THE ISOMORPHISM OF CERTAIN
CONTINUOUS RINGS

BRIAN P. DAWKINS AND ISRAEL HALPERIN

1. Statement of theorems to be proved. In this paper we shall prove
the following two theorems (the terminology is explained in § 2 below; all
rings are assumed to be associative).

THEOREM 1. Suppose that O is a division ring of finite order m over its centre
Z and let u(m) denote the factor sequence 1, m, m?, ..., m", ... . Then the rings
Diumy and Zyumy are isomorphic.

THEOREM 2. Suppose that D is a division ring of infinite order over its centre
Z such that D contains an infinite sequence of subdivision rings DD, D@, |
DM, ... with the following properties:

(i) Each D™ has centre Z, and the order m, of D™ over Z 1is finite.
(i) If n £ r, then m, and m, are relatively prime and uv = vu whenever
u € D™ and v € DO,

(ii1) For fixed but different t1, ... ,1t, the set of all finite sums of products
~
Sul. . ur
=1
with all u,” € DD is a subdivision ring of D with centre Z and order m, . .. m,,
over Z. (If t, =j forj =1,...,n, we denote this division ring by S™.)

(iv) D = U™ S™,
Let u, v denote the factor sequences

u= (lym1m27-~-1(ml---mn)"—ly"-)y

v = (my, (mima)?, ..., (m1...m,)"% ...).

Then D, and Z, are tsomorphic.

We note that Kothe (2), using tensor products, has constructed such a
ring © with the field of real rational numbers as centre.

2. Introduction.

2.1. Suppose that 9 is a ring (unit element is not postulated). For each
integer # > 1 the ring of all # X # matrices with entries in 9% will be denoted
RN, If A € N, we shall write 4 @ ¢ to denote the matrix in W,, for which

_ Ai:f for1<ivj<pyl<s<Q1
(A4 @ @) esnptito-npts = {0 for all other entries,

Received January 12, 1966.
1333

https://doi.org/10.4153/CJM-1966-131-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-131-4

1334 BRIAN P. DAWKINS AND ISRAEL HALPERIN

in other words, 4 ® ¢ is obtained when A4 is repeated ¢ times down the
diagonal. If N has a unit 1, then 1, will denote the ¢ X ¢ unit matrix.

Throughout this paper if A € RN, and B € N, then 4 @ B € R,, will have
the following meaning:

(A ® B)(s——l)p+i.(t—1)p+j = Ai,j Bs,: for 1 < i»j < 0, 1<K q,

in other words, 4 ® B is obtained by left multiplying each entry in B by the
matrix 4. It is easily verified that ® is associative (though not commutative).
If % has a unit,then 4 ® ¢ = 4 ® 1,;if N is a division ring, then 4 ® B=0
implies 4 = 0or B=0.1f p =1o0r ¢ =1, then ® coincides with the usual
multiplication.

(We shall not make use of the fact that {4 ® B| 4 € N, and B € N,}
generates a subring of 3,, which is isomorphic to the tensor product of 9t,
and RN, over the centre of N.)

We define an injective ring homomorphism ¢y, : Ny — Ry by the rule
A+ A4 @ k (the symbol X — ¥ denotes a mapping of the set X into the
set ¥ whereas the symbol x — y means that the element y is assigned as value
to the element x).

2.2. By definition a factor sequence p is an infinite sequence of integers #;,
all >1, such that n; — « when 7 — » and for each 7: n;.; = k; n; for some
integer k; > 1.

By R, and N,, we denote the inductive limits

mo;, = h_gn (mny d’kn,n)y SR,, = ll_r)n (S}tniy ¢kmi.ni)-

If A € N, we write 4(») to denote the element in RN, (equivalence class)
determined by A4; if n € p, we write A (u) to denote the element in N, deter-
mined by A. Clearly the rule 4 (u) > A (») determines an injective ring
homomorphism R, — R, which is, in general not bijective; however, it is
bijective if, for example, the nth term of u is the nth power of the product
of the first # primes.

