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Abstract
In the traditional multidimensional credibility models developed by Jewell ((1973) Operations Research Center,
pp. 73–77.), the estimation of the hypothetical mean vector involves complex matrix manipulations, which can be
challenging to implement in practice. Additionally, the estimation of hyperparameters becomes even more difficult
in high-dimensional risk variable scenarios. To address these issues, this paper proposes a new multidimensional
credibility model based on the conditional joint distribution function for predicting future premiums. First, we
develop an estimator of the joint distribution function of a vector of claims using linear combinations of indica-
tor functions based on past observations. By minimizing the integral of the expected quadratic distance function
between the proposed estimator and the true joint distribution function, we obtain the optimal linear Bayesian
estimator of the joint distribution function. Using the plug-in method, we obtain an explicit formula for the mul-
tidimensional credibility estimator of the hypothetical mean vector. In contrast to the traditional multidimensional
credibility approach, our newly proposed estimator does not involve a matrix as the credibility factor, but rather a
scalar. This scalar is composed of both population information and sample information, and it still maintains the
essential property of increasingness with respect to the sample size. Furthermore, the new estimator based on the
joint distribution function can be naturally extended and applied to estimate the process covariance matrix and risk
premiums under various premium principles. We further illustrate the performance of the new estimator by compar-
ing it with the traditional multidimensional credibility model using bivariate exponential-gamma and multivariate
normal distributions. Finally, we present two real examples to demonstrate the findings of our study.

1. Introduction
Credibility theory plays a crucial role in insurance pricing by allowing insurers to strike a balance
between the industry experience and the individual policyholder’s claims history. As the pioneering
work in modern credibility theory, Bühlmann (1967) developed a Bayesian model for claim amounts
that constrains the prediction of future losses to be a linear function of past observations. This model
provides the optimal linear Bayesian estimate of future losses, also known as the individual mean or
hypothetical mean, under the quadratic loss function. The estimate is expressed as a linear combination
of the population mean and individuals’ sample mean, with the weight assigned to the sample mean
referred to as the credibility factor. Bühlmann’s Bayesian model for claim amounts laid the founda-
tion for credibility theory and provided a robust framework for estimating future losses based on past
observations.

Over time, credibility theory has evolved significantly and found extensive application in nonlife actu-
arial science in insurance companies (cf. Wen et al., 2009; Gómez-Déniz, 2016; Yan and Song, 2022).
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However, with the changing times and the development of the insurance industry and actuarial technolo-
gies, actuaries have encountered situations where the factors influencing risks in commercial insurance
plans are highly complex (cf. Bauwelinckx and Goovaerts, 1990; Dhaene and Goovaerts, 1996; Yeo and
Valdez, 2006; Deresa et al., 2022). Interested readers can refer to some typical situations presented in
Chapter 7 of Bühlmann and Gisler (2005). Therefore, theories on multidimensional credibility are in
urgent need.

For the first time, Jewell (1973) introduced the concept of multidimensional credibility, making a
decisive contribution to history of credibility theory. After that, Hachemeister (1975) introduced the
credibility theory for regression models. These two works are believed as the pathbreaking contribu-
tions generalizing the credibility techniques into higher dimensions (cf. Bühlmann et al., 2003). Besides,
Jewell (1974) established exact multivariate credibility1 model under certain conditions when the linear
exponential family of likelihoods together with their natural conjugate priors are considered. Since then,
credibility estimates for future losses in multivariate scenarios have been widely applied in premium
pricing and liability reserve estimation in nonlife actuarial science. For example, Frees (2003) proposed
theoretically optimal insurance prices using a multivariate credibility model and demonstrated signif-
icant economic differences in premium pricing methods with and without considering the covariance
between different components. Englund et al. (2008) studied a generalization of the Bühlmann–Straub
model, which allows for the age of claims to influence the estimation of future claims. Poon and Lu
(2015) investigated a Bühlmann–Straub-type credibility model with dependence structure among risk
parameters and conditional spatial cross-sectional dependence. Further generalizations of the multivari-
ate credibility model can be found in Englund et al. (2009), Thuring et al. (2012), Pechon et al. (2021),
Gómez-Déniz and Calderín-Ojeda (2018, 2021), Schinzinger et al. (2016), and related references.

However, the multivariate credibility estimates proposed by Jewell (1973) have a rather complex
form due to the matrix-based credibility factor, making them challenging to understand and implement.
Moreover, the credibility factor matrix in the traditional multivariate credibility model involves numer-
ous structural parameters, resulting in an increasing number of unknown parameters as the dimension of
the risk vector (denoted by p) increases. Consequently, as the dimension of the risk vector increases, it
suffers from the issue of the “curse of dimensionality.” In this context, when p is large,2 these estimates
become difficult to apply in actual insurance pricing processes.

To address these issues, this paper proposes a new multivariate credibility approach based on the joint
distribution function. The study proceeds in two steps. First, instead of directly estimating the conditional
mean of the risk random vector Y = (Y (1), · · · , Y (p)) given the risk profile �, we focus on estimating the
conditional joint distribution function, denoted as F( y(1), · · · , y(p)|�), by constraining it to a linear com-
bination of indicator functions labeled on the past claims. Utilizing the principles of credibility theory,
the optimal linear Bayesian estimator of the conditional joint distribution function is then derived under
the integral quadratic loss function. Second, employing the plug-in method3, multidimensional credi-
bility estimates for the hypothetical mean, process variance, and risk premiums under various premium
principles are obtained. Compared to the traditional multivariate credibility estimator in Jewell (1973),
the credibility factor in the proposed approach is no longer a matrix but a scalar. It is shown to be an
increasing function of the sample size and satisfies the essential principles of credibility. Moreover,
the credibility factor involved in the new estimator is easy to estimate and can be naturally applied in
premium pricing for multidimensional risks. Overall, our proposed approach addresses the limitations

1The credibility estimator is said to be exact if the Bayesian forecast of the mean observation under the same setting is derived
to be linear in the data.

2Even for p = 2, it has been a tedious task; see Example 2.1.
3In the context of plug-in method, operating under a parametric model P = {Pγ ; γ ∈ �}, any real-valued characteristic τ of a

particular member Pγ can be written as a mapping from the parameter space �, that is τ : � �→R. If some observations y come
from Pγ0 and some estimate γ̂ ∈ � of γ0 (e.g., by Maximum-Likelihood) has been derived, it is natural to use τ (γ̂ ) as an estimate
of τ(γ0). This method for constructing estimates is commonly referred to as the plug-in principle, since we “plug” the estimate
γ̂ into the mapping τ (·). Relevant applications of this useful statistical method can be found in the literature such as Wu et al.
(2013), Oliveira et al. (2012), and Laloë and Servien (2013).
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of traditional multivariate credibility models and provides a more straightforward and computationally
efficient solution for credibility estimation in high-dimensional scenarios.

It should be mentioned that, for the case of one dimension p = 1, Cai et al. (2015) applied the non-
parametric method to develop the credibility estimation of distribution functions, which differs in nature
compared with the present work. Our proposed multidimensional credibility estimator can be employed
to predict premiums for aggregate claims in insurance portfolios, while the results in Cai et al. (2015)
for the one-dimensional case only deal with a single business line.

The novel contribution of our study is summarized as follows:

(i) We focus on the credibility estimation of multivariate joint distribution functions and plug
in the estimator into the hypothetical mean and process covariance matrix, generating a new
multidimensional credibility model.

(ii) The traditional multidimensional credibility model introduced in Jewell (1973) suffers from
severe difficulty in estimating the process covariance matrix (or even the population covariance
matrix), rendering it impractical for use in insurance practice. Our proposed multidimen-
sional credibility estimator overcomes this drawback and has the advantage of computational
effectiveness, making it directly applicable to insurance premium prediction problems.

(iii) The proposed estimators can be applied for estimating various premium principles, which is
in sharp contrast with the traditional multidimensional credibility that can only estimate the
hypothetical mean.

The article is structured as follows: In Section 2, we present some pertinent notations and review
the traditional multivariate credibility models. Additionally, we re-obtain the multivariate credibility
estimation using the orthogonal projection method. In Section 3, we present the credibility estimation
of the conditional joint distribution function and derive the corresponding credibility estimations for the
hypothetical mean vector, process covariance matrix, and various premium principles and also study
some statistical properties. In Section 4, we compare and demonstrate the performances of our proposed
multidimensional credibility estimator and the traditional approach introduced by Jewell (1973). Finally,
we analyze two real applications, one from an insurance company mentioned in Bühlmann and Gisler
(2005) and the other from the R package “insuranceData.” Section 5 concludes the paper. The proofs
and derivations of the main results are delegated to the Supplementary Materials.

