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Compatibility of Kazhdan and Brauer
homomorphism

Sabyasachi Dhar

Abstract. Let G be a split connected reductive group defined over Z. Let F and F′ be two non-
Archimedean m-close local fields, where m is a positive integer. D. Kazhdan gave an isomorphism
between the Hecke algebras KazF

m ∶H(G(F), KF) →H(G(F′), KF′), where KF and KF′ are the
mth usual congruence subgroups of G(F) and G(F′), respectively. On the other hand, if σ is an
automorphism of G of prime order l, then we have Brauer homomorphism Br ∶H(G(F), U(F)) →
H(Gσ(F), U σ(F)), where U(F) and U σ(F) are compact open subgroups of G(F) and Gσ(F),
respectively. In this article, we study the compatibility between these two maps in the local base change
setting. Further, an application of this compatibility is given in the context of linkage – which is the
representation theoretic version of Brauer homomorphism.

1 Introduction

The local Langlands correspondence relates the set of irreducible smooth complex
representations of the group of rational points of a reductive group over a local field
– with the representation theory of its Weil–Deligne group. For a connected split
reductive group G defined over Z, D. Kazhdan conjectured a link between the local
Langlands correspondences for G(F) and G(F′), where F is a p-adic field and F′ is
a non-Archimedean positive characteristic local field – which are sufficiently close.
Kazhdan’s approach is via isomorphisms between the respective Hecke algebras with
complex coefficients, H(G(F), K) and H(G(F′), K′), for some specific choice of
open-compact subgroups K and K′ of G(F) and G(F′), respectively (see [Kaz86,
Theorem A]). Say L is a non-Archimedean local field with residue characteristic
p and assume that K is a nice compact open subgroup of G(L) – for instance, a
congruence subgroup of positive level. When G(L) has an automorphism, denoted
by σ , of prime order l ≠ p such that σ(K) = K, In [TV16, Section 4] define an Fl -
algebra morphism between Hecke algebras with Fl -coefficients, H(G(L), K)σ and
H(Gσ(L), Kσ), which is called the Brauer homomorphism, and it is conjectured to be
compatible with Langlands functoriality. This article aims to study the compatibility
between the Brauer homomorphism and Kazhdan isomorphism in the local base
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2 S. Dhar

change setting. So far, this type of compatibility has not been addressed in the
literature. Using this compatibility, one can relate the functoriality principles for
connected reductive algebraic groups defined over the close local fields F and F′. This
article gives one such treatment in the context of linkage (see [TV16, Section 6]) –
which is related to the functoriality over Fl .

Let oF be the ring of integers of F, and let pF be the maximal ideal of oF . Let E
be a Galois extension of F of prime degree l, where l is different from the residue
characteristic of F. Let σ be a generator of Gal(E/F). Similar notations follow for E.
Let KE (resp. KF ) be the mth congruence subgroup of G(oE) (resp. G(oF)). Note
that KE is stable under the action of σ and let KF = KE ∩ G(F). In [TV16, Section 4]
Treumann-Venkatesh define Brauer homomorphism, denoted by Br – which is the
Fl -algebra homomorphism

Br ∶H(G(E), KE)σ →H(G(F), KF),

obtained by restriction of functions on G(E) to G(F). On the other hand, following
Kazhdan’s approach in [Kaz86, Theorem A], we get an Fl -algebra isomorphism
(Proposition 4.5)

KazF
m ∶H(G(F), KF) →H(G(F′), KF′),

provided the fields F and F′ are sufficiently close. The above isomorphism KazF
m was

originally constructed for complex Hecke algebras (Proposition 4.1) – which relies on
the finiteness of complex Hecke algebras, due to Bernstein [Ber84, Corollary 3.4]. For
arbitrary NoetherianZl -algebra R, whereZl is the ring of integers of the field of l-adic
numbers, the finiteness of Hecke algebras with coefficients in R follows from the work
of [DHKM24, Theorem 1.1]. It enables us to define the isomorphism KazF

m between
mod-l Hecke algebras.

The method of close local fields is fruitful in obtaining analogous results for reduc-
tive groups defined over local fields of positive characteristic – which are known for
reductive groups over p-adic fields. Using the close local fields approach, Badulescu
[Bad02] proved the Jacquet–Langlands correspondence for the general linear group
GLn(F′). A similar technique was used by Badulescu–Henniart–Lemaire–Sécherre
[BHLS10] to classify the smooth unitary dual of GLn(D), where D is a central division
algebra over F′. Kazhdan isomorphism and its various properties have been further
studied by several others, notably by Ganapathy (see [Gan15, Gan22]).

We now state the main results of this article. Let G be a connected split reductive
group defined over Z. Let F and F′ be two non-Archimedean local fields with the
same residue characteristic p. We assume that F and F′ are m-close (i.e., there exists
a ring isomorphism oF/pm

F
∼�→ oF′/pm

F′). Let E/F be a finite Galois extension of prime
degree l with l ≠ p. Then, there exists a finite Galois extension E′/F′ of degree l such
that E′ is em-close to E, where e = 1 if E/F is unramified, and e = l if E/F is totally
ramified (Lemma 4.6). Let σ (resp. σ ′) be a generator of the group Gal(E/F) (resp.
Gal(E′/F′)). Then we have the Kazhdan isomorphism KazE

em between the mod-l
Hecke algebras H(G(E), KE) and H(G(E′), KE′), and it is equivariant under the
Galois actions (Proposition 4.9) – which leads to the following diagram:
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Compatibility of Kazhdan and Brauer homomorphism 3

H(G(E), KE)σ

Br

��

KazE
e m �� H(G(E′), KE′)σ ′

Br′

��
H(G(F), KF)

KazF
m

�� H(G(F′), KF′)

(1.1)

In this article, we address the natural question about the commutativity of the above
diagram. Let us state it as a theorem.

Theorem 1.1 Let F and F′ be two non-Archimedean m-close local fields with residue
characteristic p. Let E be a finite Galois extension of F of prime degree l with l ≠ p, and
let E′ be the Galois extension of F′, as indicated above. Then, for any connected split
reductive group G defined over Z, we have

Br′ ○ KazE
em = KazF

m ○ Br.

Using the above theorem, we prove the compatibility of linkage with Kazhdan
isomorphism. Say (π, V) is an irreducible smooth Fl -representation of G(E) such
that π is isomorphic to twisted representation πσ . Then we have the Tate cohomology
groups Ĥ i(σ , V), for i ∈ {0, 1}, defined as Fl -representations of G(F). An irreducible
sub-quotient ρ of Ĥ i(σ , V) is said to be linked with π. Let ρ′ (resp. π′) be the smooth
irreducible Fl -representation of G(F′) (resp. G(E′)) associated with ρ (resp. π) via
Kazhdan isomorphism and the natural correspondence between the set of simple
modules over Hecke algebras and the set of irreducible representations of locally profi-
nite group (see [Gan15, Section 2.3]). Then, using Theorem 1.1 and the compatibility
of Brauer homomorphism with linkage (see Section 6.4), we show that ρ′ is linked
with π′ if and only if ρ is linked with π (Theorem 6.5).

We now briefly explain the contents of this article. Section 2 reviews the Hecke
algebra structure associated with any locally profinite group. In Section 3, we discuss
the Brauer homomorphism. In Section 4, we review the Kazdhan isomorphism and
formulate its mod-l version. We also set up some initial results, which are crucial
for the main result. Theorem 1.1 is proved in Section 5. In Section 6, we prove
the compatibility of linkage with the Kazhdan isomorphism. It also includes some
finiteness results on the Tate cohomology groups.

