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EXPONENTIAL REALIZED GARCH-ITÔ
VOLATILITY MODELS
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College of Business, Korea Advanced Institute of Science and

Technology (KAIST)

This paper introduces a novel Itô diffusion process to model high-frequency finan-
cial data that can accommodate low-frequency volatility dynamics by embedding
the discrete-time nonlinear exponential generalized autoregressive conditional het-
eroskedasticity (GARCH) structure with log-integrated volatility in a continuous
instantaneous volatility process. The key feature of the proposed model is that,
unlike existing GARCH-Itô models, the instantaneous volatility process has a non-
linear structure, which ensures that the log-integrated volatilities have the realized
GARCH structure. We call this the exponential realized GARCH-Itô model. Given
the autoregressive structure of the log-integrated volatility, we propose a quasi-
likelihood estimation procedure for parameter estimation and establish its asymptotic
properties. We conduct a simulation study to check the finite-sample performance
of the proposed model and an empirical study with 50 assets among the S&P 500
compositions. Numerical studies show the advantages of the proposed model.

1. INTRODUCTION

In financial practice, volatility plays a pivotal role. Low-frequency and
high-frequency financial data are widely used to analyze volatility dynamics.
For example, generalized autoregressive conditional heteroskedasticity (GARCH)
models are introduced to catch low-frequency volatility dynamics, such as
volatility clustering, by employing the squared low-frequency log return as the
innovation (Engle, 1982; Bollerslev, 1986). However, when volatility changes
rapidly, it is often difficult to catch the change using only low-frequency log
returns as the innovations (Andersen et al., 2003). On the other hand, high-
frequency financial data are available to construct the so-called realized volatility
for estimating daily integrated volatility. Examples include two-time scale realized
volatility (Zhang, Mykland, and Aït-Sahalia, 2005), multiscale realized volatility
(MSRV; Zhang, 2006), kernel realized volatility (Barndorff-Nielsen et al., 2008),
quasi-maximum likelihood estimator (QMLE; Aït-Sahalia, Fan, and Xiu, 2010;
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Xiu, 2010), pre-averaging realized volatility (PRV; Jacod et al., 2009), and robust
PRV (Fan and Kim, 2018; Shin, Kim, and Fan, 2021). These realized volatility
estimators contain high-frequency information about market volatility, and many
studies show that incorporating high-frequency information helps account for low-
frequency market dynamics (Corsi, 2009; Shephard and Sheppard, 2010; Hansen,
Huang, and Shek, 2012; Kim and Wang, 2016). Several conditional volatility
models have been developed to combine high-frequency and low-frequency data
and enhance volatility estimation and prediction by employing realized volatility
as the volatility proxy. Examples include the realized volatility-based modeling
approaches (Andersen and Bollerslev, 1997a, 1997b, 1998a, 1998b; Andersen
et al., 2003), the heterogeneous autoregressive (HAR) models (Corsi, 2009), the
realized GARCH models (Hansen et al., 2012), the high-frequency-based volatility
(HEAVY) models (Shephard and Sheppard, 2010), and the unified GARCH/SV-
Itô models (Kim and Wang, 2016; Kim and Fan, 2019; Song et al., 2021). These
models have been developed based on the linear autoregressive structure of
realized volatilities. However, we often observe that nonlinear autoregressive
structures, such as exponential functions, better capture the volatility dynamics
(Nelson, 1991; Kawakatsu, 2006; Hansen and Huang, 2016). This may be because
log volatilities often have a stronger linear autoregressive relationship. In fact,
when variables are close to normal distributions, linear models work well. To
check the normality of realized volatilities, we draw normal quantile–quantile
(QQ) plots of realized volatilities and log-realized volatilities for Apple Inc.
(AAPL) stock. Figure 1 shows that the log transformation makes the realized
volatilities closer to a normal distribution. Most assets show the same phenomena.
Thus, we can conjecture that log volatilities better explain volatility dynamics.
To harness this feature, Hansen and Huang (2016) employed the exponential
GARCH structure with the log-realized volatility as the innovation, and their
empirical study indicated that the nonlinear GARCH structure helps account for
market dynamics. Although, as discussed above, empirical studies have supported
that incorporating high-frequency data with a nonlinear autoregressive structure
better captures the market dynamics, the mathematical gap between the empirical
low-frequency discrete-time nonlinear volatility models, such as the exponential
realized GARCH, and high-frequency-based continuous-time diffusion processes
has not been thoroughly studied. In fact, several studies have been conducted to fill
the gap between the discrete-time volatility models and continuous-time diffusion
processes (Kim and Wang, 2016; Kim and Fan, 2019; Song et al., 2021). However,
these studies were based on a linear autoregressive structure, and the extension
from linear to nonlinear structures is not straightforward. This fact increases the
need for developing continuous-time diffusion process-based models that provide
a rigorous mathematical formulation for the nonlinear autoregressive structure of
realized volatilities.

In this paper, we develop a novel diffusion process to model high-frequency
financial data that can accommodate a nonlinear GARCH structure of the realized
volatilities. From empirical studies, we often observe that the log-realized volatility
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Figure 1. Normal QQ plots of realized volatilities and log-realized volatilities for AAPL. The red
real line denotes the best linear fit line, which illustrates perfect normal distribution.

has a stronger autoregressive structure than does the original realized volatility.
To reflect this, we employ the exponential GARCH structure as the nonlinear
function. Specifically, the log-realized volatility follows the realized GARCH
structure. To connect this low-frequency volatility structure with the continuous-
time diffusion process, we develop a novel continuous instantaneous volatility
process. Since the volatility process has a nonlinear structure, the linear structure
of the unified GARCH-Itô (UGARCH; Kim and Wang, 2016) is not applicable.
Furthermore, usual log-diffusion processes for instantaneous volatility processes
cannot provide the solution. To tackle this issue, we propose a novel instantaneous
volatility process based on the average integrated volatility process. The proposed
instantaneous volatility process is then continuous with respect to time, and its
daily integrated volatility is decomposed into the exponential realized GARCH
with the daily log-integrated volatility as the innovation and exponential martin-
gale difference. We call it the exponential realized GARCH-Itô (ERGI) model.
Unlike the linear realized GARCH model, the log-realized volatility can have
negative values. Thus, we allow model parameters to be negative. To estimate the
model parameters, we propose a quasi-maximum likelihood estimation procedure.
Specifically, we adopt the Gaussian quasi-likelihood function and use the realized
volatility as the proxy of the conditional expected value. On the other hand, based
on the linear relationship of the log-integrated volatility, we employ the ordinary
least-squares estimation. Furthermore, we establish their asymptotic properties. To
illustrate the benefit of the proposed model, we apply the ERGI model to real high-
frequency trading data and find that the exponential structure helps account for the
volatility dynamics.

The rest of paper is organized as follows. In Section 2, we propose the
ERGI model and investigate its properties. In Section 3, we suggest the quasi-
maximum likelihood estimation procedures and study their asymptotic behaviors.
In Section 4, we conduct a simulation study to check the finite-sample performance
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of the ERGI model. In Section 5, we apply the ERGI model to the top 50 high
trading volume assets among the S&P 500 compositions. Section 6 contains the
conclusions. All the technical proofs are collected in Section 7.

2. EXPONENTIAL REALIZED GARCH–ITÔ MODELS

In this section, we develop an exponential realized GARCH-Itô (ERGI) model as
follows.

Definition 1. We call the log price Xt to follow the ERGI process if it satisfies

dXt = μtdt +σt(θ)dBt + Jtd�t,

σ 2
t (θ) = σ̄ 2

t (θ){1+ (t − [t])bt(θ)},
bt(θ) = b[t](θ)+ (t − [t])(ω+ (γ −1)b[t](θ))+β log σ̄ 2

t (θ)

− (1− t + [t])
(
β +β∗(t − [t])

)
logσ 2

[t] +ν(1− t + [t])Z2
t ,

where σ̄ 2
t (θ) = (t − [t])−1

∫ t
[t] σ

2
s (θ)ds, [t] denotes the integer part of t, except

that [t] = t − 1 when t is an integer, Zt = ∫ t
[t] dWs, β∗ = 1+β	2

	2−2	3
, where 	2 = β−2

(eβ − 1 −β) and 	3 = β−3(eβ − 1 −β −β2/2), and θ = (ω,γ,β,ν) is the model
parameter. For the jump part, Jt is the jump size and �t is the Poisson process with
the intensity λt.

The log-average integrated volatility, log σ̄ 2
t (θ), provides the innovation term,

and Zt is the random fluctuation. By the construction, the process bt(θ) is contin-
uous with respect to time t; thus, the instantaneous volatility process σ 2

t (θ) is also
continuous. At the integer time points, we have

bn(θ) = ω+γ bn−1(θ)+β log
∫ n

n−1
σ 2

t (θ)dt.

That is, bn(θ) can be explicitly expressed by the past log-integrated volatilities, and
bt(θ) has a form of the interpolation between these values. Thus, when considering
bt(θ), the ERGI model has a similar structure to the realized GARCH-Itô model
(Song et al., 2021) with the log-integrated volatility as the innovations. However,
unlike the realized GARCH-Itô model, to obtain the nonlinear exponential realized
GARCH form, the instantaneous volatility process has a nonlinear structure, such
as σ̄ 2

t (θ){1+ (t − [t])bt(θ)}. The solution for this structure is

1

t −n+1

∫ t

n−1
σ 2

s (θ)ds = σ 2
n−1(θ)e

∫ t
n−1 bs(θ)ds a.s.

Details can be found in Lemma 1. Using the above solution, we can measure the
integrated volatility

∫ n
n−1 σ 2

t (θ)dt with σ 2
n−1(θ) and

∫ n
n−1 bs(θ)ds, which has the

realized GARCH form with the log-integrated volatilities. Specific properties of
the integrated volatility are shown in the following theorem.
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Theorem 1. Under the ERGI model, for |β| < 1 and n ∈ N, the integrated
volatilities have the following properties.

