F is a Randers metric and y = −v.

The uniformity constant ΛF of (M, F) is defined by ([E])

ΛF := sup
X,Y,Z∈SM

gX(Y,Y )

gZ(Y,Y )
.

Clearly, ΛF ≥ 1; ΛF = 1 if and only if F is Riemannian.
Given any volume form dµ on M, in a local coordinate system (xi), express dµ =

σ(x)dx1 ∧ · · · ∧ dxn. For y ∈ TxM\0, define the distortion of (M, F, dµ) as

τ (y) := log

√
det(gi j(x, y))

σ(x)
.

The Legendre transformation L : TM → T∗M is defined by

L(Y ) =

{
0, Y = 0,

gY (Y, · ), Y 6= 0.

For each x ∈ M, the Legendre transformation is a smooth diffeomorphism from
TxM\{0} onto T∗x M\{0}.

Define the dual Finsler metric F∗ : T∗M → [0,∞) of F by F∗(ξ) := supy∈SM ξ(y).

By [BCS, S], F∗(L(y)) = F(y) and g∗i j(ξ) := 1
2 [F∗2]ξiξ j (ξ) = g i j(y), where ξ =

L(y).
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3 Conormal Bundle and Exponential Map

Throughout this paper, we assume that (M, F) is a forward complete Finsler m-man-
ifold and that γ(s), 0 ≤ s ≤ ` = LF(γ), is a unit speed simple closed geodesic on M.
And we always identify γ with its image γ([0, `]). Denote by cy(t) a constant speed
geodesic with ċy(0) = y. The rules that govern our index gymnastics are as follows:

• i, j run from 1 to m.
• A,B run from 2 to m. g, h run from 2 to m− 1.
• a, b run from 1 to m− 1.

According to [Ru, S], the normal bundle Vγ of γ is defined as

Vγ := {n ∈ TM : n = 0 or gn(n, γ̇) = 0}.

In general, Vγ is not a vector bundle even F is reversible. Consider the following
subbundle of T∗M:

V∗γ := {ω ∈ T∗M : ω(γ̇) = 0}.

It is easy to see that V∗γ = L(Vγ), where L : TM → T∗M is the Legendre transfor-
mation. Note that L is a homeomorphism from TM to T∗M and a diffeomorphism
from TM\0 to T∗M\0. Hence, V∗γ is called the conormal bundle over γ in M.

Let π : V∗γ → γ denote the bundle projection. For each s0, there exists a local
coordinate system (U ; xi) at γ(s0) such that x1 ◦ γ(s) = s and xA ◦ γ(s) = 0. Hence,
for each ξ ∈ π−1(U ∩ γ), ξ = ξAdxA and π−1(U ∩ γ) ≈ (U ∩ γ) × Rm−1. We call
(xi) (resp. (s, ξA)) an adapted coordinate system for γ (resp. V∗γ).

Define the conormal exponential map Expc : V∗γ → M by

Expc(ξ) := expπ(ξ)(L
−1(ξ)).

Let S∗M := {ω ∈ T∗M : F∗(ω) = 1} and V∗Sγ := S∗M ∩ V∗γ. Now we have the
following theorem.

Theorem 3.1 For each η ∈ V∗Sγ, there exists a small ε(η) > 0 and an open neighbor-
hood W of η in V∗Sγ such that Expc

∗tξ is nonsingular for all ξ ∈W and t ∈ (0, ε(η)).

Proof For the sake of clarity, we use (x, ξ) to denote a point ξ ∈ V∗γ. Given
(x0, η0) ∈ V∗Sγ ⊂ V∗γ, let (U ; xi) be an adapted coordinate system at x0 for γ
and V := U ∩ γ. We can choose a small δ > 0 such that Expc(D) ⊂ U , where
D = {(x, tη) : t ∈ (0, δ), (x, η) ∈ V∗SV}. Let (xi , yi) and (s, ξA) be the local
(adapted) coordinates for TM and V∗γ, respectively. Thus, for each (x, tη) ∈ D, we
have

Expc
∗(x,tη)

∂

∂s
=
∂ exp(x,L−1(ξ))

∂s

∣∣∣∣
x, ξ=tη

=
[
δi

1 + H(t, x, η)i
1

] ∂

∂xi
,

where

H(t, x, η)i
1 :=

[ ∂ expi

∂x1
(x, tL−1(η))− δi

1

]
+
∂ expi

∂yk
(x, tL−1(η)) · ∂g∗Ak

∂x1
(x, η) · tηA.

https://doi.org/10.4153/CMB-2012-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-035-8


198 W. Zhao

Likewise,

(3.1) Expc
∗(x,tη)

∂

∂ξA
= g∗Ak

(η)

[
δi

k + L(t, x, η)i
k

] ∂

∂xi
,

where

L(t, x, η)i
k :=

∂ expi

∂yk

(
x, tL−1(η)

)
− δi

k.

