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A BOREL MAXIMAL COFINITARY GROUP

HAIM HOROWITZ, AND SAHARON SHELAH

Abstract. We construct a Borel maximal cofinitary group.

§1. Introduction. The study of mad families and their relatives occupies a central
place in modern set theory. As the straightforward way to construct such families
involves the axiom of choice, questions on the definability of such families naturally
arise. The following classical result is due to Mathias:

Theorem [4]. There are no analytic mad families.

In recent years, there has been considerable interest in the definability of several
relatives of mad families, such as maximal eventually different families and maximal
cofinitary groups. A family F ⊆ �� is a maximal eventually different family if
f �= g ∈ F → f(n) �= g(n) for large enough n, and F is maximal with respect to
this property. The following result was recently discovered by the authors:

Theorem [2]. Assuming ZF , there exists a Borel maximal eventually different
family.

As for maximal cofinitary groups (see Definition 2.1), several consistency results
were established on the definability of such groups, for example, the following results
by Kastermans and by Fischer, Friedman, and Toernquist:

Theorem [3]. There is a Π1
1-maximal cofinitary group in L.

Theorem [1]. b = c = ℵ2 is consistent with the existence of a maximal cofinitary
group with a Π1

2 –definable set of generators.

Our main goal in this paper is to establish the existence of a Borel maximal
cofinitary group in ZF . We intend to improve the current results in a subsequent
paper, and prove the existence of closed MED families and MCGs.

A remark post-refereeing: Long time has passed since this paper was first uploaded
to arXiv in October 2016. During this time, several noteworthy developments have
taken place. In 2021, Schrittesser was able to improve the construction of this paper
to obtain in [7] a maximal cofinitary group definable by a Σ0

n formula for some
natural n (it should be mentioned that we never tried to pinpoint the exact Borel
complexity of the group in our paper). In the subsequent paper [5] from 2022,
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2 HAIM HOROWITZ AND SAHARON SHELAH

Mejak and Schrittesser were able to further improve the result and obtain a Σ0
2

maximal cofinitary group. Their construction results in a freely generated MCG,
and so by a classical result in descriptive set theory, this is the minimal possible
complexity among freely generated MCGs. For further references about the history
of this and related topics, we refer the reader to [5–7].

§2. The main theorem.

Definition 2.1. G ⊆ S∞ is a maximal cofinitary group if G is a subgroup of S∞,
|{n : f(n) = n}| < ℵ0 for every Id �= f ∈ G , and G is maximal with respect to these
properties.

Theorem 2.2 (ZF). There exists a Borel maximal cofinitary group.

The rest of the paper will be dedicated for the proof of the above theorem. It will
be enough to prove the existence of a Borel maximal cofinitary group in Sym(U )
where U is an arbitrary set of cardinality ℵ0.

Convention: Given two sequences � and �, we write � ≤ � when � is an initial
segment of �.

Definition 2.3. The following objects will remain fixed throughout the proof:

a. T = 2<� .
b. ū = (u� : � ∈ T ) is a sequence of pairwise disjoint sets such that U = ∪{u� :
� ∈ T} ⊆ H (ℵ0) (will be chosen in Claim 2.4).

c. <∗ is a linear order of H (ℵ0) of order type � such that given �, � ∈ T , � <∗ �
iff lg(�) < lg(�) or lg(�) = lg(�) ∧ � <lex �.

d. For every � ∈ T , Σ{|u� | : � <∗ �} 
 |u�|.
e. Borel functions B = B0 and B–1 = B–1

0 such that B : Sym(U ) → 2� is injective
with a Borel image, and B–1 : 2� → Sym(U ) satisfies B(f) = � → B–1(�) = f.

f. Let A1 = {f ∈ Sym(U ) : f has a finite number of fixed points}, A1 is
obviously Borel.

g. {f�,� : � ∈ 2lg(�)} generate the group K� (defined below) considered as a
subgroup of Sym(u�).

Claim 2.4. There exists a sequence (u�, f̄�, Ā� : � ∈ T ) such that:

a. f̄� = (f�,� : � ∈ Tlg(�)).
b. f�,� ∈ Sym(u�) has no fixed points.
c. Ā� = (A�,� : � ∈ Tlg(�)). We shall denote ∪

�∈Tlg(�)

A�,� by A′
�.

d. A�,� ⊆ u� ⊆ H (ℵ0) and Σ{|u�| : � <∗ �} 
 |A�,� |.
e. �1 �= �2 ∈ Tlg(�) → A�,�1 ∩ A�,�2 = ∅.
f. If � ∈ 2n and w = w(... , x� , ... )�∈2n is a non-trivial group term of length ≤ n

then:
1. w(... , f�,� , ... )�∈2n ∈ Sym(u�) has no fixed points.
2. (w(... , f�,� , ... )�∈2n ( ∪

�∈2n
A�,�)) ∩ ∪

�∈2n
A�,� = ∅.

g. {f�,� : � ∈ Tlg(�)} generate the group K� (whose set of elements is u�) which is
considered as a group of permutations of u�.
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Proof. We choose (u�, f̄�, Ā�) by <∗-induction on � as follows: Arriving at �,
we choose the following objects:

a. n1
� such that Σ{|u� | : � <∗ �}2lg(�)+7 
 n1

� and let n0
� =

n1
�

2lg(�) .
b. LetH� be the group generated freely by {x�,� : � ∈ Tlg(�)}.
c. In H� we can find (y�,n : n < �) which freely generate a subgroup (we can do

it explicitly, for example, if a and b freely generate a group, then (anbn : n < �)
are as required), wlog for w1 and w2 as in Claim 2.4(f) and n1 < n2 we have
w1y�,n1 �= w2y�,n2 .

Now chooseA1
�,� ⊆ {y�,n : n < �} for � ∈ 2lg(�) such that �1 �= �2 → A1

�,�1
∩

A1
�,�2

= ∅ and n0
� ≤ |A1

�,� |.
d. Let Λ� = {w : w = w(... , x�,� , ... )�∈Tlg(�)

is a group word of length ≤ lg(�)}.