(a) We have∫ n

n−1
σ 2

t (θ)dt = exp (hn(θ)+Dn) a.s.,

hn(θ) = ω∗ +γ hn−1(θ)+βg log
∫ n−1

n−2
σ 2

t (θ)dt,

where

ω∗ = {(1−γ )	2 +	}ω+ (1−γ )ν(	2−2	3), βg = 	β, 	 = 	1 + (γ −1)	2,

	1 = β−1(eβ −1), 	2 = β−2(eβ −1−β), 	3 = β−3(eβ −1−β −β2/2),

and

Dn = 2ν

∫ n

n−1
{(n− t)β−1eβ(n−t) − (eβ(n−t) −1)β−2}ZtdWt

is a martingale difference.
(b) We have∫ n

n−1
σ 2

t (θ)dt = exp (Hn(θ))Mn,

E

[∫ n

n−1
σ 2

t (θ)dt

∣∣∣∣Fn−1

]
= exp (Hn(θ)) a.s., (2.1)

where

Hn(θ) = ωg +γ Hn−1(θ)+βg log
∫ n−1

n−2
σ 2

t (θ)dt,

ωg = ω∗ + (1−γ ) logE[exp(Dn)],

and

Mn = exp(Dn − logE[exp(Dn)])

is an exponential martingale difference.

Theorem 1(a) shows that the log-integrated volatility is decomposed into the
realized GARCH with the log-integrated volatility innovations, hn(θ), and the
martingale difference Dn. Thus, the log-realized GARCH, hn(θ), is the conditional
expected value of the log-integrated volatility, but it is not the conditional expected
value of the original integrated volatility. In Theorem 1(b), we show that the
integrated volatility is decomposed into the exponential function of the realized
GARCH with the log-integrated volatility innovations, Hn(θ), which has the addi-
tional interceptor term from the martingale difference term Dn, and the exponential
martingale difference Mn. Since the expectation is a linear function, the additional
interceptor term does not appear in the linear realized GARCH. However, the ERGI
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is nonlinear, and thus we have the additional interceptor term. The main purpose
of this paper is to develop a model for analyzing the original integrated volatility,
so we develop a statistical inference based on (2.1). Theorem 1 indicates that the
proposed model has a nonlinear exponential GARCH structure. From the empirical
study, we find that this nonlinear structure helps explain the volatility dynamics as
compared to the usual linear realized GARCH. Details can be found in Section 5.

Remark 1. Klüppelberg, Lindner, and Maller (2004) suggested continuous-
time processes whose instantaneous volatility process has the ARCH and GARCH
structures, which is called the continuous-time GARCH (COGARCH), and Haug
and Czado (2007) extended this to the exponential GARCH structure. These
models tried to develop a Lévy diffusion process whose instantaneous volatility
has the GARCH-type form, and they do not link low-frequency dynamics and con-
tinuous diffusion process. In other words, the COGARCH model was developed to
explain continuous-time dynamics. However, the aim of the proposed ERGI is to
explain low-frequency dynamics using high-frequency information. Thus, its daily
integrated volatility has the exponential GARCH form. The relationship with the
daily log returns is presented in the following section.

2.1. Relationship with the Daily Log Returns

The traditional discrete GARCH models are models of close-to-close volatilities
for log returns. In this section, we discuss the relationship between the proposed
ERGI and close-to-close volatilities for log returns.

We first consider the continuous part. That is, we assume that the log-price
process does not have a jump component. By Itô’s lemma and Theorem 1(b), we
then have

E

[(
Xn −Xn−1 −

∫ n

n−1
μtdt

)2
∣∣∣∣∣Fn−1

]
= E

[(∫ n

n−1
σt(θ)dBt

)2
∣∣∣∣∣Fn−1

]
= exp(Hn(θ)) a.s.

Thus, the exponential GARCH volatility, exp (Hn(θ)), is the conditional volatility
of the daily log return. Unfortunately, in practice, we do not have observations
during the close-to-open period; thus, in order to investigate the close-to-close
volatility, we need to impose a structure on the overnight period. For example,
we can simply use squared close-to-open log returns as a proxy of the integrated
volatility for the close-to-open period. We can then apply the proposed ERGI
model to the realized volatility plus squared close-to-open log return. On the other
hand, we can assume that the close-to-open volatility dynamics are the same as in
the open-to-close period. We then only need to match the scale. To do this, we can
calculate the averages for the open-to-close realized volatilities and the squared
close-to-open log returns, and we multiply the inverse of the proportion of the
average of the realized volatility. In the empirical study, we investigate the whole-
day market dynamics (see Section 5.1). The above methods are practical solutions
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without theoretical justifications. Thus, it would be interesting and important to
develop a diffusion process that can accommodate the close-to-close period. We
leave this for a future study.

To investigate the jump diffusion process, we assume that the jump sizes Jt’s are
i.i.d. with mean μJ and variance σ 2

J , and the intensity is constant over time; that is,
λt = λ. Furthermore, we assume the continuous and jump parts are not correlated.
Then, the conditional volatility of the daily log return is

E

[(
Xn −Xn−1 −

∫ n

n−1
μtdt

)2
∣∣∣∣∣Fn−1

]
= exp(Hn(θ))+λσ 2

J +λ2μ2
J a.s.

The squared log return has the exponential GARCH, exp(Hn(θ)), and additional
expected jump variation. The jump variation part depends on the assumption of
the jump structure. Thus, it would be interesting and important to investigate the
jump variation dynamics and to model the jump component. We leave this for a
future study.

3. ESTIMATION PROCEDURE

3.1. A Model Setup

We assume that the log prices follow the ERGI process defined in Definition 1.
The intraday log prices for the dth day are observed at td,i,i = 1, . . . ,md, where
d − 1 = td,0 < td,1 < · · · < td,md = 1 + d − 1. We denote m as the average number
of the high-frequency observations; that is, m = 1

n

∑n
d=1 md. Unfortunately, true

high-frequency observations, Xtd,i ’s, are not observed due to market microstruc-
ture noises. To accommodate the market microstructure noises, we assume that
the observed log prices Ytd,i have the following structure:

Ytd,i = Xtd,i + εtd,i, for d = 1, . . . ,n,i = 1, . . . ,md,

where Xt is the true log price and εtd,i ’s are microstructure noises with mean zero.
Without the presence of price jumps, several nonparametric realized volatility

estimators have been constructed that take advantage of subsampling and local-
averaging techniques to remove the effect of market microstructure noises so
that the integrated volatility can be estimated consistently and efficiently (Zhang,
2006; Barndorff-Nielsen et al., 2008; Jacod et al., 2009; Xiu, 2010; Fan and
Kim, 2018; Shin et al., 2021). To identify the jump locations, given noisy high-
frequency data, Fan and Wang (2007) and Zhang, Kim, and Wang (2016) proposed
wavelet methods to detect jumps and applied the MSRV method to jump-adjusted
data. They showed that the estimator of jump variation has the convergence
rate of m−1/4, and the estimator of integrated volatility achieves the optimal
convergence rate of m−1/4. On the other hand, Aït-Sahalia and Xiu (2016) proposed
jump robust pre-averaging methods by employing a truncation method. They
also demonstrated that the estimators of jump variation and integrated volatility
achieve the convergence rate of m−1/4, which is known as the optimal rate with
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the presence of the microstructure noise. In this paper, for the ith day, we let
RVi be the corresponding estimator of daily integrated volatility that is robust to
microstructure noises and price jumps. In the numerical study, we employ the jump
robust pre-averaging method.

3.2. GARCH Parameters Estimation

We first fix notations. For a given vector x = (xi)i=1,...,k, we define ‖x‖max =
maxi |xi|. Let C’s be generic constants whose values do not depend on θg,n, and m
and may change from occurrence to occurrence.

3.2.1. Quasi-Maximum Likelihood Estimation with Gaussian Likelihood
Function. In this section, we develop an estimation procedure for the true
GARCH model parameters θ

g
0 = (ω

g
0,γ0,α

g
0).

Theorem 1 indicates that the integrated volatility is decomposed into the
exponential GARCH term exp(Hi(θ

g)) and the exponential martingale difference
term Mi, which implies∫ i

i−1 σ 2
t (θ

g
0 )dt − exp

(
Hi(θ

g
0 )
)

exp
(
Hi(θ

g
0 )
) = Mi −1 a.s.

Since Mi is the exponential martingale difference, Mi −1 is a martingale difference
and stationary. This inspires us to use integrated volatility as a proxy for exponen-
tial GARCH volatility. On the other hand, for low-frequency time series models,
such as GARCH-type models, we often use the squared log returns as a proxy,
and to estimate the model parameters, we often employ the Gaussian likelihood
function. In other words, the QMLE with the Gaussian likelihood function is
widely used. In terms of the squared log return, the Gaussian likelihood function
has the squared log returns as the proxy of the conditional volatility. This motivates
us to use the integrated volatility instead of the squared log returns as the proxy of
the conditional volatility in the Gaussian likelihood function as follows:

L̂n(θ
g) = −1

n

n∑
i=1

{
Hi(θ

g)+
∫ i

i−1 σ 2
t (θ

g
0 )dt

exp (Hi(θg))

}
.

We can estimate the parameter θg by maximizing the above quasi-likelihood
function. However, in practice, the integrated volatility is not observable, so we
need to estimate it first. We employ the jump robust realized volatility estimator
(Fan and Wang, 2007; Aït-Sahalia and Xiu, 2016; Zhang et al., 2016). We then
estimate the log-conditional expectation of the integrated volatilities as follows:

Ĥi(θ
g) = ωg +γ Ĥi−1(θ

g)+βg logRVi−1, (3.1)

where the initial value Ĥ1(θ
g) is set to be logRV1. The effect of the initial value is

negligible with the rate of n−1 (see Lemma 1 in Kim and Wang, 2016), so its choice
does not have a significant effect on the parameter estimation. With the estimated
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conditional expected volatility function, we define the following quasi-likelihood
function:

L̂n,m(θg) = −1

n

n∑
i=1

{
Ĥi(θ

g)+ RVi

exp
(
Ĥi(θg)

)} .

Using the proof of Lemma 2, we can show the following uniform convergence:

sup
θ∈


∣∣̂Ln,m(θ)− L̂n(θ)
∣∣ = Op(m

−1/4),

where 
 is the parameter space defined in Assumption 1(a). Thus, the asymptotic
results for L̂n,m(θg) are the same as those for L̂n(θ

g) with additional m−1/4 order.
We then obtain the estimator for the GARCH parameters θ

g
0 by maximizing the

above quasi-likelihood function,

θ̂g = argmax
θg∈


L̂n,m(θg),

where 
 is the parameter space of θg. To establish its asymptotic properties, we
need the following technical conditions.

Remark 2. Even if the effect of the initial value is negligible, for the finite
sample, the random variable logRV1 happens to be far from the true initial value.
To handle this practical issue, we can assume that the initial value is a long-
term average. Under this condition, we can use the theoretical average value

ωg

1−γ−βg as the initial value. That is, we additionally assume that the initial value is

H1(θ
g
0 ) = ω

g
0

1−γ0−β
g
0

. With this condition, we can obtain the same asymptotic result

derived in Theorem 2.

