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NONLINEAR MARKOV CHAINS WITH FINITE STATE SPACE:
INVARIANT DISTRIBUTIONS AND LONG-TERM BEHAVIOUR
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Abstract

Nonlinear Markov chains with finite state space were introduced by Kolokoltsov
(Nonlinear Markov Processes and Kinetic Equations, 2010). The characteristic property
of these processes is that the transition probabilities depend not only on the state, but also
on the distribution of the process. Here we provide first results regarding their invariant
distributions and long-term behaviour: we show that under a continuity assumption an
invariant distribution exists and provide a sufficient criterion for the uniqueness of the
invariant distribution. Moreover, we present examples of peculiar limit behaviour that
cannot occur for classical linear Markov chains. Finally, we present for the case of small
state spaces sufficient (and easy-to-verify) criteria for the ergodicity of the process.
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1. Introduction

Nonlinear Markov processes are a particular class of stochastic processes where the tran-
sition probabilities depend not only on the state, but also on the distribution of the process.
McKean [13] introduced processes of this type to tackle mechanical transport problems.
Thereafter they have been studied by several authors (see the monographs of Kolokoltsov [10]
and Sznitman [21]). Recently, the close connection to continuous-time mean-field games has
led to significant progress in the analysis of McKean–Vlasov stochastic differential equations,
in particular the control of these systems (see for example [5, 18]).

In this paper, we consider a special class of these processes—namely, nonlinear Markov
chains in continuous time with a finite state space—and provide first insights regarding their
long-term behaviour. Nonlinear Markov chains with finite state space arise naturally, in partic-
ular in evolutionary biology, epidemiology, and game theory. Specifically, replicator dynamics,
several infection models, and also the dynamics of learning procedures in game theory are non-
linear Markov chains [10]. Moreover, the population dynamics in mean-field games with finite
state and action space are also nonlinear Markov chains [15].

Note that the sense in which we use the term ‘nonlinear’ here is different from the sense
in which it occurs in the discussion of general (or nonlinear) birth–death processes, as for
example in [3]. Indeed, in the latter context the term ‘nonlinear’ means that the transition rates
depend on the current state not linearly but in a more general way (see [17] and the references
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Nonlinear Markov chains with finite state space 31

therein for an overview). However, in our context the term ‘nonlinear’ refers to the Markov
semigroup �t(m0), which is linear for classical Markov chains and nonlinear in our setting, so
that the transition probabilities can now depend on the current distribution of the process.

The main focus of this paper lies in the characterization of the long-term behaviour of these
processes. We show that an invariant distribution always exists and provide a sufficient crite-
rion for the uniqueness of this invariant distribution. We then turn to the long-term behaviour,
for which we first illustrate by two examples that the limit behaviour is much more complex
than for classical Markov chains. More precisely, we show that the marginal distributions of
a nonlinear Markov chain may be periodic and that irreducibility of the generator does not
necessarily imply ergodicity. Then we provide easy-to-verify sufficient criteria for ergodicity
for small state spaces (two or three states). All of the conditions that we propose are sim-
ple and rely only on the shape of the nonlinear generator, not on the shape of the transition
probabilities.

The long-term behaviour of general nonlinear Markov chains in continuous time with a
finite state space has not been analysed before. The closest contributions in the literature are
results for specific continuous-time Markov chains associated to pressure and resistance games
[12], as well as ergodicity criteria for nonlinear Markov processes in discrete time [4, 20].
These latter criteria are a generalization of Dobrushin’s ergodicity condition, and the proofs
rely crucially on the sequential nature of the problem.

The rest of the paper is structured as follows. In Section 2 we review the relevant definitions
and notation. In Section 3 we present the results on existence and uniqueness of the invariant
distribution. In Section 4 we provide examples of limit behaviour that cannot arise in the con-
text of classical Markov chains. In Section 5 we present the ergodicity results for small state
spaces. Appendix A contains the proofs of two technical results.

2. Continuous-time nonlinear Markov chains with finite state space

This section gives a short overview of the relevant definitions, notation, and preliminary
facts regarding nonlinear Markov chains. For more details about these processes we refer
the reader to [10, Chapter 1]. Moreover, this section introduces the relevant notions for
characterizing the long-term behaviour of these processes.