2 Hecke algebra

This section reviews the Hecke algebra structure on any locally profinite group. We
refer to [TV16, Section 2.10] for more details.

2.1

Let k be an algebraically closed field of positive characteristic l. Let G be a locally
profinite (i.e., locally compact and totally disconnected) group. Let K be a compact
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4 S. Dhar

open subgroup of G. We denote by G/K the set of all distinct left cosets of K in G,
and it is a discrete set with a left action of G. For any g ∈ G, we sometimes use the
notation [g] to denote the left coset gK. There is a natural action of G × G, via left
translation, on the space of k-valued functions on the discrete set G/K × G/K. We
denote by F(G//K) the space of all such k-valued functions on G/K × G/K that
are invariant under the action of the diagonal subgroup ΔG = {(g , g) ∶ g ∈ G}, and
whose support is a union of finitely many G-orbits. There is a multiplicative structure
in the space F(G//K), given by

( f1 ∗ f2)([x], [z]) = ∑
y∈G/K

f1([x], [y]) f2([y], [z]),

for all [x], [z] ∈ G/K and f1 , f2 ∈ F(G//K). The space F(G//K) with the above
multiplicative structure is a k-algebra, and it is called the Hecke algebra of G associated
with K. We now give an equivalent description of the Hecke algebra relevant to our
context.

2.2

Let us consider the equivalence relation ∼ on the set G/K × G/K, where

([x], [y]) ∼ ([x′], [y′]),

if and only if there exists g ∈ G such that [gx] = [gx′] and [g y] = [g y′]. Then for
any [g], [h] ∈ G/K, the map ([g], [h]) ↦ K g−1hK induces a bijection from the set of
equivalence classes (G/K × G/K)/ ∼ onto the double coset space K /G/K.

Let H(G , K) be the space of all k-valued functions which are bi-K-invariant,
i.e., f (k1 gk2) = f (g), for all k1 , k2 ∈ K, g ∈ G and f ∈H(G , K). Then, the preceding
bijection gives the following map:

F(G//K) �→H(G , K)

ϕ �→ ϕ̃,(2.1)

where the function ϕ̃ ∶ G → k is defined as ϕ̃(g) ∶= ϕ([1], [g]), for all g ∈ G. The map
(2.1) is a bijection, and it induces a k-algebra structure on the space H(G , K). In the
literature, many authors refer to the k-algebra H(G , K) as the Hecke algebra of G
associated with K.

3 Brauer homomorphism

3.1

Let G be a locally profinite group, and let σ be an automorphism of G of order l. Let
K be a compact open subgroup of G with σ(K) = K. Let Gσ (resp. Kσ ) be the fixed
subgroup of G (resp. K) under the action of σ . Moreover, the compact open subgroup
K is called σ-plain if:
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(1) The inclusion

Gσ/Kσ ↪ (G/K)σ

gKσ ↦ gK

induces a bijection.
(2) There exists a subgroup K′ of K of finite index such that K′ is an inverse limit of

finite subgroups, each of which is coprime to l.

3.2

For any σ-plain compact open subgroup K of G, the discrete set G/K × G/K is
equipped with an action of the group ⟨σ⟩, defined as

σ .([g], [h]) ∶= ([σ(g)], [σ(h)]),

for all [g], [h] ∈ G/K. This action further factorizes through the quotient space
G/K × G/K/ ∼, and it is given by

σ .([g], [h]) = ([σ(g)], [σ(h)]),

where ([g], [h]) denotes the equivalence class of the element ([g], [h]). The space
F(G//K) carries a natural action of ⟨σ⟩, defined by

(σ .ϕ)([x], [y]) = ϕ([σ−1(x)], [σ−1(y)]),

for all x , y ∈ G and ϕ ∈ F(G//K). In the article [TV16, Section 4], the authors proved
that the Brauer homomorphism Br is a k-algebra homomorphism from F(G//K)σ to
F(Gσ//Kσ), and defined by the restriction

Br(ϕ) ∶= Res(G σ/Kσ×G σ/Kσ)(ϕ),(3.1)

for all ϕ ∈ F(G//K)σ .

3.3

Now, we formulate the Brauer homomorphism (3.1) for the k-algebra H(G , K),
defined as in the preceding section. First, let us consider the action of the group ⟨σ⟩
on the double coset space K /G/K:

σ .(K gK) ∶= Kσ(g)K ,

for all g ∈ G. Then, we have a natural induced action of ⟨σ⟩ on the space H(G , K),
defined as

(σ . f )(g) ∶= f (σ−1(g)),
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6 S. Dhar

for all g ∈ G. Note that the bijection (2.1) preserves the action of the group ⟨σ⟩. Then,
we have a commutative diagram:

F(G//K)σ

Br

��

�� H(G , K)σ

Br

��
F(Gσ//Kσ) �� H(Gσ , Kσ)

Here, the horizontal arrows in the diagram are the bijections induced by (2.1). We
observe that the k-algebra map Br ∶H(G , K)σ →H(Gσ , Kσ), induced by the above
diagram, is the restriction map to subgroup Gσ , i.e.,

Br( f ) ∶= ResG σ ( f ),

for all f ∈H(G , K)σ .

4 Kazhdan isomorphism

In this part, we review Kazhdan isomorphism and set up some initial results. Let F and
F′ be two non-Archimedean local fields, both of residue characteristic p, with ring of
integers oF and oF′ and its maximal ideals pF and pF′ , respectively. The fields F and
F′ are called m-close if there is a ring isomorphism Λ ∶ oF/pm

F → oF′/pm
F′ . We choose

uniformizer ϖ (resp. ϖ′) of the field F (resp. F′) such that the class of ϖ corresponds
to the class of ϖ′ via the map Λ.

4.1

Let G be a split connected reductive group defined over Z. Fix a Borel subgroup B
of G, defined over Z. Let B = TU be a Levi decomposition over Z with maximal torus
T and unipotent radical U. We denote by X∗(T) and X∗(T) the character lattice and
the co-character lattice of T, respectively. Then, there is a natural Z-bilinear pairing

X∗(T) × X∗(T) �→ Z,

(α, λ) �→ ⟨α, λ⟩,

where (λ ○ α)(x) = x⟨α ,λ⟩, for all x ∈ Gm . Let Φ ⊆ X∗(T) be the set of roots of T in
G, and let Φ+ be the set of positive roots of T in B.

4.1.1

Let GF denotes the group G(F). Consider the subgroup

KF = Ker(G(oF) �→ G(oF/pm
F )).

Then KF is a compact open subgroup of GF . Fix a Haar measure μF on GF such that
μF(KF) = 1. For each g ∈ GF , we denote by tg the characteristic function on the double
coset KF gKF . Then the Hecke algebra H(GF , KF) is generated as a k-vector space by
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Compatibility of Kazhdan and Brauer homomorphism 7

{tg ∶ g ∈ GF}. We denote by HZ(GF , KF) the space generated by {tg ∶ g ∈ GF} over Z.
Set

X∗(T)− = {λ ∈ X∗(T) ∶ ⟨α, λ⟩ ≤ 0, α ∈ Φ+}.