2. Preliminaries and review of traditional multivariate credibility models
Consider a portfolio of insurance policies with interdependence between risks. The losses associated
with these risks are represented by a p-dimensional random vector Y = (Y (1), . . . , Y (p))′, where p denotes
the number of policies (or business lines). Given � = θ , the conditional joint distribution function of Y
is denoted as:

F(y|θ)= P(Y ≤ y|� = θ)= P
(
Y (1) ≤ y(1), · · · , Y (p) ≤ y(p)|� = θ

)
,

where �, named as the risk profile, encompasses all factors influencing the risk of the insurance policy
portfolio. Typically, due to the diversity of risks, � is assumed to be a p-dimensional random vector,
characterized by a certain prior density function π (·). The conditional mean (or hypothetical mean) and
conditional (co-)variance (or process covariance) of the risk vector Y are defined as:

μ(�)=E(Y|�) and �(�)=V(Y|�) .

For simplicity, let us denote

μ0 =E[μ(�)] , T =V[μ(�)] , �0 =E[�(�)] . (2.1)

We assume that both �0 and T are invertible matrices.4

4Otherwise, in the subsequent discussions, we can substitute with their generalized inverses.
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Since � is unobserved, both μ(�) and �(�) are unobservable random vectors which require esti-
mation based on available information. In the estimation process, we have access to two types of claim
information. First, we have the prior information π (·) of the risk profile �, and second, we have past
sample information Y1, · · · , Yn obtained by observing the population Y. The approach of combining
prior information and sample information to draw statistical inferences about μ(�) and�(�) is known
as Bayesian statistics. The basic settings of Bayesian statistics models are described as follows.

Assumption 2.1. Let � be a random vector that characterizes the risk parameter of the random
vector Y, governed by a prior distribution function π (·).
Assumption 2.2. Given �, the random vector Y1, · · · , Yn consists of independent and identically
distributed samples, where Yi =

(
Y (1)

i , Y (2)
i , . . . , Y (p)

i

)′
, for i = 1, . . . , n.

Following the traditional credibility theory, the estimation of μ(�) is constrained to linear functions
of the observations. The optimal linear Bayesian estimator of μ(�) under the quadratic loss function
can be obtained by solving

min
b0∈Rp ,Bi∈Rp×p

E

[(
μ(�) − b0 −

n∑
i=1

BiYi

)(
μ(�) − b0 −

n∑
i=1

BiYi

)′]
. (2.2)

In contrast to the approach presented by Bühlmann and Gisler (2005), we employ the orthogonal
projection method to solve (2.2) and derive the optimal linear Bayesian estimate of μ(�). The following
lemma demonstrates the connection between the orthogonal projection and the optimal linear Bayesian
estimation. The detailed proof can be found in Wen et al. (2009).

Lemma 2.1. Let
(

Xp×1

Yq×1

)
be a random vector with its expectation and covariance matrix given by(

μX
μY

)
and

(
�XX �XY

�YX �YY

)
, respectively. Then the expected quadratic loss

E(Y − A − BX) (Y − A − BX)′ (2.3)

achieves its minimum in the nonnegative definite5 sense when

A = μY −�YX�
−1
XXμX and B =�YX�

−1
XX. (2.4)

In light of Lemma 2.1, the optimal linear Bayesian estimation of the conditional mean vector can be
obtained by solving the minimization problem (2.2), which can be expressed as follows:

μ̂C,n(�) = Pro
(
μ(�)| L(Ỹ, 1)

)
= E[μ(�)] +Cov

(
μ(�), Ỹ

)
Cov−1

(
Ỹ, Ỹ

) [
Ỹ −E

(
Ỹ
)]

, (2.5)

where “Pro” signifies the projection onto the space of random vectors spanned by Ỹ = (Y′
1, Y′

2, · · · , Y′
n

)′
and L(Ỹ, 1) is the linear subspace spanned by 1 and the components of Ỹ. By combining Assumptions 2.1
and 2.2 of the Bayesian model for multivariate risk vectors, the following theorem, which was developed
in Jewell (1973) and revisited in Bühlmann and Gisler (2005), can be obtained.

Theorem 2.1. Under Assumptions 2.1 and 2.2, the optimal linear estimation of μ(�) is achieved by
solving the minimization problem (2.2) and can be expressed as follows:

μ̂C,n(�) = ZC,nY + (Ip − ZC,n

)
μ0, (2.6)

5Henceforth, for two matrixes A and B, we write A ≥ B to denote that A − B ≥ 0, that is, A − B is a nonnegative definite matrix.
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where Y = 1
n

∑n
i=1 Yi represents the sample mean vector, and the weight matrix

ZC,n = nT(nT +�0)
−1 (2.7)

is a p × p matrix.6 Here, the capital letter “C” inside the credibility factor ZC,n stands for the word
“classical.”

As per Theorem 2.1, the optimal linear Bayesian estimator of the vector of hypothetical mean μ(�)
is a weighted average of the sample mean Y and the prior mean μ0. The weight matrix ZC,n has the
following properties:

lim
n→∞

ZC,n = Ip and lim
n→0

ZC,n = 0p×p,

where Ip is the p-dimensional identity matrix and 0p×p is the zero matrix with p rows and p columns.
Note that ZC,n is usually referred as the credibility factor matrix, indicating the influence of the sample
mean Y in the optimal linear estimation μ̂C,n(�).

In practical insurance premium pricing problems, computing the credibility factor matrix ZC,n can be
very tedious and challenging since it involves with much more complexity of matrix inversion when p
is large, hindering the usage of the classical multidimentional credibility approach for dealing with real
problems. The following two examples illustrate this point.

Example 2.1. Given �, we assume that the random vectors Y1, Y2, . . . , Yn are independent and identi-
cally distributed as Bivariate normal distribution N2(�,�0), where Yi = (Y (1)

i , Y (2)
i ) is a two-dimensional

random vector. The prior distribution of the vector of risk parameters � is N2(μ0, T), where

T =
(
τ 2

1 ν1

ν1 τ 2
2

)
and �0 =

(
σ 2

1 ν2

ν2 σ 2
2

)
.

Let A = nT +�0. Then the inverse of A can be computed using matrix algebra as:

A−1 = A∗

|A| = 1(
nτ 2

1 + σ 2
1

)
(nτ 2

2 + σ 2
2 ) − (nν1 + ν2)2

(
nτ 2

2 + σ 2
2 −(nν1 + ν2)

−(nν1 + ν2) nτ 2
1 + σ 2

1

)
.

Using Equation (2.7), we can obtain the expression for ZC,n as follows:

ZC,n =

⎛⎜⎜⎜⎜⎜⎝
nτ 2

1

(
nτ 2

2 + σ 2
2

)− nν1 (nν1 + ν2)(
nτ 2

1 + σ 2
1

) (
nτ 2

2 + σ 2
2

)− (nν1 + ν2)2

nν1σ
2
1 − nν2τ

2
1(

nτ 2
1 + σ 2

1

) (
nτ 2

2 + σ 2
2

)− (nν1 + ν2)
2

nν1σ
2
2 − nν2τ

2
2(

nτ 2
1 + σ 2

1

) (
nτ 2

2 + σ 2
2

)− (nν1 + ν2)
2

nτ 2
2

(
nτ 2

1 + σ 2
1

)− nν1 (nν1 + ν2)(
nτ 2

1 + σ 2
1

) (
nτ 2

2 + σ 2
2

)− (nν1 + ν2)
2

⎞⎟⎟⎟⎟⎟⎠ . (2.8)

As seen in Example 2.1, the computation of ZC,n is manageable when p = 2; however, when p ≥ 3, it
becomes much more complex, as shown in the following example.

Example 2.2. In accordance with Example 2.1, we proceed to compute the matrix of credibility factors
for the scenario where p = 3, wherein the following representations ensue

T =
⎛⎜⎝ τ

2
1 ν1 ν2

ν1 τ 2
2 ν3

ν2 ν3 τ 2
3

⎞⎟⎠ and �0 =
⎛⎜⎝σ

2
1 ν4 ν5

ν4 σ 2
2 ν6

ν5 ν6 σ 2
3

⎞⎟⎠ .