Clearly, lim
t→0+

H(t, x, η)i
1 = lim

t→0+
L(t, x, η)i

k = 0. The matrix of Expc
∗(x,tη) is

S(t, x, η) =

(
1 + H(t, x, η)1

1 H(t, x, η)B
1

g∗A1
(η) + g∗Ak

(η) L(t, x, η)1
k g∗AB

(η) + g∗Ak
(η) L(t, x, η)B

k

)
.

Since det S(0, x0, η0) > 0, there exists a small ε(x0, η0) > 0 and an open neigh-
borhood W of (x0, η0) in V∗Sγ such that Expc

∗tξ is nonsingular for all ξ ∈ W and
t ∈ (0, ε(x0, η0)).

Remark 3.2 In general, Expc is not C1 at all the zero sections of V∗γ. Otherwise, it
follows from (3.1) that L−1|V∗γ : V∗γ → Vγ is an isomorphism, which implies that
Vγ is a vector bundle.

Definition 3.3 Given ξ ∈ V∗s γ\0, the co-(second fundamental form) of γ along ξ
in M is defined as

hξ(X,Y ) := 〈ξ,∇n
XY 〉, ∀X,Y ∈ Tsγ,

And co-Weingarten map Aξ : Tsγ → Tsγ is defined as

Aξ(X) := −(∇n
Xn)>ξ ,

where n := L−1(ξ), ξ (resp. Y ) is an extension of ξ (resp. Y ) to a co-normal (resp.
tangent) vector field along γ, and the superscript >ξ denotes projection to Tsγ by
gL−1(ξ).

By the definition of Legendre transformation and [S, (3.10), p. 39], it is easy to
check that h and Aξ are well defined. A direct calculation yields

(3.2) gn

(
Aξ(X),Y

)
= hξ(X,Y ) = −gγ̇(γ̇,X)gγ̇(γ̇,Y )Tn(γ̇), ∀X,Y ∈ Tsγ.

Definition 3.4 Given ξ ∈ V∗s Sγ, a vector field X along the geodesic cL−1(ξ)(t),
t ∈ [0, a], is called a transverse vector field if

gT(T,X) = 0, X(0) ∈ Tsγ, (∇T
TX)(0) + Aξ(X(0)) ∈ T⊥s γ,

where T = ċL−1(ξ)(t) and T⊥s γ = {Y ∈ Tγ(s)M : gL−1(ξ)(Y, γ̇(s)) = 0}.
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Let T denote the collection of transverse Jacobi fields along the geodesic cL−1(ξ)(t),
t ∈ [0, a]. Then T is a vector space. A similar argument to the one given in [C, p. 141]
shows that dim(T) = m− 1.

Let π1 : V∗Sγ → γ be the natural projection. Clearly, V∗s Sγ := π−1
1 (γ(s)) is a

(m− 2)-dimensional unit Minkowski sphere in T∗γ(s)M. Let (s, θg) be a local coordi-
nate system on V∗Sγ, where (θg) are the local coordinates for V∗s Sγ. Thus, we obtain
a local conic coordinate system (t, s, θg) on V∗γ\0, that is, for ξ ∈ V∗γ\0, t = F∗(ξ)
and ξ/F∗(ξ) = (s, θg).

Define a map E: [0,+∞)× V∗Sγ → M by E(t, ξ) = Expc(tξ). Then we have the
following lemma.

Lemma 3.5 J1(t) = E∗(t,ξ)
∂
∂s and Jg(t) = E∗(t,ξ)

∂
∂θg

are m − 1 transverse Jacobi

fields along the geodesic cL−1(ξ)(t) with initial data

J1(0) = γ̇(s0), Jg(0) = 0, (∇T
T Jg)(0) = L−1

∗ξ

( ∂

∂θg

)
,

where γ(s0) := π(ξ), T := ċL−1(ξ)(t) and L−1
∗ξ : Tξ(T∗γ(s0)M) → TL−1(ξ)(Tγ(s0)M) is

the tangent map.