We have the Cartan decomposition

GF = ∐
μ∈X∗(T)−

G(oF)ϖμG(oF),(4.1)

where ϖμ = μ(ϖ). For each μ ∈ X∗(T)−, the double coset GF(μ) ∶= G(oF)ϖμG(oF)
is a homogeneous space under the action of the group G(oF) × G(oF), defined as

(x , y).g ∶= x g y−1 ,

for all x , y ∈ G(oF) and g ∈ GF(μ). Then, the finite group Hm ∶= G(oF/pm
F ) ×

G(oF/pm
F ) acts transitively on the set {KF xKF ∶ x ∈ GF(μ)}. Let �μ(F) be the

stabilizer of KF ϖμ KF in Hm . Let Tμ(F) ⊆ G(oF) × G(oF) be the set of representatives
of the coset space Hm/�μ(F) under the composition

G(oF) × G(oF)
mod−pm

F����→ Hm �→ Hm/�μ(F).

Then (4.1) can be rewritten as

GF = ∐
μ∈X∗(T)−

∐
(b i ,b j)∈Tμ(F)

KF b i ϖμb−1
j KF .(4.2)

4.1.2

For each μ ∈ X∗(T)−, the isomorphism Λ induces a bijection Tμ(F) → Tμ(F′).
Following Kazhdan’s constructions in [Kaz86, Section 1], we get an isomorphism of
Z-modules:

HZ(GF , KF) �→HZ(GF′ , KF′),(4.3)

ta i ϖλ a−1
j
�→ ta′i ϖ′λ a′−1

j
,

and this induces a C-vector space isomorphism

KazF
m ,C ∶HC(GF , KF) �→HC(GF′ , KF′),

where λ ∈ X∗(T)−, (a i , a j) ∈ Tλ(F) and (a′i , a′j) is the corresponding element in
Tλ(F′). The following result is due to Kazhdan [Kaz86, Theorem A].

Proposition 4.1 Given m ≥ 1. There exists a positive integer r ≥ m such that if F and
F′ are r-close, the map KazF

m ,C, defined above, is in fact an isomorphism of C-algebras.

In order to establish that the vector space isomorphism KazF
m ,C is compatible with

algebra structures, the fields need to be a few levels closer. Kazhdan conjectured that
one could take r = m in Proposition 4.1 – which was proved by Ganapathy [Gan15,
Corollary 3.15].
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8 S. Dhar

4.2 Kazhdan isomorphism over positive characteristic

In this subsection, we formulate a version of Proposition 4.1 for mod-l Hecke alge-
bras. Recall that H(GF , KF) denotes the Hecke algebra, consisting of all k-valued
smooth, compactly supported and bi-KF -invariant functions on GF . Suppose F and
F′ are m-close. We denote by Xm(F) the set of all KF double cosets in GF . Similar
notations are followed for F′. The bijection ϕ ∶ Xm(F) → Xm(F′) gives the Z-module
isomorphism (see [Kaz86, Section 1]) of integral Hecke algebras

HZ(GF , KF) �→HZ(GF′ , KF′),

tx �→ tϕ(x) ,

which induces an isomorphism of k-vector spaces

KazF
m ∶H(GF , KF) �→H(GF′ , KF′).

Kazhdan’s approach in proving the Hecke algebra isomorphism over C, relies on
the fact that HC(GF , KF) is finitely presented – which follows from the work of
[Ber84]. So, in order to establish that KazF

m is an algebra map, we need the finiteness of
Hecke algebras over k – which is made available due to seminal work of Dat–Helm–
Kurinczuk–Moss [DHKM24].

Lemma 4.2 For any compact open subgroup K of GF , the Hecke algebra H(GF , K) is
finitely presented.

Proof Note that an algebra A is finitely presented if A is finitely generated
and Noetherian. Then the above lemma follows from [DHKM24, Theorem 1.1,
Corollary 1.4]. ∎

Remark 4.3 We now recall some results from [Kaz86]. Let C be a finite subset of
X∗(T)−, and let

GC = ⋃
μ∈C

GF(μ).

By [Kaz86, Lemma 1.3], there exists a positive integer nC ≥ m, such that for all g ∈ GC ,
we have

gKnC (F)g−1 ⊆ KF ,

where KnC (F) is the nC th usual congruence subgroup of GF . Moreover, if F and F′
are nC -close, then

KazF
m( f1 ∗ f2) = KazF

m( f1) ∗ KazF
m( f2),(4.4)

for all f1 , f2 ∈H(GF , KF) supported on GC .

The following lemma, which was essential for [Kaz86, Theorem A], is valid over k
as well.
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Compatibility of Kazhdan and Brauer homomorphism 9

Lemma 4.4 Let C be a finite subset of X∗(T)−. Then:
(1) for any λ, μ ∈ X∗(T)−, we have

tλ(ϖ) ∗ tμ(ϖ) = t(λ+μ)(ϖ),

(2) for all x1 , x2 ∈ GC , we have

tx1 λ(ϖ)x2 = tx1 ∗ tλ(ϖ) ∗ tx2 .

Proof It follows from [All72, Theorem 2] by extension of scalars. ∎

From these, we obtain Kazhdan isomorphism between mod-l Hecke algebras. The
proof exactly follows the same line of arguments of [Kaz86, Theorem A].

Theorem 4.5 Given an integer m ≥ 1. There exists a positive integer r ≥ m such that if
F and F′ are r-close, the map KazF

m is an isomorphism of k-algebras.

Proof We will show that KazF
m preserves the ring structures. Fix a finite subset

C ⊆ X∗(T)− containing 0, such that C generates X∗(T)− as a semigroup. Consider
the finite set

X0 = ⋃
λ∈C

Xλ ,

where Xλ = {KF gKF ∣ g ∈ G(oF)λ(ϖ)G(oF)}. It follows from Lemma 4.4 that the
algebra H(GF , KF) is generated by the set {tg ∶ g ∈ X0}, where tg denotes the char-
acteristic function on the double coset KF gKF . Assume that X0 = {x1 , . . . , xs}. Let
k⟨X1 , . . . , Xs⟩ denote the noncommutative polynomial algebra (free algebra) with
generators X1 , . . . , Xs . Since the Hecke algebra H(GF , KF) is finitely presented, there
exists a surjective k-algebra homomorphism

φ ∶ k⟨X1 . . . , Xs⟩ →H(GF , KF),

X i �→ tx i ,

such that Ker(φ) is a two-sided ideal generated by noncommutative polynomials
f1 , f2 , . . . , fd ∈ k⟨X1 , . . . , Xs⟩. Let

M = max{a i ∶ 1 ≤ i ≤ d},

where a i is the degree of the polynomial f i . Then, there exists a finite set B ⊆ Φ+ such
that

XB = ⋃
λ∈B

Xλ

contains a compact set of the form {g1 g2 . . . gM ∶ g i ∈ X0}. By Remark 4.3, there is an
integer r = rB ≥ m, such that if F and F′ are r-close, we have

KazF
m( f1 ∗ f2) = KazF

m( f1) ∗ KazF
m( f2),
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10 S. Dhar

for all functions f1 , f2 supported on GB . Now, for each 1 ≤ i ≤ d, the above identity
gives

f i(KazF
m(tx1), . . . , KazF

m(txs)) = 0

or, equivalently

f i(tϕ(x1) , . . . , tϕ(xs)) = 0.

Consider the homomorphism

φ′ ∶ k⟨X1 , . . . , Xs⟩ �→H(GF′ , KF′),
X j �→ tϕ(x j).