Let S = {1, . . . , S} be the state space of the nonlinear Markov chain, and denote by P(S) the
probability simplex over S . A nonlinear Markov chain is characterized by a continuous family
of nonlinear transition probabilities P(t,m) = (Pij(t,m))i,j∈S , which is a family of stochastic
matrices that depends continuously on t ≥ 0 and m ∈P(S), such that the nonlinear Chapman–
Kolmogorov equation

∑
i∈S

miPij(t + s,m) =
∑

i,k∈S
miPik(t,m)Pkj

(
s,

∑
l∈S

mlPl(t,m)

)

is satisfied. As usual, Pij(t,m0) is interpreted as the probability that the process is in state j at
time t given that the initial state was i and the initial distribution of the process was m0. Such a
family yields a nonlinear Markov semigroup (�t(·))t≥0 of continuous transformations of P(S)
via

�t
j(m) =

∑
i∈S

miPij(t,m) for all t ≥ 0, m ∈P(S), j ∈ S .

Also, �t(m0) has the usual interpretation that it represents the marginal distribution of the
process at time t when the initial distribution is m0. A nonlinear Markov chain with initial
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32 B. A. NEUMANN

distribution m0 ∈P(S) can then be identified with a time-inhomogeneous Markov chain with
initial distribution m0 and transition probabilities p(s, i, t, j) = Pij(t − s, �s(m0)).

Before we move on, let us briefly connect nonlinear Markov chains with classical time-
homogeneous Markov chains. A classical Markov chain is characterized by a family of
transition probabilities P(t) = (Pij(t))i,j∈S which is a family of stochastic matrices that contin-
uously depends on t ≥ 0 and which satisfies the Chapman–Kolmogorov equations. Therefore,
classical Markov chains are a special case of the nonlinear Markov chains we consider here;
namely, they are nonlinear Markov chains where the family of transition probabilities does not
depend on the distribution of the process. In this case the associated Markov semigroup reads

�t
j(m0) =

∑
i∈S

mi
0Pij(t),

which is linear in m0. This gives rise to the name nonlinear Markov chain for the objects we
investigate in this paper.

As in the theory of classical continuous-time Markov chains, the infinitesimal generator
will be the cornerstone of the description and analysis of such processes. Let �t(m) be differ-
entiable in t = 0 and m ∈P(S); then the (nonlinear) infinitesimal generator of the semigroup
(�t(·))t≥0 is given by a transition rate matrix function Q(·) such that for f (m) := ∂

∂t�
t(m)

∣∣
t=0

we have fj(m) = ∑
i∈S miQij(m) for all j ∈ S and m ∈P(S).

By [10, Section 1.1], any differentiable nonlinear semigroup has a nonlinear infinitesimal
generator. However, the converse problem is more important: given a transition rate matrix
function (that is, a function Q : P(S) →R

S×S such that Q(m) is a transition rate matrix for
all m ∈P(S)), is there a nonlinear Markov semigroup (and thus a nonlinear Markov chain)
such that Q is the nonlinear infinitesimal generator of the process? Relying on the semigroup
identity �t+s =�t�s, this problem is equivalent to the following Cauchy problem: is there,
for any m0 ∈P(S), a solution (�t(m0))t≥0 of

∂

∂t
�t(m0) =�t(m0)Q(�t(m0)), �0(m0) = m0,

such that �t(·) is a continuous function ranging from P(S) to itself, and such that �t(m) ∈
P(S) for all t ≥ 0 and m ∈P(S)?

In the monograph [10] the problem of constructing a semigroup from a given generator is
treated in a very general setting. Here, we present a result with easy-to-verify conditions tai-
lored to the specific situation of nonlinear Markov chains with finite state space. The proof
of the result, which relies on classical arguments from the theory of ordinary differential
equations, is presented in the appendix.

Proposition 1. Let Q : P(S) →R
S×S be a transition rate matrix function such that Qij(m) is

Lipschitz continuous for all i, j ∈ S . Then there is a unique Markov semigroup (�t(·))t≥0 such
that Q is the infinitesimal generator for (�t(·))t≥0.

This proposition sheds more light on the additional modelling possibilities of nonlinear
Markov chains compared to classical Markov chains: indeed, whereas classical Markov chains
are characterized through a transition rate matrix Q ∈R

S×S, the nonlinear Markov chains that
we consider here are described by a function Q : P(S) →R

S×S. This function now allows for
the transition rates of the processes to depend on the current distribution of the process. This
often occurs in applications, for example in evolutionary game dynamics or infection models
(e.g. susceptible–infectious–recovered models) [10]. Moreover, such processes naturally arise
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as the limit of weakly interacting particles or agents [11], which is why these processes play a
role in mean-field game theory.