Proof Suppose ξ = (s0, θ
0
g).

(1) Set ξ(s) = (s, θ0
g), where s ∈ (−ε+ s0, ε+ s0). Consider the variation σ(t, s) =

E(t, ξ(s)) = expγ(s) tL−1(ξ(s)). Thus, J1(t) = ∂
∂s |s=s0σ(t, s), which implies

J1(0) = γ̇(s0) and (∇T
T J1)(0) = ∇L−1(ξ(s))

J1(0) L−1(ξ(s)).

Hence, (∇T
T J1)(0) + Aξ( J1(0)) ∈ T⊥s0

γ. Since F∗(ξ(s)) = 1, gT(T, (∇T
T J1)(0)) = 0 =

gT(T, J1). Therefore, J1 is a transverse Jacobi field along cL−1(ξ)(t).

(2) Set ξ(u) = (s0, θg(u)), u ∈ (−ε, ε) with θg(0) = θ0
g and d

du |u=0ξ(u) = ∂
∂θg

.

Consider the variation σ(t, u) = E(t, ξ(u)) = expγ(s0) tL−1(ξ(u)). Clearly,

Jg(t) = E∗(t,ξ)
∂

∂θg

=
∂

∂u

∣∣∣
u=0
σ(t, u) = (expγ(s0))∗tL−1(ξ)tL

−1
∗ξ

( ∂

∂θg

)
.

Since F(L−1(ξ(u))) = 1,

0 =
d

du

∣∣∣
u=0

F2(L−1(ξ(u))) = 2gL−1(ξ)

(
L−1(ξ),L−1

∗ξ

( ∂

∂θg

))
.

The Gauss lemma[BCS, p. 140] then yields gT(T, Jg) = 0.

Now we extend focal points to Finsler manifolds.

Definition 3.6 Given ξ ∈ V∗Sγ, a point cL−1(ξ)(t0) (t0 > 0) is said to be focal to γ
along cL−1(ξ)(t) if there exists a nontrivial transverse Jacobi field J such that J(t0) = 0.
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Given ξ ∈ V∗s Sγ, let X denote the collection of all vector fields X along cL−1(ξ)(t),
t ∈ [0, a], such that gT(T,X) = 0 and X(0) ∈ Tsγ and let X0 consist of those elements
of X that vanish at t = a. On X, the index form is defined by

I(X,Y ) := −hξ
(

0),Y (0)
)

+

∫ a

0
gT(∇T

TX,∇T
TY ) + RT(T,X,T,Y ) dt.

By Lemma 3.5 and the arguments given in [BCS, pp. 180–185], one can easily show
the following theorem.

Theorem 3.7 Suppose that cL−1(ξ)(t) has not focal points on (0, a] to γ. Given X ∈ X,
let J denote the (unique) transverse Jacobi field along cL−1(ξ) with J(a) = X(a). Then
I(X,X) ≥ I( J, J) with equality if and only if X = J.

Suppose that some point cL−1(ξ)(t0), 0 < t0 < a is focal to γ along cL−1(ξ). Then
there is U ∈ X0 with I(U ,U ) < 0.

Lemma 3.5 together with Theorem 3.1 furnishes the following proposition.

Proposition 3.8 Given ξ ∈ V∗Sγ, the following statements are mutually equivalent:

(i) cL−1(ξ)(t0), 0 < t0 <∞ is a focal point of γ along cL−1(ξ)(t);
(ii) Expc

∗t0ξ
is singular;

(iii) E∗(t0,ξ) is singular.

Proof Define a diffeomorphism F : (0,+∞) × V∗Sγ → V∗γ\0 by F (t, ξ) = tξ.
Clearly, Expc

∗ ◦F∗ = E∗, which implies (ii)⇔ (iii). It follows Lemma 3.5 that (iii)
⇒ (i). Now we show (i)⇒ (iii).

Let Ja(t), a = 1, g, be as in Lemma 3.5. By Theorem 3.1, there exists ε(ξ) > 0 such
that E∗(t,ξ) is nonsingular for 0 < t ≤ ε(ξ). Thus, { Ja(t)} form a basis for the space
of the transverse Jacobi fields along cn(t), 0 ≤ t ≤ ε(ξ), where n = L−1(ξ).