Note that φ′ factors through Ker(φ), and hence, we get a unique algebra morphism

φ̃′ ∶H(GF , KF) �→H(GF′ , KF′)

such that φ̃′(tx j) = tϕ(x j), for each j. Since C generates X∗(T)− as a semigroup, using
the identities in Lemma 4.4, we get that

φ̃′(tx) = tϕ(x) = KazF
m(tx),

for all x ∈ Xm(F). This shows that φ̃′ = KazF
m , which is an algebra morphism. Hence,

the theorem. ∎

4.3 Galois extension of close local fields

Let F and F′ be two non-Archimedean m-close local fields with residue characteris-
tic p. Deligne [Del84, Section 3.5] proved that there is an isomorphism

Gal(F/F)/Im
F

Delm��→ Gal(F′/F′)/Im
F′ ,

where F (resp. F′) is the separable closure of F (resp. F′), and Im
F (resp. Im

F′) is the
mth higher ramification subgroup of the inertia group IF (resp. IF′). Let E be a
finite Galois extension of F of prime degree l with l ≠ p. Following the description
of the isomorphism Delm (see [Del84, Section 1.3] and [Gan15, Section 2.1]), we have
a finite Galois extension E′/F′ of same degree l. Moreover, the extension E′/F′ can be
so constructed that the fields E and E′ are also sufficiently close.

Lemma 4.6 Let F and F′ be two m-close non-Archimedean local fields with residue
characteristic p. Let E be a finite Galois extension of F with [E ∶ F] = l , where l and p are
distinct primes. Then there exists a finite Galois extension E′ of F′ of degree l such that
E′ is m-close to E if E/F is unramified, and E′ is lm-close to E if E/F is totally ramified.

Proof The lemma follows from [Del84]. For completeness, we give a sketch of the
proof here. The proof is divided into two parts. In the first part, we consider the
situation where E is unramified over F. The second part deals with totally ramified
case. Note that the extension E/F is tamely ramified as l ≠ p. We denote by Am and
A′m the quotient rings oF/pm

F and oF′/pm
F′ , respectively. Recall that the isomorphism

Λ ∶ Am
∼�→ A′m takes the class of ϖ to that of ϖ′. ∎
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Compatibility of Kazhdan and Brauer homomorphism 11

4.3.1 Unramified case

Suppose E/F is unramified. In this case, the field E is of the form F[T]/( f ), where
f is a monic irreducible polynomial with coefficients in oF such that its mod − pF
reduction, say f , is irreducible. Moreover, the quotient ring oE/pm

E is isomorphic to
Am[T]/( f ). Let f

′
be the image of f under the ring isomorphism Λ. Then we have

oE/pm
E
∼�→ A′m[T]/( f

′).

Let f ′ be an irreducible polynomial in oF′[T] with its mod − pm
F reduction f

′
. Let E′

be the field extension F′[T]/( f ′). Then E′ is unramified over F′, and there is a ring
isomorphism

oE′/pm
E′ ≃ A′m[T]/( f

′).

Thus we have the ring isomorphism oE/pm
E
∼�→ oE′/pm

E′ , which implies that the fields E
and E′ are m-close.

4.3.2 Totally ramified case

Suppose E is totally ramified over F. Here, the field E is of the form F[T]/(T l − ϖ)
and its ring of integers oE is given by oF[T]/(T l − ϖ). Recall that the class of
ϖ corresponds to the class of ϖ′ via the isomorphism Λ. Now consider the field
extension,

E′ ∶= F[T]/(T l − ϖ′).

Then E′ is totally ramified over F′ with the ring of integers oE′ = oF′[T]/(T l − ϖ′).
Let ϖ be the image of ϖ under mod − pm

F . Then, the natural surjection

oF[T]/(T l − ϖ) �→ Am[T]/(T l − ϖ)

factorizes through the ideal pm
F [T]/(T l − ϖ), and it gives the ring isomorphism

oE/pl m
E
∼�→ Am[T]/(T l − ϖ).

Similarly, there is a ring isomorphism,

oE′/pl m
E′ ≃ A′m[T]/(T l − ϖ′),

where ϖ′ is the image of ϖ′ under the mod − pm
F′ reduction map. On the other hand,

the map Λ induces the ring isomorphism

Am[T]/(T l − ϖ) ∼�→ A′m[T]/(T l − ϖ′).

This shows that the ring oE/pl m
E is isomorphic to oE′/pl m

E′ , and hence the fields E and
E′ are lm-close.

Remark 4.7 Let F, F′, E and E′ be as in Lemma 4.6. We simply write E and E′
are em-close, where we define e = 1 if E/F is unramified and e = l if E/F is totally
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12 S. Dhar

ramified. We fix a ring isomorphism Π ∶ oE/pem
E → oE′/pem

E′ as above, induced by Λ,
which makes the commutative diagram:

oF/pm
F

��

Λ �� oF′/pm
F′

��
oE/pem

E Π
�� oE′/pem

E′

Here, the vertical arrows are the natural inclusion maps. We choose uniformizer π
(resp. π′) of the field E (resp. E′) such that the class of π is mapped to the class of π′
under the isomorphism Π. For any a ∈ oF/pm

F (or, oE/pem
E ), we write a′ for the image

Λ(a) (or, Π(a)), whenever no confusion arises.

Remark 4.8 Let � and �′ denote the Galois groups Gal(E/F) and Gal(E′/F′),
respectively. We choose generators σ and σ ′ of � and �′, respectively, which makes
the following commutative diagram:

oE/pem
E

Π

��

σ �� oE/pem
E

Π

��
oE′/pem

E′ σ ′
�� oE′/pem

E′

We now describe the generators σ and σ ′ in totally ramified case. For the unramified
case, one similarly chooses σ and σ ′. So, assume that E/F is totally ramified. Then,
Lemma 4.6 says that E′/F′ is also totally ramified and E is lm-close to E′. Since l ≠ p,
the extension E/F is tamely ramified, and we have

E = F[T]
(T l − ϖ) and E′ = F′[T]

(T l − ϖ′) .

From (4.3.2) of Lemma 4.6, we get the following isomorphism:

Π ∶ Am[T]
(T l − ϖ) �→

A′m[T]
(T l − ϖ′)

,

induced by the ring isomorphism Λ ∶ Am → A′m and it is given by

Π(
l−1
∑
i=0

x i T i + (T l − ϖ)) =
l−1
∑
i=0

Λ(x i)T i + (T l − ϖ′),

where x i ∈ Am , for each i. Let σ and σ ′ be the automorphisms of E and E′, respectively,
that sends the class of T to the class of T2, i.e.,

σ(T + (T l − ϖ)) = T2 + (T l − ϖ),
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Compatibility of Kazhdan and Brauer homomorphism 13

and

σ ′(T + (T l − ϖ′)) = T2 + (T l − ϖ′).

Then σ (resp. σ ′) is a generator of � (resp. �′). Moreover, the automorphism σ induces
a ring isomorphism oE/pem

E
∼�→ oE/pem

E , and the induced map is again denoted by σ .
Similarly for σ ′. Then we have

Π ○ σ = σ ′ ○ Π.

4.4 Compatibility with Galois action

Here, we continue to work with the setup of the preceding subsection. We choose
the generator σ (resp. σ ′) of � (resp. �′), as discussed in Remark 4.8. We have the
following commutative diagram:

oE/pem
E

Π

��

σ �� oE/pem
E

Π

��
oE′/pem

E′ σ ′
�� oE′/pem

E′

where e = 1 if E/F is unramified and e = l if E/F is totally ramified. To be more precise,
for any a ∈ oE , we have the relation

σ(a)
′
= σ(a)′ = σ ′(a′) = σ ′(a′),(4.5)

where a′ ∈ oE′ is the preimage of a′ under mod − pem
E′ . We fix an isomorphism

ι ∶ � ∼�→ �′ that sends the generator σ to σ ′.