6Given that matrices T and �0 are both positive definite matrices, it follows that

|ZC,n| = n|T|
|nT +�0| > 0,

indicating that ZC,n is also a positive definite matrix.
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The adjoint matrix of A is determined as:

A∗ =
⎛⎝ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

⎞⎠ , (2.9)

where

ψ11 = (nτ 2
2 + σ 2

2

) (
nτ 2

3 + σ 2
3

)− (ν3 + ν4)
2 ,

ψ12 =ψ21 = (nν2 + ν5) (nν3 + ν6)− (nν1 + ν4)
(
nτ 2

3 + σ 2
3

)
,

ψ13 =ψ31 = (nν1 + ν4) (nν3 + ν6)− (nν2 + ν5)
(
nτ 2

2 + σ 2
2

)
,

ψ22 = (nτ 2
1 + σ 2

1

) (
nτ 2

3 + σ 2
3

)− (nν2 + ν5)
2 ,

ψ23 =ψ32 = (nν1 + ν4) (nν2 + ν4)−
(
nτ 2

1 + σ 2
1

)
(nν3 + ν6) ,

ψ33 = (nτ 2
1 + σ 2

1

) (
nτ 2

2 + σ 2
2

)− (nν1 + ν4)
2 .

The determinant of matrix A is formulated as:

|A| = (
nτ 2

1 + σ 2
1

) ((
nτ 2

2 + σ 2
2

) (
nτ 2

3 + σ 2
3

)− (nν3 + ν6)
2
)

− (nν1 + ν4)
(
(nν1 + ν4)

(
nτ 2

3 + σ 2
3

)− (nν2 + ν5) (nν3 + ν6)
)

+ (nν2 + ν5)
(
(nν1 + ν4) (nν3 + ν6)− (nν2 + ν5)

(
nτ 2

2 + σ 2
2

))
.

The expression for the matrix of credibility factors is provided as follows:

ZC,n = 1

|A|

⎛⎜⎝ZC
11 ZC

12 ZC
13

ZC
21 ZC

22 ZC
23

ZC
31 ZC

32 ZC
33

⎞⎟⎠ , (2.10)

where the components are given by:

ZC
11 = nτ 2

1ψ11 + nν1ψ21 + nν2ψ31, ZC
12 = nτ 2

1ψ12 + nν1ψ22 + nν2ψ32,

ZC
13 = nτ 2

1ψ13 + nν1ψ23 + nν2ψ33, ZC
21 = nν1ψ11 + nτ 2

2ψ21 + nν3ψ31,

ZC
22 = nν1ψ12 + nτ 2

2ψ22 + nν3ψ32, ZC
23 = nν1ψ13 + nτ 2

2ψ23 + nν3ψ33,

ZC
31 = nν2ψ11 + nν3ψ21 + nτ 2

3ψ31, ZC
32 = nν2ψ12 + nν3ψ22 + nτ 2

3ψ32,

ZC
33 = nν2ψ13 + nν3ψ23 + nτ 2

3ψ33.

As noted from the above two examples, the traditional multivariate credibility estimation (2.6) may
suffer certain shortcomings when compared to Bühlmann’s univariate credibility estimation:

(i) Complexity of computation: When p = 3, the credibility factor matrix ZC,n is already quite
complex. For higher dimensions with p> 3, the expression of ZC,n involves the inverse of high-
order matrices, and there is no general explicit expression. This complexity makes it difficult
for practitioners to understand and apply in practical situations.

(ii) Difficulty in parameter estimation: The traditional multivariate credibility estimation suffers
from the issue of having many unknown structural parameters, which can be difficult to estimate
accurately, especially as p increases. The large number of parameters can lead to overfitting
and increase computation complexity, making it less useful for real-world applications. Even
for p = 2, the expression of ZC,n contains six unknown parameters such as τ 2

1 , τ 2
2 , σ 2

1 , σ 2
2 , ν1, ν2.

Exactly, the dimensional disaster problem refers to the challenge of estimating a large number
of unknown parameters as the dimension p of the problem increases. In the case of tradi-
tional multivariate credibility estimation, the number of unknown parameters increases with
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the order O(p2 + p) as p grows, which can quickly become overwhelming and computationally
demanding, especially for high-dimensional problems.

(iii) Lack of applicability under some premium principles: Traditional multivariate credibility
estimation μ̂C,n(�) is limited in its applicability, particularly when considering some premium
principles beyond the expected value principle. Since it only provides an estimation of the
conditional mean μ(�), it cannot estimate other functionals of the risk parameter, such as the
process covariance matrix �(�).

In conclusion, although the classical multivariate credibility estimation has good statistical properties
and a mathematically sound form, it is less commonly used in practice due to the challenges of dimension
disaster and computational complexity. In this regard, we propose a new multidimensional credibility
model based on the credibility estimation of the conditional joint distribution function, which will be
the main focus of the next section.

3. Main results
Note that μ(�) and �(�) can be expressed as:

μ(�)=
∫
Rp

ydF(y| �) (3.1)

and

�(�)=
∫
Rp

[
y − μ(�)

] [
y − μ (�)

]′
dF(y| �) , (3.2)

respectively. Based on these expressions, we shall employ the basic idea of credibility theory to first
estimate the conditional joint distribution function F(y| �). Subsequently, the credibility estimations
for μ(�), �(�), and the general risk premium R(�) will be derived using the plug-in technique.

3.1. Credibility estimator for the joint distribution function
Let us define the class of nonhomogeneous linear functions of the conditional joint distribution as:

L =
{
α0 (y)+

n∑
s=1

αsHs(y)
}

, (3.3)

where α0(y) is an unspecified multivariate function (in general representing the population information),
and

Hs(y)= I{Y≤y} =
{

1, Y (1)
s ≤ y(1), · · · , Y (p)

s ≤ y(p)

0, otherwise
,

for y = (y(1), · · · , y(p)
)′ and s = 1, . . . , n, where IA represents the indicative function of event A, which is

equal to 1 when A occurs, otherwise equal to 0. We aim to solve the following minimization problem:

min
F̂( y|�)∈L

∫
Rp

E

[(
F(y| �)− F̂(y| �))2

]
dy. (3.4)

The solution to problem (3.4) is summarized in the following theorem.

Theorem 3.1. In the Bayesian model settings for multivariate risks, as described by Assumptions 2.1
and 2.2, the optimal linear Bayesian estimator of the conditional joint distribution function F(y| �)
solving problem (3.4) is given by:

F̂(y| �)= ZN,nFn(y)+ (1 − ZN,n)F0(y) , (3.5)
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where

Fn(y)= 1

n

n∑
i=1

Hi(y) (3.6)

and

F0(y)=E
[
F(y| �)]= ∫

Rp

F(y| θ) π(θ) dθ

represent the empirical and aggregated joint distribution functions, respectively. The credibility factor
ZN,n

7 is defined as:

ZN,n = nτ 2
0

nτ 2
0 + σ 2

0

, (3.7)

where

τ 2
0 =

∫
Rp

V
[
F(y| �)] dy (3.8)

and

σ 2
0 =

∫
Rp

E
[
F(y| �) (1 − F(y| �))] dy. (3.9)

We hereby designate F̂(y| �) as the credibility estimate of the conditional distribution function
F(y| �) and ZN,n as the credibility factor.

Remark 3.1. Noted that in Equation (3.3), none constraints were imposed on class L for estimating
distribution functions. It is easy to observe that solving problem (3.4) would be quite challenging if
we introduce some constraints. Given �, due to the exchangeability of Y1, Y2, · · · , Yn, it must hold
that α1 = α2 = · · · = αn for the solution of (3.4). Therefore, the optimization problem (3.4) is actually
equivalent to solving:

min
b∈R

∫
Rp

E
[
F(y| �)− α0 (y)− bFn(y)

]2
dy. (3.10)

Note that

E
[
F(y| �)− α0(y)− bFn(y)

]2

= V
[
F(y| �)− α0 (y)− bFn(y)

]+E
[
F(y| �)− α0(y)− bFn(y)

]
≥ V

[
F(y| �)− α0(y)− bFn(y)

]
,

where the equality holds if and only if

E
[
F(y| �)− α0(y)− bFn(y)

]= 0.

Therefore, α0(y) should be chosen such that

α0(y)=E
[
F(y| �)− bFn(y)

]= aF0(y) ,

where a = 1 − b. Thus, the optimization problem (3.4) is equivalent to finding the optimal estimate of
the conditional distribution function F(y| �) within the class:

L∗ = {aF0(y) + bFn(y)} .

To ensure the candidates in L∗ to be reasonable estimates, we need to impose the condition:

a ≥ 0, b ≥ 0, a + b = 1,

7Here, the capital letter “N” stands for the word “new.”
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under which aF0(y) + bFn(y) remains a multivariate distribution function. To this regard, we should
solve the following constrained optimization problem:⎧⎪⎨⎪⎩

min
a,b∈R

∫
Rp

E
[
F(y| �)− aF0(y) − bFn(y)

]2
dy

s.t. a ≥ 0, b ≥ 0, a + b = 1

. (3.11)

In accordance with Lemma 1 in Section 2 of the supplementary file, one can demonstrate that solving
the constrained optimization problem (3.11) is equivalent to dealing with the unconstrained optimization
problem (3.4).