Let us illustrate both aspects in a simple toy example. Namely, let the function
Q : P({1, 2}) →R

2×2 be given by

m �→ Q(m) :=
(

−am1 am1

b −b

)
,

where both a and b are positive. This is a simple nonlinear Markov chain, where the transition
rate from state 2 to state 1 is as in a classical Markov chain given by the fixed constant b, and
the transition rate from state 1 to state 2 increases linearly in the current probability of state 1.
This Markov chain naturally arises as a limit of classical Markov chains as follows. Let us
assume there are N agents/particles which can be in either state 1 or state 2. Let ni denote the
number of agents/particles in state i, and let EN = {(n1, n2) : n1 + n2 = N} be the state space.
Moreover, let the transition rate matrix of a classical Markov chain describing the motion of
these particles be given by

Q(n1,n2),(k1,k2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a n1
N if n1 = k1 + 1,

b if n2 = k2 + 1,

−a n1
N − b if 0 ≤ n1 <N, n1 = k1,

−a if n1 = k1 = N,

0 otherwise,

for all (n1, n2), (k1, k2) ∈ EN . In this process, the more agents/particles are in state 1, the larger
the transition rate is for other agents to go to state 2; i.e., the agents/particles face congestion
effects in state 1. Renormalizing the state space to 1

N EN ⊆P({1, 2}), one can then show that
the Markov chain describing the N-particle system converges in distribution and in probability
to the nonlinear Markov chain described above (see [11] and the references therein for gen-
eral results of this type). This means that for a large number of agents/particles the nonlinear
Markov chain approximately describes the behaviour of the distribution of the agents/particles.

In this paper we are now mainly interested in the characterization of the long-term behaviour
of nonlinear Markov chains. We say that m ∈P(S) is an invariant distribution if ∂

∂t�
0(m) = 0

and thus also ∂
∂t�

t(m) = 0. An equivalent condition with respect to the generator is that a vector
m ∈P(S) is an invariant distribution if it solves 0 = mTQ(m).

We say that a nonlinear Markov chain with nonlinear semigroup (�t(·))t≥0 is strongly
ergodic if there exists an m̄ ∈P(S) such that for all m0 ∈P(S) we have

lim
t→∞

∣∣∣∣�t(m0) − m̄
∣∣∣∣ = 0.

3. Existence and uniqueness of the invariant distribution

The invariant distributions of a nonlinear Markov chain are exactly the fixed points of the
set-valued map

s : P(S) → 2P(S), m �→ {x ∈P(S) : 0 = xTQ(m)}.
Using Kakutani’s fixed point theorem, we directly obtain the existence of an invariant
distribution for any generator, as follows.
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34 B. A. NEUMANN

Proposition 2. Let Q(·) be a nonlinear generator such that the map Q : P(S) →R
S×S

is continuous. Then the nonlinear Markov chain with generator Q(·) has an invariant
distribution.

Proof. By [8, Theorem 5.3], the set of all invariant distributions given a fixed generator
matrix Q(m) is the convex hull of the invariant distributions given the recurrent communication
classes of Q(m). Therefore, the values of the map s are non-empty, convex, and compact.
Moreover, the graph of the map s is closed: let (mn, xn)n∈N be a converging sequence such that
xn ∈ s(mn). Denote its limit by (m, x). Then 0 = (xn)TQ(mn) for all n ∈N. By continuity of Q(·)
we have 0 = xTQ(m), which implies x ∈ s(m). Thus, Kakutani’s fixed point theorem yields a
fixed point of the map s, which is an invariant distribution given Q(·). �

If Q(m) is irreducible for all m ∈P(S), the sets s(m) will be singletons [1, Theorem 4.2]. Let
x(m) denote this point. We remark that there are explicit representation formulas for x(m) (e.g.
[16, 19]). With these insights we provide the following sufficient criterion for the uniqueness
of the invariant distribution.

Theorem 1. Assume that Q(m) is irreducible for all m ∈P(S). Furthermore, assume that
f (m) := x(m) − m is continuously differentiable and that the matrix

M(m) :=

⎛
⎜⎜⎜⎝

∂f1(m)
∂m1

. . .
∂f1(m)
∂mS−1

...
. . .

...

∂fS−1(m)
∂m1

. . .
∂fS−1(m)
∂mS−1

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

∂f1(m)
∂mS

. . .
∂f1(m)
∂mS

...
. . .

...

∂fS−1(m)
∂mS

. . .
∂fS−1(m)
∂mS

⎞
⎟⎟⎟⎠

is non-singular for all m ∈P(S). Then there is a unique invariant distribution.

Proof. We first note that any invariant distribution of a nonlinear Markov chain with gener-
ator Q(·) is an invariant distribution m of a classical Markov chain with generator Q(m). Since
any invariant distribution of a classical Markov chain with generator Q(m) has to satisfy that
all components are strictly positive [1, Theorem 4.2], no invariant distribution of Q(·) lies on
the boundary of P(S). Therefore, we only need to ensure the existence of a unique invariant
distribution in the interior of P(S).