Suppose cn(t0) is a focal point. Then there exists a nontrivial transverse Jacobi
field J along cn such that J(t0) = 0. We can suppose J(t) = Ca Ja(t) for t ≥ 0. Here,
Ca’s are constants not all zero. Then J(t0) = 0 implies (i)⇒ (iii).

Definition 3.9 Given ξ ∈ V∗Sγ, the focal value c f (ξ) is defined by

c f (ξ) := sup{r > 0 : no point cL−1(ξ)(t), 0 < t < r is focal point }

By Theorem 3.1 and Proposition 3.8, we have the following lemma.

Lemma 3.10 The function c f : V∗Sγ → (0,+∞] is lower semicontinuous.

Proof Given ξ0 ∈ V∗Sγ and 0 < r < c f (ξ0), let ε(ξ0) and W be as in Theorem 3.1. If
r ≤ ε(ξ0)/2, then we take εr = ε(ξ0)/2 and U = W. Suppose r > ε(ξ0)/2. For each
t ∈ [ε(ξ0)/2, r], there exist a neighborhood Ut of ξ and a interval It = (t − εt , t + εt )
such that Expc

∗ is nonsingular at sη for all η ∈ Ut and s ∈ It . Then one can find
finitely many {Its}k

s=1 such that ∪sIts ⊃ [ε(ξ0)/2, r]. Without loss of generality, we
suppose that t1 < · · · < tk and tk = r (so εtk = εr). Set U := ∩sUts ∩W. Thus,
Expc

∗(x,tξ) is not singular for all t ∈ (0, r + εr) and (x, ξ) ∈ U, i.e., c f (ξ) > r + εr.
From above, lim infξ→ξ0 c f (ξ) ≥ r + εr and limr→c f (ξ0) εr = 0. We complete the proof
by letting r → c f (ξ0).
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Given ξ ∈ V∗s Sγ, let n = L−1(ξ) and n⊥ := {X ∈ Tγ(s)M : gn(n,X) = 0}. The
proof of Lemma 3.5 furnishes the following decomposition

(Tγ(s)M, gn) = R · n⊕ R · γ̇(s)⊕ SpanR

{
L−1
∗ξ

( ∂

∂θg

)}
.

For convenience, set e1 := γ̇(s) and eg := L−1
∗ξ (∂/∂θg). Denote by Pt ;n the parallel

translation along cn from Tcn(0)M to Tcn(t)M (with respect to the Chern connection)
for all t ≥ 0. Set T = ċn(t), RT := RT(·,T)T and

R(t, n) := P−1
t ;n ◦ RT ◦ Pt ;n : n⊥ → n⊥.

Let A(t, n) denote the solution of the matrix differential equation on n⊥:
A ′ ′ + R(t, y)A = 0,

A(0, n)e1 = e1, A
′(0, n)e1 = (∇T

T J1)(0),

A(0, n)eg = 0, A ′(0, n)eg = eg,

where A ′ = d
dt A. Note that cn(t) = Pt ;nn. Thus, for each X ∈ n⊥,

gPt ;nn

(
Pt ;nn, Pt ;nA(t, n)X

)
= gn

(
n,A(t, n)X

)
= 0.

Hence, Pt ;nA(t, n)X is a transverse Jacobi filed along cn(t). Let Ja(t), a = 1, g, be as
in Lemma 3.5. Thus, Ja(t) = Pt ;nA(t, n)ea. Set Aea =: Ab

a eb and detA := detAb
a .

Clearly, detA(t0, n) = 0 (t0 > 0) if and only if cn(t0) is a focal point of γ along cn(t).
Moreover, we have the following lemma.

Lemma 3.11

lim
t→0+

detA(t, n)

tm−2
= 1.

Proof The Lagrange identity [BCS, p. 135] together with (3.2) implies that

gT

(
∇T

T J1(t), Jg(t)
)
− gT

(
J1(t),∇T

T Jg(t)
)

=

− gn

(
Aξ
(

J1(0)
)
, Jg(0)

)
+ gn

(
J1(0),Aξ

(
Jg(0)

))
= 0.

By L’Hôspital’s rule, we have

lim
t→0+

gT( J1(t), Jg(t))

t2
= lim

t→0+

gT(∇T
T J1(t), Jg(t))

t
= gn

(
(∇T

T J1)(0), eg

)
.

And it is easy to see that limt→0+
gT ( Jh, Jg)

t2 = gn(eh, eg). Hence,

lim
t→0+

det gT( Ja(t), Jb(t))

t2(m−2)
= det gn(e1, e1) det gn(eh, eg).