Remark 3.2. For the case of one-dimensional claims, that is, p = 1, problem (3.4) can be written as:

min
α0(·),α1,...,αn∈R

∫
R

E

[
F(y|�)− α0(y) −

n∑
s=1

αsI(Ys ≤ y)

]2

dy (3.12)

yielding the credibility estimation of the univariate conditional distribution function as:
F̂(y|�)= ZN,nFn(y) + (1 − ZN,n)F0(y),

which is akin to the credibility estimation of the survival function stated in Equation (2.7) of Cai et al.
(2015).

Remark 3.3. If the claims have discrete distributions, we only need to modify Equation (3.4) to

min
α0(·),α1,...,αn∈R

∑
y

E

[
p(y| �)− α0(y) −

n∑
s=1

αsI(Ys = y)

]2

,

where p(y| �)= P(Y = y| � = θ). This yields the corresponding credibility estimation as:
p̂(y| �)= ZN,npn (y)+

(
1 − ZN,n

)
p0 (y) ,

where ZN,n shares a resemblance with the results of Theorem 3.1, with the distinction of replacing the
multivariate integration by multivariate summation.

It is noteworthy that the new credibility factor ZN,n is a deterministic function of sample size n, but
independent of the samples. Additionally, both Fn(y) and F0(y) conform to the fundamental properties
of joint distribution functions. Consequently, it is evident that F̂(y| �) possesses attributes such as
nonnegativity, monotonicity, right-continuity for each component, and finite additivity. Moreover, it
satisfies the following boundary conditions:

lim
y(1)→+∞,...,y(p)→+∞

[
F̂(y| �)]= 1

and
lim

y(i)→−∞
F̂(y| �)= 0 for some i ∈ {1, 2, · · · , p} .

Hence, the estimator F̂(y| �) also qualifies as a joint distribution function. As per Theorem 3.1,
the estimation F̂(y| �) of the conditional joint distribution function can be elegantly represented as
a weighted combination of the empirical joint distribution function Fn(y) and the integrated joint
distribution function F0(y).

The credibility factor ZN,n exhibits an increment with respect to the sample size n, and it fulfills the
following asymptotic properties:

lim
n→∞

ZN,n = 1 and lim
n→0

ZN,n = 0, (3.13)

which enjoys a similar expression with the univariate standard Bühlmann model. Consequently, when
the sample size is substantial, greater emphasis is conferred upon the empirical distribution function
Fn(y), and vice versa.
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3.2. Credibility estimator for the hypothetical mean
Utilizing the credibility estimator F̂(y| �), one can readily derive the credibility estimation for the
hypothetical mean vector μ(�) by applying the plug-in technique. As a result, one has the following
proposition.

Proposition 3.1. By substituting the optimal linear estimate F̂(y| �) of the distribution function into
Equation (3.1), we obtain the credibility estimate of the conditional mean vector μ(�) as follows:

μ̂N,n(�) = ZN,nY + (1 − ZN,n)μ0,

where the credibility factor ZN,n is given by Equation (3.7).

It is evident that the estimation μ̂N,n(�) can be represented as a linear weighted average of the sample
mean Y and the population mean μ0, where the weights satisfy the property (3.13). This form is very
similar with the univariate case for classical Bühlmann model developed in Bühlmann (1967). However,
compared with the traditional multivariate credibility estimator given in Theorem 2.1, the credibility
factor ZN,n is a scalar, which reduces the computational complexity of traditional multivariate credibility
model.

Given the expression of the credibility estimation μ̂N,n(�), we can calculate the conditional expecta-
tion of μ̂N,n(�) as:

E

[
μ̂N,n(�)

∣∣∣�]= ZN,nE
(
Y
∣∣�)+ (1 − ZN,n)μ0 = ZN,nμ(�) + (1 − ZN,n)μ0.

By using the formula for double expectation, we can further find

E

[
μ̂N,n(�)

]
=E

[
E

(
μ̂N,n(�)

∣∣∣�)]= ZN,nE[μ(�)] + (1 − ZN,n)μ0 = μ0.

In the average sense, μ̂N,n(�) is an unconditional unbiased estimation ofE[μ(�)], which is described
as the following proposition.

Proposition 3.2. The credibility estimation μ̂N,n(�) is an unbiased estimator of the hypothetical mean
vector μ(�), that is,

E

[
μ̂N,n(�)

]
=E[μ(�)] = μ0.

As the estimation of μ(�), the mean quadratic error matrix of the credibility estimator μ̂N,n(�) is
given below.

Proposition 3.3. The mean quadratic error matrix of the credibility estimator μ̂N,n(�) is given by:

E

[(
μ̂N,n(�) − μ(�)

) (
μ̂N,n(�) − μ(�)

)′]= Z2
N,n

n
�0 + (1 − ZN,n)2T .

Moreover, as n → ∞, the mean quadratic error matrix tends to a p × p zero matrix:

E

[(
μ̂N,n(�) − μ(�)

) (
μ̂N,n(�) − μ(�)

)′]→ 0p×p,

and hence

E

[∣∣∣∣∣∣μ̂N,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
=E

[
ξ

′
(
μ̂N,n(�) − μ(�)

) (
μ̂N,n(�) − μ(�)

)′
ξ
]
→ 0.

where || · ||2
ξ represents the weighted Frobenius norm,8 ξ = (ξ1, ξ2, · · · , ξp

)′ represents the weight vector,
and ξi ≥ 0, for i = 1, 2, · · · , p such that

∑p
i=1 ξi = 1.

8See details in Belitskii and Lyubich (2013). Henceforth, we shall simplify the notation as the weighted F-norm in the following
text.
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3.3. Credibility estimator for the process variance
Note that

�(�) =
∫
Rp

[(
y −

∫
Rp

ydF(y| �)
)(

y −
∫
Rp

ydF(y| �)
)′]

dF(y| �) .

We can first achieve the credibility estimator of the conditional variance based on F̂(y| �) and then
obtain the credibility estimator of �(�). For this purpose, let

Un = 1

n

n∑
i=1

YiY′
i and U0 =

∫
Rp

yy′dF0(y) .

The following proposition can be reached.

Proposition 3.4. Under the Bayesian model settings stated in Assumptions 2.1 and 2.2, replacing
F(y| �) with F̂(y| �) in Equation (3.2), the credibility estimation of the conditional covariance matrix
�(�) is given by:

�̂N,n(�) =ω1,n�n +ω2,n�0 + (1 −ω1,n −ω2,n)M0,

where �0 =E[�(�)], �n = 1
n

∑n
i=1

(
Yi − Y

) (
Yi − Y

)′
is the sample covariance matrix, and

ω1,n = Z2
N,n, ω2,n = (1 − ZN,n)2, M0 = 1

2

(
Un − Yμ′

0 − μ0Y
′ + U0

)
.

Notably, the credibility estimation of the conditional covariance matrix is consisting of three parts.
According to Proposition 3.4 and property (3.13), it holds that ω1,n → 1 and ω2,n → 0 as n → ∞.
Therefore, when n is large, the credibility estimate �̂N,n(�) assigns more weight to sample covariance
matrix �n. Conversely, more weight is assigned to �0 and M0 when the sample size is smaller.

3.4. Statistical properties of the estimators
The consistency and asymptotic normality of μ̂N,n(�) and �̂N,n(�) are given in the following two
theorems.

Theorem 3.2. Given �, the estimators μ̂N,n(�) and �̂N,n(�) are strongly consistent with respect to the
conditional mean vector μ(�) and conditional covariance matrix �(�), respectively. That is, when
n → ∞, we have

μ̂N,n(�) → μ(�), a.s. and �̂N,n(�) →�(�), a.s.

Theorem 3.3. Given �, the estimator μ̂N,n(�) is asymptotically normal when n → ∞, that is,
√

n
(
μ̂N,n(�) − μ(�)

)
L→ N(0,�(�)),

where “ L→” means convergence in law/distribution.

Theorems 3.2 and 3.3 demonstrate that μ̂N,n(�) and �̂N,n(�) serve as good estimators of the condi-
tional mean vector μ(�) and conditional covariance matrix �(�). Both of them can be plugged in any
continuous statistical functionals of these two quantities.