Assumption 1.

(a) θ
g
0 ∈ 
 = {(ωg,γ ,βg);ωl < |ωg| < ωu,γl < |γ | < γu < 1,βl < |β| < βu < 1,

|γ +βg| < 1}, where ωl,ωu,γl,γu,βl,βu are some known constants;

(b) supiE

[∣∣∣RVi −
∫ i

i−1 σ 2
t (θ

g
0 )dt

∣∣∣ 4
]1/4 ≤ Cm−1/4 and supiE

[∣∣∣logRVi − log
∫ i

i−1

σ 2
t (θ

g
0 )dt

∣∣ 4
]1/4 ≤ Cm−1/4;

(c) E

[∣∣∣∫ i
i−1 σ 2

t (θ
g
0 )dt

∣∣∣ 4
]

≤ C, E
[
supθg∈
 exp(4|Hi(θ

g)|)] ≤ C, E
[
supθg∈


exp(4|Ĥi(θ
g)|)] ≤ C, and E

[
M4

i

] ≤ C for all i.

Remark 3. Under Assumption 1(a), unlike the linear GARCH-Itô models (Kim
and Wang, 2016; Song et al., 2021), we allow the parameters to be negative. The
condition |γ + βg| < 1 provides stationary properties of conditional volatilities.
There exist realized volatility estimators satisfying Assumption 1(b) under some
finite moment conditions (see Tao et al., 2011; Kim, Wang, and Zou, 2016).
The sufficient condition for Assumption 1(c) is that E

[
exp(s| logRVi|)

] ≤ C and

E

[
exp(s| log

∫ i
i−1 σ 2

t (θ
g
0 )dt|)

]
≤ C for s ≥ 4/(1−γu).
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In the following theorem, we establish the asymptotic properties of the proposed
QMLE.

Theorem 2. Under Assumption 1, we have

‖θ̂g − θ
g
0 ‖max = Op(n

−1/2 +m−1/4).

Furthermore, we suppose that nm−1/2 → 0 and Assumption 1 is satisfied. Then,
we have

√
n(θ̂g − θ

g
0 )

d→ N(0,AV−1),

where A = E
[
(1−Mi)

2
]

and V = E

[
∂Hi(θ

g)

∂θg
∂Hi(θ

g)

∂(θg)	
∣∣
θg=θ

g
0

]
.

Remark 4. Theorem 2 shows that the QMLE θ̂g has the convergence rate
n−1/2 + m−1/4. The n−1/2 term is the usual convergence rate due to the low-
frequency errors, Mi − 1. The m−1/4 term is the cost to estimate the integrated
volatility, which is known as the optimal rate with the presence of the microstruc-
ture noise. Specifically, by Theorem 1, we have the following relationship:∫ n

n−1
σ 2

t (θg)dt = exp (Hn(θ
g))Mn a.s.,

and, additionally, due to the estimation error of the latent integrated volatility,
we have

RVn =
∫ n

n−1
σ 2

t (θg)dt +En = exp (Hn(θ
g))Mn +En a.s.,

where En is the estimation error of the latent integrated volatility. The error rate of
En is m−1/4, and its asymptotic variance is specified in the literature on estimating
integrated volatility (Zhang, 2006; Barndorff-Nielsen et al., 2008; Jacod et al.,
2009; Aït-Sahalia et al., 2010; Xiu, 2010). Then, the asymptotic variance of θ̂g in
Theorem 2 has an additional term that is a function of variance of En. For example,
we have

‖θ̂g − θ
g
0 ‖max ≈ C1

√
A

n1/2
+C2

√
AvarRV

m1/4
,

where AvarRV is the asymptotic variance of RV , and C1 and C2 are functions of
Hi(θ

g
0 ).

Remark 5. The condition nm−1/2 → 0 is required to remove the effect from
the estimation error of the realized volatility when establishing the asymptotic
normality. However, as in the realized GARCH model (Hansen et al., 2012), if
we assume that the conditional volatility is a function of the realized volatility
estimator RVi, this assumption is not required.
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3.2.2. Least-Squares Estimation. In the previous section, we developed the
parameter estimation procedure for the integrated volatility. In this section, we
study an estimation procedure for the log-integrated volatility. Theorem 1(a)
indicates that the log-integrated volatility has the following relationship:

log
∫ i

i−1
σ 2

t (θ)dt = hi(θ)+Di a.s., (3.2)

where Di’s are i.i.d. random noise with mean zero. Since log
∫ i

i−1 σ 2
t (θ)dt and∫ i

i−1 σ 2
t (θ)dt have different conditional expected values, the parameter of interest

is not the same as θg. Specifically, for the log-integrated volatility, the target
parameter is θ∗

0 = (ω∗
0,γ0,α

g
0). We note that the difference between ω∗

0 and ω
g
0 is

(1 − γ ) logE[exp(Di)]. The relationship (3.2) inspires us to employ the ordinary
least-squares (OLS) estimation procedure. To harness the OLS procedure, we need
to estimate the integrated volatility. For example, we estimate the log-conditional
expectation of the integrated volatilities as follows:

ĥi(θ
∗) = ω∗ +γ ĥi−1(θ

g)+βg logRVi−1, (3.3)

where the initial value ĥ1(θ
∗) is set to be logRV1. Then, with the realized volatility,

we have

logRVi = ĥi(θ
∗
0 )+{logRVi − log

∫ i

i−1
σ 2

t (θ)dt}+{hi(θ
∗
0 )− ĥi(θ

∗
0 )}+Di a.s.

As we discussed in the previous section, the error terms log
∫ i

i−1 σ 2
t (θ)dt − logRVi

and hi(θ
∗
0 )− ĥi(θ

∗
0 ) have the error rate m−1/4. We can consider these errors as new

random noises such as D̃i = {logRVi − log
∫ i

i−1 σ 2
t (θ)dt}+ {hi(θ

∗
0 )− ĥi(θ

∗
0 )}+ Di.

We then have

logRVi = ĥi(θ
∗
0 )+ D̃i a.s.,

and we can obtain the OLS estimator as follows:

θ̂∗ = argminθ∗∈


1

n

n∑
i=1

{
logRVi − ĥi(θ

∗)
}2

.

Similar to Theorem 2, we can establish the following asymptotic properties of the
proposed OLS estimator.

Theorem 3. Under Assumption 1, we have

‖θ̂∗ − θ∗
0 ‖max = Op(n

−1/2 +m−1/4).
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Furthermore, we suppose that nm−1/2 → 0 and Assumption 1 is satisfied. Then,
we have
√

n(θ̂∗ − θ∗
0 )

d→ N(0,A∗V∗−1),

where A∗ = E
[
D2

i

]
and V∗ = E

[
∂hi(θ

∗)

∂θ∗
∂hi(θ

∗)

∂(θ∗)	
∣∣
θ∗=θ∗

0

]
.

Since this estimation procedure is developed based on the log-integrated
volatility, to predict the future volatility, we need a convexity adjustment. Using
Theorem 1, we can adjust the bias as follows:

exp(̂hn(θ̂∗))× 1

n

n∑
i=1

exp(logRVi − ĥi(θ̂∗)).

3.3. Hypothesis Tests

In financial practice, we are interested in statistical inferences about the GARCH
parameters, such as hypothesis tests. In this section, we discuss how to conduct
hypothesis tests for the GARCH parameters.

First, we consider the integrated volatility. Theorem 2 implies that

√
n(θ̂g − θ

g
0 )

d→ N(0,AV−1),

where A = E
[
(1−Mi)

2
]

and V = E

[
∂Hi(θ

g)

∂θg
∂Hi(θ

g)

∂(θg)	
∣∣
θg=θ

g
0

]
. To evaluate the

asymptotic variances of the GARCH parameter estimators, we first need to
estimate A and V. We use the following estimators:

Â = 1

n

n∑
i=1

(
RVi − Ĥi(θ̂g)

Ĥi(θ̂g)

)2

and V̂(θg) = 1

n

n∑
i=1

∂Ĥi(θ
g)

∂θg

∂Ĥi(θ
g)

∂(θg)	
,

where Ĥi(θ
g) is defined in (3.1). Under some stationary conditions, we can

establish their consistency. Then, by Slutsky’s theorem, we can obtain

Ti,n =
√

n(θ̂g
i − θ

g
0i)√

ÂV̂−1
ii (θ̂g)

d→ N(0,1),

where θ̂g
i and θ

g
0i are the ith elements of θ̂g and θ

g
0 , respectively, and V̂−1

ii (θ̂g) is
the ith diagonal element of V̂−1(θ̂g).

Similarly, we can estimate the asymptotic variances for the log-integrated
volatility as follows:

Â∗ = 1

n

n∑
i=1

(
logRVi − ĥi(θ̂∗)

)2
and V̂∗(θ∗) = 1

n

n∑
i=1

∂ ĥi(θ
∗)

∂θ∗
∂ ĥi(θ

∗)
∂(θ∗)	

,
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where ĥi(θ
∗) is defined in (3.3). Then, we can obtain

T∗
i,n =

√
n(θ̂∗

i − θ∗
0i)√

Â∗V̂∗−1
ii (θ̂∗)

d→ N(0,1),

where θ̂∗
i and θg∗0i are the ith elements of θ̂∗ and θ∗

0 , respectively, and V̂∗−1
ii (θ̂∗) is

the ith diagonal element of V̂∗−1(θ̂∗). Thus, using the proposed Z-statistics Ti,n and
T∗

i,n, we can conduct the hypothesis tests based on the standard normal distribution.

4. A SIMULATION STUDY

We conducted Monte Carlo simulations to check the finite-sample performance
of the ERGI model. The log prices were generated from the ERGI model given in
Definition 1 for n days with m high-frequency observations. The model parameters
were set to be (ω0,γ0,β0,ν0) = (−0.1,0.3,0.5,2) and μt = 0. Then, the GARCH
parameters (ω

g
0,γ0,β

g
0 ) = (0.3207,0.3,0.4405). For the jump part, we set the

intensity λt = 10 and the jump size |Jt| = 0.05. The signs of the jump size were
randomly generated. Let td,j = d − 1 + j/m, for d = 1, . . . ,n and j = 0, . . . ,m.
We generated the noisy observations as follows:

Ytd,j = Xtd,j + εtd,j, for d = 1, . . . ,n and j = 0, . . . ,m,

where εtd,j ’s are i.i.d. normal random variables with mean zero and standard

deviation 0.01
√∫ d

d−1 σ 2
t (θg)dt. To generate the true process, we chose m = 11,700.