Now the conclusion follows from

det
[

gT( Ja(t), Jb(t))
]

= (detA)2 · det gn(e1, e1) · det gn(eh, eg).
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By the arguments above and Lemma 3.11, we have the following Heintze–Karcher
type inequality.

Theorem 3.12 Given ξ ∈ V∗s Sγ, let n = L−1(ξ). If the flag curvature K(ċn(t); · ) ≥
δ, then c f (ξ) ≤ min{ζ, π/

√
δ} and

detA(t, n) ≤
(

s ′δ +
Tn(γ̇)

gn(γ̇, γ̇)
sδ

)
(t) · sm−2

δ (t), for t ∈ [0, c f (ξ)],

where ζ is the first positive zero of(
s ′δ +

Tn(γ̇)

gn(γ̇, γ̇)
sδ

)
(t)

(should such a zero exist; otherwise, set ζ = +∞).

Proof Fix some positive number r < c f (ξ). Recall Ja(t) = Pt ;nAea, for a = 1, g. For
l ∈ (0, r), we have

(detA) ′

detA
(l) =

1

2

(det gT( Ja, Jb)) ′

det gT( Ja, Jb)
(l).

Note that { Ja(t)} is a basis for the space T of transverse Jacobi fields along cn(t),
0 ≤ t ≤ l. Let { Ja(t)} be another m−1 transverse Jacobi fields such that {T(l), Ja(l)}
is a gT-orthonormal basis. Then { Ja(t)} is also a basis for T. Hence,

(3.3)
(detA) ′

detA
(l) =

1

2

(det gT( Ja, Jb)) ′

det gT( Ja, Jb)
(l) =

1

2

(det gT( Ja, Jb)) ′

det gT( Ja, Jb)
(l).

A direct calculation yields

(3.4)
1

2

(det gT( Ja, Jb)) ′

det gT( Ja, Jb)
(l) =

∑
a

(gT(∇T
T Ja, Ja)) ′(l) =

∑
a

I[0,l]( Ja, Ja),

where I[0,l] is the index form restricted to cn(t), 0 ≤ t ≤ l.
Consider the solution Aδ(t) to the matrix differential equation in n⊥:

A ′ ′δ + kAδ = 0,

with the same initial conditions as A(t). Let f1 be a gn-unit eigenvector of Aξ with
the eigenvalue λ. It follows from (3.2) that λ = −Tn(γ̇)/gn(γ̇, γ̇).

Let { fg} be a gn-orthonormal basis for n⊥ ∩ T⊥s γ. Then we have

Aδ(t) f1 = (s ′δ − λsδ)(t) · f1 + sδ(t) · (Cg fg), Aδ(t) fg = sδ(t) · fg,

where Cg’s are constants determined by the initial data of Ak(t). Clearly, detAδ(t) =
sm−2
δ (t) · (s ′δ − λsδ)(t).

Let r < ζ0, where ζ0 is the first positive zero of detAδ(t). Then {T, Pt ;nAδ(t) fa}
is a frame field along cn(t), 0 < t ≤ r. Now consider the vector fields Ya(t) :=
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Cb
a Pt ;nAδ(t) fb, where Cb

a ’s are constants such that Ya(l) = Ja(l). Clearly, ∇T
T∇T

TYa +
δYa = 0 and gT(T,Ya) = 0. Theorem 3.7 then yields

(3.5)
∑

a

I[0,l]( Ja, Ja) ≤
∑

a

I[0,l](Ya,Ya) ≤
∑

a

gT(∇T
TYa,Ya)(l).

Since gT(Ya,Yb)(l) = δab,

(3.6)
∑

a

gT(∇T
TYa,Ya)(l) = tr(A ′δ ·A−1

δ )(l) =
(detAδ) ′

detAδ
(l).

Equation (3.3) together with (3.4), (3.5), (3.6), and Lemma 3.11 furnishes detA(t) ≤
detAδ(t) for all t ∈ [0, r], which implies that c f (ξ) ≤ ζ0.