Next, we proceed with a theoretical comparison on the mean of the weighted F-norms between our
new credibility estimation μ̂N,n(�) and the traditional credibility estimation μ̂C,n(�). To simplify the
analysis, we first assume that p = 2 and introduce the following notations:

μ(�) =E[Y1|�] =
(
μ1(�)

μ2(�)

)
, �(�) =V[Y1|�] =

(
σ 2

1 (�) ν2(�)

ν2(�) σ 2
2 (�)

)
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and

μ0 =E(μ(�)) =
(
μ1

μ2

)
, T =V(μ(�)) =

(
τ 2

1 ν1

ν1 τ 2
2

)
, �0 =E(�(�)) =

(
σ 2

1 ν2

ν2 σ 2
2

)
.

where ν1 = ρ1τ1τ2, ν2 = ρ2σ1σ2, and

ρ1 = Cov(μ1 (�) ,μ2 (�))√
V(μ1 (�))V(μ2 (�))

, ρ2 = E
[
Cov

(
Y (1)

1 , Y (2)
1

∣∣�)]√
E
[
V
(

Y (1)
1

∣∣�1

)]
E
[
V
(

Y (2)
1

∣∣�2

)] . (3.14)

Here, ρ1 and ρ2 represent the two correlation coefficients denoting the inter-dependence among risks
and the intra-dependence within each risk, respectively.

Proposition 3.5. Consider p = 2 and ξ = (ξ1, ξ2)′. Based on Theorem 2.1 and Proposition 3.1, the mean
of the weighted F-norms for the error of estimates μ̂N,n(�) and μ̂C,n(�) can be expressed as:

E

[∣∣∣∣∣∣μ̂N,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
= nτ 4

0

(
ξ1σ

2
1 + ξ2σ

2
2

)(
nτ 2

0 + σ 2
0

)2 + σ 4
0

(
ξ1τ

2
1 + ξ2τ

2
2

)(
nτ 2

0 + σ 2
0

)2 (3.15)

and

E

[∣∣∣∣∣∣μ̂C,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
=�1 +�2 +�3 +�4, (3.16)

respectively, where

�1 =
nδ1

(
ξ1

(
τ 2

1 δ2 − ν1δ3

)2 + ξ2

(
ν1σ

2
1 − ν2τ

2
1

)2
)

(
δ1δ2 − δ2

3

)2 ,

�2 =
nδ2

(
ξ1

(
τ 2

2 δ1 − ν1δ3

)2 + ξ2

(
ν1σ

2
2 − ν2τ

2
2

)2
)

(
δ1δ2 − δ2

3

)2 ,

�3 = 1

(−2ν1)−1
(
δ1δ2 − δ2

3

)2 × [nν1σ
2
1 σ

2
2 (ξ2δ1 + ξ1δ2) − nν2

(
ξ2τ

2
1 σ

2
2 δ1

+ξ1τ
2
2 σ

2
1 δ2 − δ3

(
ν2(ξ2τ

2
1 + ξ1τ

2
2 ) − ν1

(
ξ2σ

2
1 + ξ1σ

2
2

)))]
,

�4 = ξ2

(
σ 2

2 − nτ 2
2

)
δ1τ

2
2 + ξ1

(
σ 2

1 − nτ 2
1

)
δ2τ

2
1 − (ν2 − nν1)

(
ξ1τ

2
1 + ξ2τ

2
2

)
δ3

δ1δ2 − δ2
3

and

δ1 = nτ 2
1 + σ 2

1 , δ2 = nτ 2
2 + σ 2

2 , δ3 = nν1 + ν2.

Compared to the traditional multivariate credibility estimation μ̂C,n(�), the mean of the weighted
F-norms for the error of the new credibility estimation μ̂N,n(�) is more straightforward to compute. The
main reason is that the credibility factor ZC,n in the traditional model is a matrix, while in our estimation
μ̂N,n(�), the corresponding credibility factor ZN,n is a scalar. This scalar form simplifies the computation
process and enhances user-friendliness and interpretability.

https://doi.org/10.1017/asb.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.13


664 Limin Wen et al.

Indeed, according to the result of Proposition 3.5, when p> 2, the mean of the weighted F-norms
for the error of μ̂N,n(�) can be calculated as:

E

[∣∣∣∣∣∣μ̂N,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
=E

[
ξ1

(
μ̂

(1)
N,n(�) −μ1(�)

)2
]

+ · · · +E

[
ξp

(
̂μ

(p)
N,n(�) − μp(�)

)2
]

= nτ 4
0

(
ξ1σ

2
1 + · · · + ξpσ

2
p

)(
nτ 2

0 + σ 2
0

)2 + σ 4
0

(
ξ1τ

2
1 + · · · + ξpτ

2
p

)(
nτ 2

0 + σ 2
0

)2 .

The traditional multivariate credibility estimation μ̂C,n(�) minimizes problem (2.2), and thus, in the
sense that the matrix A − B ≤ 0 is equivalent to B − A being a positive definite matrix, it is evident
that

E

[(
μ̂C,n(�) − μ(�)

) (
μ̂C,n(�) − μ(�)

)′]≤E

[(
μ̂N,n(�) − μ(�)

) (
μ̂N,n(�) − μ(�)

)′]
.

In other words, μ̂N,n(�) is dominated by μ̂C,n(�) in terms of the mean squared loss, which will be
illustrated in Section 4 by two numerical examples. However, it would be interesting to see that our
method perform competitively with the traditional one when the sample size is moderate or large.

For the case of p = 2, a comparison of the mean of the weighted F-norms for the error for both
credibility estimations leads to the following conclusion.

Proposition 3.6. In Equation (3.14), if ρ1 = ρ2 = 0 (i.e., ν1 = ν2 = 0), then we have

E

[∣∣∣∣∣∣μ̂C,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
≤E

[∣∣∣∣∣∣μ̂N,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
. (3.17)

In accordance with Proposition 3.6, it can be readily demonstrated that when p> 2 and ρ1 = · · · =
ρp = 0, the p-dimensional random vector Y demonstrates pairwise independence among its components.
The mean of the weighted F-norm for the error in traditional multivariate credibility estimation is smaller
than that for the error in the new estimator. However, when the correlation coefficients ρi �= 0 for some
i = 1, · · · , p, the expression for the mean of the weighted F-norm for the error in traditional credibility
estimation becomes significantly intricate, rendering a direct comparison of their magnitudes. In the
next section dedicated to numerical simulations, we will employ Monte Carlo methods to perform the
comparison.

3.5. Application in various premium principles
In nonlife insurance, premium calculation principles are real functionals mapping risk variables to the set
of nonnegative real numbers. For a p-dimensional risk Y with conditional distribution function F(y| �),
consider the aggregate risk in for such insurance portfolio:

Z = a1Y (1) + · · · + apY (p) = a′Y,

where Y = (Y (1), Y (2), · · · , Y (p)
)′ and a = (a1, · · · , ap

)′ are the weights for these business lines such that
ai ≥ 0, i = 1, 2, · · · , p. Guerra and Centeno (2010) introduced variance-related premium principle9 of
risk Z with its expression given by:

HZ(�)= (1 + λ1)E(Z|�)+ g(V(Z|�))= (1 + λ1) a′μ (�)+ g
(
a′�(�) a

)
, (3.18)

where λ1 ≥ 0 signifies the nonnegative safety loading factor for the expectation and g : R+ �→R+ is an
increasing function such that g(0) = 0.

9Here, we replace the pure expectation in the expression introduced in Guerra and Centeno (2010) with the expected value
premium principle.
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By substituting μ(�) and �(�) with their credibility estimators μ̂N,n(�) and �̂N,n(�), respectively,
a credibility estimation of HZ(�) is achieved as:

ĤZ(�)= (1 + λ1) a′μ̂N,n(�) + g
(
a′�̂N,n(�)a

)
.

It is easy to show that the estimation ĤZ(�) is consistent estimator for risk premium HZ(�) according
to Theorem 3.2 and the continuity of function g. Based on the premium principle given in Equation
(3.18), we obtain credibility estimates of risk premiums under some commonly used actuarial premium
principles as follows:

• If we set g(x) = 0 and λ1 ≥ 0, then

Ĥ(1)
Z (�)= (1 + λ1) a′ [ZN,nY + (1 − ZN,n)μ0

]
(3.19)

is the credibility estimation of risk premium under the expected value premium principle.
• If we set g(x) = λ2 · x and λ1 = 0, where λ2 ≥ 0 signifies the nonnegative safety loading factor

for the variance term, then

Ĥ(2)
Z (�) = a′ [ZN,nY + (1 − ZN,n)μ0

]
+λ2 · a′ [ω1,n�n +ω2,n�0 + (1 −ω1,n −ω2,n)M0

]
a (3.20)

is the credibility estimation of risk premium under the variance premium principle.
• If we set g(x) = λ2·√x and λ1 = 0, then we derive the credibility estimation of risk premium

under the standard deviation premium principle as:

Ĥ(3)
Z (�) = a′ [ZN,nY + (1 − ZN,n)μ0

]
+λ2 ·

√
a′ (ω1,n�n +ω2,n�0 + (1 −ω1,n −ω2,n)M0

)
a. (3.21)

Of course, we can also obtain the credibility estimation of the exponential premium principle charged
for Z as follows:

• By plug in the new credibility estimation (3.5), the credibility estimation of risk premium under
the exponential premium principle is given by:

Ĥ(4)
Z (�) = 1

β
log

[∫
Rp

eβa′ydF̂(y| �)
]

= 1

β
log

[
ZN,n

∫
Rp

eβa′ydFn(y) + (1 − ZN,n

) ∫
Rp

eβa′ydF0(y)

]
= 1

β
log
[
ZN,nLn + (1 − ZN,n)L0

]
, (3.22)

where β > 0, Ln = 1
n

∑n
i=1 exp(βa′Yi), and L0 =E

[
exp(βa′Y1)

]
.