2.3. Suppose now that D is a division ring with centre Z. Then Z, C D
and Z, C 9, for each factor sequence u. Each of the rings ©,, D, D, possesses
a unit 1, is regular (in the sense of von Neumann), is irreducible, and possesses
a unique normalized rank function R (normalized by the condition R(1) = 1).
The rank R is determined by the rule

usual right column rank of A4

R(4) = " ;

see (3; 4; 1).

On every regular rank ring R the function d(4,B) = R(4 — B) is a
metric and the metric completion " is again a regular rank ring (1). Thus
D, and D" are regular rank rings.
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Von Neumann stated the following theorem.

THEOREM N. (i) For every division ring D and every factor sequence u, the
rings D" and D, are 1somorphic.

(ii) If the order of D over its cenire Z 1is finite, then Z." and D" are iso-
morphic.

A detailed proof of (i) was given by von Neumann in an unpublished
manuscript, but for (ii) he left only some indication of his proof (4). Our
Theorem 1 (which we shall prove without assuming (i) or (ii) of Theorem N)
states that if the order of D over Z is m (finite), then D,y and Z,(, are iso-
morphic (hence Duum” and Z,q,~ are isomorphic). Theorem N (i) combined
with our Theorem 1 supplies a proof of N (ii).

A detailed exposition of von Neumann's proof of N (i) will be given in a
subsequent issue of this Journal.

2.4. To show that D, and Z,(,) are isomorphic it is sufficient to exhibit
injective ring homomorphisms for all #» > 1:

oyt Dpn-1 = Ly, Br i Zmn —> Oy

suchthatB, 0, 4 = 4 @ mand a1 8, 4 = A4 ® m. It will follow immediately
that the rule
A +—a,(A) whenever 4 € Dpu-1,7 > 1

determines a bijective ring isomorphism D,y — Zuwm as required to prove
Theorem 1 (a similar technique suffices to prove Theorem 2).

3. Construction of «, and g,.

3.1. Suppose that D is a division ring of finite order m over its centre Z.
We consider © as an m-dimensional vector space over the commutative scalars
Z and we choose a fixed basis ey, .. ., e, for this vector space.

For each v in © two Z-linear mappings © — D are determined by the
rules x — vx and x — xv respectively. With respect to the fixed basis for D,
each of these linear mappings is represented by an m X m matrix with entries
in Z, ¥(v) amd ¥ (v) respectively.

The following known facts are easily verified:

Y (u)¥ (v) = ¥V (v)¥(u) for all u,v in D;
¥(1) = ¥(1) = 1
therulev — ¥(v) determines an injective ring homomorphism ® — Z,,;

the rule v — ¥/ (v) determines an injective ring anti-homomorphism
D — Z,, (anti-homomorphism because ¥ (uv) = ¥’ (v) ¥ (u)).

For the convenience of the reader we recall the proof of a known lemma.
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LevMma 1. Suppose that all u;, v, € D and that

N
E u;x0;, = 0
=1

for all x € D (this condition is equivalent to the condition

S @)V @) = 0

and 1s 1mplied by the condition

> u ¥ =)

Thenif uy, . .., uyare Z-independent, it follows that vi = O for all i;if v1, . .., vw
are Z-independent, it follows that u; = 0 for all 4.

Proof. If N = 1, the hypothesis implies that #; v, = 0. Since a Z-independent
element must be non-zero and hence must possess an inverse, the lemma
follows for this case.

Now suppose that the lemma has been established for some # > 1 and
that uy, ..., #,41 are Z-independent and

n+1

S usxv; =0 for all x in D.
=1

To show that all v; are 0, we may assume that v,.; % 0 (because of the
inductive hypothesis) and we need only derive a contradiction.
For all x,y in © we have:

n+1 . n+1
(Z i (XVpq1 )vi>y =0= Z:l 1 (xy vn+1_l)vi.