The set P(S) is homeomorphic to �̄ with

�=
{

m ∈R
S−1 : mi > 0∀i ∈ {1, . . . , S − 1} ∧

S−1∑
i=1

mi < 1

}
,

where the continuous bijections are given as the restrictions of

φ : RS−1 →R
S, (m1, . . . ,mS−1) �→

(
m1, . . . ,mS−1, 1 −

S−1∑
i=1

mi

)
,

ψ : RS →R
S−1, (m1, . . . ,mS−1,mS) �→ (m1, . . . ,mS−1).
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Define f̄ : �̄→ �̄ by m �→ψ(f (φ(m))). By the chain rule we obtain

∂ f̄ (m)

∂m
= ∂ψ

∂m
(f (φ(m)) · ∂f

∂m
(φ(m)) · ∂φ

∂m
(m)

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎝
∂f1(m)
∂m1

. . .
f1(m)
∂mS

...
. . .

...

∂fS(m)
∂m1

. . .
fS(m)
∂mS

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 1
. . . . . .

...
. . .

. . . 0

0 . . . 0 1

−1 −1 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M

⎛
⎝(

m1, . . . ,mS−1, 1 −
S−1∑
i=1

mi

)T⎞
⎠ .

The matrix M(m) is, by assumption, non-singular for all m ∈P(S). Thus,

det

(
∂ f̄ (m)

∂m

)
�= 0 for all m ∈ �̄.

Since φ, ψ , f , and det are continuous functions, we obtain that the function m �→ det
(
∂ f̄ (m)
∂m

)
is

also continuous. Thus, the intermediate value theorem yields that det
(
∂ f̄ (m)
∂m

)
has uniform sign

over �̄.
Furthermore, we note that by assumption M(m) is in particular non-singular for all m ∈

φ(f̄ −1({0})). Thus, 0 is a non-critical value of f̄ .
The map h̄ : [0, 1] × �̄→R

S−1 given by

h̄(t,m) = t · f̄ (m) + (1 − t) ·
(

(S − 1)

S
(1, . . . , 1)T − m

)

= t ·ψ(x(φ(m)) + (1 − t) · S − 1

S
(1, . . . , 1)T − m

is continuous. Furthermore, 0 /∈ h̄(t, ∂�): indeed, a point m ∈ ∂� satisfies either mi = 0 for
some i ∈ {1, . . . , S − 1} or

∑S−1
i=1 mi = 1. However, by [1, Theorem 4.2], all components of

the invariant distribution for an irreducible generator are strictly positive. Thus, we obtain in
the first case that hi(t,m)> 0 and in the second case that the sum of all components is strictly
negative, which in both cases implies that h(t,m) �= 0.

With these preparations we can make use of the Brouwer degree (see [6, Sections 1.1
and 1.2]); namely we obtain that

deg

(
S − 1

S
(1, . . . , 1)T − m, �, 0

)
= deg(f̄ , �, 0).
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Since for continuously differentiable maps g and regular values y /∈ g(∂�) the degree is
given by

deg(g, �, y) =
∑

x∈g−1({y})
sgn det

(
∂g

∂x
(x)

)
,

we obtain that

(−1)S−1 =
∑

m∈f̄ −1({0})
sgn det

(
∂

∂m
f̄ (m)

)
.

Because the determinant has uniform sign over �⊇ f̄ −1({0}), we obtain that f̄ −1({0}) consists
of exactly one element. Thus, there is a unique stationary point for the nonlinear Markov chain
with nonlinear generator Q(·). �

Example 1. We illustrate the use of the result in an example. Consider a nonlinear Markov
chain with the following generator:

Q(m) =
⎛
⎜⎝−(b + em1 + ε) b em1 + ε

0 −(em2 + ε) em2 + ε

λ λ −2λ

⎞
⎟⎠ ,

where all constants are strictly positive. This nonlinear Markov chain arises in a mean-field
game model of consumer choice with congestion effects (see [15], which also gives detailed
calculations). In this setting the invariant distributions are given as the solution(s) of the non-
linear equation 0 = mTQ(m), for which closed-form solutions are hard or impossible to obtain.
However, it is possible to verify that the matrix M(m) is non-singular for all m ∈P(S) yield-
ing a unique invariant distribution. This information can in particular be used to obtain certain
characteristic properties of the solutions.

4. Examples of peculiar limit behaviour

The following examples show that the limit behaviour of nonlinear Markov chains (even in
the case of small state spaces) is more complex than that of classical continuous-time Markov
chains. In particular, it may be that the marginal distributions do not converge, but are periodic;
and a nonlinear Markov chain with an irreducible nonlinear generator may not be strongly
ergodic, but may exhibit convergence towards several different invariant distributions.