4.5

Note that σ can be regarded as an automorphism of the group GE via its natural action
on GE . Consider the compact open subgroup,

KE = Ker(G(oE) → G(oE/pem
E )).

Since KE is a pro-p subgroup of GE , it follows from the arguments of [Fen24,
Lemma 6.6] that KE is σ-plain. There is an induced action of ⟨σ⟩ on the Hecke algebra
H(GE , KE), given by

(σ . f )(x) = f (σ−1x),

for all x ∈ GE and f ∈H(GE , KE). Similarly, there is an action of ⟨σ ′⟩ on the Hecke
algebra H(GE′ , KE′). We end this section with the following proposition, which
shows the compatibility of Kazhdan isomorphism with these Galois actions.
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Proposition 4.9 For all f ∈H(GE , KE), we have

KazE
em(σ . f ) = σ ′ .KazE

em( f ).

Proof Because of the Cartan decomposition (4.2), it is enough to show that

KazE
em(σ .ta i πμ a−1

j
) = σ ′ .KazE

em(ta i πμ a−1
j
),

for all μ ∈ X∗(T)− and (a i , a j) ∈ Tμ(E). Note that

σ .ta i πμ a−1
j
= tσ(a i)σ(πμ)σ(a−1

j )
.

By Cartan decomposition (4.2), the double coset space KE σ(a i)σ(πμ)σ(a−1
j )KE is of

the form KE c i πμ c−1
j KE , for some (c i , c j) ∈ Tμ(E). Then

KazE
em(σ .ta i πμ a−1

j
) = KazE

em(tσ(a i)σ(πμ)σ(a j)−1) = KazE
em(tc i πμ c−1

j
) = tc′i π′μ c′−1

j
.(4.6)

Consider the Galois conjugate σ(π) = πt = πσ(s), where t, s ∈ o×E . Under the relation
σ(μ(x)) = μ(σ(x)), for x ∈ E×, we observe that

KE c i πμ c−1
j KE = KE σ(a i)σ(πμ)σ(a−1

j )KE

= KE σ(a i)πμ σ(sμ a−1
j )KE

= KE σ(a i)πμ σ(d−1
j )KE ,

where sμ = μ(s), and d j = a js−1
μ ∈ G(oE). Then (c̄ i

−1σ(a i), σ(d−1
j )c̄ j) ∈ �μ(E), and

using the bijection �μ(E) → �μ(E′), we get

(c̄ i
′−1σ(a i)

′
, σ(d−1

j )
′
c̄ j
′) ∈ �μ(E′).

Recall that the image of d j under the reduction map G(oE) → G(oE/pem
E ) is denoted

by d j , and d j
′

is the image of d j under the isomorphism G(oE/pem
E ) ∼�→ G(oE′/pem

E′ ).
Let d′j ∈ G(oE′) be a preimage of d j

′
under mod − pem

E′ . Then, the commutative
diagram

Gm(oE/pem
E )

Π

��

μ �� T(oE/pem
E )

Π

��
Gm(oE′/pem

E′ ) μ
�� T(oE′/pem

E′ )

gives the relation

d′j = a′jsμ
′−1 = a′j(s′μ)−1 ,
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where s′ ∈ oE′ is a preimage of s′ under mod − pem
E′ . On the other hand, the relation

σ(π) = πσ(s) together with (4.5) implies that

σ ′(π′) = σ ′(π′) = π′σ ′(s′).

For any μ ∈ X∗(T)−, the above equality gives

(σ ′(π′))μ = (π′σ ′(s′))μ .

This implies that (σ ′(π′))−1
μ (π′σ ′(s′))μ ∈ KE′ . Now, using normality of KE′ in G(oE′)

and the relation σ(μ(x)) = μ(σ(x)), for x ∈ E×, we get

KE′ c′i π′μ c′−1
j KE′ = KE′σ ′(a′i)π′μ σ ′(d′−1

j )KE′

= KE′σ ′(a′i)σ ′(π′μ)σ ′(a′−1
j )KE′ ,

which shows that

tc′i π′μ c′−1
j
= tσ ′(a′i)σ ′(π′μ)σ ′(a′−1

j )
= σ ′ .ta′i π′μ a′−1

j
.

Finally, it follows from (4.6) and the above relation that

KazE
em(σ .ta i πμ a−1

j
) = σ ′ .KazE

em(ta i πμ a−1
j
).

∎

5 Compatibility of Brauer homomorphism and Kazhdan
isomorphism

In this section, we prove Theorem 1.1. Let us first recall the notations and terminolo-
gies from the preceding sections.

5.1

Fix a positive integer m. Let F and F′ be two non-Archimedean local fields such that
F is m-close to F′. Let E be a finite Galois extension of F of prime degree l with l ≠ p,
where p is the residue characteristic of both F and F′. According to Lemma 4.6, there
exists a finite Galois extension E′ of F′ of degree l and E′ is em-close to E, where e = 1
if E/F is unramified and e = l if E/F is totally ramified.

Let G be a split connected reductive group defined over Z. It follows from [KP23,
Proposition 12.9.4] that the fixed point subgroup Kσ

E (resp. Kσ ′
E′) is the mth congruence

subgroup of G(oF) (resp. G(oF′)), i.e., Kσ
E = KF and Kσ ′

E′ = KF′ , where

KF = Ker(G(oF) → G(oF/pm
F ))

and

KF′ = Ker(G(oF′) → G(oF′/pm
F′)).

Proposition 4.9 then gives an isomorphism betweenH(GE , KE)σ andH(GE′ , KE′)σ ′ ,
induced by KazE

em . We also have the Brauer homomorphism Br (resp. Br′) which is
an algebra homomorphism from H(GE , KE)σ (resp. H(GE′ , KE′)σ ′) to the Hecke
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16 S. Dhar

algebra H(GF , KF) (resp. H(GF′ , KF′)). With these setup, we aim to prove the
following result.

Theorem 5.1 Let F , F′ , E and E′ be as above. Then, for any connected split reductive
group G defined over Z, we have

KazF
m ○ Br = Br′ ○ KazE

em ,

where e = 1 if E/F is unramified and e = l if E/F is totally ramified.

Proof We divide the proof into two parts. In the first part, we consider the
extension E/F unramified. The second part deals with the totally ramified case. To
begin with, let us recall that an arbitrary h ∈H(GE , KE)σ can be written as

h = ∑
μ∈X∗(T)−

∑
(a i ,a j)∈Tμ(E)

αμ(a i , a j)ta i πμ a−1
j

,

where each αμ(a i , a j) ∈ k. Then

(KazF
m ○ Br)(h) = ∑

(a i ,a j)∈Tμ(E)
αμ(a i , a j)(KazF

m ○ Br)(ta i πμ a−1
j
)(5.1)

and

(Br′ ○ KazE
em)(h) = ∑

μ∈X∗(T)−
∑

(a i ,a j)∈Tμ(E′)
αμ(a i , a j)Br′(ta′i π′μ a′−1

j
).(5.2)

For each μ ∈ X∗(T)− and (a i , a j) ∈ Tμ(E), we have Br(ta i πμ a−1
j
) = 1GF∩KE a i πμ a−1

j KE .
Then Cartan decomposition (4.2) gives

KE a i πμ a−1
j KE ∩ GF = ∐

λ∈X∗(T)−
∐

(b i ,b j)∈Tλ(F)
KE a i πμ a−1

j KE ∩ KF b i ϖλb−1
j KF .(5.3)

Similarly,

KE′a′i π′μ a′−1
j KE′ ∩ GF′ = ∐

ν∈X∗(T)−
∐

(d′i ,d′j)∈Tν(F′)
KE′a′i π′μ a′−1

j KE′ ∩ KF′d′i ϖ′νd′−1
j KF′ .