4 Proof of Theorem 1.2

4.1 Volume of a Unit Conormal Sphere

Note that L−1 is an isometry from (T∗x M\0, g∗x ) to (TxM\0, gx). Denote by dνs the
Riemannian volume form on V∗s Sγ induced by g∗γ(s). Given ξ ∈ V∗s Sγ, let n and ea,
a = 1, g be defined as before. Then we have

(4.1) g∗ξ

( ∂

∂θg

,
∂

∂θh

)
= ((L−1)∗gn)

( ∂

∂θg

,
∂

∂θh

)
= gn(eg, eh),

which implies dνs(ξ) =
√

det gn(eg, eh)dΘ, where dΘ = ∧gdθg. Using the technique
in [W, Proposition 3.1], one can easily show that the uniformity constant ΛF∗ of F∗

coincides with ΛF . Then we have the following estimate.

Lemma 4.1 νs(V∗s Sγ) ≤ cm−2 · Λ(m−1)/2
F .

Proof Let (s, ξA) be an adapted coordinate system for V∗γ. Thus,

V∗s Sγ =
{
ξ = ξAdxA : F∗(γ(s), ξ) = 1

}
.

Hence,

dνs(ξ) =
√

det g∗AB
ξ

(∑
A

(−1)A+1ξAdξ2 ∧ · · · dξ̂A ∧ · · · dξm

)
.

Set V∗s Bγ := {ξ = ξAdxA : F∗(γ(s), ξ) < 1}. Stokes’s theorem then yields

νs(V∗s Sγ)

m− 1
=

∫
V∗

s Bγ

√
det g∗AB

ξ ∧A dξA ≤
∫
V∗

s Bγ

(
max

η∈V∗
s Bγ

√
det g∗AB

η

)
∧A dξA.

Now the conclusion follows from ΛF∗ = ΛF .
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4.2 A m-form on V∗γ\0

Given a volume form dµ on M, one can define a global m-form $ on V∗γ\0. In a
conic coordinate system,

$(t,ξ) = e−τ (ċ
L−1(ξ)(t)) detA(t,L−1(ξ))dt ∧

√
gL−1(ξ)(γ̇(s), γ̇(s))ds ∧ dνs(ξ),

where τ is the distortion of dµ. It is easy to check that $ is well defined.

4.3 Conic Coordinate Systems on M

Given an arbitrary point p ∈ M\γ, there exists a unit speed minimizing geodesic cv

from γ to p. A simple first variation argument yields η := L(v) ∈ V∗Sγ. If cv(t0) is
a focal point to γ along cv, then the second variation of arc length formula together
with Theorem 3.7 furnishes d(γ, p) ≤ t0. Hence, E(D) = M, where

D :=
{

(t, ξ) : ξ ∈ V∗Sγ, 0 ≤ t ≤ c f (ξ)
}
.

Moreover, for each x0 = E(t0, ξ0) ∈ M with 0 < t0 < c f (ξ0), by Lemma
3.10, there exists an open set Q(t0, ξ0) = (t0 − ε, t0 + ε) × W(ξ0) such that
E |Q(t0,ξ0) : Q(t0, ξ0)→ E(Q(t0, ξ0)) is a diffeomorphism. Thus,

(t ◦ E |−1
Q(t0,ξ0), s ◦ E |−1

Q(t0,ξ0), θg ◦ E |−1
Q(t0,ξ0))

is a conic coordinate system on E(Q(t0, ξ0)). In particular, it follows from (4.1) that
E |∗Q(t0,ξ0) dµ = $.

Proof of Theorem 1.2 Sard’s theorem implies that µ(M) = µ(E(Dd)), where

Dd := {(t, ξ) : ξ ∈ V∗Sγ, 0 < t < min{d, c f (ξ)}}.

By the argument above and the proof of Lemma 3.10, there is a countable open cov-
ering {Q(ti , ξi)} of Dd such that Q(ti , ξi) ⊂ Dd and

E |Q(ti ,ξi ) : Q(ti , ξi)→ E(Q(ti , ξi))

is a diffeomorphism. For simplicity, set Qi := Q(ti , ξi) and Ei := E |Qi . Note that
{E(Qi)} is an open covering of E(Dd). Let {ρi} be a partition of unity subordinate to
{E(Qi)}. Define a sequence of nonnegative continuous functions %i : Dd → R by

%i(t, ξ) :=

{
ρi ◦ Ei , (t, ξ) ∈ Qi ,

0, otherwise.
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A simple argument based on [W, Proposition 3.1, Proposition 4.1] shows that
e−τ (y) ≤ Λm

F . Then Theorem 3.12 together with Lemma 4.1 furnishes

µ(M) =
∑

i

∫
Ei (Qi )