Clearly, compared to traditional multivariate credibility estimates, our estimations have broader
applicability, as they can be naturally applied to most premium principles in nonlife insurance and pro-
vide corresponding credibility estimators based on the credibility estimate of conditional distribution
function.
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4. Numerical simulations and case analysis
In this section, we first conduct two numerical simulations to compare the conditional and unconditional
mean of the weighted F-norms for the errors of the traditional estimator and our proposed estimator. We
then calculate predicted values of various premium principles by applying the new credibility estimator
to two insurance scenarios.

4.1. Bivariate exponential-gamma model
Assuming that, for a given � = θ , where � = (�1,�2)

′ and θ = (θ1, θ2)
′, Y1, Y2, · · · , Yn are indepen-

dently and identically distributed according to the bivariate exponential distribution, with the cumulative
joint distribution function given by:

F
(

y(1), y(2)
∣∣� = θ

)= 1 − exp

{
−y(1)

θ1

}
− exp

{
−y(2)

θ2

}
+ exp

{
−y(1)

θ1

− y(2)

θ2

− ρ2

θ1θ2

y(1)y(2)

}
,

and the corresponding probability density function is

f
(

y(1), y(2)
∣∣� = θ

)= [− ρ2

θ1θ2

+
(

1

θ1

+ ρ2

θ1θ2

y(2)

)(
1

θ2

+ ρ2

θ1θ2

y(1)

)]
e− y(1)

θ1
− y(2)

θ2
− ρ2
θ1θ2

y(1)y(2)

,

where y(1), y(2) ≥ 0 and ρ2 ∈ [ − 1, 1].
Further, we assume that θ1 and θ2 are independent of each other and follow gamma prior with density

functions:

π�1 (θ1) = β
α1
1

�(α1)
θ
α1−1
1 e−β1θ1 , θ1, α1, β1 > 0,

and

π�2 (θ2) = β
α2
2

�(α2)
θ
α2−1
2 e−β2θ2 , θ2, α2, β2 > 0

respectively.
Set α1 = 2.4, α2 = 3.2, β1 = 5.4, β2 = 2.8, and ρ2 = 0.2. By utilizing Equations (2.1), (3.8), and

(3.9) and using the Monte Carlo integration method,10 the values for various structural parameters are
approximately obtained as follows:

μ0 ≈
(

0.0263

0.0424

)
, T ≈

(
0.0015 0

0 0.0017

)
, �0 ≈

(
0.0133 0.0043

0.0043 0.0355

)
,

and

τ 2
0 ≈ 0.0026, σ 2

0 ≈ 0.0387.

Furthermore, the corresponding conditional mean of the weighted F-norm for the error are
obtained as:

MSEk,n(θ ) =E

[∣∣∣∣∣∣μ̂k,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

∣∣∣∣� = θ

]
, k = C or N. (4.1)

Taking ξ = (0.4, 0.6)′ and different values of (θ1, θ2) and n, the simulation is repeated 10,000 times,
and the simulation results are given in Table 1.

10The Monte Carlo integration method is a numerical integration technique based on random sampling. Its main idea involves
generating a large number of random samples, calculating the values of these samples on the function, and then estimating the
integral value through the average of these function values. Unlike traditional deterministic numerical integration methods, Monte
Carlo methods demonstrate significant advantages when dealing with high-dimensional, complex, or integrals that cannot be
solved analytically. Relevant literature can be found in the work by Robert et al. (1999). In this study, we stochastically generated
100,000 samples over the integration domain for the approximate computation of structural parameters.
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Table 1. Conditional mean of the weighted F-norm for the error for different values of (θ1, θ2) and n.

(θ1, θ2) MSEk,n(θ) n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
(0.1,0.7) MSEC,n(θ) 0.1238 0.0734 0.0262 0.0101 0.0037 0.0009

MSEN,n(θ ) 0.0981 0.0528 0.0172 0.0066 0.0026 0.0007

(0.3,1.0) MSEC,n(θ) 0.2774 0.1645 0.0589 0.0225 0.0080 0.0021
MSEN,n(θ ) 0.2172 0.1164 0.0379 0.0145 0.0055 0.0017

(0.5,1.3) MSEC,n(θ) 0.4978 0.2933 0.1068 0.0403 0.0144 0.0039
MSEN,n(θ ) 0.3906 0.2075 0.0691 0.0259 0.0098 0.0030

(0.7,1.6) MSEC,n(θ) 0.7792 0.4603 0.1651 0.0632 0.0227 0.0060
MSEN,n(θ ) 0.6124 0.3268 0.1065 0.0407 0.0155 0.0047

Figure 1. Q-Q plot for θ1 = 0.3, θ2 = 1.0.

Based on the simulation results presented in Table 1, some observations can be made as follows:

• When the sample size n is given, as the θ1 and θ2 increase, the conditional mean of the weighted
F-norms for the errors of μ̂C,n(�) and μ̂N,n(�) also increase.

• For a given set of (θ1, θ2), both estimators exhibit a decreasing trend in their conditional mean
of the weighted F-norms for the errors as the sample size n increases, indicating that they both
satisfy the consistency property.

• Note that the true means of �1 and �2 are 4/9 and 8/7, respectively. For various settings of
(θ1, θ2) taking values around (4/9, 8/7), μ̂N,n(�) has lower values of conditional mean of the
weighted F-norms compared with μ̂C,n(�). As the sample size grows, the difference becomes
negligible. This demonstrates great performances of our proposed estimators.

To verify the asymptotic normality of μ̂N,n(�), we take different values of (θ1, θ2) and n and repeat the
simulation 10,000 times, where we continue to set α1 = 2.4, α2 = 3.2, β1 = 5.4, β2 = 2.8, and ρ2 = 0.2.
The corresponding Q-Q plots are shown in Figures 1–6.
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Figure 2. Q-Q plot for θ1 = 0.5, θ2 = 1.3.

Figure 3. Q-Q plot for θ1 = 0.7, θ2 = 1.6.

Figures 1–3. display the Q-Q plots for different values of (θ1, θ2) with a fixed sample size of n = 20.
It is evident that the variations in (θ1, θ2) have minimal impact on the asymptotic normality of μ̂(1)

N,n(�)

and μ̂(2)
N,n(�) when the sample size remains constant, where μ̂N,n(�) =

(
μ̂

(1)
N,n(�), μ̂(2)

N,n(�)
)′

.
On the other hand, Figures 4–6 show the Q-Q plots for θ1 = 0.5 and θ2 = 1.3 with sample sizes of 5,

30, and 50, respectively. It is apparent that the Q-Q plot of the estimation μ̂N,n(�) obtained in this paper
gradually approaches a straight line as the sample size increases, indicating that μ̂N,n(�) fulfills with
asymptotic normality.

4.2. Multivariate normal-normal model
Given the joint distribution function of the sample and the prior distribution π (·), we can in general
obtain the values of τ 2

0 and σ 2
0 according to Equations (3.8) and (3.9). However, since there is no
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Figure 4. Q-Q plot for n = 5.

Figure 5. Q-Q plot for n = 30.

explicit cumulative joint distribution function for multivariate normal distribution, we need to estimate
the structure parameters τ 2

0 and σ 2
0 with moment method.

