A DISTRIBUTION FUNCTION OF CANTOR-VITALI TYPE
D.B. Sumner

(received March 12, 1963)

1. Introduction. In his 1922 article [1] on functions of
bounded variation, Vitali gave a method for constructing mono-
tone non-absolutely continuous functions, generalizing ideas
from the ternary set introduced in another connection by Cantor.
In [2], Hille and Tamarkin gave a full account of the '"middle-
third" function, showing it to be a singular distribution function,
and finding its characteristic function. In [3], Evans obtained
a generalization of the middle-third function by discarding middle
intervals of length other than one-third, and obtained algorithms
by which the moments of his function could be calculated. In
various papers, among them [4], Wintner studied infinite con-
volutions of symmetric Bernoulli distributions, finding a great
variety of distributions whose characteristic functions were of

: 00

the form II cos(xa,).
1 k

In the present paper the Cantor ternary set will be gener-
alized as a (2N+1)-ary set, and a Cantor-Vitali distribution
function will be defined on it. An algorithm for calculating its
moments will be given, while its characteristic function will
turn out to be a natural generalization of the preceding infinite
product of cosines.

About terms and symbols. If a finite or infinite fraction
is written in Greek letters, it will be in the scale 2N+1, and
if in Latin letters, in the scale N+41. The letter o will
represent any one of the odd integers 1,3,5,...,2N-1; B will
represent any even integer 0,2,...,2N; and y will represent
any integer 0,1,2,3,...,2N. For convenience we write
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-1 -1 + -
r=(N+1) , p=(2N+1) , e€=2N, a+1=a =2a, a-1=a ,
+ -
B+1=p ,p-1=p, p=2b. Thus a, and bi are integers
satisfying
(1. 1) 0_<_bi_<_N,1§ai§N.
A suffix attached to any one of these letters will indicate

. » ; 2
its position, e.g., 0.a,f, =a,p+ B, p”.

2. The sets R and A. A discard is defined as the
process of dividing each closed interval of a set of closed

intervals into 2N+1 equal parts, and of removing from each
closed interval the interiors of its 24, 4th ¢th — (on)th
parts.

The first discard is applied to the interval 1=[0,1]. The
removed open intervals are

= (0.
6101 ( oz1

,0.27), (a, =1,3,5,...,2N-1),
) 1

1

and the residual closed subintervals are

n =[o.p>1,o.p“;], (B, =0,2,4,...,2N).

1[31

The second discard is applied to the set of intervals ”15 , the
1

removed and the residual intervals being designated as 62a ’
2

(a

=1 ee.,2N=1 i .
’ » 3,5, 2N=-1) and nzﬁz respectively

The process of making successive discards is continued,
the set from which the (m+1)~th discard is made being the

(previous) residual set 7n B A little consideration will
m th
show that any interval & o of the m discard is
M%m
(0. a , 0.p B o)
. 1""'pm-1m’ By e P 4%
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the number of these intervals being N(N+1)m-1, since each
digit B can take N+1 and @ can take N possible values.

Let

6 =T & , A=U_6 , R=1I-A.
m a  ma m m
m m

The following assertions can easily be verified, since each is
a generalization (from 3 to 2N+1) of a statement in [2]:

(2.1) The set R is perfect and nowhere dense in I;

(2.2) Each interval & has length pm; the measure of
mam —_—
m
N
6m ls__ N+ 1) [2_1\1\121—1] ; the measure of A is 1; and R

is a set of measure zero;

(2.3) A number x is in A if and only if there occurs at least
one odd digit in its representation in the scale 2N+1, and
at least one of the digits following this odd digit is neither
0 nor 2N. .

3. The distribution function F(x). Definition. Let
F(x) =0 when x< 0 and F(x) =1 when x>1. When
0<x< 1, we may, by introducing if necessary recurring
gr—oupg of digits, represent x in the scale 2N+1 as an
infinite fraction

X = O.Yiyz. Y

When all y are even, (i.e., x=0.[31. .Bn...) let
F(x):O.b1 bZ' .bn... . When at least one y is odd,

say, x=0. [31. e WP ., with the first odd digit

a ..
p-1"piptt
occurring in the p-th position, let F(x) = O'bi' . .bp 1ap.