ρi · dµ =
∑

i

∫
Qi

%i ·$ ≤
∫

Dd

$

≤
∫ `

0

√
gL−1(ξ)(γ̇(s), γ̇(s))ds

∫
V∗

s Sγ
e−τ (ċ

L−1(ξ)(t))dνs(ξ)

×
∫ min{d,c f (ξ)}

0

(
s ′δ +

TL−1(ξ)(γ̇)

gL−1(ξ)(γ̇, γ̇)
sδ

)
(t) · sm−2

δ (t)dt

≤ cm−2Λ
3m
2 `

[
sm−1
δ

(
min

{
d, π

2
√
δ

})
m− 1

+ max{0, ς}
∫ d

0
sm−1
δ (t)dt

]
.

It follows from [S, Lemma 12.2.5] that Kingenberg’s lemma can be extended to
the case of a reversible Finsler manifold. Hence, we have a generalization of Cheeger’s
injectivity radius estimate.

Corollary 4.2 Let (M, F) be a closed reversible Finsler m-manifold with |K| ≤ δ,
T ≤ ς , ΛF ≥ Λ, diameter ≤ d, and µ(M) ≥ V , where µ(M) is either the Busemann–
Hausdorff volume or the Holmes–Thompson volume of M. Then

iM ≥ min

{
π√
δ
,

V

2cm−2Λ
3m
2

[
sm−1
−δ (d)/(m− 1) + max{0, ς}

∫ d
0 sm−1
−δ (t)dt

] } .
5 Non-Riemannian Examples

In [Ch], Cheeger gives the existence of the lower bound for the length of simple
closed geodesics in a closed Riemannian manifold in terms of an upper bound for
the diameter and lower bounds for the volume and the curvature. However, this is
false for general Finsler manifolds. Before giving more examples, we first introduce
the notations used in this section.

We say a function φ : (−1, 1) → R satisfies Condition (∆) if one of the following
conditions is true:

(1) there exists a positive constant C such that Tm,t (s) ≥ C for |s| ≤ t < 1;
(2) ϕ(s) := Tm,t (s)− 1 is an odd function.

Here Tm,t (s) := φ(s) ·(φ(s)− sφ ′(s))m−2[φ(s)− sφ ′(s)+(t2− s2)φ ′ ′(s)]. Let ℘ denote
the collection of smooth positive functions φ defined on (−1, 1) such that φ satisfies
Condition (∆), sups∈(−1,1)φ(s) < +∞, lims→−1 φ(s) = 0, and

φ(s)− sφ ′(s) + (t2 − s2)φ ′ ′(s) > 0, |s| ≤ t < 1.

Let (M, α) be a closed Riemannian m-manifold with nonnegative curvature and
let β be a 1-form on M with supx∈M ‖β‖α = 1. Given φ ∈ ℘ and ε ∈ [0, 1), define
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a function Fε on TM by Fε := αφ(εβ/α). It follows from [CS] that Fε is a Finsler
metric on M. Let Kε, diamε and µε denote the flag curvature, the diameter, and the
Holmes–Thompson volume of (M, Fε), respectively.

A simple argument based on [BC, (5), Proposition 4.1, Corollary 4.2] shows the
following lemma.

Lemma 5.1 If β is parallel corresponding to α, then Fε is a Berwald metric with
Kε ≥ 0, diamε(M) ≤ diamα(M) ·M, and µε(M) ≥ D, where M := sups∈(−1,1)φ(s),
and D is a positive constant independent of ε. In particular, a geodesic of α is also a
geodesic of Fε and vice versa.

Let M = Sn × S, n ≥ 2 and let α be the canonical Riemannian product metric on
M. There exists a parallel 1-form β on (M, α). Denote by (r, θ) and t the spherical
coordinates of Sn and S, respectively. Then β = dt . It should be noted that β is
global defined on M, even though the coordinate t is not. Given r0 and θ0, γ(t) =
(r0, θ0,−t) is a (closed) geodesic on (M, α). Thus, for each φ ∈ ℘ , the Finsler metric
Fε, ε ∈ (0, 1) has the properties stated in Lemma 5.1 and LFε(γ) → 0 as ε → 1. In
particular, φ(s) = 1 + s ∈ ℘ . Hence, we have the following example.