First, we generate a sample of � randomly with multivariate normal distribution N2(μ0, T) for the
sample size m. Then, based on this sample, we randomly generate m groups of samples with a sample
size of n with multivariate normal distribution N3(�,�0) and then obtain the estimations of τ 2

0 and σ 2
0

as:

τ̂ 2
0 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

m − 1

m∑
i=1

(
F(i)

n

(
y(1), y(2), y(3)

)− Fn(y(1), y(2), y(3))
)2

dy(1)dy(2)dy(3) (4.2)

and

σ̂ 2
0 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

m

m∑
i=1

(
F(i)

n

(
y(1), y(2), y(3)

) (
1 − F(i)

n

(
y(1), y(2), y(3)

)))
dy(1)dy(2)dy(3), (4.3)
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Figure 6. Q-Q plot for n = 50.

where F(i)
n

(
y(1), y(2), y(3)

)
represents the empirical joint distribution function of the i-th sample,

i = 1, . . . , m, and

Fn(y(1), y(2), y(3))= 1

m

m∑
i=1

F(i)
n

(
y(1), y(2), y(3)

)
.

Based on the properties of multivariate normal distribution and Example 2.2, the matrices are defined
as follows:

T =
⎛⎜⎝ τ 2

1 ρ1τ1τ2 ρ2τ1τ3

ρ1τ1τ2 τ 2
2 ρ3τ2τ3

ρ2τ1τ3 ρ3τ2τ3 τ 2
3

⎞⎟⎠ , �0 =
⎛⎜⎝ σ 2

1 ρ4σ1σ2 ρ5σ1σ3

ρ4σ1σ2 σ 2
2 ρ6σ2σ3

ρ5σ1σ3 ρ6σ2σ3 σ 2
3

⎞⎟⎠ ,

and let μ0 = (1.4, 0.8, 1.2)′. By varying the elements of matrices T and �0 with different values, the
unconditional mean of the weighted F-norms for the errors of μ̂C,n(�) and μ̂N,n(�) are computed, where
the corresponding formulas are given by:

MSEk,n =E

[∣∣∣∣∣∣μ̂k,n(�) − μ(�)
∣∣∣∣∣∣2

ξ

]
, k = C or N,

where we set ξ = (0.3, 0.5, 0.2)′. Upon conducting 1000 repetitions of the procedure, the corresponding
means have been computed and reported in Table 2.

Table 2 reports the mean value of MSEk,n after undergoing 1000 repetitions. Additionally, in Case 1,
the matrices T and �0 are assumed to hold the following values:

T =
⎛⎜⎝ 0.22 0.006 0.008

0.006 0.32 0.012

0.008 0.012 0.42

⎞⎟⎠ , �0 =
⎛⎜⎝ 0.42 0.06 0.024

0.06 1.52 0.09

0.024 0.09 0.62

⎞⎟⎠ , (4.4)

where ρi = 0.1, for i = 1, 2, . . . , 6. In Case 2 and Case 3, we set ρi = 0.5 and 0.9 for i = 1, · · · , 6, respec-
tively, while keeping other values unchanged. In Case 4 and Case 5, we take (τ1, τ2, τ3) = (0.4, 0.6, 0.8)
and (0.8, 2.0, 1.2), respectively, while other values remain unchanged. In Case 6 and Case 7, we consider
(σ1, σ2, σ3) = (0.6, 1.7, 0.8) and (0.8, 1.9, 1.0), respectively, while other values remain unchanged. The
following observations can be made based on the simulation results presented in Table 2:
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Table 2. Comparison of the unconditional means for different cases.

Case MSEk,n n = 10 n = 20 n = 50 n = 100 n = 200 n = 500
Case 1 MSEC,n 0.0431 0.0305 0.0171 0.0105 0.0056 0.0024

MSEN,n 0.0987 0.0577 0.0241 0.0130 0.0063 0.0025

Case 2 MSEC,n 0.0398 0.0290 0.0165 0.0095 0.0054 0.0023
MSEN,n 0.0988 0.0590 0.0250 0.0120 0.0060 0.0025

Case 3 MSEC,n 0.0175 0.0131 0.0093 0.0062 0.0043 0.0020
MSEN,n 0.1089 0.0602 0.0248 0.0114 0.0062 0.0024

Case 4 MSEC,n 0.0812 0.0475 0.0217 0.0117 0.0062 0.0024
MSEN,n 0.1051 0.0562 0.0239 0.0122 0.0063 0.0024

Case 5 MSEC,n 0.1192 0.0590 0.0255 0.0128 0.0064 0.0024
MSEN,n 0.1200 0.0591 0.0254 0.0127 0.0063 0.0023

Case 6 MSEC,n 0.0633 0.0369 0.0210 0.0135 0.0072 0.0032
MSEN,n 0.1543 0.0839 0.0325 0.0179 0.0081 0.0033

Case 7 MSEC,n 0.0687 0.0429 0.0262 0.0159 0.0097 0.0043
MSEN,n 0.1912 0.1250 0.0426 0.0219 0.0116 0.0046

• According to the simulation outcomes in Cases 1–3, MSEC,n diminishes with escalating
correlation coefficients. In contrast, the influence on MSEN,n remains minimal.

• The results obtained from simulations in Cases 1, 4, and 5 reveal a noteworthy trend: with all
other factors unchanged, the value of MSEC,n increases with the values of (τ1, τ2, τ3). On the
contrary, the impact on MSEN,n is particularly pronounced in the context of smaller sample
sizes; however, as the sample size grows, this effect diminishes. Moreover, as the parame-
ters (τ1, τ2, τ3) increase, the gap between the values of MSEC,n and MSEN,n gradually narrows.
Furthermore, with larger values of n, situations may arise where MSEN,n becomes smaller than
MSEC,n, which is in favor of the potential application of our proposed estimator.

• Based on the simulation outcomes from Case 1, Case 6, and Case 7, both MSEC,n and MSEN,n

exhibit an increasingness in (σ1, σ2, σ3). Besides, μ̂N,n(�) converges more quickly as the sample
size increases, and its performance becomes comparable to that of the traditional credibility
estimator μ̂C,n(�).

According to Equations (4.1) and (4.4), Q-Q plots are implemented for different values of (θ1, θ1, θ3)
and n, which are depicted in Figures 7–12. It is readily seen that the simulation results based on the
multivariate normal-normal model exhibit similarities to those under the bivariate exponential-gamma
model. In particular irrespective of the specific values of (θ1, θ2, θ3), the asymptotic normality of μ̂N,n(�)
remains largely unaffected by changes in the sample size. However, when (θ1, θ2, θ3) is fixed, an inter-
esting trend emerges as the sample size increases: the Q-Q plot of the estimation μ̂N,n(�) becomes
progressively closer to a straight line. This observation indicates that μ̂N,n(�) satisfies asymptotic
normality, bolstering its practicability as a new credibility estimator.

4.3. Case analysis
In this part, we shall adopt two explicit insurance scenarios to show the performances of our proposed
estimator. At the meantime, the predicted values based on the traditional credibility method will be also
reported for the first application under some specified premium principles.
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Figure 7. Q-Q plot for θ1 = 2, θ2 = 0.2, θ3 = 1.4.

Figure 8. Q-Q plot for θ1 = 2.2, θ2 = 0.4, θ3 = 1.6.

4.3.1. Application I
To demonstrate the specific application of the new estimators presented in this paper, the data on page
117 of Bühlmann and Gisler (2005) from some fire insurance business are used. Table 3 shows the
related data for five portfolios of insurance policies in five policy years, where Y (1)

ij and Y (2)
ij represent the

total loss and loss rate11 of the i-th policy portfolio in the j-th year, respectively.
In order to obtain the credibility estimator, the structure parameters μ0, T , �0, τ 2

0 , and σ 2
0 need to be

estimated based on the dataset. With moment estimation method, the corresponding estimations of μ0,
T , and �0 are given by:

μ̂0 = 1

mn

m∑
i=1

n∑
j=1

Yij, �̂0 = 1

m(n − 1)

m∑
i=1

n∑
j=1

(
Yij − Yi

) (
Yij − Yi

)′
,

11Note that the number of policyholders in each group is not fixed for those five time periods, and thus they are not comonotonic.
Therefore, it is reasonable to model the joint distribution of the total loss and the loss rate.
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Figure 9. Q-Q plot for θ1 = 2.4, θ2 = 0.6, θ3 = 1.8.

Figure 10. Q-Q plot for n = 5.

Figure 11. Q-Q plot for n = 20.
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Table 3. Annual loss data related to fire insurance.