Properties of F(x) similar to those given for the case
N=1 by Hille and Tamarkin in [2] and by Evans in [3] are as
follows:
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(3.1) F(x) is constant over the closure of any removed interval.

Consider the removed interval (0 (31 ﬁm-ia/m ﬁ1 ﬁm-ian'
or (0.{31. "Sm-iams’ 0.51. .ﬁm_iame). By definition
F(O.ﬁi. .ﬁm_ia )=0.b1. .. 'bm-iamN
=0.b1. 'bm-iam’
F(0. B & )=0.b b a
Byeoeee B 4@ )=0b .. ib

When x is interior to this removed interval, say

X = 0.[31. .Bm—iamym+1 ey
the digits vy URIREE cannot all be zero, nor all equal to 2N:
m
then by definition F(x) = 0. bi' e bm_ 1am.

(3.2) F(x) is non-decreasing. It is sufficient to prove that
F(x') > F(x) when x' >x and x,x'€¢ R. Let

=0.B,. ... . .. V=08 . ... . ! ... wh
x 0ﬁ1 ﬁqﬁ , X 0[31 Bqﬁq+1 where

q 1
‘3! > (3 ’l‘hen

F(x')=0.b,. ... .b b «e.>0.b,. ... .b Db ... = F(x).
(") 1 q qt+1 1 q q+1 (x)

(3.3) F(x) is continuous but not absolutely continuous. It is
sufficient to show that as x' - x through values greater than
x, then F(x') - F(x), both x and x' being in R. This is
easily deduced from (2. 3) and the definition of F.

To show that F is not AC, consider the residual
intervals nmq’ where q =>1, 2,... ,(N+1)m. We note that

RC U . Let be the interval « < x< \ . Then
q"lmq T‘Imq q— — q

z F)\ -F =2 FX - = ’
ql ( q) (Kq), q{ ( q) F(A’q)} 1

since the interval (/(q_1, )\q) is part of the m-th discard.
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(3.4) F'(x)=20.
X

(3.5) [ F'(t)dt =0 but F(x) - F(0) >0 when x> 0.
o

(3.6) F(x) + F(1-x) =1 for all x.

This is obvious when x< 0 or when x> 1. When

0<x<1, and x=0.ﬁi. .ﬁm..., then
[+ ]
1-x = Z(2N-g )p%, and
q=1 4
o0
F(x) + F(1-x) = Z (b +N-b)r? = 1.
4 4a q
q=1
When 0<x<1 and x=0.ﬁi,...,§p_iapyp+1..., then
p-1 @
1-x= Z (2N-p )pl+(2N - ap)pp+ > (ZN-yq)pq,
q=1 g q=pti
and
p-1 p-1
F(x) + F(1-x) = = bqrq +‘r(ap+ )P+ TN - bq)rq

q=1 q=1

+5(2N+ 1 - ap)rp

(3.7) rF(x) = Flpx), (0<x<1);
(3.8) r+ F(x-2p) =F(x), (2p <x<1).
(3.7) and (3. 8) follow easily from the definition of F.
4. Moments of F(x). It is easily verified that the
1

moments Mn = f an(x)dx, and the associated moments
0
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0

" =.f xndF(x) are connected by
T e

4.1 =1;
( )uo B

=1 - , > 0).
bl 1 (n+1)Mn (n>0)

Following the ideas of Evans in [3], we shall prove:

n
(4.2) M_+ E(J(-)P(g)mp =1/(n+1), (n > 0).

1
nt,  Nr x(2p)™
(4.3) [1-p M ol (n+1)(n+2)|: n+2

1
(NE)-B_ ()]

BP+1(N+1)-BP+1(1)

n-p pt+1

nt+1
+ rp

M B

n\,P
(p)z M
p=1
Formula (4.2) does not give a value for Mi’ and is
therefore not sufficient for calculating all Mn. However

the value

M1 = (8N+7)/24(N+1)

can be deduced from (4. 3); and this value together with (4. 2)
affords a means of calculating all M .
n

Proof of (4.2): Follows from (3. 6).