Example 5.2 There always exist a sequence of Randers metrics {Fε} on M = Sn×S
(n ≥ 2) with Kε ≥ 0, diamε(M) ≤ (

√
2 + 1)π, and µε(M) = 2πcn. In particular,

there exists a closed geodesic γ of all (M, Fε) such that LFε(γ) → 0 as ε → 1. Hence,
the injective radius of Fε → 0 as ε→ 1.

Let Tk = S× · · · × S denote the flat torus. From the construction above, one can
easily show the following example.

Example 5.3 There always exists a sequence of Randers metrics {Fε} on M = Sn×
Tk (n ≥ 2, k ≥ 1) with Kε ≥ 0, diamε(M) ≤ (

√
1 + k + 1)π and µε(M) = cn(2π)k.

In particular, there exists a closed geodesic γ of all (M, Fε) such that LFε(γ) → 0 as
ε→ 1. Hence, the injective radius of Fε → 0 as ε→ 1.

6 Randers Metric

In general, it is very difficult to compute the uniformity constant and the T-curvature
of a Finsler metric. However, for a Randers metric F = α + β, instead of the unifor-
mity constant and the T-curvature, one can use ‖β‖α and ‖∇αβ‖α to estimate the
lower bound for the length of closed geodesics, where∇α is the Levi-Civita connec-
tion of α. Before stating our result, we need the following estimate.

Lemma 6.1 If F = α+β is a Randers metric, then νs(V∗s Sγ) ≤ cm−2 · (1− b(s))−
m
2 ,

where b(s) := ‖β‖α(γ(s)).

Proof By [S, Example 3.1.1], F∗ = α∗ + β∗ is also a Randers metric. Let (xi) be an
adapted coordinate system for γ. Denote by Σs the subspace {ξ = ξidxi : ξ1 = 0} of
T∗γ(s)M. Example 3.1.1 of [S] also furnishes supξ∈Σs\0

(
β∗(ξ)/α∗(ξ)

)
≤ b(s), which

implies that det g∗AB
ξ ≤ (detα∗AB)(1 + b(s))m, for all ξ ∈ Σs\0. Now the conclusion

follows from the proof of [S, Example 2.2.2].
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A direct calculation yields the following lemma.

Lemma 6.2 Let F = α + β be a Randers metric, where α(y) =
√

ai j yi y j and
β(y) = bi yi . Let bi| j denote the covariant derivative corresponding with α. Set

ri j =
1

2
(bi| j +b j|i), si j :=

1

2
(bi| j−b j|i), si

j := aiksk j , s j := bis
i
j , ei j := ri j +bis j +b jsi .

Then we have

Ty(v) =

[
−2
( e11

2F(v)
− s1

)
+ 2

s01

α(y)
+

1

α(y)

( e00

2F(y)
− s0

)(
α(v) +

〈v, y〉
α(y)

)]
F(y)

·
(
α(v)− 〈v, y〉

α(y)

)
,

where the index “0” (resp. “1”) means the contraction with yi (resp. vi).

Theorem 6.3 Let (M, F) be a compact Randers manifold with K ≥ δ, ‖β‖α ≤ b and
‖∇αβ‖α ≤ b1. For each simple closed geodesic γ, we have

LF(γ) ≥ (1− b)
m+1

2 µBH(M)

cm−2(1 + b)
m+3

2 S(b, b1, δ, d,m)
,

where

S(b, b1, δ, d,m) =

sm−1
δ

(
min

{
d, π

2
√
δ

})
m− 1

+
b1(7 + 13b + 3b2 − 13b3 + 2b4 − 4b5)

2(1− b)5

∫ d

0
sm−1
δ (t)dt.

Proof For each n ∈ L−1(V∗Sγ), we have α(n)β(γ̇) = −〈γ̇, n〉, where 〈 · , · 〉 is the
inner product induced by α. Hence,

(1− b)2

(1 + b)
≤ gn(γ̇, γ̇) =

F(−γ̇)

α(n)
≤ (1 + b)2

(1− b)
.

And Lemma 6.2 yields

Tn(γ̇) ≤ b1(7 + 13b + 3b2 − 13b3 + 2b4 − 4b5)

2(1 + b)(1− b)3
.

By [BC], one can easily check that e−τBH (y) ≤ (1 + b)(m+1)/2. Now the conclusion
follows from Lemma 6.1, the proof of Theorem 1.2, and the inequalities above.

Remark 6.4 Note that µHT(M) = Volα(M) and µBH(M) ≥ (1 − b2)
m+1

2 Volα(M).
By this, one can obtain a weak version of Theorem 6.3.
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