= =

By subtraction we obtain

> Ui X Oyt V1Y — Yo 0) =0 for all x in D.
i=1

Because of the inductive hypothesis (since #i,...,u, are Z-independent
along with #y, ..., #,11) we have, for each 7 < n:
Vpr1 VY = YU L0 for all ¥ in D,

in other words
Vi = Z;Unp1 for some z; € Z.
Then

<un+1 ST u1->xvn+1 =0 for all x in D;
i=1

hence

n
tnr + 2 2iu; = 0,
=1
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contradicting the assumed Z-independence of uy, ..., #,.;. By induction on
%, this proves part of Lemma 1; the remaining part is proved in the same
way.

LEMMA 2. Suppose that n > 1 and all v;,; € D. Then the following assertions
are equivalent.

N
@ Z}‘I’(Wz’,l)‘l”(ﬂi,z) ®...0 ‘I’(Wi,2n—3)‘1"(vi,n—2) ® ¥(v;0-1) = 0,

N
(ii) Z_l‘l’i,l ® ‘I”(Wi,z)‘I’('Ui,3) ®...0 ‘I’,(Ui,2n—2)‘1’(7’i,2n—l) = 0.
Proof. When n = 1, (i) becomes
N
Zl \I/(vi,l) = 0
and (ii) becomes

N
Z v5,1 = 0;
=1

so Lemma 2 holds for n = 1 since ¥ is additive and injective.

We now prove Lemma 2 for the case # > 1. We first express v1,1,..., 05,1
in terms of independent elements. Then we apply Lemma 1 to (i); this shows
that it is sufficient to prove the equivalence of

N
@)’ Zlvi,2 V@) T[014) Q... @ VY (@i20-3)¥ (¥5,20-2) @ ¥(;,2,1) = O,

(11)' il‘lll('l)ig)\l/(vi,:;) ® P ® ‘I"(Ui,zrhz)\lf(?)i,gn_l) = 0

Now we express v1,2, ¥s,2,...,%y,2 in terms of independent elements and
apply Lemma 1 to (ii)’; after that we see that it is sufficient to establish the
equivalence of

N
@) Zl\y(v,.,g)\p'(v,.,g Q...Q0 ¥(v;2-1) =0,

N
(" 200 @ . ® Vi) ¥ @rz) = 0.

By repeating such reductions we arrive at an equivalent assertion which has
the form of Lemma 2 but with # = 1.
This completes the proof of Lemma 2.

COROLLARY. For each n > 1,

N
(1ii) Z_:I‘Ui,l Q@ V' (®:,2)¥([0:3) @ ... ® ¥ (Wi20-2)¥(@s,20-1) @ ¥ (05,2,) =0
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if and only if

(iv) ; V@)Y @i2) @ ... @ ¥(v5,2,-1)¥ (¥4,20) = 0.

Proof. This can be derived from Lemma 2 or proved directly in the same
way, using Lemma 1 repeatedly.

LemMMA 3. For each n > 1:
(i) every element in Z,» can be represented in the form

N
; V(@0 )¥ (04,2) @ ... @ ¥ (04,90-1)¥ (V4,24);

(ii) every element in Dyn-1 can be represented in the form

N
;vi.l Q@ V(@i )V (@i3) @ ... 0 V(vy,00-2)¥(V5,90-1)-

Proof of (i). For fixed #, the elements that can be represented in the given
form constitute a Z-subspace M of Z,»; we need only verify that M has
dimension m?".

Let ey, ..., e, be a fixed basis for D and let

Wy, ..o, ) = Y, )V (e,,) @ ... Q ¥e,, ¥ (e,,)

where each r; varies independently over 1,...,m. It is sufficient to show
that the w's are independent. Suppose that

Zz(n, ey To)W (L, .y 72) =0 with all z € Z.
By applying Lemma 1 we obtain:
for fixed ry, 72 : Zz(n, vy o)W (ry, .., 7e) = 0.