As H� is free, it’s residually finite, hence there is a finite group K� and an
epimorphism φ� : H� → K� such that φ� � (( ∪

�∈2lg(�)
A1
�,�) ∪ Λ� ∪ {wa : w ∈ Λ� ∧

a ∈ ∪
�∈2lg(�)

A1
�,�}) is injective (note that there is no use of the axiom of choice as

we can argue in a model of the form L[A]). WLOG K� ⊆ H (ℵ0) and K� is disjoint
to ∪{u� : � <∗ �}.

We now define the following objects:

a. u� = K�.
b. A�,� = {φ�(a) : a ∈ A1

�,�}.
c. For � ∈ 2lg(�), let f�,� : u� → u� be multiplication by φ�(x�,�) from the left.

It’s now easy to verify that (u�, Ā�, f̄�) are as required, soU = ∪{u� : � ∈ T}. 

Definition and Claim 2.5. A. a. Givenf ∈ Sym(U ), let g = F1(f) be g∗B(f),
where for � ∈ 2� , g∗� is the permutation of U defined by: g∗� � u� = f�,��lg(�)
(recall that ū is a partition of U and eachf�,� belongs to Sym(u�), therefore
g is well-defined and belongs to Sym(U )).

b. Let G1 be the subgroup of Sym(U ) generated by {g∗� : � ∈ 2�} (which
includes {F1(f) : f ∈ Sym(U )}).

c. Let I1 be the ideal on U generated by the sets v ⊆ U satisfying the following
property:
(∗)v For some � = �v ∈ 2� , for every n, there is at most one pair (a, �) such
that � ∈ T , a ∈ v ∩ u� and � ∩ � = � � n.

c(1). Note that I1 is indeed a proper ideal: Suppose that v0, ... , vn are as above
and let �0, ... , �n witness (∗)vi (i = 0, ... , n). Choose k such that 2k > n + 1
and choose � ∈ 2k \ {�i � k : i ≤ n}. For each i ≤ n, there is k(i) ≤ k such
that � ∩ �i = �i � k(i). For each i ≤ n, let n(i) be the length � such that
(a, �) witness (∗)vi for k(i). Choose �′ above � such that lg(�′) > n(i) for
every i, then u�′ ∩ ( ∪

i≤n
vi) = ∅.

d. Let K1 = {f ∈ Sym(U ) : fix(f) ∈ I1} where fix(f) = {x : f(x) = x}.
e. For � ∈ T , a, b ∈ u�, n = lg(�) < � and let ya,b = ((f�,�a,b,l , ia,b,l ) : l <

la,b = l(∗)) such that:
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1. �a,b,l ∈ 2n.
2. ia,b,l ∈ {1, – 1}.
3. b = (f�,�a,b,0 )ia,b,0 ... (f�,�a,b,l(∗)–1

)ia,b,l(∗)–1(a).
4. la,b = l(∗) is minimal under 1–3, ya,b is <∗-minimal under this require-

ment.
5. il �= il+1 → �a,b,l �= �a,b,l+1.

By Claim 2.4(g) and Definition 2.3(c), ya,b is always well-defined.

B. There are Borel functions B1,1,B1,2, etc. with domain Sym(U ) such that:
a. B1,1(f) ∈ {0, 1} and B1,1(f) = 0 iff |fix(f)| < ℵ0.
b. Letting �1 = B(f), B1,2(f) ∈ {0, 1} and B1,2(f) = 1 iff B1,1(f) = 0 and for

infinitely many n, f′′(A′
�1�n) � ∪{u� : � ≤∗ �1 � n} (where A′

�1�n is defined
in Claim 2.4(c).

c. B1,3(f) ∈ � such that if B1,1(f) = B1,2(f) = 0 then for every B1,3(f) ≤ n,
f′′(A′

�1�n) ⊆ ∪{u� : � ≤∗ �1 � n}.
d. B1,4(f) ∈ {0, 1} and B1,4(f) = 1 iff B1,1(f) = B1,2(f) = 0 and {la,f(a) :
a ∈ vn and B1,3(f) ≤ n} is unbounded, where vn := {a ∈ A′

�1�n ⊆ u�1�n :
f(a) ∈ u�1�n}.

e. B1,5(f) ∈ � such that: If B1,4(f) = B1,2(f) = B1,1(f) = 0 then B1,5(f) is
a bound of {la,f(a) : a ∈ vn and B1,3(f) ≤ n}.

f. B1,6(f) ∈ {0, 1} such that: B1,6(f) = 1 iff B1,1(f) = B1,2(f) = B1,4(f) =
0 and for every m there exists n > m such that: There are a1 �= a2 ∈ vn
such that for some l, l < min{la1,f(a1), la2,f(a2)}, �a1,f(a1),l �= �a2,f(a2),l and
�a1,f(a1),l � m = �a2,f(a2),l � m.

g. B1,7(f) is a sequence (an = an(f) : n ∈ B1,8(f)) such that if B1,6(f) = 1
then:
1. an ∈ vn.
2. B1,8(f) ∈ [�]� .
3. lan,f(an) = l(∗) = B1,9(f).
4. l∗∗ = B2,0(f) < l∗.
5. (�an,f(an),l∗∗ : n ∈ B1,8(f)) are pairwise incomparable.
6. For every l < l∗, the following sequence is constant: (TV (�an,f(an),l ≤
�ak,f(ak ),l ) : n < k ∈ B1,8(f)).

h. B2,1(f) is a sequence (An = An(f) : n ∈ B2,2(f)) such that if B1,1(f) =
B1,2(f) = B1,4(f) = B1,6(f) = 0 then:
1. B2,2(f) ∈ [�]� .
2. An ⊆ A′

�1�n (recalling that �1 = B(f)).
3. la,f(a) = l∗ = B2,3(f) for n ∈ B2,2(f) and a ∈ An.
4. (il : l < l∗) = (ia,f(a),l : l < l∗) (recalling Definition 2.5(e)) for every n ∈

