In-situ TEM Study on Electrochemical Behavior of α-MnO₂ Nanowire Yifei Yuan¹, Anmin Nie², Sunand Santhanagopalan³, Dennis Desheng Meng³, Reza Shahbazian-Yassar^{2*} ² Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Dive, Houghton, Michigan 49931, United States Manganese dioxide (MnO₂) is widely known to possess various allotropic forms such as α -, β - and γ -phases, which are constructed by combination of octahedral [MnO₆] building blocks to form different tunneled structures. These special structures are believed to account for the various characteristics of MnO₂ when it is employed as electrode material in lithium (ion) batteries ^[1-2]. There is, however, lack of direct proof demonstrating the role of tunneled structure during electrochemical lithiation/delithiation of MnO₂. In this work, by applying high resolution transmission electron microscopy (HRTEM) to single α -MnO₂ nanowire along both axial and radial directions, the tunneled structure is clearly shown and characterized. The α -MnO₂ nanowire is proved to be single crystalline and grow along [001] direction. Cross-sectional HRTEM images have shown that the nanowire has a squared cross section and 2x2 tunnels align parallelly along its growth direction [001], matching very well with simulated crystal structure. An in-situ TEM setup for study of MnO₂'s dynamic lithiation/delithiation process is also designed and demonstrated. This open-cell design inside TEM allows real time observation of electrode behavior during its charge and discharge process, enabling better understanding of electrochemical essentials of α -MnO₂ and possible modifications of its composition, morphology and structure to further improve its overall performance in battery application. ## References: - [1] Chen K., Dong Noh Y., Li K., Komarneni S., Xue D., The Journal of Physical Chemistry C 117 (2013), p.10770. - [2] Xun Wang, Y. L., Journal of the American Chemical Society 124 (2002), p.2. ¹ Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Dive, Houghton, Michigan 49931, United States ^{3.} Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, 500 West 1st Street, Arlington, Texas 76019, United States (Part of the work has been done at Michigan Technological University²) Figure 1 a: TEM image of single α -MnO₂ nanowire; b: HRTEM of α -MnO₂ nanowire along [010] direction; c: Electron diffraction pattern of α -MnO₂ nanowire along [010] zone axis; d: Cross-sectional image of α -MnO₂ nanowire; e: Electron diffraction pattern along [001] zone axis; f: Cross-sectional HRTEM and inserted simulation result along [001] direction showing 2X2 tunnels indicated by yellow dashed squares. Figure 2 Cartoon for the in-situ TEM setup testing α -MnO₂ nanowire's lithiation/delithiation behavior. The nanowire is attached to a gold tip by conductive epoxy, while Li metal is attached to a tungsten tip and functions as the counter electrode. Lithiation starts when a constant potential of -2 V is applied to MnO₂ against Li counter electrode (+4 V for the delithiation process).