We varied n from 100 to 500 and m from 390 to 11,700, which corresponds to the
number of minutes and 2 seconds during the open-to-close period, respectively.
We used Ytd,j as the high-frequency observations. To estimate the integrated
volatilities, we used the jump robust pre-averaging method (Jacod et al., 2009;
Aït-Sahalia and Xiu, 2016) as follows:

RVi = 1

ψK

m−K+1∑
k=1

{
Ȳ2(ti,k)− 1

2
Ŷ2(ti,k)

}
1{|Ȳ(ti,k)|≤τm},

where we take the weight function g(x) = x ∧ (1 − x), the bandwidth size
K = �m1/2
,

Ȳ(ti,k) =
K−1∑
l=1

g

(
l

K

)(
Yti,k+l −Yti,k+l−1

)
, ψ =

∫ 1

0
g(t)2dt,

Ŷ2(ti,k) =
K∑

l=1

{
g

(
l

K

)
−g

(
l−1

K

)}2 (
Yti,k+l−1 −Yti,k+l−2

)2
,

1{·} is an indicator function, and τm = cτ m−0.235 is a truncation level for the constant
cτ . We chose cτ as four times the sample standard deviation of the pre-averaged
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Table 1. MSEs for the parameter estimates of the QMLE and OLS estimators
with n = 100, 200, 500 and m = 390, 1170, 11,700

QMLE OLS

n m ωg γ βg ω∗ γ βg

100 390 0.0854 0.1312 0.0468 0.0168 0.0509 0.0226

1,170 0.0852 0.1217 0.0415 0.0145 0.0395 0.0159

11,700 0.0865 0.1204 0.0408 0.0156 0.0401 0.0122

200 390 0.0435 0.0714 0.0309 0.0050 0.0207 0.0132

1,170 0.0428 0.0690 0.0280 0.0052 0.0168 0.0080

11,700 0.0453 0.0720 0.0274 0.0056 0.0157 0.0054

500 390 0.0296 0.0484 0.0213 0.0017 0.0122 0.0106

1,170 0.0249 0.0395 0.0177 0.0016 0.0076 0.0053

11,700 0.0244 0.0367 0.0171 0.0017 0.0053 0.0024

prices m1/4Ȳ(td,k). We estimated the parameters using the procedure in Section 3.
We repeated the whole procedure 500 times.

To check the performance of the realized volatility estimator, we calculated
squared relative errors as follows:

1

n

n∑
i=1

(
RVi −

∫ i
i−1 σ 2

t (θ0)dt

RVi

)2

.

We then calculated the sample average of squared relative errors over 500
simulations. We have the average errors 0.0117, 0.0463, and 0.10751 for
m = 11,700,1,170, and 390, respectively. As m increases, the average errors
decrease. This result supports the theoretical findings in the realized volatility
estimator literature (Jacod et al., 2009; Aït-Sahalia and Xiu, 2016).

Table 1 reports the mean squared errors (MSEs) of the QMLE and OLS
estimates θ̂g and θ̂∗ with n = 100, 200, 500 and m = 390, 1,170,11,700. In Table 1,
MSEs usually decrease as the number of high-frequency observations or daily
observations increases. When comparing the QMLE and OLS procedures, the OLS
shows better performance. This may be because the OLS is based on the log-
integrated volatility structure, which can better explain the ERGI model structure.
This result supports the theoretical findings in Section 3.

To check the asymptotic normality of the GARCH parameters (ωg,γ ,βg), we
calculated the Z-statistics defined in Section 3.3. In Figures 2 and 3, we draw the
standard normal QQ plots of the Z-statistics estimates of the QMLE and OLS
procedures for m = 11,700 and n = 100,200,500. In Figures 2 and 3, we find that
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Figure 2. Standard normal QQ plots of the Z-statistics estimates of the QMLE estimators ωg, γ ,
and βg for m = 11,700 and n = 100,200,500. The red real line denotes the best linear fit line, which
illustrates perfect standard normal distribution.

the Z-statistics usually become close to the standard normal distribution as the
sample period increases. This result supports the theoretical findings in Section 3.
Thus, based on the proposed Z-statistics, we can conduct hypothesis tests using
the standard normal distribution.

We examined the out-of-sample performance of estimating the 1-day-ahead
GARCH volatility exp(Hn+1(θ

g
0 )). To estimate future GARCH volatility, we

employed the proposed conditional ERGI estimator with QMLE (ERGI-QMLE)
exp(Ĥn+1(θ̂g)), the ERGI estimator with OLS (ERGI-OLS) exp(̂hn+1(θ̂∗)) ×
1
n

∑n
i=1 exp(logRVi − ĥi(θ̂∗)), realized GARCH volatility estimator (Hansen et al.,

2012; Song et al., 2021), and PRV of the previous day. For example, the realized
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Figure 3. Standard normal QQ plots of the Z-statistics estimates of the OLS estimators ω∗, γ , and βg

for m = 11,700 and n = 100,200,500. The red real line denotes the best linear fit line, which illustrates
perfect standard normal distribution.

GARCH volatility estimator is estimated based on the following conditional
volatility:

hn(θ
g) = ω+γ hn−1(θ

g)+βRVn−1.

In other words, the realized GARCH volatility estimator has the usual linear
GARCH structure with the realized volatilities. We measured the MSEs with the
1-day-ahead sample period over 500 samples as follows:

1

500

500∑
i=1

[
v̂arn+1,i − exp

(
Hn+1,i(θ

g
0 )
)]2

,
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Figure 4. Log MSEs for the ERGI-QMLE, ERGI-OLS, realized GARCH, and PRV with n =
100,200,500, and m = 390,1,170,11,700.

where v̂arn+1,i is one of the above future volatility estimators at the ith sample
path given the available information at time n. Figure 4 depicts the MSEs for
the ERGI-QMLE, ERGI-OLS, realized GARCH, and PRV against varying the
numbers of low- and high-frequency observations, n and m. In Figure 4, we find
that the ERGI models show the best performance. The interesting finding is that
the realized GARCH model can also capture some volatility dynamics. This may
be because even if the volatility dynamic structure is nonlinear, it could have
some linear dynamics. Especially when the log-volatility quantities are small,
by Taylor’s expansion, the linear model can capture some nonlinear dynamics.
However, by using only the linear structure, it cannot fully explain the nonlinear
dynamic structure. From these results, we can conjecture that modeling appropriate
dynamic structure helps account for market dynamics. When comparing the
ERGI-QMLE with the ERGI-OLS, the ERGI-OLS shows better performance. This
result is consistent with the parameter estimation result. That is, the OLS can better
explain the ERGI model structure.

5. EMPIRICAL STUDY

We applied the proposed ERGI model to real trading high-frequency data. We
obtained the top 50 trading volume assets intraday data from January 2010 to
December 2016 from the trade and quote (TAQ) database in the Wharton Research
Data Services system. We used the log prices and employed the jump robust PRV
estimation procedure defined in Section 4 to estimate open-to-close integrated
volatility. In the empirical study, we chose the tuning parameter cτ as 10 times
the sample standard deviation of pre-averaged prices m1/4Ȳ(td,k). To check the
accuracy of the PRV estimator, we calculated standard errors (SE) as follows. We
first calculated the asymptotic variance, proposed by Aït-Sahalia and Xiu (2016),
and divided the square root of the asymptotic variance estimator by the square
root of the number of high-frequency observations. We report the data summary in
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Table 2. Averages of the number of high-frequency observations, realized
volatility (RV), SE of the realized volatility estimator (SE), and jump variation
(JV).

Stock # of obs RV×104 SE×104 JV×104 Stock # of obs RV×104 SE×104 JV×104

PG 16,912.4 0.5637 0.0414 0.4000 MO 23,667.5 0.6886 0.0075 0.2074

HBAN 15,941.4 2.7678 0.0183 0.3550 QCOM 40,986.1 1.3487 0.0059 0.2306

FCX 37,196.1 5.4242 0.0222 0.8249 MRK 36,710.1 0.9756 0.0198 0.2643

MRO 31,241.5 3.8938 0.0203 0.6569 GILD 43,938.5 1.8619 0.0132 0.4030

ORCL 44,489.4 1.3062 0.0062 0.1915 DAL 35,653.1 4.2791 0.0219 0.6506

AMD 22,373.9 5.9256 0.0345 0.9735 LUV 23,756.9 2.3442 0.0120 0.6057

AMAT 33,556.6 2.0554 0.0079 0.3043 T 38,606.7 0.7138 0.0037 0.1288

XRX 18,877.3 2.3137 0.0172 1.4115 CSCO 40,328.4 1.2632 0.0079 0.2128

WFC 44,023.8 1.4846 0.0073 0.3143 DIS 16,682.3 1.0435 0.0108 0.1842

NFLX 30,613.5 5.4658 0.0293 0.5557 NVDA 27,743.1 3.2549 0.0151 0.4210

F 34,610.1 2.2033 0.0177 0.4130 SLB 31,761.7 2.0279 0.0094 0.4409

GE 46,327.4 1.2444 0.0153 0.2523 BMY 27,565.6 1.1346 0.0157 0.2655

INTC 45,515.7 1.4031 0.0076 0.2464 ATVI 25,432.0 2.0102 0.0100 0.3804

XOM 45,802.3 0.9642 0.0072 0.1490 MU 38,907.5 5.1948 0.0301 0.9009

RF 19,662.3 3.7024 0.0236 0.4208 JPM 40,898.6 1.6448 0.0729 0.4199

DOW 28,093.0 1.9877 0.0190 0.3006 CVX 32,592.7 1.1472 0.0067 0.2205

NEM 29,263.8 3.3862 0.0118 0.4225 MSFT 61,219.5 1.2213 0.0035 0.1855

CSX 16,106.8 1.6852 0.0153 0.4427 BAC 63,492.7 2.4282 0.0098 0.3718

TXN 25,727.4 1.3822 0.0072 0.3163 WMT 30,549.0 0.6412 0.0033 0.1288

JNJ 31,877.1 0.5137 0.0062 0.1689 WMB 26,970.9 3.8400 0.0394 0.8323

VZ 32,309.9 0.7749 0.0185 0.2155 AAPL 90,386.9 1.4419 0.0118 0.3017

HST 21,239.2 2.2687 0.0135 0.2591 BSX 24,163.9 2.3119 0.0145 0.4101

MGM 16,642.6 4.5845 0.0309 0.6648 PFE 43,600.5 1.0821 0.0160 0.2296

KO 37,024.6 0.6041 0.0034 0.1091 HAL 39,739.1 3.2834 0.0136 0.4913

SCHW 27,159.3 2.0437 0.1963 0.3522 GLW 25,151.0 1.8426 0.0155 0.3186

Table 2. The number of high-frequency data is from 16,000 to 90,000 on average,
and we find that the proportion of the jump variation is approximately 8%–40% of
the total variation on average. The SE is less than 10% of the realized volatility.