4.1. An example with periodic marginal distributions

Let B =P({1, 2, 3}) ∩ {m ∈R
3 : min{m1,m2,m3} ≥ 1

10 }, and for all m ∈ B define the
matrix Q as follows:

Q13(m) = 1

m1

(
1

3
− m2

)
I{m2≤ 1

3 }, Q23(m) = 1

m2

(
m1 − 1

3

)
I{m1≥ 1

3 },

Q31(m) = 1

m3

(
m2 − 1

3

)
I{m2≥ 1

3 }, Q32(m) = 1

m3

(
1

3
− m1

)
I{m1≤ 1

3 },

Q12(m) = Q21(m) = 0, Qii(m) = −
∑
j �=i

Qij(m),
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FIGURE 1. The marginal distributions of the nonlinear continuous-time Markov chain with initial
distribution m0 = (0.2, 0.4, 0.4).

where IA is 1 if A is true and 0 otherwise. Since all transition rates on B are Lipschitz continuous
functions, there is an extension of Qij(·) on P(S) for all i, j ∈ S , which is again Lipschitz
continuous. Thus, a nonlinear Markov chain with generator Q exists, and whenever�t(m0) ∈ B,
we have

∂

∂t
�t

1(m0) =

⎧⎪⎨
⎪⎩
�t

1(m0) ·
(
− 1
�t

1(m0)

(
1
3 −�t

2(m0)
))
, �t

2(m0) ≤ 1
3 ,

�t
3(m0) ·

(
1

�t
3(m0)

(
�t

2(m0) − 1
3

))
, �t

2(m0) ≥ 1
3 ,

=�t
2(m0) − 1

3
,

∂

∂t
�t

2(m0) =

⎧⎪⎨
⎪⎩
�t

2(m0) ·
(
− 1
�t

2(m0)

(
�t

1(m0) − 1
3

))
, �t

1(m0) ≥ 1
3 ,

�t
3(m0) ·

(
1

�t
3(m0)

(
1
3 −�t

1(m0)
))
, �t

1(m0) ≤ 1
3 ,

= 1

3
−�t

1(m0),

∂

∂t
�t

3(m0) =�t
1(m0) −�t

2(m0).

Thus, for any neighbourhood U ⊆ B of
(

1
3 ,

1
3 ,

1
3

)T
the first two components of the marginal

behave like the classical harmonic oscillator. Therefore, there are initial distributions such that
the marginals are periodic. An example is the initial distribution m0 = (0.2, 0.4, 0.4), for which
the marginals are plotted in Figure 1.
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4.2. An example of a nonlinear Markov chain with irreducible generator that is not
strongly ergodic

Let

Q(m) =
⎛
⎝−

(
29
3 m2

1 − 16m1 + 22
3

)
29
3 m2

1 − 16m1 + 22
3

m2
1 + m1 + 1 − (

m2
1 + m1 + 1

)
⎞
⎠ .

This matrix is irreducible for all m ∈P({1, 2}), since m2
1 + m1 + 1 ≥ 1 and 29

3 m2
1 − 16m1 +

22
3 ≥ 62

82 for all m1 ≥ 0.
The ordinary differential equation describing the marginals for the initial condition m0 ∈

P({1, 2}) is given by

∂

∂t
�t

1(m0) = −32

3

(
�t

1(m0)
)3 + 16

(
�t

1(m0)
)2 − 22

3
�t

1(m0) + 1 =: f
(
�t

1(m0)
)
,

∂

∂t
�t

2(m0) = 32

3

(
�t

1(m0)
)3 − 16

(
�t

1(m0)
)2 + 22

3
�t

1(m0) − 1 = −f
(
�t

1(m0)
)

.

We obtain that there are three stationary points, m1 = (0.25, 0.75), m2 = (0.5, 0.5), and m3 =
(0.75, 0.25), and the following convergence behaviour:

• Since the function f (·) is strictly positive on [0, 0.25), the trajectories will converge
towards m1 = 0.25 for all initial conditions (m0)1 ∈ [0, 0.25).

• Since the function f (·) is strictly negative on (0.25, 0.5), the trajectories will converge
towards m1 = 0.25 for all initial conditions (m0)1 ∈ (0.25, 0.5).

• Since the function f (·) is strictly positive on (0.5, 0.75), the trajectories will converge
towards m1 = 0.75 for all initial conditions (m0)1 ∈ (0.5, 0.75).

• Since the function f (·) is strictly negative on (0.75, 1], the trajectories will converge
towards m1 = 0.75 for all initial conditions (m0)1 ∈ (0.75, 1].