B2,2(f) and a ∈ An.
5. 1

B′
2,3(f)(n) ≤

|An |
|vn | where B′

2,3(f)(n) ∈ � \ {0}, B2,3(f)(n) 
 |vn| and vn is

defined in 2.5(B)(d).
6. B2,4,n(f) = �̄∗n = (�nl : l < l∗) = (�a,f(a),l : l < l∗) for every n ∈ B2,2(f)

and a ∈ An.
7. (TV (�nl ≤ �ml ) : n < m ∈ B2,2(f)) is constantly B2,5,l (f).
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i. B2,6(f) ∈ {0, 1} is 1 iff B1,1(f) = B1,2(f) = B1,4(f) = B1,6(f) = 0 and in
(h)(7), B2,5,l = false for some l < l∗.

j. B′
2,6(f) ∈ {0, 1} is 0 iff B1,1(f) = B1,2(f) = B1,4(f) = B1,6(f) = 0 and

B2,6(f) = 0

Proof. By the proof of Ramsey’s theorem and the arguments which are implicit
in the proof of Claim 2.7. Note that while the statement “there exists an infinite
homogeneous set” is analytic, we can Borel-compute that homogeneous set. See the
proof of Claim 6 in [2] for more details. 

Definition and Claim 2.6. a. 1. LetH3 be the set of f ∈ Sym(U ) such that:
α B1,1(f) = 0.
� If B1,2(f) = B1,4(f) = B1,6(f) = 0 then B′

2,6(f) = 1.
a. 2. H3 is Borel.
b. For f ∈ Sym(U ) let Gf be the set of g ∈ Sym(U ) such that:

1. If f /∈ H3 then Gf = {F1(f)}.
2. Iff ∈ H3 thenGf be the set of g such that for some (B, �1, �2, ā, b̄, c̄, d̄ , ē, �̄)

we have:

A. B ⊆ � is infinite.
B. �1 = B(f) ∈ 2� and �2 ∈ 2� .
C. ā = (an : n ∈ B).
D. If n ∈ B then an ∈ A′

�1�n = ∪
�∈2n
A�1�n,� ⊆ u�1�n (recall that we denote

∪
�∈2n
A�1�n,� by A′

�1�n).

E. b̄ = (bn : n ∈ B) and �̄ = (�n : n ∈ B), �n ∈ T , such that for each n ∈ B , bn =
f(an) and bn ∈ u�n . c̄ = (cn : n ∈ B), d̄ = (dn : n ∈ B) and ē = (en : n ∈ B)
are such that bn, cn ∈ u�n and en ∈ u�1�n.

F. For every n ∈ B , g(an) = f(an) = bn.
G. For every n ∈ B , g(bn) = F1(f)(an) = en.
H. For every n ∈ B we have cn = F1(f)–1(f(an)) and g(cn) = F1(f)(f(an)) =
dn.

I. If b ∈ U is not covered by clauses F–H, then g(b) = F1(f)(b).
J. g has no fixed points.

K. One of the following holds:
a. For every n ∈ B , �1 � n <∗ �n, lg(�2 ∩ �n) > max{lg(�m) : m ∈ B ∩ n}

hence (�n ∩ �2 : n ∈ B) is ≤–increasing.
b. For every n ∈ B , �n = �1 � n and l(an, f(an), n) is increasing (see

Definition 2.5(e)).
c. For every n ∈ B , �n = �1 � n and in addition, l(an, f(an), n) = l∗ for

every n, ian,f(an),l = il for l < l∗ and for some l∗∗ < l∗, the elements of
(�an,f(an),l∗∗ : l∗∗ < l∗) are pairwise incomparable.

Claim 2.7. If f ∈ H3 then there exists g ∈ Sym(U ) such that for some
(B, �1, �2, ā, b̄, �̄), g and (B, �1, �2, ā, b̄, �̄) are as required in Claim 2.6(c)(2) (and

therefore, there are also (c̄, d̄ , ē) as required there). Moreover, g is unique once
(B, �1, �2, ā, b̄, �̄) is fixed.
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Remark 2.7A. In Claim 2.9 we need g to be Borel-computable from f, which
is indeed the case by the discussion in the proof of Claim 2.5 and by the proof of
Claim 6 in [2].

Proof. f ∈ H3, so B1,1(f) = 0.
We shall first observe that if g is defined as above, then g is a permutation of U

with no fixed points. It’s also easy to see that g is unique once (B, �1, �2, ā, b̄, �̄) has
been chosen. Therefore, it’s enough to find (B, �1, �2, ā, b̄, �̄) as required.

Case I (B1,2(f) = 1). For infinitely many n, f′′(A′
�1�n) � ∪{u� : � ≤∗ �1 � n}. In

this case, let B0 = {n : there is a ∈ A′
�1�n such that f(a) /∈ ∪{u� : � ≤∗ �1 � n},

and for every n ∈ B0, let an be the <∗-first element in A′
�1�n witnessing that

n ∈ B0. Let bn = f(an) and let �n ∈ T be the sequence for which bn ∈ u�n . Apply
Ramsey’s theorem (we don’t need the axiom of choice, as we can argue in some
L[A]) to get an infinite set B ⊆ B0 such that ck,l � [B]k is constant for every
(k, l) ∈ {(2, 1), (2, 2), (2, 4), (3, 1), (3, 3)}, where for n1 < n2 < n3:

a) c2,1(n1, n2) = TV (lg(�1) < lg(�2)).
b) c2,2(n1, n2) = TV (�n2 ∈ {�n : n ≤ n1}).
c) c3,1(n1, n2, n3) = TV (lg(�n2 ∩ �n3) > �n1).
d) c3,3(n1, n2) = �n2(lg(�n1 ∩ �n2)) ∈ {0, 1,undefined}.
We shall prove now that (lg(�n) : n ∈ B) has an infinite increasing subsequence:

Choose an increasing sequence n(i) ∈ B by induction on i such that j < i →
lg(�n(j)) < lg(�n(i)). Arriving at stage i = j + 1, suppose that there is no such
n(i), then {f(an) : n ∈ B \ n(j)} ⊆ ∪{u� : lg(�) ≤ lg(�n(j))}, hence {f(an) : n ∈
B \ n(j)} is finite. Similarly, {�n : n ∈ B \ n(j)} is finite, and therefore, there are
n1 < n2 ∈ B \ n(j) such that �n1 = �n2 and f(an1 ) = f(an2 ). As f is injective,
an1 = an2 , and by the choice of the an, an1 ∈ u�1�n1 and an2 ∈ u�1�n2 .