We first estimated the model parameters using the last 1,000 days of data. From
the estimated model parameters, we obtained the following conditional expected
volatilities for each asset:

Ĥn+1(θ̂g) = ω̂g + γ̂ Ĥn(θ̂g)+ α̂g log(RVn),

ĥn+1(θ̂∗) = ω̂∗ + γ̂ Ĥn(θ̂∗)+ α̂g log(RVn).

Table 3 reports the estimation results. From Table 3, we find that dynamic
structures can be explained by the past log PRV, and the coefficients of realized
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Table 3. ERGI model estimation results for the QMLE and OLS. In the
parentheses, we report the p-values.

QMLE OLS

Stock ωg γ βg ω∗ γ βg

PG −1.18 (0.00) 0.33 (0.00) 0.55 (0.00) −0.50 (0.00) 0.48 (0.00) 0.47 (0.00)

HBAN −1.06 (0.00) 0.35 (0.00) 0.52 (0.00) −1.10 (0.00) 0.38 (0.00) 0.50 (0.00)

FCX −0.07 (0.00) 0.48 (0.00) 0.50 (0.00) −0.14 (0.00) 0.50 (0.00) 0.48 (0.00)

MRO −0.12 (0.00) 0.39 (0.00) 0.59 (0.00) −0.16 (0.00) 0.43 (0.00) 0.55 (0.00)

ORCL −1.61 (0.00) 0.18 (0.00) 0.64 (0.00) −0.53 (0.00) 0.44 (0.00) 0.51 (0.00)

AMD −0.50 (0.00) 0.50 (0.00) 0.43 (0.00) −0.74 (0.00) 0.47 (0.00) 0.43 (0.00)

AMAT −1.83 (0.26) 0.19 (0.00) 0.59 (0.00) −0.82 (0.00) 0.46 (0.00) 0.44 (0.00)

XRX −0.57 (0.00) 0.48 (0.00) 0.45 (0.00) −1.28 (0.00) 0.42 (0.00) 0.44 (0.00)

WFC −1.17 (0.00) 0.24 (0.00) 0.63 (0.00) −0.67 (0.00) 0.42 (0.00) 0.51 (0.00)

NFLX −0.70 (0.05) 0.29 (0.00) 0.61 (0.02) −0.72 (0.00) 0.38 (0.00) 0.53 (0.00)

F −1.56 (0.00) 0.26 (0.03) 0.56 (0.00) −0.77 (0.00) 0.47 (0.00) 0.45 (0.00)

GE −1.40 (0.00) 0.19 (0.11) 0.66 (0.00) −0.57 (0.00) 0.46 (0.00) 0.48 (0.00)

INTC −1.14 (0.00) 0.27 (0.00) 0.60 (0.00) −1.31 (0.00) 0.31 (0.00) 0.55 (0.00)

XOM −0.62 (0.00) 0.34 (0.00) 0.59 (0.00) −0.67 (0.00) 0.38 (0.00) 0.55 (0.00)

RF −0.98 (0.00) 0.42 (0.00) 0.46 (0.00) −0.86 (0.00) 0.46 (0.00) 0.44 (0.00)

DOW −1.06 (0.00) 0.32 (0.00) 0.56 (0.00) −0.84 (0.00) 0.42 (0.00) 0.49 (0.00)

NEM −0.74 (0.00) 0.35 (0.00) 0.55 (0.00) −0.72 (0.00) 0.38 (0.00) 0.53 (0.00)

CSX −0.83 (0.00) 0.32 (0.00) 0.58 (0.00) −0.87 (0.00) 0.34 (0.00) 0.57 (0.00)

TXN −1.31 (0.00) 0.24 (0.00) 0.62 (0.04) −0.52 (0.00) 0.43 (0.00) 0.52 (0.00)

JNJ −1.03 (0.00) 0.38 (0.00) 0.51 (0.00) −0.50 (0.00) 0.50 (0.00) 0.45 (0.00)

VZ −1.91 (0.00) 0.21 (0.00) 0.58 (0.00) −0.58 (0.00) 0.55 (0.00) 0.39 (0.00)

HST −0.62 (0.10) 0.47 (0.00) 0.46 (0.00) −0.53 (0.00) 0.50 (0.00) 0.44 (0.00)

MGM −1.04 (0.00) 0.32 (0.00) 0.55 (0.00) −0.72 (0.00) 0.38 (0.00) 0.53 (0.00)

KO −1.46 (0.00) 0.26 (0.00) 0.59 (0.00) −0.70 (0.00) 0.47 (0.00) 0.46 (0.00)

SCHW −1.14 (0.00) 0.33 (0.00) 0.53 (0.00) −0.68 (0.00) 0.46 (0.00) 0.46 (0.00)

MO −1.37 (0.00) 0.33 (0.00) 0.52 (0.00) −0.62 (0.00) 0.49 (0.00) 0.44 (0.00)

QCOM −1.67 (0.00) 0.22 (0.00) 0.59 (0.00) −0.64 (0.00) 0.51 (0.00) 0.42 (0.00)

MRK −0.99 (0.00) 0.33 (0.00) 0.56 (0.00) −0.47 (0.00) 0.32 (0.00) 0.63 (0.00)

GILD −0.86 (0.00) 0.33 (0.00) 0.56 (0.00) −0.73 (0.00) 0.38 (0.00) 0.54 (0.00)

DAL −1.91 (0.00) 0.18 (0.02) 0.57 (0.00) −0.76 (0.00) 0.50 (0.00) 0.41 (0.00)

LUV −1.45 (0.00) 0.33 (0.00) 0.49 (0.00) −1.07 (0.00) 0.43 (0.00) 0.45 (0.00)

T −1.98 (0.01) 0.29 (0.00) 0.51 (0.00) −0.67 (0.00) 0.53 (0.00) 0.40 (0.00)

CSCO −1.83 (0.00) 0.18 (0.00) 0.62 (0.00) −0.79 (0.00) 0.46 (0.00) 0.46 (0.00)

DIS −1.41(0.00) 0.23 (0.00) 0.62 (0.00) −1.41 (0.00) 0.30 (0.00) 0.56 (0.00)

NVDA −1.31 (0.02) 0.29 (0.00) 0.55 (0.00) −0.94 (0.00) 0.44 (0.00) 0.45 (0.00)

(Continues)
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Table 3. Continued

QMLE OLS

Stock ωg γ βg ω∗ γ βg

SLB −0.63 (0.00) 0.37 (0.00) 0.56 (0.00) −0.58 (0.00) 0.42 (0.00) 0.51 (0.00)

BMY −1.72 (0.00) 0.23 (0.00) 0.50 (0.00) −0.82 (0.00) 0.49 (0.00) 0.42 (0.00)

ATVI −0.83 (0.00) 0.43 (0.00) 0.47 (0.00) −1.01 (0.00) 0.46 (0.00) 0.42 (0.00)

MU −1.10 (0.00) 0.34 (0.07) 0.51 (0.00) −0.77 (0.00) 0.42 (0.00) 0.48 (0.00)

JPM −1.42 (0.00) 0.16 (0.00) 0.68 (0.00) −0.55 (0.00) 0.42 (0.00) 0.52 (0.00)

CVX −0.39 (0.00) 0.38 (0.00) 0.57 (0.00) −0.51 (0.00) 0.40 (0.00) 0.55 (0.00)

MSFT −1.29 (0.00) 0.30 (0.00) 0.55 (0.00) −1.19 (0.00) 0.38 (0.00) 0.49 (0.00)

BAC −1.26 (0.00) 0.27 (0.00) 0.58 (0.00) −0.55 (0.00) 0.41 (0.00) 0.53 (0.00)

WMT −0.71 (0.00) 0.52 (0.00) 0.40 (0.00) −0.75 (0.00) 0.53 (0.00) 0.40 (0.00)

WMB −0.09 (0.00) 0.41 (0.00) 0.57 (0.00) −0.21 (0.00) 0.52 (0.00) 0.46 (0.00)

AAPL −2.01 (0.00) 0.09 (0.00) 0.68 (0.00) −1.67 (0.00) 0.20 (0.00) 0.62 (0.00)

BSX −1.40 (0.00) 0.29 (0.00) 0.54 (0.00) −0.63 (0.00) 0.50 (0.00) 0.43 (0.00)

PFE −0.89 (0.00) 0.33 (0.00) 0.57 (0.00) −0.45 (0.00) 0.43 (0.00) 0.53 (0.00)

HAL −0.70 (0.00) 0.31 (0.00) 0.60 (0.04) −0.72 (0.00) 0.38 (0.00) 0.54 (0.00)

GLW −1.92 (0.00) 0.18 (0.00) 0.60 (0.00) −1.46 (0.00) 0.34 (0.00) 0.50 (0.00)

volatilities are statistically significant. Thus, the proposed exponential model is
valid.

For comparison, we employed the realized GARCH (Hansen et al., 2012; Song
et al., 2021), UGARCH (Kim and Wang, 2016), and HAR (Corsi, 2009) models.
We used the jump robust PRV as the proxy. Thus, the above models account
for the volatility of the continuous part of the log-price process. For example,
the UGARCH model employs the squared open-to-close log returns as the risk
factor and the jump robust PRV as the proxy. The realized GARCH and HAR
models employ the jump robust PRV as the risk factor and proxy. To measure the
performance of the volatility, we used the mean squared prediction errors (MSPE)
and QLIKE (Patton, 2011) as follows:

MSPE = 1

n

n∑
i=1

(Voli −RVi)
2 and QLIKE = 1

n

n∑
i=1

logVoli + RVi

Voli
,

where Voli is one of the ERGI-QMLE, ERGI-OLS, HAR, realized GARCH,
and UGARCH. We used RVi as the nonparametric daily volatility estimator.
Furthermore, we calculated the out-of-sample R-square (OSR; Campbell and
Thompson, 2008) as follows:

OSR = 1−
∑n

i=1

(
RVi −Vol∗i

)2∑n
i=1 (RVi −Voli)

2 ,
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Table 4. Average rank of MSPEs and QLIKEs for the ERGI-QMLE,
ERGI-OLS, realized GARCH, HAR, and UGARCH models for Period 1,
Period 2, and the whole period. In the parentheses, we report the number
of those ranked first among competitors.