This behaviour is illustrated in Figure 2, where several trajectories for different initial
conditions are plotted.

5. Sufficient criteria for ergodicity for small state spaces

Although nonlinear Markov chains have more complex limit behaviour, we still obtain suf-
ficient criteria for ergodicity in the case of a small number of states. Here we present these
criteria and discuss applicability as well as the problems that occur for larger state spaces.

Proposition 3. Let S = 2, and assume that f : [0, 1] →R defined via

f (m1) := m1 · (Q11(m1, 1 − m1)) + (1 − m1) · Q21(m1, 1 − m1)

is continuous. Furthermore, assume that (m̄, 1 − m̄) is the unique stationary point given Q.
Then the nonlinear Markov chain is strongly ergodic.

Proof. An equilibrium point is characterized by the property that ∂
∂t�

t(m) = 0. By flow-
invariance of P(S) for the ordinary differential equation ∂

∂t�
t(m0) =�t(m0)Q(�t(m0)) (see the

proof of Theorem 1), which implies that ∂
∂t�

t
1(m) + ∂

∂t�
t
2(m) = 0, this property is equivalent

to the fact that ∂
∂t�

t
1(m) = 0.
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FIGURE 2. The trajectories of the nonlinear Markov chain for several initial conditions.

Since ∂
∂t�

t
1(m) = f (m1) and since we have a unique equilibrium point, we obtain that

f (m̄) = 0 and f (m1) �= 0 for all m1 �= m̄. Since f (·) is continuous, we obtain that f (·) is non-
vanishing on [0, m̄) and (m̄, 1] and has uniform sign on each of these sets. Since Q(·) is a
conservative generator we moreover obtain that f (0) ≥ 0 and f (1) ≤ 0. Thus, we obtain that
f (m1)> 0 for all m1 ∈ [0, m̄) and f (m1)< 0 for all m1 ∈ (m̄, 1]. This in turn yields that [0, 1] is
flow-invariant for ṁ1 = f (m1).

Fix m0 ∈P(S). Then the systems ∂
∂t�

t(m0) = Q(�t(m0))T�t(m0) and ∂
∂t �̃

t(m0)1 =
f (�̃t(m0)) are equivalent in the sense that �t

1(m0) = �̃t(m0) for all t ≥ 0, m0 ∈P({1, 2}):
Indeed, let �t(m0) = (�t

1(m0), �t
2(m0)) be a solution of the differential equation ∂

∂t�
t(m0) =

Q(�t(m0))T�t(m0) with initial condition �0(m0) = m0. By flow-invariance of P(S) for
∂
∂t�

t(m0) = Q(�t(m0))T�t(m0) (see Theorem 1), we have �t
2(m0) = 1 −�t

1(m0) for all t ≥ 0.
Thus, ∂

∂t�
t(m0) = Q(�t(m0))T�t(m0) is equivalent to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂t�

t
1(m0) =�t

1(m0) · (Q11(�t
1(m0), 1 −�t

1(m0)))

+ (1 −�t
1(m0)) · Q21(�t

1(m0), 1 −�t
1(m0)),

− ∂
∂t�

t
1(m0) =�t

1(m0) · (−Q12(�t
1(m0), 1 −�t

1(m0)))

+ (1 −�t
1(m0)) · Q22(�t

1(m0), 1 −�t
1(m0)).

(1)

Therefore,�t
1(m0) is indeed a solution of ∂

∂t�
t
1(m0) = f (�t

1(m0)). For the converse implication
we first note that, because Q(m) is conservative for all m ∈P(S), the last equation of (1) is the
first equation multiplied by (−1). If �̃t(m0) satisfies ∂

∂t �̃
t(m0) = f (�̃t(m0)), �̃0(m0) = (m0)1 ∈

[0, 1], then, by flow-invariance, �̃t(m0)) ∈ [0, 1] for all t ≥ 0. Thus, the function �t(m0) =
(�̃t(m0), 1 − �̃t(m0)) satisfies ∂

∂t�
t(m0) = Q(�t(m0))T�t(m0).

The desired convergence statement follows directly from f (m1)> 0 for all m1 ∈ [0, m̄) and
f (m1)< 0 for all m1 ∈ (m̄, 1]. �
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We also obtain a sufficient criterion for the case of three states. The proof technique is
similar to the two-state case. Indeed, we first show that our system is equivalent to a two-
dimensional system, for which we can then use standard tools for two-dimensional dynamical
systems, exploiting that the dynamical system has a particular shape since Q(·) is a conservative
generator.