(5.4)

∎

5.1.1 Unramified case

Suppose E is unramified over F. Then the field E′ is also unramified over F′ and it is
m-close to E (Lemma 4.6). In this case, π = ϖ and π′ = ϖ′. For any λ ∈ X∗(T)− and
(b i , b j) ∈ Tλ(F), it follows from the decompositions (5.3) and (5.4) that

b i ϖλb−1
j ∈ KE a i ϖμ a−1

j KE

if and only if

ϖλ ∈ KE b−1
i a i ϖμ a−1

j b jKE ,
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and this will happen only if λ = μ. Then

ϖμ ∈ KE b−1
i a i ϖμ a−1

j b jKE

if and only if

(b−1
i a i , b−1

j a j) ∈ �μ(E).

Using the bijection �μ(E) → �μ(E′)(a ↦ a′), we have

(b i
−1

a i , b j
−1

a j) ∈ �μ(E)

if and only if

(b i
′−1

a i
′ , b j

′−1
a j
′) = (b′i

−1
a′i , b′j

−1
a′j) ∈ �μ(E′),

where (b′i , b′j) ∈ Tμ(F′). Therefore, we have

b i ϖμb−1
j ∈ KE a i ϖμ a−1

j KE ⇐⇒ b′i ϖ′μb′−1
j ∈ KE′a′i ϖ′μ a′−1

j KE′ .(5.5)

In view of (5.5), it follows from (5.1) and (5.2) that

(KazF
m ○ Br)(h) = (Br′ ○ KazE

m)(h).(5.6)

5.1.2 Totally Ramified case

Here, we assume that the extension E/F is totally ramified. Then Lemma 4.6 ensures
that the extension E′/F′ is also totally ramified and E′ is lm-close to E, where
l = [E ∶ F] = [E′ ∶ F′]. Note that

KE = Ker(G(oE)
mod−pl m

E����→ G(oE/pl m
E ))

and

KF = Ker(G(oF)
mod−pm

F����→ G(oF/pm
F )).

Let ξ ∈ X∗(T)− and (c i , c j) ∈ Tξ(F). In view of the decompositions (5.3) and (5.4),
we have

c i ϖξc−1
j ∈ KE a i πμ a−1

j KE

if and only if

ϖξ ∈ KE c−1
i a i πμ a−1

j c jKE ,

and it is possible only if l ξ = μ. Therefore, it follows that

π l ξ ∈ KE c−1
i a i π l ξ a−1

j c jKE

if and only if

(c i
−1a i , a j

−1c j) ∈ �l ξ(E).
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Under the bijection �l ξ(E) → �l ξ(E′), we have

(c i
−1a i , a j

−1c j) ∈ �l ξ(E′)

if and only if

(c i
′−1a i

′ , c j
′−1a j

′) = (c′i
−1

a′i , c′j
−1

a′j) ∈ �l ξ(E′),

where (c′i , c′j) ∈ Tl ξ(F′). Thus we have

c i ϖξc−1
j ∈ KE a i πμ a−1

j KE ⇐⇒ c′i ϖ′ξc′−1
j ∈ KE′a′i π′μ a′−1

j KE′ .(5.7)

From the relations (5.1), (5.2), and (5.7), we get

(KazF
m ○ Br)(h) = (Br′ ○ KazE

l m)(h).

This completes the proof.

6 Linkage over close local fields

This section gives an application of Theorem 5.1 in the context of representation
theory. In the article [TV16], Treumann–Venkatesh defined the notion of linkage,
which is conjectured to be compatible with the Langlands functorial transfer. Using
Theorem 5.1, we show that linkage is compatible under close local fields. To prove
this, we first formulate the compatibility of linkage with Brauer homomorphism, as
described in [TV16, Section 6.2]. To start with, we recall the notion of linkage and
Tate cohomology. For precise reference, see [TV16, Sections 3 and 6].

6.1 Tate cohomology

Let � be a cyclic group of order n with a generator γ, and let M be an abelian group
with an action of �. Let Tγ be the automorphism of M defined by

Tγ(m) = γ.m, for γ ∈ �, m ∈ M .

Let N = id + Tγ + Tγ2 + ⋅ ⋅ ⋅ + Tγn−1 be the norm operator. The Tate cohomology groups
Ĥ i(M), for i ∈ {0, 1}, are defined as

Ĥ0(M) ∶ = Ker(id − Tγ)/Im(N),
Ĥ1(M) ∶ = Ker(N)/Im(id − Tγ).

6.1.1 Tate Cohomology of sheaves on l-spaces

Let X be an l-space (i.e., locally compact, totally disconnected and Hausdorff) with
an action of a finite group ⟨γ⟩ of prime order l. Let F be a sheaf of k-modules on X. If
F is γ-equivariant, then γ can be regarded as a map of restricted sheaves F∣Xγ → F∣Xγ

and the Tate cohomology is defined as

Ĥ0(F∣Xγ) ∶= Ker(1 − γ)/Im(N),
Ĥ1(F∣Xγ) ∶= Ker(N)/Im(1 − γ).
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For each i, the object Ĥ i(F∣Xγ) is a sheaf on Xγ . If �c(X;F) denotes the space of
compactly supported sections on F, then we have the following result.

Proposition 6.1 [TV16, Proposition 3.3.1] For each i ∈ {0, 1}, the restriction map
induces an isomorphism

Ĥ i(�c(X;F)) ∼�→ �c(Xγ ; Ĥ i(F)).

6.2 Linkage

Let F be a non-Archimedean local field, and let G be the F-points of a connected
reductive group defined over F. A representation (ρ, V) of G is called smooth if for
every vector v ∈ V , the G-stabilizer of v is an open subgroup of G. The representation
ρ is called admissible if, for each compact open subgroup K of G, the space of
K-fixed vectors V K (sometimes denoted by ρK) is finite-dimensional over k. In this
subsection, all the representations are assumed to be admissible, and the represen-
tation spaces are defined over k. Let R(G) be the category of smooth, admissible,
k-representations of G, and the set of all its irreducible objects is denoted by Irr(G).

6.2.1 Frobenius twist

Let (ρ, V) be a representation of G. Consider the vector space V (l), where the
underlying additive group structure of V (l) is same as that of V but the scalar action
⋆ on V(l) is given by

c ⋆ v = c
1
l .v , for all c ∈ k, v ∈ V .

Then, the action of G on V induces a smooth representation ρ(l) of G on the
space V(l). The representation (ρ(l) , V (l)) is called the Frobenius twist of (ρ, V).

6.2.2

Let σ be an automorphism of G of prime order l. An irreducible representation (Ξ, W)
of G is called σ-fixed if Ξ is isomorphic to the twisted representation Ξ ○ σ . In such
a case, there is a unique action of σ on W, compatible with the action of σ on G (see
[TV16, Proposition 6.1]). Then the Tate cohomology groups Ĥ i(W), for i ∈ {0, 1}, are
defined as k-representations of Gσ . We denote these representations by Ĥ i(Ξ).