This is a contradiction, as u�1�n1 ∩ u�1�n2 = ∅.
Therefore, there is an infiniteB ′ ⊆ B such that (lg(�n) : n ∈ B ′) is increasing, and

wlog B ′ = B .
Now we shall note that if n1 < n2 < n3 are from B, then lg(�n2 ∩ �n3) > lg(�n1):
By the choice of B, c3,1(n1, n2, n3) is constant for n1 < n2 < n3, so it suffices to

show that c3,1 � [B]3 = true. Let n1 = min(B) and k = lg(�n1) + 1. The sequence
(�n � k : n ∈ B \ {n1}) is infinite, hence there are n2 < n3 ∈ B \ {n1} such that �n2 �
k = �n3 � k. Therefore, lg(�n1 ) < k ≤ lg(�n2 ∩ �n3), and as c3,1 is constant on [B]3,
we’re done.

For n < k ∈ B such that k is the successor of n in B, let �n = �n ∩ �k . Suppose
now thatn < k < l are successor elements in B, then lg(�k) = lg(�k ∩ �l ) > lg(�n) ≥
lg(�n ∩ �k) = lg(�n), and �n, �k ≤ �k , therefore, �n is a proper initial segment of �k
and �2 := ∪

n<�
�n ∈ 2� . If n < k ∈ B are successor elements, then lg(�k) > lg(�n)

(by a previous claim), therefore, �n ∩ (T \ �k) is disjoint to �2, hence �n ∩ �2 = �n ∩
�k = �n. Therefore, if n < k ∈ B then �n ∩ �2 is a proper initial segment of �k ∩ �2

and �2 = ∪
n<�

(�n ∩ �2).

It’s now easy to verify that (B, �1, �2, ā, b̄, �̄) and g are as required.

Case II (B1,2(f) = 0 and n1 stands for B1,3(f)). There is n1 such that for every
n1 ≤ n, f′′(A′

�1�n) ⊆ ∪{u� : � ≤∗ �1 � n}.
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For each n, recall that vn = {a ∈ A′
�1�n ⊆ u�1�n : f(a) ∈ u�1�n}. vn satisfies

|A′
�1�n \ vn| ≤ Σ{|u� | : � <∗ �1 � n}, and as Σ{|u� | : � <∗ �1 � n} 
 |A′

�1�n|, it fol-
lows that Σ{|u� | : � <∗ �1 � n} 
 |vn|. Recall also that for a ∈ vn, as f(a) ∈ u�1�n,
by Definition 2.5(e), ya,f(a) is well-defined.

We now consider three subcases:

Case IIA (B1,4(f) = 1). The set of la,f(a),n for a ∈ vn and n1 ≤ n is unbounded.
In this case, we find an infinite B ⊆ [n1, �) and an ∈ vn for each n ∈ B such that
(lan,f(an),n : n ∈ B) is increasing. Now let �2 := �1 and define b̄, �̄ and g as described
in Definition 2.6. It’s easy to verify that (B, �1, �2, ā, b̄, �̄) are as required.

Case IIB (B1,4(f) = 0 and B1,6(f) = 1). Case IIA doesn’t hold, but B1,6(f) = 1 and
there is an infinite B ⊆ [n1, �), l∗∗ < l∗ (see below) and (an ∈ vn : n ∈ B) (given by
B1,8(f), B2,0(f) and B1,7(f), respectively) such that:

a. lan,f(an) = l∗ and l∗∗ = B2,0(f) < l∗.
b. ian,f(an),l = i∗l for l < l∗.
c. If n ∈ B and m ∈ B ∩ n, then �am,f(am),l∗∗ � �an,f(an),l∗∗ .

In this case we define b̄, �̄ and g as in Definition 2.6 and we let �2 := �1. It’s easy
to see that (B, �1, �2, ā, b̄�̄) are as required.

Remark: By a routine Ramsey-type argument, it’s easy to prove that if B1,6(f) = 1
then the values of B1,7(f),B2,0(f) are well-defined and Borel-computable so the
above conditions hold.

Case IIC (B1,4(f) = B1,6(f) = 0). ¬IIA ∧ ¬IIB . We shall first prove that B2,1(f),
B2,2(f), B2,3(f), (B2,4,n(f) : n ∈ B2,2(f)) and (B2,5,l (f) : l < B2,3(f)) are well-
define and Borel computable.

Let l(∗) be the supremum of the l(a,f(a)) where n1 ≤ n and a ∈ vn
(l(∗) < � by ¬2A). We can find l(∗∗) ≤ l(∗) such that B1 := {n ∈ B : vn,1 =
{a ∈ vn : l(a,f(a)) = l(∗∗)} has at least vn

l(∗) elements} is infinite. Next, we
can find i∗(l) ∈ {1, – 1} for l < l(∗∗) such that B2 : {n ∈ B1 : vn,2 = {a ∈ vn,1 :
∧

l<l(∗∗)
ia,f(a),l = i∗(l)} has at least |vn |

2l(∗∗)l(∗)
elements} is infinite. For each n ∈ B2,

there are �n,0, ... , �n,l(∗∗)–1 ∈ Tn such that vn,3 = {a ∈ vn,2 : ∧
l<l(∗∗)

�a,f(a),l = �n,l}

has at least |vn |
l(∗∗)2l(∗∗)2nl(∗∗) elements. By Ramsey’s theorem, there is an infinite subset

B3 ⊆ B2 such that for each l < l(∗∗), the sequence (TV (�m,l ≤ �n,l ) : m < n ∈ B3)
is constant. Therefore, we’re done showing that the above Borel functions are
well-defined.

Now if B′
2,6(f) = 1 then we finish as in the previous case (this time we’re in the

situation of Definition 2.6(b)(2)(K)(c)). If B′
2,6(f) = 0, then we get a contradiction

to the assumption that f ∈ H3, therefore we’re done. 