As mentioned, for systems with three states we obtain that, given m0 ∈P(S), the func-
tion �t(m0) = (�t

1(m0), �t
2(m0), �t

3(m0)) is a solution of ∂
∂t�

t(m0) = Q(�t(m0))T�t(m0),
�0(m0) = m0 if and only of (�t

1(m0), �t
2(m0)) is a solution of(

∂
∂t�

t
1(m0)

∂
∂t�

t
2(m0)

)
= f

(
�t

1(m0)

�t
2(m0)

)
,

(
�0

1(m0)

�0
2(m0)

)
=

(
(m0)1

(m0)2

)
,

where

f

(
m1

m2

)
=

(
Q31(m̂) + (Q11(m̂) − Q31(m̂))m1 + (Q21(m̂) − Q31(m̂))m2

Q32(m̂) + (Q12(m̂) − Q32(m̂))m1 + (Q22(m̂) − Q32(m̂))m2

)
(2)

and m̂ = (m1,m2, 1 − m1 − m2). Indeed, the proof is analogous to the proof for the two-
state case; the central adjustment is to prove the flow-invariance of {(m1,m2) ∈ [0,∞) : m1+
m2 ≤ 1} for (

∂

∂t
�t

1(m0),
∂

∂t
�t

2(m0)

)T

= f (�t
1(m0), �t

2(m0))

instead of the flow-invariance of [0, 1] for �t
1(m0) = f (�t

1(m0)). This statement is proven in
the appendix (Lemma 1).

To show the desired convergence statement, we now rely on the Poincaré–Bendixson the-
orem [22, Chapter 7], which characterizes the ω-limit sets ω+(m0) of a trajectory with initial
condition �0(m0) = m0.

Theorem 2. Let O ⊇ {(m1,m2) ∈ [0,∞)2 : m1 + m2 ≤ 1} be a simply connected and bounded
region such that there is a continuously differentiable function f : O →R

2 satisfying (2) on
P(S). Let m̄ be the unique stationary point given Q(·). Furthermore, assume that

(a) ∂f1
∂m1

(m) + ∂f2
∂m2

(m) is non-vanishing for all m ∈ O and has uniform sign on O, and

(b) it holds that
∂f1
∂m1

(m̄) · ∂f2
∂m2

(m̄) − ∂f1
∂m2

(m̄) · ∂f2
∂m1

(m̄)> 0

or that(
∂f1
∂m1

(m̄) + ∂f2
∂m2

(m̄)

)2

− 4

(
∂f1
∂m1

(m̄) · ∂f2
∂m2

(m̄) − ∂f1
∂m2

(m̄) · ∂f2
∂m1

(m̄)

)
< 0.

Then the nonlinear Markov chain is strongly ergodic.

Proof. Since the set F := {(m1,m2)T ∈R
2 : m1,m2 ≥ 0 ∧ m1 + m2 ≤ 1} is flow-invariant for(

∂

∂t
�t

1(m0),
∂

∂t
�t

2(m0)

)T

= f (�t
1(m0), �t

2(m0)),

any trajectory will stay in this set. Since the set F is compact, we obtain by [22, Lemma 6.6]
that ω+(m0) lies in F. Since there is, by assumption, only one stationary point, we can apply
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the Poincaré–Bendixson theorem [22, Theorem 7.16], which yields that one of the following
three cases holds:

(i) ω+(m0) = {m̄},
(ii) ω+(m0) is a regular periodic orbit, or

(iii) ω+(m0) consists of (finitely many) fixed points x1, . . . , xk and non-closed orbits γ (z)
such that ω±(z) ∈ {x1, . . . , xk}.

By the condition (a) and Bendixson’s criterion [9, Theorem 3.5], the case (ii) is not possible.
Since, by the condition (b), the point m̄ is not a saddle point, there is no homoclinic path joining
m̄ to itself. Therefore, since m̄ is the only stationary point, the case (iii) is also not possible.
Thus, ω+(m0) = {m̄}. Since the trajectory considered lies in the compact set F, we moreover
obtain by [22, Lemma 6.7] that

0 = lim
t→∞ d

(
�t(m0), ω+(m0)

) = lim
t→∞ d

(
�t(m0), m̄

)
.

�

Remark 1. The equivalence of the systems considered above and S − 1 systems on some sub-
set of RS−1, as well as the construction performed in Section 4.1, hint at the general problem for
a larger number of states (S ≥ 4). It might happen that the dynamics of the nonlinear Markov
chain describe a classical ‘chaotic’ nonlinear system like the Lorentz system. In other words,
the difficulties that arise in the classical theory of dynamical systems might also arise here, for
which reason criteria for a larger number of states are more complex.