Proof of (4. 3): Here we shall use (3.7) and (3. 8), and
the Bernoulli polynomials Bm(x) and Bernoulli numbers B

defined by
Xt ©B (=t
‘: = = '
e -1 0 m.
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with the difference relation

B (x+#1) - B (x) = mx™ 1
m m

Now

N (2pHi)p _ N o2pp
M = I [ x F(x)dx+ Z [ x F(x)dx .
p=0 2pp p=1 (2p-1)p
But since
(2prtdp _ (2p+i)p _ |
. F(x)dx = x [pr + F(x-2pp)ldx
2pp 2pp
prp p n+1 n+1
= [(2P+1) -(ZP) ]
n+1 ! n
+ rp J (t+2p) F(t)at ,
0
and
2pp n+1
n+1
[ FFwex = B [ep™ - 2e-0)™,
(2p-1)p
it follows that
rpn+1 N n+1 n+1
M = Z p[(2p+1) - (2p-1) 7]
n n+1
p=1
N n+1 n
+ I rp f (t+2p) F(t)dt
p=0 0

_ Nr _ 1'(2p)n+‘1
" nt1  (n+1)(n+2)

1
(N+£)-B_ ()} + ot M

(B

n+2
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Bp+1(N+1)-Bp+1(1)

1 n-p pt+1

n+1
+ rp

MB
o
S—
o
o
g

from which (4. 3) follows.

5. Characteristic function of F(x). This section is
devoted to the proof of the

N
-1
THEOREM: Let £ (1) =(N+1) " = P).

exp (2iktp then

k=0

0

the infinite product II fp(t) converges for all real t to a
p=1

function f£(t), which is the characteristic function correspond-
ing to the distribution function F(x).

0 1
it it
We need to prove that £(t) = f e’ XdF(x) = f e1 xdF(x),
0

- 00
an integral known to exist since F(x) is bounded and increasing.

Let the interval [0, 1] be partitioned into q = (2N+1)n equal
subintervals. These subintervals will consist either of parti-
tions of the removed intervals & , 6 seeesd , or of
a 2 na
1 2 n
residual intervals n 6 Then the integral is equal to
n

n

q
im I exp(itg )[F(x) - F(x, ,)].
n-—-0 J:’l J J J—i

The increments of F are zero when x, 1 and x, belong to
J- J

the same removed interval, non-vanishing terms in the sum

occurring only when the interval (x, 1,x‘) is one of the
=13

residual intervals nnB . In this case
n
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-n
Flx) - Flx,_,) = (N+1)

for j=1,2,...,s, where s =(N+1)n. Let us take £, to be
J
the left end point of the corresponding residual interval nn :
. f_’,n
it is evident that the set of numbers £, (j=1,2,...,s),
J

consists of all finite fractions of the form
0.8....
By P

Designating summation over all possible arrangements of
[31. .. |3n, (repetitions being allowed) by the symbol =

(8
it follows that we have to calculate the limit as n — © of
-7 .
c = (N+1) = exp(itg ) .
n (g) J
Now
n n
¢ = (N+1) " Z, exp{it = p pF}
n (B) 4 P
P_
n n
= (N+1) o1+ exp(Zitpp) + exp(4itpp) + ...
p=1

+ exp(2Nitp?)] ,

as can be verified by induction, when (1.1) and the meaning of

(B) are taken into account. Thus

n
O'n = II fP(t) .
p=1
But .
N
P>

'fp(t) = (N+1)-1 [(N+1) + {exp(Zkitpp) - 1}1]

k=1
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1 N 2kp® itx
= 1 + it (N+1) = f e dx,
k=1 0
N
<<1+—1;[I£J-1— = 2k s (t real);
k=1 (2N+1)P
Nt
B 11
(2N+1)P

)

Thus T f (t) is absolutely convergent for all real t; and
p=1

is the value of our integral.
We add some remarks about f(t), most of which are self-

evident, or easily derived from known properties of singular
distributions and their characteristic functions.

(5.1) If fp(t) is the characteristic function of Fp(x), then

. N
Fp(x) = (N#1)" T T H(x-2keD) ,

k=0

H(x) being the Heaviside unit function.

(5.2) Fp(x) are discrete distributions, while fp(t) are periodic

of period m(2N+ 1)p.

n
(5.3) Z £ (t) has period w(2N+1)".
p=1 P
n
(5.4) f(t) =lim 1T f (t) is not periodic, but for any positive
n—+0 1
integer P,

f[-rr(ZN+'1)P] =f(w) .
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%k L3
(5.5) F(x) = imF, F, . ... . F

1 n
n-—»0
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