Claim 2.8. Ifw(x0, ... , xk∗–1) is a reduced non-trivial group word,f0, ... , fk∗∗–1 ∈
H3 are pairwise distinct, gl ∈ Gfl (l ∈ {0, ... , k∗∗ – 1}), gl = g∗�l where �l ∈ 2� \
{B(f) : f ∈ H3}, l = k∗∗, ... , k∗ – 1 and (�l : k∗∗ ≤ l < k∗) is without repetition,
then w(g0, k∗–1) ∈ Sym(U ) has a finite number of fixed points.

Notation: For l < k∗∗, let �l := B(fl ).
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Proof. Assume towards contradiction thatw(x0, ... , xk∗–1) = xi(m–1)
k(m–1) · ... · x

i(0)
k(0),

{f0, ... , fk∗–1} and {g0, ... , gk∗–1} form a counterexample, where i(l) ∈ {– 1, 1},
k(l) < k∗ and k(l) = k(l + 1) → ¬(i(l) =– i(l + 1)) for every l < m. WLOG
m = lg(w) is minimal among the various counterexamples. Let C = {a ∈ U :
w(g0, ... , gk∗–1)(a) = a}, this set is infinite by our present assumption. For c ∈ C ,
define bc,l by induction on l < m as follows:

1. bc,0 = c.
2. bc,l+1 = gi(l)

k(l)(bc,l ).

Notational warning: The letter c with additional indices will be used to denote
the elements of sequences of the form c̄ from Definition 2.6(b)(2).

For all but finitely many c ∈ C , (bc,l : l < m) is without repetition by the
minimality of m, so wlog this is true for every c ∈ C .

For every c ∈ C , let �c,l ∈ T be such that bc,l ∈ u�c,l , and let l1[c] be such that
�c,l1[c] ≤∗ �c,l for every l < m. We can choose l1[c] such that one of the following
holds:

1. l1[c] > 0 and �c,l1[c]–1 �= �c,l1[c].
2. l1[c] = 0 and �c,m–1 �= �c,0.
3. �c,0 = ··· = �c,m–1.

We may assume wlog that (l1[c] : c ∈ C ) is constant and that actually l1[c] = 0
for every c ∈ C . In order to see that we can assume the second part, for j < m let
wj(x0, ... , xk∗–1) = xi(j–1)

k(j–1) ... x
i(0)
k(0)x

i(m–1)
k(m–1) ... x

i(j)
k(j), then wj(g0, ... , gk∗–1) ∈ Sym(U )

is a conjugate ofw(g0, ... , gk∗–1). The set of fixed points ofwj(g0, ... , gk∗–1) includes
{bc,j : c ∈ C}, and therefore it’s infinite.

For c ∈ C , (bc,j , bc,j+1, ... , bc,m–1, bc,0, ... , bc,j–1) and wj(g0, ... , gk∗–1) satisfy the
same properties that (bc,0, ... , bc,m–1) andw(g0, ... , gk∗–1) satisfy. Therefore, if (l1[c] :
c ∈ C ) is constantly j > 0, then by conjugating and moving to wj(g0, ... , gk∗–1), we
may assume that (l1[c] : c ∈ C ) is constantly 0.

Let l2[c] < m be the maximal such that �c,0 = ··· = �c,l2[c], so wlog l2[c] = l∗ for
every c ∈ C . For l < k∗ let �1,l be B(fl ) if l < k∗∗ and �l if l ∈ [k∗∗, k∗) (we might
also denote it by �l in this case). As fl ∈ H3 for l <k∗∗, and �l /∈ {B(f) : f ∈ H3}
for l ∈ [k∗∗, k∗), it follows that l1 < k∗∗ ≤ l2 < k∗ → �1,l1 �= �1,l2 . Therefore, (�1,l :
l < k∗) is without repetition.

Now let �2,l be defined as follows:

1. If l < k∗∗, let �2,l be �2 from Definition 2.6(b)(2) for fl and gl .
2. If l ∈ [k∗∗, k∗), let �2,l = �1,l .

Let j(∗) < � be such that:

a. (�1,l � j(∗) : l < k∗) is without repetition.
b. If �1,l1 �= �2,l2 then �1,l1 � j(∗) �= �2,l2 � j(∗) (l1, l2 < k∗).
c. If �2,l1 �= �2,l2 then �2,l1 � j(∗) �= �2,l2 � j(∗) (l1, l2 < k∗).
d. j(∗) > 3m, k∗.
e. j(∗) > n(l1, l2) for every l1 < l2 < k∗, where n(l1, l2) is defined as follows:

1. If k∗∗ ≤ l1, l2, let n(l1, l2) = 0.
2. If l1 < k∗∗ or l2 < k∗∗, let (�1

n : n ∈ B1) and (�2
n : n ∈ B2) be as in

Definition 2.6(b)(2) for (fl1 , �1,l1 ) and (fl2 , �1,l2 ), respectively. If there is
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no �1
n such that �1

n � �1,l1 and no �2
n such that �2

n � �1,l2 , let n(l1, l2) = 0.
Otherwise, there is at most one n ∈ B1 such that �1

n � �1,l1 and �1
n ≤ �1,l2 and

there is at most one m ∈ B2 such that �2
m � �1,l2 and �2

m ≤ �1,l1 . If there are
�1
n and �2

m as above, let n(l1, l2) = lg(�1
n) + lg(�2

m) + 1. If there is �1
n as above

but no �2
m as above, let n(l1, l2) = lg(�1

n) + 1, and similarly for the dual case.
f. j(∗) > m(l1, l2) for every l1 < l2 < k∗∗ wherem(l1, l2) is defined as follows: Let

(�1
n : n ∈ B1) and (�2

m : m ∈ B2) be as in Definition 2.6(b)(2) for (fl1 , �1,l1 ) and
(fl2 , �1,l2 ), respectively. As �1,l1 �= �1,l2 , |{�1

n : n ∈ B1} ∩ {�2
m : m ∈ B2}| < ℵ0,

let s(l1, l2) be the supremum of the length of members in this intersection and
let m(l1, l2) := s(l1, l2) + 1.