Example 2. Theorem 2 now yields strong ergodicity of the nonlinear Markov chain introduced
at the end of Section 3. In this setting the function f is given by

f

(
m1

m2

)
=

(
λ− em2

1 − (b + ε + λ)m1 − λm2

λ+ (b − λ)m1 − em2
2 − (ε + λ)m2

)
;

moreover, we have ∂f1
∂m1

(m) + ∂f2
∂m2

(m)< 0 for all m ∈ Nε([0, 1]2), as well as

∂f1
∂m1

(m)
∂f2
∂m2

(m) − ∂f1
∂m2

(m)
∂f2
∂m1

(m)> 0

for all m ∈ [0, 1]2 and thus in particular for the unique invariant distribution. Therefore, by
Theorem 2 we obtain strong ergodicity.

Appendix A. Proofs

Proof of Theorem 1. We first note that

f (m) :=
(∑

i∈S
miQij(m)

)
j∈S

is Lipschitz continuous on P(S). Indeed, let L be a Lipschitz constant for all functions Qij(·)
(i, j ∈ S) simultaneously. Moreover, since P(S) is compact there is a finite constant

M := sup
m∈P(S),i,j∈S

Qij(m).
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Thus, we have

|f (m1) − f (m2)|1 ≤ (M + L)S ·
∣∣∣m1 − m2

∣∣∣
1

.

By McShane’s extension theorem [14], there is a Lipschitz continuous extension f̃ : RS →R
S

of f . Let us fix an arbitrary m0 ∈P(S). By the classical existence and uniqueness theorem for
ordinary differential equations, we obtain that there is a unique solution of �·(m0) : [0,∞) →
R

S of ∂
∂t�

t(m0) = f̃ (�t(m0)), �0(m0) = m0.

As a next step we show that the vectors f (m) = f̃ (m) lie, for all m ∈P(S), in the Bouligand
tangent cone

TP(S)(m) =
{

y ∈R
S : lim inf

h↓0

d(m + hy,P(S))

h
= 0

}

=
{

y ∈R
S : yi ≥ 0∀i ∈ S s.t. mi = 0 ∧

∑
i∈S

yi = 0

}
,

where the second line follows from [2, Proposition 5.1.7]. Indeed, since for all interior
points of P(S) the condition is trivially satisfied, it suffices to consider the boundary points
m ∈ ∂P(S). These points satisfy that there is at least one j ∈P(S) such that mj = 0. Since
the only non-positive column entry of Q·j (which is Qjj) gets weight mj, the vector f (m) =
(

∑
i∈S miQija(m))j∈S will have non-negative entries at each j ∈ S such that mj = 0. Since Q is

conservative, we moreover obtain that∑
j∈S

∑
i∈S

miQija(m) =
∑
i∈S

∑
j∈S

Qija(m)

︸ ︷︷ ︸
=0

mi = 0.

Thus, f (m) = f̃ (m) ∈ TP(S)(m) for all m ∈P(S). Therefore, by the classical flow-invariance
statement for ordinary differential equations ([23, Theorem 10.XVI]), we find that the solution
satisfies m(t) ∈P(S) for all t ≥ 0. Thus, �·(m0) : [0,∞) →R

S is also the unique solution of
∂
∂t�

t(m0) = f (�t(m0)), �0(m0) = m0. The continuity of �t(·) follows from a classical general
dependence theorem [23, Theorem 12.VII]. �

Lemma 1. The set N = {(m1,m2) ∈ [0,∞) : m1 + m2 ≤ 1} is flow-invariant for

(
∂

∂t
�t

1(m0),
∂

∂t
�t

2(m0)

)T

= f (�t
1(m0), �t

2(m0)).

Proof. The statement follows from [7, Lemma 1]. This lemma states that for an open set
O ⊆R

S and a family of continuously differentiable functions gi : O →R (i ∈ {1, . . . , k}), the
set

M = {x ∈ O : gi(x) ≤ 0 for all i ∈ {1, . . . , k}}
is flow-invariant for ẋ = f (x) whenever for any x ∈ ∂M there is an i ∈ {1, . . . , k} such that
gi(x) = 0 and

〈f (x),∇gi(x)〉< 0.
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Indeed, in our case we have

M = {x ∈R
S : − m1 ≤ 0 ∧ −m2 ≤ 0 ∧ m1 + m2 ≤ 1},

and the boundary points of this set satisfy either mi = 0 for at least one i ∈ {1, 2}, or
m1 + m2 = 1. Since Q(·) is conservative and irreducible, we obtain〈

f ((m1,m2)T ),∇(−mi)
〉
< 0

in the first case and 〈
f ((m1,m2)T ),∇(m1 + m2 − 1)

〉
< 0

in the second case. Therefore, the claim follows. �
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