ERGI-Q ERGI-O Real HAR UGARCH

Period 1

MSPE 2.12 (10) 1.78 (25) 3.10 (4) 3.00 (11) 5.00 (0)

QLIKE 2.22 (9) 2.02 (20) 3.12 (5) 2.64 (16) 5.00 (0)

Period 2

MSPE 1.60 (26) 1.72 (20) 3.48 (1) 3.54 (3) 4.66 (0)

QLIKE 1.82 (19) 2.20 (15) 2.58 (11) 3.40 (5) 5.00 (0)

Whole period

MSPE 1.70 (25) 1.72 (19) 3.50 (1) 3.36 (5) 4.72 (0)

QLIKE 1.70 (24) 2.06 (14) 2.86 (4) 3.38 (8) 5.00 (0)

where Vol∗i is the proposed ERGI-QMLE model, and Voli is one of the ERGI-OLS,
realized GARCH, HAR, and unified GARCH-Itô models and sample mean of the
in-sample RVi’s. We predicted the 1-day-ahead conditional expected volatility by
the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR, and UGARCH models
using the in-sample period data. We fixed the in-sample period as 500 days
and used the rolling window scheme to estimate the parameters. The number of
out-of-sample observations was 1,262. To check the period dependency, we split
the period into two equal parts, denoted by Period 1 and Period 2. Table 4 reports
the average rank and the number of those ranked first of MSPEs and QLIKEs for
the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR, and UGARCH models
for Period 1, Period 2, and the whole period over the 50 assets. Figure 5 depicts
the relative MSPE and QLIKE for the ERGI-OLS, realized GARCH, HAR, and
UGARCH models with respect to the ERGI-QMLE model for Period 1, Period 2,
and the whole period. Figure 6 draws the OSR for the ERGI-QMLE model with
respect to the ERGI-OLS, realized GARCH, HAR, and UGARCH models, and
sample mean for Period 1, Period 2, and the whole period. From Table 4 and
Figures 5 and 6, we find that the realized volatility-based models, such as the
ERGI, realized GARCH, and HAR models, perform better than the UGARCH
model, which incorporates the squared open-to-close returns as the innovation.
That is, incorporating the realized volatility helps account for the volatility dynam-
ics. When comparing the realized volatility-based models, the proposed ERGI
model shows the best performance. For the ERGI models, the QMLE and OLS
estimation procedures show similar performance. From this result, we can conjec-
ture that the nonlinear exponential form with realized volatilities helps explain the
market dynamics.
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Figure 5. Box plots of relative MSPE and QLIKE for the realized GARCH, HAR, and UGARCH
models with respect to the ERGI model for Period 1, Period 2, and the whole period.
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Figure 6. Box plots of OSR for the ERGI-QMLE model with respect to the ERGI-OLS, realized
GARCH, HAR, and UGARCH models, and sample mean for Period 1, Period 2, and the whole period.

To further compare the predictive accuracy among the ERGI-QMLE, ERGI-
OLS, realized GARCH, HAR, and UGARCH models, we conducted Diebold–
Mariano (DM) tests (Diebold and Mariano, 2002) as follows. We first calculated
the residuals for the four models as follows:

ei = RVi −Voli,
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Figure 7. Box plots of the p-values of the lesser and greater DM tests for the ERGI-QMLE versus
one of the ERGI-OLS, realized GARCH, HAR, and UGARCH models for Period 1, Period 2, and the
whole period.

where Voli is one of the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR, and
UGARCH models and RVi is the nonparametric realized volatility. We defined

di = e∗2
i − e2

i ,

where e∗
i is the residuals from the ERGI-QMLE model and ei is the residuals from

one of the ERGI-OLS, realized GARCH, HAR, and UGARCH models. We then
conducted hypothesis tests for

H′
0 : E[di] = 0 vs. H1 : E[di] < 0 ( or E[di] > 0).

The first alternative statement (E[di] < 0) is to test whether the ERGI-QMLE
model is better, whereas the second alternative statement (E[di] > 0) is to test
whether another model is better than the ERGI-QMLE model. We call these tests
“lesser” and “greater,” respectively. Figure 7 depicts the box plots of the p-values
of the lesser and greater DM tests for the ERGI-QMLE model versus one of the
ERGI-OLS, realized GARCH, HAR, and UGARCH models for Period 1, Period 2,
and the whole period. In Figure 7, the lesser tests show that the p-values of
22, 16, and 46 assets for the realized GARCH, HAR, and UGARCH models,
respectively, are less than 10% over the whole period. In contrast, the greater
tests indicate that a couple of assets for the HAR model have significant p-values
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Table 5. Average rank of the first-order autocorrelation for the ERGI-
QMLE, ERGI-OLS, realized GARCH, HAR, and UGARCH models for
Period 1, Period 2, and the whole period. In the parentheses, we report
the number of those ranked first among competitors.

ERGI-Q ERGI-O Real HAR UGARCH

Period 1 1.72 (18) 2 (23) 2.52 (8) 3.78 (1) 4.98 (0)

Period 2 2.24 (12) 2.58 (13) 2.88 (14) 2.76 (10) 4.54 (1)

Whole period 2 (17) 2.4 (14) 2.78 (12) 3.18 (6) 4.64 (1)

over the whole period. When comparing the estimation methods, the ERGI-OLS
shows better performance. From these results, although the ERGI does not give
significant better predictive accuracy for all assets, we can conclude that for most
assets, the ERGI is at least not worse than other models, and, for some assets, the
ERGI shows significantly better performance than the other models.

We also conducted the model confidence set (MCS) procedure (Hansen, Lunde,
and Nason, 2011). We used the R package provided by Bernardi and Catania
(2018) and followed the default setup with the absolute error loss. For example,
we chose the confidence level of the test as 20% and used the Tmax statistics that
are described in Section 3.1.2 of Hansen et al. (2011). According to the MCS pro-
cedure, we chose most of the estimation methods as the superior set. Specifically,
the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR, and UGARCH models
are included 50, 49, 48, 50, and 48 times, respectively, in the superior set. The
ERGI-QMLE and HAR models show the best performance. However, it is hard
to conclude that these models have significantly different performance in terms of
the MCS. This result is different from the pairwise test such as the DM test. One
possible explanation is that the MCS is based on the maximum value, which may
reduce the power of the test.

To check the volatility persistence of the nonparametric volatility, we studied
the residuals between the nonparametric volatility and estimated conditional
volatilities, Voli − RVi, where Voli is the predicted 1-day-ahead conditional
expected volatility by the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR,
and UGARCH models using the in-sample period data. We then checked their
autocorrelations. Table 5 reports the average rank and number of the first rank
of the first-order autocorrelation for the ERGI-QMLE, ERGI-OLS, realized
GARCH, HAR, and UGARCH models for Period 1, Period 2, and the whole
period over the 50 assets. Figure 8 provides the box plots of the first-order
autocorrelation for the ERGI-QMLE, ERGI-OLS, realized GARCH, HAR, and
UGARCH models for Period 1, Period 2, and the whole period over the 50
assets. From Table 5 and Figure 8, we find that the ERGI-QMLE and ERGI-
OGI models have relatively small autocorrelations. That is, the ERGI models
can reduce the volatility persistence. These numerical results provide evidence to
conclude that the nonlinear exponential autoregressive structure helps explain the
market dynamics in the volatility time series.
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Figure 8. Box plots of the first-order autocorrelation for the residuals of the ERGI-QMLE, ERGI-
OLS, realized GARCH, HAR, and UGARCH models for Period 1, Period 2, and the whole period.

5.1. Whole-Day Market Dynamics

Since high-frequency data are available only during trading hours, in the previous
section, we only considered the open-to-close period. However, Taylor (2007)
showed that overnight information is important for evaluating risk management
models, so the volatility measured by the open-to-close high-frequency observa-
tions may significantly undervalue their risk. See also Martens (2002), Hansen
and Lunde (2005), Andersen, Bollerslev, and Huang (2011), Tseng, Lai, and Lin
(2012), Todorova and Souček (2014), and Kim, Shin, and Wang (2022). In this
section, we investigated volatility dynamics for the whole day.

Recently, to explain whole-day market dynamics, Kim et al. (2022) introduced
the overnight GARCH-Itô (OGI) model, which can accommodate two different
instantaneous volatility processes for the open-to-close and close-to-open periods.
For example, the whole-day (open-to-open) volatility has the following conditional
volatility:

hn(θ) = ω+γ hn−1(θ)+α

∫ n−2+λ

n−2
σ 2

t (θ)dt +β(Xn−1 −Xn−2+λ)
2,

where λ is the proportion of the trading hour (λ = 6.5/24). That is, the OGI model
has two different risk factors, such as the open-to-close integrated volatility and
squared close-to-open return. Similarly, we can propose the overnight exponential
realized GARCH-Itô (OERGI) model as follows:

Hn(θ) = ω+γ Hn−1(θ)+α log

(∫ n−2+λ

n−2
σ 2

t (θ)dt

)
+β|Xn−1 −Xn−2+λ|,

where exp(Hn(θ)) is the conditional expected volatility. Since the overnight return
can be zero, we used the absolute value of the overnight return as the overnight
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Table 6. Average rank of MSPEs and QLIKEs for the OERGI-QMLE, OERGI-
OLS, adj-ERGI-QMLE, adj-ERGI-OLS, OGI, adj-realized GARCH, adj-HAR,
and adj-UGARCH models for Period 1, Period 2, and the whole period. In the
parentheses, we report the number of those ranked first among competitors.