We may assume wlog that lg(�c,l1[c]) > j(∗) for every c ∈ C . We now consider
two possible cases (wlog TV ((�c,l : l < m) is constant) is the same for all c ∈ C ):

Case I. For every c ∈ C , (�c,l : l < m) is not constant.
In this case, for each such c ∈ C , l2[c] < m – 1 and bc,l2[c] ∈ u�c,0 = ··· = u�c,l2[c] .

Now (bc,l2[c], bc,l2[c]+1) ∈ gi(l2[c])
k(l2[c]), and as �c,l2[c] �= �c,l2[c]+1, necessarilyk(l2[c]) < k∗∗.

By the definition of l1[c] and the fact that �c,l1[c] = �c,l2[c], necessarily �c,l2[c] <∗
�c,l2[c]+1.

For each l < m – 1, if lg(�c,l ) < lg(�c,l+1), then either gk(l) or g–1
k(l) is as in

Definition 2.5(2)(b), so letting n = lg(�c,l ), (�c,l , �c,l+1) here correspond to (�1 �
n, �n) there, and there are (al , bl , cl , d l , el ) = (alc , b

l
c , c
l
c , d

l
c , e
l
c) in our case that

correspond to (an, bn, cn, dn, en) in Definition 2.6(2)(b). In the rest of the proof
we shall denote those sequences by (al , bl , cl , d l , el ), as the identity of the relevant
c ∈ C should be clear. In addition, one of the following holds:

1. i(l) = 1 and gi(l)
k(l)(a

l ) = bl .

2. i(l) =– 1 and gi(l)
k(l)(b

l ) = al .

Similarly, for l < m – 1, if lg(�c,l ) > lg(�c,l+1) then the above is true modulo the
fact that now (�c,l , �c,l+1) correspond to (�n, �1 � n) and one of the following holds:

1. i(l) = 1 and gi(l)
k(l)(b

l ) = el .

2. i(l) =– 1 and gi(l)
k(l)(b

l ) = al .

Therefore, if l = l2[c] then lg(�c,l ) < lg(�c,l+1), so the first option above holds,
and therefore �c,l is an initial segment of �1,k(l).

If l = m – 1, then lg(�c,m–1) > lg(�c,0) = lg(�c,m) and therefore �c,0 is an initial
segment of �1,k(m–1). It follows that �c,0 = �c,l2[c] is an initial segment of �1,k(l2[c]) ∩
�1,k(m–1). Recalling that lg(�c,0) = lg(�c,l1[c]) > j(∗) and that (�1,l � j(∗) : l < k∗) is
without repetition, it follows that k(m – 1) = k(l2[c]).

We shall now prove that if l2[c] < m – 1 then l2[c] = m – 2. Let (al2[c], bl2[c], ... )
be as above for l = l2[c], so bc,l2[c]+1 = bl2[c], and as k(l2[c]) = k(m – 1), we get
bc,l2[c]+1 = bl2[c] = bm–1. In order to show that l2[c] = m – 2, it suffices to show that
bm–1 = bc,m–1 (as the sequence of the bc,l s is without repetition), which follows from
the fact that �c,0 <∗ �c,m–1.
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As we assume that the word w is reduced, and as k(m – 2) = k(l2[c]) = k(m – 1),
necessarily i(m – 2) = i(m – 1). We may assume wlog that i(m – 2) = i(m – 1) = 1
(the proof for i(m – 2) = i(m – 1) = –1 is similar, as we can replace w by a conjugate
of its inverse).

Let w′ = w′(g0, ... , gk∗–1) := gi(m–3)
k(m–3) ... g

i(0)
k(0), by the above considerations

and as bm–1 = bc,m–1, it follows that em–1 = gk(m–1)(bm–1) = gi(m–1)
k(m–1)(b

m–1) =

gi(m–1)
k(m–1)(bc,m–1) = bc,0. We also know that gi(m–2)

k(m–2)(w
′(bc,0)) = gk(m–2)(w′(bc,0)) is

“higher” than w′(bc,0). Therefore, gi(m–2)
k(m–2)(w

′(bc,0)) = gk(m–2)(w′(bc,0)) = bm–2 =

bm–1. It also follows that w′(bc,0) = am–2 = am–1. Therefore, w′(em–1) = am–1.
We shall now prove that if l < m – 2 then bc,l+1 = (g∗�k(l)

)i(l)(bc,l ). Assume that

for some l < m – 2, gk(l)(bc,l ) �= g∗�k(l)
(bc,l ) and we shall derive a contradiction. Let

(am–2, bm–2, ... ) be as before for gk(m–2), so (bc,m–2, bc,0) = (am–2, em–2).

Case I(a). k(l) = k(m – 2) = k(m – 1). As the bc,is are without repetition, if
0 < l < m – 2, then bc,l /∈ {bc,m–2, bc,0} = {am–2, em–2} = {al , el}, and of course,
bc,l /∈ {bl , cl , d l} (as it is a “lower” element). Therefore, gk(l)(bc,l ) = g∗�k(l)

(bc,l ),

a contradiction. If l = 0, then gi(m–1)
k(m–1)(bc,m–1) = bc,0 and (bc,m–1, bc,0) = (bm–1, em–1).

If i(0) =– i(m – 1), then by conjugating gk(0), we get a shorter word with infinitely
many fixed points, contradicting our assumption on the minimality of m.

If i(0) = i(m – 1) = 1, then we derive a contradiction as in the case of 0 < l .

Case I(b): k(l) �= k(m – 2) = k(m – 1). In this case, we know that gk(l) almost
coincides with g∗�k(l)

, with the exception of at most {al , bl , cl , d l , el}. Let �c :=

�c,0 = ··· = �c,m–2, then necessarily �c ≤ �k(m–1) = �1,k(m–1) (as gk(m–1) moves bc,m–1

to a lower u� (namely u�c ), �c plays the role of �1 � n in Definition 2.6 for gk(m–1)).
By our assumption, lg(�c) > j(∗) and (�1,l � j(∗) : l < k(∗)) is without repetition,
therefore �1,k(l) � lg(�c) �= �c , so �c � �1,k(l). Therefore, when we considerfk(l) and
�1,k(l) in Definition 2.6(b)(2), then �c has the form �n for some n. By the choice of
j(∗), it’s then impossible to have �c ≤ �1,k(m–1), a contradiction.