Definition 6.2 An irreducible representation ρ of Gσ is linked with the representa-
tion Ξ if the Frobenius twist ρ(l) occurs as a Jordan–Holder constituent of Ĥ0(Ξ) or
Ĥ1(Ξ).

In [TV16, Section 6.3], the authors made a conjecture that the Tate cohomology
groups Ĥ i(Ξ), i ∈ {0, 1}, have finite lengths as representations of Gσ . We give a proof
of this conjecture for the general linear group GLn in the context of local base change.
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6.3 Finiteness of Tate cohomology

Before going into the main theorem, we first recall the notion of derivatives for smooth
representations of GLn(L), where L is a non-Archimedean local field. We refer to
[Vig96, Chapter III] and [BZ77, Section 3] for more details. Let Pn(L) and Un(L) be
the subgroups of GLn(L), given by

Pn(L) = {(A B
0 1) ∶ A ∈ GLn−1(L), B ∈ Ln−1}

and

Un(L) = {(1 C
0 1 ) ∶ C ∈ Ln−1},

respectively. We use the short notation XL ,n to denote the coset space Pn(L)/Pn−1(L)
Un(L). Let ψL ∶ L → k× be a nontrivial additive character. Let Nn(L) be the group of
all unipotent upper triangular matrices in GLn(L). Let ΘL be the character of Nn(L),
defined as

ΘL((a i j)n
i , j=1) ∶= ψL(a12 + a23 + . . . an−1,n),(6.1)

for (a i j)n
i , j=1 ∈ Nn(L). By abuse of notation, the restriction resUn(L)ΘL is also denoted

by ΘL . We have four fundamental functors:

Ψ− ∶ R(Pn(L)) → R(GLn−1(L)), Ψ+ ∶ R(GLn−1(L)) → R(Pn(L)),

Φ− ∶ R(Pn(L)) → R(Pn−1(L)), Φ+ ∶ R(Pn−1(L)) → R(Pn(L)),

given by Ψ− = rUn(L),id, Φ− = rUn(L),ΘL , Ψ+ = iUn(L),id, and Φ+ = iUn(L),ΘL .

6.3.1

Let τ be a smooth representation of Pn(L). The mth derivative of τ, denoted by τ(m),
is constructed as the representation Ψ−(Φ−)m−1(τ) of GLn−m(L). Moreover, we get
a functorial filtration on τ:

0 ⊆ τn ⊆ τn−1 ⊆ ⋅ ⋅ ⋅ ⊆ τ2 ⊆ τ1 = τ,

where τm = (Φ+)m−1(Φ−)m−1(τ) and τm/τm+1 = (Φ+)m−1(Ψ+)(τ(m)). We now
deduce the following:

Lemma 6.3 Let ρ be a finite length representation of Gt(L), where 1 ≤ t < n. Then,
the Pn(L)-representation (Φ+)n−t−1(Ψ+)(ρ) is also of finite length.

Proof This is an immediate consequence of [Vig96, Chapter III, Section 1.5] and
the exactness of the functor (Φ+)n−t−1(Ψ+). ∎

6.3.2

Let F be a non-Archimedean local field with residue characteristic p. Let E/F be a
finite Galois extension of prime degree l with l ≠ p. Let σ be a generator of Gal(E/F).
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Fix a nontrivial additive character ψF ∶ F → k×. Let ψE be the character ψF ○ TrE/F ,
where TrE/F is the trace function. We have the nondegenerate characters ΘF and
ΘE of Nn(F) and Nn(E), respectively, defined by (6.1). We now prove the following
finiteness result of Tate cohomology:

Proposition 6.4 Let Ξ be an irreducible σ-fixed representation of GLn(E). Let Tσ ∶
Ξ → Ξ ○ σ be an isomorphism with T l

σ = id. Then the Tate cohomology group Ĥ i(Ξ),
with respect to the operator Tσ , has finite length as a representation of GLn(F).

Proof We prove the proposition using induction on n. The case n = 1 is clear. So,
we assume that the proposition is true for all irreducible σ-fixed representations of
GLt(E) and for all t < n. Now, we consider Ξ as a representation of Pn(E). Since
ψE(σ(x)) = ψE(x), for x ∈ E, we get the isomorphism

Φ−(Ξ ○ σ) ≃ Φ−(Ξ) ○ σ(6.2)

as representation of Pn−1(E). Similarly, for any representation τ ∈ R(Pn−1(E)), we
have the Pn(E)-equivariant isomorphism

Φ+(τ ○ σ) ≃ Φ+(τ) ○ σ .(6.3)

Using (6.2) and (6.3), and the isomorphism Tσ , we get an isomorphism between the
representations Ξm and Ξm ○ σ , and also between the representations Ξ(m) and Ξ(m) ○
σ , for all m ≤ n.

Recall that XE ,m denotes the coset space Pm(E)/Pm−1(E)Um(E). Since
Pm−1(E)Um(E) is a σ-stable subgroup of Pm(E), we have the following long exact
sequence of non-abelian cohomology [Ser, Appendix, Proposition 1]:

0�→ Pm−1(F)Um(F) �→ Pm(F) �→ Xσ
E ,m �→ H1(σ , Pm−1(E)Um(E)) �→ H1(σ , Pm(E)).

(6.4)

Consider the short exact sequence of non-abelian Gal(E/F)-modules

0 �→ Um(E) �→ Pm−1(E)Um(E) �→ Pm−1(E) �→ 0.(6.5)

Using Hilbert’s theorem 90, we get that the pointed sets H1(σ , Um(E)) and
H1(σ , Pm−1(E)) are trivial. Then, it follows from the long exact sequence of
non-abelian cohomology corresponding to (6.5) that H1(σ , Pm−1(E)Um(E)) = 0.
Hence, the long exact sequence (6.4) gives the equality Xσ

E ,m = XF ,m . Now, using
Proposition 6.1 repeatedly (m − 1)-times, we get the Pn(F)-equivariant isomorphism

Ĥ i(Ξm/Ξm+1) ≃ (Φ+)m−1(Ψ+)(Ĥ i(Ξ(m))).

By induction hypothesis, the GLn−m(F)-representation Ĥ i(Ξ(m)) is of finite length,
for all m < n. In view of Lemma 6.3, it then follows from the above isomorphism that
the Pn(F)-representation Ĥ i(Ξm/Ξm+1) is of finite length, for all m < n.
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Now, for each m ∈ {1, 2, . . . , n − 1}, consider the short exact sequence of
Pn(E)-representations

0 �→ Ξm+1 �→ Ξm �→ Ξm/Ξm+1 �→ 0.

Since Gal(E/F) is cyclic, the corresponding long exact sequence of Tate cohomology
gives the following diagram:

Ĥ0(Ξm+1) Ĥ0(Ξm)

Ĥ1(Ξm/Ξm+1) Ĥ0(Ξm/Ξm+1)

Ĥ1(Ξm) Ĥ1(Ξm+1)

We denote the above exact sequence by S(m). Recall that Ξn is the compactly
induced representation indPn(E)

Nn(E)(ΘE), and using [TV16, Proposition 3.3.1], we get
that Ĥ0(Ξn) is isomorphic to the irreducible representation indPn(F)

Nn(F)(Θl
F) and

Ĥ1(Ξn) = 0. In particular, the representation Ĥ i(Ξn), for i ∈ {0, 1}, is of finite length.
Now, using the exact sequence S(n − 1) and the finiteness of Ĥ i(Ξn−1/Ξn), we get
that Ĥ i(Ξn−1) is a finite length representation of Pn(F). Again, using the finiteness
of both the representations Ĥ i(Ξn−1) and Ĥ i(Ξn−2/Ξn−1), it follows from the exact
sequence S(n − 2) that the representation Ĥ i(Ξn−2) is of finite length. Thus, after a
finite number of similar inductive steps, we finally get that Ĥ i(Ξ) is of finite length
as a representation of Pn(F), and hence of GLn(F). This completes the proof. ∎

It is reasonable to expect that Proposition 6.4 holds for arbitrary connected
reductive algebraic groups G over F. Next, we give a formulation of the compatibility
of Brauer homomorphism with linkage under the finite length assumption of the
Tate cohomology Ĥ i(Ξ) for any irreducible σ-fixed representation Ξ of G = G(F).
It enables us to study linkage from the module theoretic point of view via Brauer
homomorphism. Then, using Theorem 5.1, we show that linkage is compatible under
close local fields.