By repeated applications of Lemma 1 we obtain that for every fixed choice
of 7y, .., 70 2(r1, ..., r9)w(1, ..., 7)) = 0; hence z(ry,...,7r) =0.
This shows that the w's are independent and proves (i).

Proof of (ii). The elements that can be represented in the given form con-
stitute a subspace of D,s-1, of dimension (by an argument like that used
to prove (i)) equal to m?*~!; hence this subspace is all of D,n-1.

LeEMMA 4. For each n > 1
(1) the rule

N
Z_:l‘vm Q@ V([0 2)V(@i3) ® ... 0 V([®;0-2)V([®i0-1)

N
'_’z_:l (@0, )¥ @i2) @ ... ® ¥(vs,9-1)
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determines an injective Z-algebra homomorphism
oy . @mn-—l g Zmn

(when n = 1 the given rule is to be read v; I— ¥ (v;); it has been pointed out
previously that this determines an injective Z-algebra homomorphism © — Z,,) ;
(i1) the rule

N
Zl‘I’(vi.l)‘I"(Wi,z) ®...0 ¥Y(@i20-1)¥ (vs,20)
=

N
— Zl‘vi,l ® W'(‘Utz)‘l’(ﬂu;;) R... [ \I’,(vi,2n)

determines an njective Z-algebra homomorphism
Bn : Zm" - Qm";
(iii) Bra A =4 Q@m and o106, 4 =4 Q m.

Proof of (i) and (ii). From Lemma 2 and Lemma 3(ii) it follows that a,,
as described, is an injective Z-linear mapping. Similarly, from the Corollary
to Lemma 2 and Lemma 3 (i) it follows that 8,, as described, is an injective
Z-linear mapping. Thus we need only verify that @, and 8, preserve multipli-
cation.

Since ¥(v) and ¥’ (v) are matrices with entries in the centre Z, we have:

(1)1 ® N\ (7)2)‘1’(1!3) ®...0 ‘I’/(ﬂgn_z)‘l/(vyn_l))(th ® ‘I//('MQ)\I/@H) R ...
® V' (tan—2) ¥ (Uon—1))
=011 @ V (v2)V(03) ¥ (u2) ¥ (u3) @ ...
Q@ V' (v20—2) ¥ (v20—1) W' (t20—2) ¥ (20—1)
=012 @ V(nave)¥(v3u3) @ ... Q@ ¥ (Uon—s Von—2) ¥ (Uoy—1V2n—1)

and
(Y @)V (1) @ ... @ ¥(02,-1)) (¥ (1) ¥ (u2) ® ... @ ¥(1g,-1))
='\I/(‘IJ1)‘I’,('Z)2)‘I’(1/L1)‘I’/<M2) ®...0 ‘I’(ﬂgn_l)‘l’(uh_l)
V(0 u)V (n202) @ ... @ V(a1 Usp—1),
which shows that a, preserves multiplication. A similar argument shows that
B, preserves multiplication. This proves (i) and (ii).

Proof of (iii)
We have:

Braa(w) = BL(¥@)¥' (1)) =0 @ ¥'(1) = v @ m;
for » > 1 we have:
Bran(1 ® ... @ ¥ (v2y—2) ¥ (v2,-1))
=B, (T@)V (v2) ® ... ® ¥(v2,-1))

Ba(T (@)W (02) ® ... Q ¥(v2,1) ¥ (1))
01 Q... Q0 ¥V (v2y—2)¥(V20—1)) ® m;

Il
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for » > 1 we have:

1 B (T @)V (02) @ ... @ V(v9y—1)¥ (v3,)

= an+1(2)1 ® ‘I/,(ZJQ)\I/(‘Us) ® P ® ‘I//(i)gn))

= 101 @ ¥ (22)¥(v3) ® ... @ ¥ (v2,)¥(1))
(Y@)V' (22) ® ... ® ¥(v2,-1)V (v2,)) ® m.