Therefore, am–2 = w′(g0, ... , gk∗–1)(em–2) = w′(g0, ... , gk∗–1)(bc,0) = w′(g∗�0 , ... ,
g∗�k∗–1

)(bc,0) = w′(g∗�0 , ... , g
∗
�k∗–1

)(em–2). In the notation of the Claim and Definition
6(b)(2),
F1(fk(m–2))(am–2) = em–2, therefore, by composing with w′, we obtain a word

composed of permutation of u�c,m–2 (in the sense of Claim 2.4(f)) that fixes em–2 ∈
u�c,m–2 , therefore, m – 3 = 0 (or else we get a contradiction by Claim 2.4(f)).

It follows thatw(g0, ... , gk∗–1) = gk(m–2)gk(m–2)g
i(0)
k(0) and gi(0)

k(0)(e
m–2) = am–2. Now,

obviously �c,m–2 ≤ �1,k(m–2), so �c,m–2 � �1,k(0) = �k(0). By the definition, g∗�k(0)
�

u�c,m–2 = f�c,m–2,�k(0)�lg(�c,m–2) �= f�c,m–2,�c,m–2 . Also F1(fk(m–2)) � u�c,m–2 = g∗�k(m–2)
�

u�c,m–2 = f�c,m–2,�c,m–2 . Therefore, we get the following: am–2 = gi(0)
k(0)(e

m–2) =

(g∗�k(0)
)i(0)(em–2) = (f�c,m–2,�k(0)�lg(�c,m–2))i(0)(em–2) and em–2 = F1(fk(m–2))(am–2) =

f�c,m–2,�c,m–2(am–2). In conclusion, we get a contradiction to Claim 2.4(f), as we have
a short non-trivial word that fixes em–2.
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Case II. (�c,l : l < m) is constant for every c ∈ C (so l2[c] = m – 1). Let
�c := �c,0 = ··· = �c,m–1. If gi(l)

k(l)(bc,l ) = (g∗�k(l)
)i(l)(bc,l ) for every l < m, then

we get a contradiction to Claim 2.4(f). Therefore, for every c ∈ C , the set
vc = {l < m : gi(l)

k(l)(bc,l ) �= (g∗�k(l)
)i(l)(bc,l )} is nonempty. Without loss of generality,

vc doesn’t depend on c, and we shall denote it by v. For every l ∈ v, if i(l) = 1
then (bc,l , bc,l+1) ∈ {(al , bl ), (bl , el ), (cl , d l )}, if i(l) =– 1 then (bc,l , bc,l+1) ∈
{(bl , al ), (el , bl ), (d l , cl )}.

We shall now prove that for some k < k∗∗, k(l) = k for every l ∈ v. Suppose not,
then for some l1 < l2 ∈ v, k(l1) �= k(l2). By the choice of j(∗), each of the following
options in impossible: �c,l1 ≤ �1,l1 ∧ �c,l2 ≤ �1,l2 , �c,l1 ≤ �1,l1 ∧ �c,l2 � �1,l2 , �c,l1 �
�1,l1 ∧ �c,l2 ≤ �1,l2 or �c,l1 � �1,l1 ∧ �c,l2 � �1,l2 . Therefore we get a contradiction. It
follows that {k(l) : l ∈ v} is singleton, and we shall denote its only member by
k < k∗∗.

Note that if l1 ∈ v, l2 ∈ v is the successor of l1 in v, l1 + 1 < l2 and c ∈ C then
bc,l1+1 �= bc,l2 (recall that (bc,l : l < m) is without repetition). We shall now arrive at
a contradiction by examining the following three possible cases (in the rest of the
proof, we refer to l(∗) from Definition 2.5(A)(e) as “the distance between a and b”,
and similarly for any pair of members from some u�):

Case II (a). gk is as in Definition 6(b)(2)(K)(a). In this case, for every l ∈ v, the
only possibilities for (bc,l , bc,l+1) are either of the form (c, d ) or (d, c) (and not both,
as we don’t allow repetition). As the distance between c and d is at most 2, we get a
word made of f�,�s of length ≤ m + 1 that fixes c, contradicting Claim 2.4(f).

Case II (b). gk is as in Definition 6(b)(2)(K)(c). Pick c ∈ C such that lg(�c) is
also greater than m + l∗ where l∗ is as in Definition 2.6(b)(2)(K)(c) for gk . As the
sequence (bc,l : l < m) is without repetition, necessarily 1 ≤ |v| ≤ 3.

If |v| = 3, then necessarily the sequences (a, b, e) or (e, b, a) occur in (bc,l : l < m),
as well as (c, d ) or (d, c). As the distance between a and e is 1 and the distance
between c and d is ≤ 2, we get a contradiction as before.

Suppose that |v| = 2. If the sequence (a, b, e) appears in (bc,l : l < m), we get a
contradiction as above. If (a, e) (or (e, a)) and (c, d ) (or (d, c)) appear, we also get
a contradiction as above. If (a, b)/(b, a) and (c, d )/(d, c) appear, as the distance
between a and b is l∗, we get a word made of f�,�s of length ≤ m + l(∗) fixing c, a
contradiction to Claim 2.4(f). Finally, if |v| = 1 we get a contradiction similarly.

Case II (c). gk is as in Definition 2.6(b)(2)(K)(b). As in the previous case, where the
only non-trivial difference is when either |v| ∈ {1, 2} and the sequence (a, b)/(b, a)
appears in (bc,l : l < m), but not as a subsequence of (a, b, e)/(e, b, a). If for some
c this is not the case, then we finish as before, so suppose that it’s the case for
every c ∈ C . As the distance between c and d is ≤ 2, suppose wlog that |v| = 1,
k = k(m – 1) (by conjugating) and the sequence (bc,l : l < m) ends with a and
starts with b or vice versa. Therefore, every c ∈ C is of the form an or bn (where
n ∈ B and B is as in Definition 2.6(b)(2) for gk) and either gi(0)

k(0) ... g
i(m–2)
km–2

(an) = bn

or gi(0)
k(0) ... g

i(m–2)
km–2

(bn) = an, so the distance between an and bn is ≤ m – 1. As C is
infinite, the distance between an and bn is ≤ m – 1 for infinitely many n ∈ B . This is
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a contradiction to the assumption from Definition 2.6(b)(2)(K)(b) that the distance
between an and bn is increasing.