6.4 Compatibility of Brauer homomorphism with linkage

Let Ξ be an irreducible σ-fixed representation of G, and let T ∶ Ξ → Ξ ○ σ be an
isomorphism such that T l = id. For any σ-plain compact open subgroup K of G, the
inclusion map ΞK ↪ Ξ is σ-invariant and it induces a map Ĥ i(ΞK) → Ĥ i(Ξ), taking
values in theH(Gσ , Kσ)-module Ĥ i(Ξ)Kσ

. It is shown in [TV16, Section 6.2] that, for
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all h ∈H(G , K)σ , the Brauer homomorphism Br induces the following commutative
diagram:

Ĥ i(ΞK)

Ĥ i(h)

��

�� Ĥ i(Ξ)Kσ

Br(h)

��
Ĥ i(ΞK) �� Ĥ i(Ξ)Kσ

and it induces the compatibility of Brauer homomorphism with linkage in the sense
that, for a representation ρ of Gσ to be linked with Ξ, it is equivalent to say that there
exists a composition factor N of the H(G , K)σ -module Ĥ i(ΞK) such that

H(Gσ , Kσ) ⊗H(G ,K)σ N ≃ (ρ(l))Kσ
.(6.6)

6.4.1 Compatibility of Kazhdan isomorphism with linkage

Let F and F′ be two non-Archimedean m-close local fields with the same residue
characteristic p. Let E be a finite Galois extension of F of prime degree l with l ≠ p.
By Lemma 4.6, we have a finite Galois extension E′/F′ of degree l such that E′ is em-
close to E, where e = 1 if E/F is unramified and e = l if E/F is totally ramified. Fix two
generators σ and σ ′ of the groups Gal(E/F) and Gal(E′/F′), respectively.

Let G be a split connected reductive group defined over Z. Let KE (resp. KF ) be
the congruence subgroup of GE (resp. GF ) of level m (resp. em) (see Section 4 for the
definition). Then, from Theorem 5.1, we get the following relation:

KazF
m ○ Br = Br′ ○ KazE

em .(6.7)

Moreover, we have the following bijections (see [Gan15, Section 2.3]):

{(ρE , VE) ∈ Irr(GE) ∶ V KE
E ≠ 0} �→ {(ρE′ , VE′) ∈ Irr(GE′) ∶ V KE′

E′ ≠ 0}(6.8)

and

{(ρF , VF) ∈ Irr(GF) ∶ V KF
F ≠ 0} �→ {(ρF′ , VF′) ∈ Irr(GF′) ∶ V KF′

F′ ≠ 0},(6.9)

induced by the isomorphisms KazE
em and KazF

m , respectively. With these notations, we
now prove the following result.

Theorem 6.5 Let (ρE , VE) be an irreducible σ-fixed representation of GE with
V KE

E ≠ 0, and let (ρF , VF) be an irreducible representation of GF with V KF
F ≠ 0. Let

(ρE′ , VE′) and (ρF′ , VF′) be the corresponding objects under the bijections (6.8) and
(6.9). Then, the irreducible representation ρE′ of GE′ is σ ′-fixed, and ρ′F is linked with
ρ′E if and only if ρF is linked with ρE .

Proof We divide the proof into two parts. The first part proves that the irreducible
representation ρE′ is σ ′-fixed. In the second part, we show that the linkage between
ρF and ρE implies the linkage between ρF′ and ρE′ , and vice versa. ∎
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6.4.2

Recall that the space of KE -fixed vectors V KE
E is a simple H(GE , KE)-module, and

it can be regarded as a H(GE′ , KE′)-module via the Kazhdan isomorphism KazE
em .

Consider the H(GE′)-module

N′ =H(GE′) ⊗H(GE′ ,KE′)
V KE

E .

Note that the action of ⟨σ ′⟩ on H(GE′) induces an action of ⟨σ ′⟩ on N′, by setting

σ ′ .( f ′ ⊗ v) = (σ ′ . f ′) ⊗ v ,

for all f ′ ∈H(GE′) and v ∈ V KE
E . Following the construction of [Vig96, Chapter I,

Section 4.4], the H(GE′)-module N′ gives the irreducible representation (ρE′ , VE′),
defined as

ρE′(g′)(x′) = 1g′KE′ ∗ x′ ,

for g′ ∈ GE′ , x′ ∈ VE′ . Here, ∗ denotes the action of the Hecke algebra H(GE′) on the
space VE′ and 1g′KE′ is the characteristic function of the left coset g′KE′ . Since ρE is
σ-fixed, there exists an isomorphism Tσ ∶ ρE → ρE ○ σ . Then the map Tσ ′ ∶ N′ → N′,
defined by

Tσ ′( f ′ ⊗ v) ∶= (σ ′ . f ′) ⊗ Tσ(v),

induces an isomorphism between ρE′ and ρE′ ○ σ ′. Hence, ρE′ is σ ′-fixed.

6.4.3

Suppose the representation ρF is linked with ρE . Then, the space of KF -fixed vectors
(V (l)

F )KF , considered asH(GF , KF)-module, is a composition factor of Ĥ i(VE)KF , for
some i. If we regard these asH(GE , KE)σ -modules via the Brauer homomorphism Br,
then the formulation (6.6) gives a composition factor M of Ĥ i(V KE

E ) such that

H(GF , KF) ⊗H(GE ,KE)σ M ≃ (V(l)
F )KF .(6.10)

Note that the isomorphism V KE
E → V KE′

E′ of H(GE , KE)-modules induces a
H(GE , KE)σ -module isomorphism Φ ∶ Ĥ i(V KE

E ) → Ĥ i(V KE′
E′ ), which is also a

H(GE′ , KE′)σ ′-module isomorphism via the map KazE
em .

Let M′ be the image of M under Φ. Then M′ is a composition factor of Ĥ i(V KE′
E′ ),

and the H(GF′ , KF′)-module

H(GF′ , KF′) ⊗H(GE′ ,KE′)
σ′ M

′

is a composition factor of Ĥ i(VE′)KF′ . We also have an isomorphism φ ∶ V KF
F → V KF′

F′ ,
which is equivariant under the action of H(GF , KF) and hence of H(GF′ , KF′) via
Kazhdan isomorphism KazF

m . Using the isomorphisms Φ, φ and the relation (6.7), it
follows from (6.10) that

H(GF , , KF′) ⊗H(GE′ ,KE′)
σ′ M

′ ≃ (V(l)
F′ )

KF′ .
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This implies that the representation ρF′ is linked with ρE′ . A similar argument also
shows that the representation ρF is linked with ρE if ρF′ is linked with ρE′ . Hence, the
theorem.
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