This proves (iii) and completes the proof of Lemma 4 and hence of Theorem 1.

CoroLLARY TO THEOREM 1. If © and D' are division rings each of finite

order over the same centre, then D" and (D), are isomorphic.

Proof. This follows directly from Theorem N (ii) of von Neumann; hence
from our Theorem 1 combined with N(i).

4. Division rings of infinite order over the centre.

4.1. We shall now assume the hypotheses of Theorem 2 and we shall use
the notation: if A C U, Dy, then A(n) denotes U 4o A (u).
The hypothesis

D= U s
n=1

clearly implies that
(:Dy = yl (S(n))(ml‘..mn)”‘l(/")'

Hence, to prove Theorem 2 it is sufficient to exhibit injective ring homo-
morphisms for each #» > 1:
. (n)
Yn: (S " )(ml...mn)"—1 i Z(m1...mn)”y
. (n+1)
671,' Z(ml...mn)" - (S )(th...mn-{»l)n

such that

Bn Yn A =4 Q@ my... my, mn+1" for 4 c (S(n))("“.“mn)n—ly
Yor1n A = A @ my. ..My Myt for A € Zui...muyn-

4.2. For this purpose we shall prove a generalization of Lemmas 2, 3, and
4. We shall make use of the mappings ¥,, ¥,” which would be defined in
§ 3.1 if the ring ® in § 3.1 were replaced by ™. Thus for each v € D™ the
elements ¥, (v), ¥, (v) are m, X m, matrices with entries in Z. However, if
v in D™ is branded by a superscript # (for example, v*, v/ v,,), we may
without ambiguity write ¥, ¥ in place of ¥,, ¥/, respectively.

We are going to describe certain functions f*, g/, k", k* (of given ele-
ments 9;,; in D, with v, ;* € DO for all ¢, 7, t) such that the rules

N N N N
22 el PR FEEDIN
i=1 i=1 i=1 i=1
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will determine mappings v,, 6, respectively, with the properties stated in
§4.1.
We define f* by induction on # : f! = ;! and if n > 1,

fn — er—l ® vln ® \I,/ (7)2")‘1’(7)3”) ® . ® \I,l (W2n_4n)\1,(v2n_8n)
Q® ¥V (v2y—2") ¥ (v2,—1') ® ... @ V (v2,_9") ¥ (v2,_1").

Next we define #* by induction on # : k! = ¥(v;!) ¥’ (;') and if n > 1,

=01 Q V(w™)V (12") ® ... @ V(v2—3") ¥ (v9,_9")
® \I,(v%lall)\l,, (Uznl) ® ‘Il(v2n~12)\11l (7}2”2> ® e ® \I’<712n—1n)\1/, (YJQ,L").

Then we define g* to coincide with A" when all v,," are replaced by 1; we
define k" to coincide with f**! when all v,,41" are replaced by 1.

We shall write £, g, b, k" to indicate that the »,* have been replaced
by v, ;%

We now prove a generalization of Lemma 1.

LeMMA 5. Suppose that D is a division ring of centre Z. Suppose that U, V

are division rings contained 1n D, each of centre Z such that
(i) for each v € D, wv = vu for all u € U if and only if v € V;

N
(i1) Z u;v; =0, uy, ..., uy Z-independent, all w; € U and all v; € V,
i=1

together imply all v, = 0;

(iii) U has finite order m over Z.
Suppose that ¥, V' are defined as in § 3.1 but with U in place of D, that all
ult,u2 € U,allv, € V, and

N
Z witxulv; =0, for all x ¢ U

=1
(equivalently

N

Z‘I’(ufl)‘l”(”iz)vi = 0).

i=1
Then if the u, i =1,..., N, are Z-independent (except for repetitions), it

follows that
D ity U0; = 0 for each u € U;

if the u?, i =1,..., N, are Z-independent (except for repetitions) it follows
that
Ziiluﬁ:u} u'v; = 0 for each u € U.