This completes the proof of Claim 2.8. 

Claim 2.9. There exists a Borel function B4 : UU → UU such that for every
f ∈ B1, B4(f) ∈ Gf .

Proof. As in [2], and we comment on the main point in the proof of
Claim 2.7. 

Definition 2.10. Let G be the subgroup of Sym(U ) generated by {B4(f) : f ∈
H3} ∪ {g∗� : � ∈ 2� \ {B(f) : f ∈ H3}}.

Claim 2.11. G is a maximal cofinitary group.

Proof. G is cofinitary by Claim 2.8, so it’s enough to prove maximality.
Assume towards contradiction that H is a counterexample and let f∗ ∈ H \G , so
B4(f∗) ∈ G , and we shall denote f∗ = B4(f∗).

Case I.f∗ ∈ H3. In this case, by Definition 2.6, {an : n ∈ B} ⊆ eq(f∗, f
∗) := X (see

thee relevant notation in Definition 2.6), hence it’s infinite. Therefore, f–1
∗ f

∗ � X
is the identity, but f–1

∗ f
∗ ∈ H and H is cofinitary, therefore f–1

∗ f
∗ = Id so f∗ =

f∗ ∈ G , a contradiction.

Case II.f∗ /∈ H3. By the definition ofH3, B′
2,6(f∗) = 0, so the sequences B2,1(f∗) =

(An = An(f∗) : n ∈ B2,2(f∗)), �̄n∗ = (�n,i : i < l∗) = (�a,f∗(a),i : i < l∗) and ī = (il :
l < l∗) = (ia,f(a),l : l < l∗) (n ∈ B2,2(f∗), a ∈ An) are well-defined, and for every l <
l∗, (�n,l : n ∈ B2,2(f∗)) is ≤-increasing, so �l := ∪

n∈B2,2(f∗)
�n,l ∈ 2� is well-defined.

Let g = (g∗�0 )i0 · · · (g∗�l∗–1
)il∗–1 ∈ G1(we may assume that it’s a reduced product). Let

w1 = {l < l∗ : (∃fl ∈ H3)(�l = B(fl ))} and w2 = l∗ \ w1. For l < l∗, define gl as
follows:

1. If l ∈ w1, let gl = B4(fl ).
2. If l ∈ w2, let gl = g∗�l .

Let g ′ = gi(0)
0 · · · gi(l∗–1)

l∗–1 . By the definition of G, g0, ... , gl∗–1 ∈ G , hence g ′ ∈ G .
Again by Definition 2.6, if l ∈ w1 then gl = F1(fl ) mod I1 and g–1

l =
F1(fl )–1 mod I1. Now suppose that g(a) �= g ′(a), then there is a minimal l < l∗
such that (g∗�0 )i(0) ... (g∗�l )

i(l)(a) �= (g0)i(0) ... (gl )i(l)(a). Let vl = dif(g∗�l , gl ), then

a ∈ (gi00 ... g
i(l–1)
l–1 )–1(vl ). In order to show that (gi00 ... g

i(l–1)
l–1 )–1(vl ) ∈ I1 it suffices to

observe that for i ∈ w1, functions of the form gi , g–1
i map elements of I1 to elements

of I1, therefore it follow that g = g ′ mod I1. It suffices to show that eq(f∗, g) /∈ I1,
as it will then follow that eq(f∗, g

′) /∈ I1, so f–1
∗ g

′ = Id on an I1 –positive set,
hence on an infinite set. As f–1

∗ g
′ ∈ H and H is cofinitary, f–1

∗ g
′ = Id , an therefore

f∗ = g ′ ∈ G , a contradiction.
So let n ∈ B2,2(f∗) and a ∈ An = An(f∗), and observe that f∗(a) = g(a).

Indeed, by the definition of B2,1(f∗), for every such a, f∗(a) = ((fi0�1�n�n,0) · · ·
(f
il∗–1
��n�n,l∗–1

))(a) (where �1 is as in the definition of B2,1(f∗)). It’s now easy to verify
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that the last expression equals g(a). It’s also easy to verify that ∪
n∈B2,2(f∗)

An /∈ I1,

therefore we’re done. 

Claim 2.12. G is Borel.

Proof. It suffices to prove the following subclaim:
Subclaim: There exists a Borel function B5 with domain Sym(U ) such that if

g ∈ G then B5(g) = (g0, g1, ... , gm) such that G |= ”g = gi00 g
i1
1 ... g

im
m ” for some

(i0, ... , im) ∈ {– 1, 1}m+1.
Proof: By the definition of G, if g ∈ G then there are m,f0, ... , fm ∈ A1 (possibly

with repetition) and i0, ... , im ∈ {– 1, 1} such that g = gi00 ... g
im
m where each gi is

either of the form B4(fi) for fi ∈ H3 (in this case, let �i := B(fi)) or g∗�i for
�i ∈ 2� \ {B(f) : f ∈ H3}.

Now if n is greater than m!, then for some u ⊆ 2n such that |u| ≤ m!< 2n

2 , for
every � ∈ 2n \ u we have:

a. For every l ≤ m, gl � u� = f�,�l �lg(�).

b. g � u� can be represented as fi0
�,�0�lg(�) ... f

im
�,�m�lg(�) ∈ Sym(u�).

d. By Claim 2.4(f), the above representation of g � u� is unique.

Therefore, from g we can Borel-compute ((�i � n : n < �) : i < m) hence
(�i : i < m).

As H3 is Borel and B is injective, the sets {B(f) : f ∈ H3} and 2� \ {B(f) :
f ∈ H3} are Borel. Now if �i ∈ 2� \ {B(f) : f ∈ H3}, we can Borel compute gi =
g∗�i . If �i ∈ {B(f) : f ∈ H3}, then �i = B(fi) and we can Borel-compute fi (by
applying B–1 from Definition 2.3(e)) hence B4(fi). 
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