MSPE

OERGI-Q OERGI-O A-ERGI-Q A-ERGI-O OGI A-Real A-HAR A-UGARCH

Period 1 3.42 (9) 4.24 (15) 4 (1) 3.78 (4) 4.26 (13) 4.74 (1) 4.34 (5) 7.22 (2)

Period 2 5.04 (8) 3.88 (8) 3 (8) 3.46 (3) 4.76 (13) 4.58 (6) 4.58 (3) 6.7 (1)

Whole 4.64 (11) 3.7 (12) 3.26 (4) 3.58 (4) 4.94 (11) 4.64 (3) 4.42 (5) 6.82 (0)

QLIKE

OERGI-Q OERGI-O A-ERGI-Q A-ERGI-O OGI A-Real A-HAR A-UGARCH

Period 1 3.28 (15) 5.04 (7) 3.98 (2) 3.82 (2) 3.44 (16) 4.72 (2) 4.66 (2) 7.06 (4)

Period 2 3.4 (6) 5.28 (4) 3.8 (2) 4.06 (2) 3.62 (20) 4.36 (5) 4.18 (10) 7.3 (1)

Whole 3.26 (10) 5.16 (4) 3.8 (2) 4.12 (1) 3.58 (20) 4.58 (2) 4.46 (7) 7.04 (4)

risk factor instead of the log transformation. Thus, the OERGI model has the
open-to-close log-integrated volatility and absolute of value of the overnight
return as the risk factors. For the models considered in the previous section,
to match the magnitude, we magnified the estimator by multiplying it with
(1 + mean[OV/RV]), where OV is the overnight return squares and RV is the
open-to-close realized volatility. We call them the adj-ERGI-QMLE, adj-ERGI-
OLS, adj-realized GARCH, adj-HAR, and adj-UGARCH models. To estimate the
OGI and OERGI models, we used the realized volatility estimator plus squared
overnight return as the proxy and employed the QMLE method with the Gaussian
likelihood function for the OGI and OERGI models and the OLS method for the
OERGI model. We call them the OGI, OERGI-QMLE, and OERGI-OLS models.

We first compared the performances based on the MSPE, QLIKE, and OSR.
Table 6 reports the average rank and the number of those ranked first of MSPEs and
QLIKEs for the OERGI-QMLE, OERGI-OLS, adj-ERGI-QMLE, adj-ERGI-OLS,
OGI, adj-realized GARCH, adj-HAR, and adj-UGARCH models for Period 1,
Period 2, and the whole period over the 50 assets. Figure 9 depicts the relative
MSPE and QLIKE for the OERGI-QMLE, OERGI-OLS, adj-ERGI-OLS, OGI,
adj-realized GARCH, adj-HAR, and adj-UGARCH models with respect to the
adj-ERGI-QMLE model for Period 1, Period 2, and the whole period. Figure 10
draws the OSR for the adj-ERGI-QMLE model with respect to the OERGI-
QMLE, OERGI-OLS, adj-ERGI-OLS, OGI, adj-realized GARCH, adj-HAR, and
adj-UGARCH models for Period 1, Period 2, and the whole period. From Table 6
and Figures 9 and 10, we find that the ERGI-based models usually show better
performance than others. This may be because the ERGI-based models can capture
the nonlinear dynamics. When comparing the ERGI models, the adj-ERGI-QMLE
model shows stable results, but it is hard to conclude that one model dominates the
others.
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Figure 9. Box plots of relative MSPE and QLIKE for the OERGI-QMLE, OERGI-OLS, adj-ERGI-
OLS, OGI, adj-realized GARCH, adj-HAR, and adj-UGARCH models with respect to the adj-ERGI-
QMLE model for Period 1, Period 2, and the whole period.
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Figure 10. Box plots of OSR for the adj-ERGI-QMLE model with respect to the OERGI-QMLE,
OERGI-OLS, adj-ERGI-OLS, OGI, adj-realized GARCH, adj-HAR, and adj-UGARCH models for
Period 1, Period 2, and the whole period.

We conducted Diebold–Mariano tests. Figure 7 depicts the box plots of the
p-values of the lesser and greater DM tests for the adj-ERGI-QMLE model
versus one of the OERGI-QMLE, OERGI-OLS, adj-ERGI-OLS, OGI, adj-realized
GARCH, adj-HAR, and adj-UGARCH models for Period 1, Period 2, and the
whole period. In Figure 7, the lesser tests show that the p-values of 10, 12, 3, 11, 22,
42, and 29 assets for the OERGI-QMLE, OERGI-OLS, adj-ERGI-OLS, OGI, adj-
realized GARCH, adj-HAR, and adj-UGARCH models, respectively, are less than
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Figure 11. Box plots of the p-values of the lesser and greater DM tests for the adj-ERGI-QMLE
model versus one of the OERGI-QMLE, OERGI-OLS, adj-ERGI-OLS, OGI, adj-realized GARCH,
adj-HAR, and adj-UGARCH models for Period 1, Period 2, and the whole period.

10% over the whole period. In contrast, the greater tests show that the p-values of
4, 7, 17, 5, 2, 3, and 0 assets for the OERGI-QMLE, OERGI-OLS, adj-ERGI-OLS,
OGI, adj-realized GARCH, adj-HAR, and adj-UGARCH models, respectively, are
less than 10% over the whole period. From these results, although the ERGI-based
models do not give significantly better predictive accuracy for all assets, we can
conclude that for most assets, the ERGI-based models are at least not worse than
the other models, and, for some assets, the ERGI-based models show significantly
better performance than the other models.

Finally, we checked the volatility persistence of the nonparametric volatility.
Figure 12 provides the box plots of the first-order autocorrelation for the OERGI-
QMLE, OERGI-OLS, adj-ERGI-QMLE, adj-ERGI-OLS, OGI, adj-realized
GARCH, adj-HAR, and adj-UGARCH models for Period 1, Period 2, and the
whole period over the 50 assets. From Figure 12, we cannot find a significantly
better model. This may be because as considering the whole-day market dynamics,
the proxy is noisier. To sum up, for the whole-day market dynamics, we find some
evidence that the log-transformation form can improve prediction performance.
However, compared with the open-to-close volatility analysis, the result is less
significant. This may be because the proposed model cannot fully explain the
nonlinear whole-day volatility dynamics. Thus, it is important to develop a
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Figure 12. Box plots of the first-order autocorrelation for the residuals of the OERGI-QMLE,
OERGI-OLS, adj-ERGI-QMLE, adj-ERGI-OLS, OGI, adj-realized GARCH, adj-HAR, and adj-
UGARCH models for Period 1, Period 2, and the whole period.

nonlinear dynamic model which can account for the whole-day volatility nonlinear
dynamics. We leave this for a future study.

6. CONCLUSIONS

In this paper, we propose a novel jump diffusion process to model the nonlinear
autoregressive structure of the realized volatility. We employ the exponential
GARCH structure. By introducing a continuous instantaneous volatility process
whose integrated volatility follows the exponential realized GARCH structure, we
fill the gap between the empirical discrete-time nonlinear volatility model with the
realized volatility and high-frequency-based continuous-time diffusion process.
That is, this paper provides a rigorous mathematical background to understand
the exponential realized GARCH structure. To estimate the model parameters, we
propose the quasi-maximum likelihood estimation procedure and ordinary least-
squares estimation and establish their asymptotic properties. From the empirical
study, we find the benefits of incorporating the nonlinear exponential realized
GARCH model.

In this paper, we focus on the continuous part of log-return processes for the
open-to-close period. However, it is important and interesting to study dynamic
structures of the jump variation and close-to-open returns. We leave this for a future
study.

7. PROOFS

7.1. Proof of Theorem 1

Lemma 1. Under the ERGI model in Definition 1, we have, for t ∈ (n−1,n],

1

t −n+1

∫ t

n−1
σ 2

s (θ)ds = σ 2
n−1(θ)e

∫ t
n−1 bs(θ)ds a.s. (7.1)
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Proof of Lemma 1. We have

d((t − [t])σ̄ 2
t (θ)) = (t − [t])dσ̄ 2

t (θ)+ σ̄ 2
t (θ)dt

= σ 2
t (θ)dt

= σ̄ 2
t (θ)(1+ (t − [t])bt(θ))dt a.s.

Thus, we have

(t − [t])dσ̄ 2
t (θ) = σ̄ 2

t (θ)(1+ (t − [t])bt(θ))dt − σ̄ 2
t (θ)dt

= (t − [t])σ̄ 2
t (θ)bt(θ)dt a.s.

This implies that

dσ̄ 2
t (θ) = σ̄ 2

t (θ)bt(θ)dt a.s.

and

1

t −n+1

∫ t

n−1
σ 2

s (θ)ds = σ 2
n−1(θ)e

∫ t
n−1 bs(θ)ds a.s. for t ∈ (n−1,n].

�

Proof of Theorem 1. First, we consider (a). By Itô’s lemma, we have

R(k) =
∫ n

n−1

(n− t)k

k!
bt(θ)dt

= ω

(k +2)!
+ν

(
1

(k +2)!
− 2

(k +3)!

)
+
{

1

(k +1)!
+ γ −1

(k +2)!

}
bn−1(θ)

−
{

β

(k +1)!
+ β∗ −β

(k +2)!
− 2β∗

(k +3)!

}
logσ 2

n−1(θ)

+2ν

∫ n−1

n

(n− t)k+2

k!(k +2)
ZtdWt +β

∫ n

n−1

(n− t)k

k!
log σ̄ 2

t (θ)dt a.s.,

and, by Lemma 1, we have∫ n

n−1

(n− t)k

k!
log σ̄ 2

t (θ)dt

=
∫ n

n−1

(n− t)k

k!

(∫ t

n−1
bs(θ)ds+ logσ 2

n−1(θ)

)
dt

= 1

(k +1)!
logσ 2

n−1(θ)+
∫ n

n−1
bs(θ)

∫ n

s

(n− t)k

k!
dtds

= 1

(k +1)!
logσ 2

n−1(θ)+R(k +1) a.s.
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Thus, we have

R(0) =
∫ n

n−1
bt(θ)dt

=
∞∑

k=0

ωβ−2 βk+2

(k +2)!
+ν

(
β−2 βk+2

(k +2)!
−β−3 βk+3

(k +3)!

)

+
∞∑

k=0

bn−1(θ)

{
β−1 βk+1

(k +1)!
+ (γ −1)β−2 2βk+2

(k +2)!

}

−
∞∑

k=0

logσ 2
n−1(θ)

{(
β∗ −β

)
β−2 βk+2

(k +2)!
−2β∗β−3 βk+3

(k +3)!

}

+
∞∑

k=0

2ν

∫ n−1

n−1
βk (n− t)k+2(k +1)

(k +2)!
ZtdWt

= ω	2 +ν(	2 −2	3)−{(β∗ −β)	2 −2β∗	3} logσ 2
n−1(θ)

+{	1 + (γ −1)	2}bn−1(θ)+Dn

= ω	2 +ν(	2 −2	3)− logσ 2
n−1(θ)+	bn−1(θ)+Dn

= hn(θ)− logσ 2
n−1(θ)+Dn a.s.