Proof. If N =1, the hypothesis implies #;' u;®v; = 0 and since u;! is
independent (hence different from zero, hence invertible), it follows that
u?v; = 0 as required to prove Lemma 5.

We complete the proof by induction on N.
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Suppose that the lemma has been established for all N < # for some n > 1
and that u4!, ..., #,41! are (except for repetitions) Z-independent and that
Z(ui‘ xu;2)v; = 0 for all x € U. We may suppose that u#,.,% # 0 and we need
only prove that Z(ﬂu,—1=u,,+lx}ui2vi = 0.

As in the proof of Lemma 1 (since all y in U and all v in V are permutable)
we obtain for all x,y in U

; (uilx((un+12)_lui2y - y(un+12)_1“i2)> v; = 0.
Because of the inductive hypothesis, we have for every u € U,

D tituitm) (1) %2y — Y(Unia?) ™ w2); = 0.

Thus (tn412)" Q. (ijust—uyt:2 v;) and y are permutable for every y in U. Hence
for each u € U,

(Un1®) ™ Qo it —a® v:) = w(u) € V,
Z(ilui1=u)ui2vi = Upyrw(u).
Hence if we let # vary over the Z-independent elements in the set
{ul|1=1,..., N},
we obtain (letting x = 1 in the hypothesis of Lemma 5)

Zu (uttny*w(u)) = 0.

Since the uu,,,® are Z-independent along with the elements %, it follows
from the hypothesis (ii) that each w(x#) = 0, in particular,

Z(ilui1=un+11}ui2‘vi =0,
as required.
By induction, this proves part of Lemma 5; the rest of Lemma 5 is proved
in the same way.

LEMMA 6.
N N
(i) ;fin=0<:>;lginzo;
N N
(ii) S h'=02 k'=0;
i=1 i=1

(iii) each element tn (S™)ny...npn-1 can be represented in the form

N
Z fin;
i=1

(iv) each element in Z yy...mmn can be represented in the form

N
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(v) the rules
N

N N N
;fin '*’;gi", ;hin = Z kS

i=1

determine injective Z-algebra homomorphisms v,, 8, respectively, with the pro-
perties listed in §4.1.

Proof of (i).

The method used to prove Lemma 2 can be applied, but we need Lemma 5
in place of Lemma 1.

When # = 1 the assertion (i) becomes:

N N
Zl?)t,ll = O@ZI ‘I’l('vi,ll) = 0,

which holds since ¥, is additive and injective.

Now we shall prove (i) for the case # > 1. We first express v1,1}, . .., vy ;!
in terms of independent elements. Then we apply Lemma 5 (with © = S™,
U= 3DD, and V = set of finite sums of products #?. .. ", with all u? € D)
to the right side of (i); this shows that it is sufficient to prove (i)', which is
(1) with all »1,1%,92,4%, ..., 9x,1! omitted.

Then we express 91,2, ...,y in terms of independent elements and
apply Lemma 5 to the left side of (i)’; this shows that it is sufficient to prove
(1) with all »;:! and v;.% ¢ = 1,..., N omitted. We repeat this reduction
procedure until we reach the equivalent assertion

N N
2 Vi) = 003 ¥ons) = 0.

This completes the proof of (i).

Proof of (ii). (ii) is proved in the same way as (i), by repeatedly applying
Lemma 5.

Proof of (iii). We need only verify that the Z-subspace (S™)(n;...mmn-1 has
the same dimensionality as the subspace of finite sums

N
Zfinr
i=1
(namely, (m;...m,)? 1). The method used to prove Lemma 3 is applicable
here.
Proof of (iv). The method used to prove (iii) applies to prove (iv).

Proof of (v). The method used to prove Lemma 4 applies here to show
that v, and 8, preserve multiplication and have the other properties stated
in Lemma 6.

This proves Lemma 6 and completes the proof of Theorem 2.
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