Risk groups Yij j = 1 j = 2 j = 3 j = 4 j = 5

Group 1 Y (1)
1j 0.583 1.100 0.262 0.837 1.630

Y (2)
1j 0.80 1.40 0.30 0.88 1.60

Group 2 Y (1)
2j 0.099 1.298 0.326 0.463 0.895

Y (2)
2j 0.06 0.72 0.16 0.20 0.38

Group 3 Y (1)
3j 1.433 0.496 0.699 1.742 1.038

Y (2)
3j 1.80 0.60 0.80 1.90 1.10

Group 4 Y (1)
4j 1.765 4.145 3.121 4.129 3.358

Y (2)
4j 0.56 1.20 0.84 1.07 0.80

Group 5 Y (1)
5j 0.040 0 0.169 1.018 0.044

Y (2)
5j 0.10 0.00 0.40 2.40 0.10

Figure 12. Q-Q plot for n = 50.

and

T̂ = 1

n(m − 1)

[
m∑

i=1

n
(
Yi − μ̂0

) (
Yi − μ̂0

)′ − (m − 1)�̂0

]
,

where m = n = 5, and the estimations of τ 2
0 and σ 2

0 are given by (4.2) and (4.3), respectively. Based on
the dataset in Table 3, those estimators can be calculated as τ̂ 2

0 = 0.5450, σ̂ 2
0 = 0.9591, and

μ̂0 =
(

1.2276

0.8068

)
, T̂ =

(
1.3669 0.0864

0.0864 0.0607

)
, �̂0 =

(
0.3795 0.2692

0.2692 0.3547

)
.

Based on these results and Equations (3.19)–(3.22), the corresponding credibility estimations under
the new estimator and the classical method based on various premium principles are shown in
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Table 4. Our credibility estimations based on various premium principles.

a = (1, 0)′ a = (0, 1)′

Risk groups Ĥ(1)
Z (�) Ĥ(2)

Z (�) Ĥ(3)
Z (�) Ĥ(4)

Z (�) Ĥ(1)
Z (�) Ĥ(2)

Z (�) Ĥ(3)
Z (�) Ĥ(4)

Z (�)
Group 1 1.1667 1.1727 1.1916 1.1792 1.1361 1.0394 1.0959 1.0191
Group 2 0.9304 0.9919 1.0033 1.0050 0.5219 0.5121 0.5710 0.4955
Group 3 1.3435 1.3095 1.3331 1.3095 1.3527 1.2477 1.2973 1.2196
Group 4 3.3158 3.4721 3.1757 3.1608 1.0456 0.9248 0.9846 0.9108
Group 5 0.6091 0.7694 0.7583 0.7865 0.7846 0.8848 0.8893 0.8847

Table 5. Our credibility estimations based on various premium principles.

a = (0.5, 0.5)′

Risk groups Ĥ(1)
Z (�) Ĥ(2)

Z (�) Ĥ(3)
Z (�) Ĥ(4)

Z (�)
Group 1 1.1514 1.0702 1.2253 1.0503
Group 2 0.7261 0.7210 0.7719 0.7014
Group 3 1.3481 1.2419 1.2920 1.2180
Group 4 2.1807 2.0542 2.0557 1.9640
Group 5 0.6969 0.7698 0.7938 0.7469

Table 6. The traditional credibility estimation based on the expected value
premium principle.

Risk groups Group 1 Group 2 Group 3 Group 4 Group 5

Ĥ(1)
Z (�) 0.9754 0.9875 1.0958 3.8874 0.4195

Tables 4–6, where we set λ= 0.2, ρ = 0.24, and β = 0.54 in those four premium principles, and the
estimates of U0 and L0 are given by:

Û0 = 1

mn

m∑
i=1

n∑
j=1

YijY′
ij and L̂0 = 1

mn

m∑
i=1

n∑
j=1

exp
(
βa′Yij

)
. (4.5)

The values in Tables 4 through 6 illustrate both of the two credibility estimators of risk premium
derived for different weight matrix a and different premium principles. Specifically, Tables 4 and 5 dis-
play the predictions using the novel credibility estimates μ̂N,n(�) and �̂N,n(�), whereas in Table 6, owing
to the challenge of estimating the conditional covariance matrix �(�) within traditional multivariate
credibility method, we can only report the performance of the expected value premium principle, where
the expression for Ĥ(1)

Z (�) based on the traditional multivariate credibility method is

Ĥ(1)
Z (�)= (1 + λ1) a′ [ZC,nY + (Ip − ZC,n)μ0

]
.

It can be noted that the outcomes predicted by the new estimator are slightly different with those cal-
culated from the traditional method with respect to Ĥ(1)

Z (�). While for the other three types of premium
principles, our method can be easily applied, but the traditional multidimensional credibility is hard to
put to use.
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Table 7. Credibility estimations for the aggregate risk under various premium principles.

Premium principle Estimated value Safety loading coefficient
Net(λ1 = 0) 39.6350 0
Expected value(λ1 = 0.2) 46.1367 0.1640
Variance(λ2 = 0.01) 50.8007 0.2817
Standard deviation(λ2 = 0.2) 45.4767 0.1474
Exponential(β = 0.8) 46.7492 0.1795

4.3.2. Application II
To illustrate the practical application of the newly proposed credibility estimates obtained in this paper in
higher dimensions, we use the “ClaimsLong” dataset12 from the “insuranceData” package in R software;
see Wolny-Dominiak and Trzesiok (2022). In this dataset, we treat the drivers’ age as the risk profile and
categorize it into six classes, that is, 1, 2, 3, 4, 5, 6, with 1 stands for the youngest and 6 stands for the
oldest. We use Yi =

(
Y (1)

i , · · · , Y (6)
i

)′ to model the claim severities for these six classes in year i, and we
assume a payout of 1000 yuan for each claim. Consequently, Yi represents the claim amount in year i,
calculated as the number of claims in year i divided by the total number of policies and then multiplied
by 1000. To obtain estimates of the structural parameters, we employ the Bootstrap method to resample
the dataset. After obtaining m sets of data, we estimate the structural parameters using the same method
as the previous case and the estimated values are obtained as τ̂ 2

0 = 12, 219.09, σ̂ 2
0 = 33, 728.27,

μ̂0 = (19.3750, 38.6250, 48.0500, 46.7222, 25.0972, 15.8972)′ ,

And

�̂0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

422.0484 812.1451 996.7712 970.2049 528.0890 342.2654

812.1451 1584.5024 1943.0102 1893.6903 1027.0936 660.1979

996.7712 1943.0102 2409.5705 2339.4193 1266.2069 814.4658

970.2049 1893.6903 2339.4193 2275.9546 1231.5569 792.0600

528.0890 1027.0936 1266.2069 1231.5569 668.0973 430.0422

342.2654 660.1979 814.4658 792.0600 430.0422 279.8111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With these values and Equations (3.19)–(3.22), the corresponding credibility estimations of the
aggregate risk under various premium principles are reported in Table 7, where the weight vector is
set as a = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1)′ and the estimates of U0 and L0 are given by Equation (4.5). For the
sake of comparisons, we define the expression for the safety loading coefficient as follows:

Safety loading coefficient = Various premium − Net premium
Net premium

.

However, the traditional multidimensional credibility estimator developed by Jewell (1973) is chal-
lenging to apply to this dataset due to the computational complexity involved in calculating the
credibility factor matrix, which requires inverting a high-dimensional matrix with six rows and six
columns. Although the obtained credibility factor in this study necessitates the calculation of integrals
involving multivariate functions, in practical applications, two approaches can be employed to address
the integration computation issue. First, if samples from multiple policy contracts are available, the esti-
mation of credibility factors can be obtained based on samples resembling policy contracts outlined in

12This is a simulated dataset, based on the car insurance dataset. There are 40,000 policies over 3 years, giving 120,000 records.
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Application II. The second approach involves utilizing Markov Chain Monte Carlo methods to numeri-
cally integrate the multivariate function. In comparison with traditional multivariate credibility methods,
we believe that the outcomes of this study hold greater practical applicability.

5. Conclusions
This study addresses the computational intricacies associated with the conventional multivariate credi-
bility estimation procedure, specifically in relation to the computation of the credibility factor matrix. To
address these challenges, we propose an innovative approach based on the conditional joint distribution
function. Moreover, we extend the methodology to include the estimation of the conditional variance
matrix and the computation of risk premiums using various premium principles. Through numerical
simulations, we verify the cohesiveness and asymptotic normality of the newly formulated estimators.
Finally, we demonstrate the practical applicability of these estimators using real insurance company
data, highlighting their effectiveness in calculating risk premiums across a range of premium principles.
The results consistently indicate the estimated magnitudes of risk groups, regardless of the premium
principles considered.

The novel multivariate credibility estimation method proposed in this study simplifies the compu-
tation of the credibility factor while maintaining specific structural parameters. In typical situations,
the conditional joint distribution function of the sample and the prior distribution is often unknown.
In future research, we plan to apply the approach of credibility estimation using joint distributions to
address credibility prediction problems in multivariate regression models. Another promising extension
would be generalizing the current study to the case of the multidimensional Bühlmann–Straub model.
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