Then, by (7.1), we have∫ n

n−1
σ 2

t (θ)dt = σ 2
n−1 exp

(∫ n

n−1
bt(θ)dt

)
= exp (hn(θ)+Dn) a.s.

For (b), since E[exp(Dn)] is a constant, we have∫ n

n−1
σ 2

t (θ)dt = exp (Hn(θ))Mn,

and we obtain (b). �

7.2. Proof of Theorem 2

To simplify the notation, we use θ for the GARCH model parameters θg. For
derivatives of any given function f at x0, we denote ∂f (x0)

∂x = ∂f (x)
∂x

∣∣
x=x0

. Define

L̂n,m(θ) = −1

n

n∑
i=1

{
Ĥi(θ)+ RVi

exp
(
Ĥi(θ)

)} and ŝn,m(θ) = ∂L̂n,m(θ)

∂θ
;

L̂n(θ) = −1

n

n∑
i=1

{
Hi(θ)+

∫ i
i−1 σ 2

t (θ0)dt

exp (Hi(θ))

}
and ŝn(θ) = ∂L̂n(θ)

∂θ
;

Ln(θ) = −1

n

n∑
i=1

{
Hi(θ)+ exp (Hi(θ0))

exp (Hi(θ))

}
and sn(θ) = ∂Ln(θ)

∂θ
.
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Since the dependence of Hi(θ) on the initial value decays exponentially (Kim and
Wang, 2016), we use the true initial value H0(θ0) for the rest of the proofs without
loss of generality.

Lemma 2. Under the assumptions of Theorem 2, we have θ̂
p−→ θ0.

Proof of Lemma 2. We first show the uniform convergence of L̂n,m(θ). That is,
we need to show that

sup
θ∈


∣∣̂Ln,m(θ)−Ln(θ)
∣∣ ≤ sup

θ∈


∣∣̂Ln,m(θ)− L̂n(θ)
∣∣+ sup

θ∈


∣∣̂Ln(θ)−Ln(θ)
∣∣

= op(1).

For supθ∈


∣∣̂Ln,m(θ)− L̂n(θ)
∣∣, we have

sup
θ∈


∣∣̂Ln,m(θ)− L̂n(θ)
∣∣

≤ sup
θ∈


{
1

n

∣∣∣∣∣
n∑

i=1

Ĥi(θ)−Hi(θ)

∣∣∣∣∣+ 1

n

∣∣∣∣∣
n∑

i=1

RVi −
∫ i

i−1 σ 2
t (θ0)dt

exp
(
Ĥi(θ)

) ∣∣∣∣∣
+ 1

n

∣∣∣∣∣
n∑

i=1

∫ i

i−1
σ 2

t (θ0)dt
(

e−Ĥi(θ) − e−Hi(θ)
)∣∣∣∣∣
}

= (I)+ (II)+ (III).

For (I), we have

E[(I)] ≤ 1

n

n∑
i=1

E

[∣∣∣∣sup
θ∈


i−1∑
k=1

βγ k−1 (logRVi−k − log IVi−k)

∣∣∣∣
]

≤ C

n

n∑
i=1

i−1∑
k=1

γ k−1
u E

[| logRVi−k − log IVi−k|
]

≤ Cm−1/4, (7.2)

where IVi = ∫ i
i−1 σ 2

t (θ0)dt, and the last inequality is due to Assumption 1(b).
Consider (II). By Assumption 1(b) and (c), we have

E[(II)] ≤ C

n

n∑
i=1

E
[|RVi − IVi|2

]
E

[
sup
θ∈


∣∣exp
(|Ĥi(θ)|)∣∣2] ≤ Cm−1/4.

For (III), we have

E[(III)] ≤ C

n

n∑
i=1

E

[
sup
θ∈


(
e−Ĥi(θ) − e−Hi(θ)

)2
]1/2

≤ C

n

n∑
i=1

E

[
sup
θ∈


(
e4|Ĥi(θ)| + e4|Hi(θ)|

)]1/4

E

[
sup
θ∈


(
Ĥi(θ)−Hi(θ)

)4
]1/4

≤ Cm−1/4,
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where the first and second inequalities are due to Holder’s inequality and Taylor’s
expansion, respectively, and the last inequality can be shown as similar to the proof
of (7.2) with Assumption 1(c). Thus, we have

sup
θ∈


∣∣̂Ln,m(θ)− L̂n(θ)
∣∣ = op(1). (7.3)

We consider supθ∈


∣∣̂Ln(θ)−Ln(θ)
∣∣. We have

L̂n(θ)−Ln(θ) = −1

n

n∑
i=1

eHi(θ0)

eHi(θ)
(Mi −1),

which is a martingale process for any given θ . Thus, by the martingale convergence
theorem, we can show its pointwise convergence. To show its uniform conver-
gence, we need to show the stochastic continuity for Gn(θ) = L̂n(θ)− Ln(θ). By
Taylor’s expansion and the mean value theorem, there exists θ̃ between θ and θ ′
such that

|Gn(θ)−Gn(θ
′)| =

∣∣∣∣∣1n
n∑

i=1

eHi(θ0)

eHi(θ̃ )

∂Hi(θ̃)

∂θ
(Mi −1)(θ − θ ′)

∣∣∣∣∣
≤ C

1

n

n∑
i=1

sup
θ̃∈


∥∥∥∥eHi(θ0)

eHi(θ̃)

∂Hi(θ̃)

∂θ
(Mi −1)

∥∥∥∥
max

‖θ − θ ′‖max.

By Assumption 1(c), we have E
[
e4|Hi(θ)|] ≤ C. Then, similar to the proofs of

Lemma 3 in Kim and Wang (2016), we can show

1

n

n∑
i=1

sup
θ̃∈


∥∥∥∥eHi(θ0)

eHi(θ̃)

∂Hi(θ̃)

∂θ
(Mi −1)

∥∥∥∥
max

= Op(1).

Thus, Gn(θ) satisfies the weak Lipschitz condition, so, by Theorem 4 in Andrews
(1992), we can show the uniform convergence. Therefore, we have

sup
θ∈


∣∣̂Ln(θ)−Ln(θ)
∣∣ = op(1). (7.4)

By (7.3) and (7.4), we show the uniform convergence of L̂n,m(θ).
When exp(Hi(θ0)) = exp(Hi(θ)) for all i, Ln(θ) is maximized. Obviously, θ0

is one of the solutions. Suppose that there exists θ∗ such that exp(Hi(θ0)) =
exp(Hi(θ∗)) a.s. for all i. Since the exponential function is a strictly increasing
function, we have Hi(θ0)−Hi(θ∗) = 0 a.s. for all i. Thus, θ0 and θ∗ = (ω

g
∗,γ∗,β

g
∗)

satisfy⎛⎜⎜⎜⎝
1 H1(θ0) log IV1

1 H2(θ0) log IV2
...

...
...

1 Hn−1(θ0) log IVn−1

⎞⎟⎟⎟⎠
⎛⎝ω

g
∗ −ω

g
0

γ∗ −γ0

β
g
∗ −β

g
0

⎞⎠ ≡ M

⎛⎝ω
g
∗ −ω

g
0

γ∗ −γ0

β
g
∗ −β

g
0

⎞⎠ = 0 a.s.
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Since IVi’s are nondegenerating, M is of full rank. Then, M	M is invertible, which
implies θ0 = θ∗ a.s. Therefore, Ln(θ) has the unique maximizer θ0. Then, by
Theorem 1 in Xiu (2010), with the uniform convergence of L̂n,m(θ), we can show

θ̂
p→ θ0. �

Proof of Theorem 2. By the mean value theorem and Taylor’s expansion, there
exists θ̃ between θ̂ and θ0 such that

ŝn,m(θ̂)− ŝn,m(θ0) = −̂sn,m(θ0) = � ŝn,m(θ̃)(θ̂ − θ0),

where � ŝn,m(θ̃) = ∂̂sn,m(θ̃ )

∂θ	 . We first consider ŝn,m(θ0). We have

−̂sn,m(θ0) = 1

n

n∑
i=1

{
1− e−Ĥi(θ0)RVi

} ∂Ĥi(θ0)

∂θ

= 1

n

n∑
i=1

{
1− e−Hi(θ0)IVi

} ∂Hi(θ0)

∂θ
+Op(m

−1/4)

= 1

n

n∑
i=1

(1−Mi)
∂Hi(θ0)

∂θ
+Op(m

−1/4)

= Op(n
−1/2 +m−1/4), (7.5)

where the second equality can be shown as similar to the proofs of Lemma 2, and
the last equality is due to the martingale convergence theorem.

We consider � ŝn,m(θ̃). Similar to the proofs of (7.5) with the consistency of θ̂ ,
we can show

� ŝn,m(θ̃) = −1

n

n∑
i=1

{
1− e−Ĥi(θ̃ )RVi

} ∂2Ĥi(θ̃)

∂θ∂θ	 − 1

n

n∑
i=1

e−Ĥi(θ̃ )RVi
∂Ĥi(θ̃)

∂θ

∂Ĥi(θ̃)

∂θ	

= −1

n

n∑
i=1

e−Ĥi(θ̃)RVi
∂Ĥi(θ̃)

∂θ

∂Ĥi(θ̃)

∂θ	 +op(1)

= −1

n

n∑
i=1

Mi
∂Hi(θ0)

∂θ

∂Hi(θ0)

∂θ	 +op(1).

Since IVi’s and Mi’s are nondegenerating, 1
n

∑n
i=1 Mi

∂Hi(θ0)

∂θ

∂Hi(θ0)

∂θ	 is positive defi-
nite. Thus, by (7.5), we have

θ̂g − θ0 = Op(n
−1/2 +m−1/4).

We show the asymptotic normality. By Theorem 1(b), we have

Hn(θ) = ωg + (γ +βg)Hn−1(θ)+βg logMn−1

= ωg

1−γ −βg
+

∞∑
i=1

βg(γ +βg)i−1 logMn−i.
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Since logMi’s are i.i.d., (Hn(θ),Mn) is strictly stationary. By Theorem 2.1 of
Francq, Wintenberger, and Zakoian (2013) and Theorem 2.5 of Bougerol and
Picard (1992), (Hn(θ),Mn) is ergodic. Then, applying the martingale central limit
theorem, we obtain

1√
n

n∑
i=1

(1−Mi)
∂Hi(θ0)

∂θ

d→ N(0,AV).

By the ergodic theorem, we can show

−� ŝn,m(θ∗)
p→ V .

Thus, by the Slutsky theorem, we have

√
n(θ̂ − θ0)

d→ N(0,AV−1). �
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