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Abstract
Critical space assets require continuous monitoring to prevent potential losses. Auxiliary satellites protect these
assets by observing and tracking approaching targets. Although observation satellites can make rapid autonomous
onboard decisions, they face challenges due to limited computational capacity. The two mainstream command
and control methods currently available do not meet the demands of onboard decision-making. Highly procedu-
ral decision-making methods require extended decision times, while rapid-response intuitive or heuristic methods
carry significant error risks. To address this, this paper proposes a multi-granularity decision-making method
for optical space surveillance satellites. First, multi-granularity relative orbit determination algorithm models and
multi-granularity impulsive orbit manoeuver algorithm models were developed. Based on these models, a granular-
ity selection method for sequential three-way decisions is proposed. In non-emergency situations, fine-granularity
models are preferred to conserve fuel, while in emergency situations, coarse-granularity models are used to enhance
decision-making speed and reduce positional deviations caused by the manoeuvering game. In random multi-
scenario tests, the proposed method demonstrates lower average terminal positional deviations and fuel consumption
compared to single-granularity (highly procedural or rapid-response) and random-granularity methods.

Nomenclature
r relative position vector
v relative velocity vector
J sum of impulse velocity increments for the chaser
Q variance of W(t)
W random disturbance
X state parameter
Y observation quantity

Greek Symbol
ω threshold
ω orbital angular velocity
Φ state transition matrices

1.0 Introduction
The explosion of the Nord Stream natural gas pipeline and the attack on the Friendship oil pipeline
in Russia pose a threat to the energy security of the entire European region [1]. Simultaneously, the
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explosion and collapse of the dam at the “Kakhovka” hydroelectric power station in Ukraine have led
to significant flooding risks for numerous local residents [2]. Vigilant, long-term monitoring of such
critical infrastructure is essential to prevent similar incidents. Many crucial assets in space, such as space
stations and relay satellites, similarly require the continuous surveillance provided by sub-satellites to
implement effective protective measures [3]. Space surveillance has become a focal concern for nations
engaged in space activities.

Optical payloads boast an extensive visible range, operate on a passive logic, and deliver intuitively
clear observation effects. Simultaneously, they can conserve energy and have a relatively mature devel-
opment with comparably low costs. Given appropriate lighting conditions, their operational efficacy is
exceptional, making them the preferred means for space surveillance and holding significant research
value [4].

As the space environment becomes increasingly complex, the number of entities threatening space
assets (including debris, uncontrolled satellites, space weapons, and small celestial bodies) is rising
sharply. Space surveillance satellites also often experience communication delays with ground stations,
presenting a demand for autonomous planning capabilities in satellites equipped with observational
capacities to address time-sensitive tasks. However, the computational capabilities on board satellites
are significantly inferior to those on the ground, posing challenges for autonomous planning in optical
space surveillance [5].

Orbital pursuit-evasion games represent a highly representative category of time-sensitive tasks in
space [6]. In addressing the multi-stage pulse evasion problem for dynamic targets, employing optical
payloads implies the necessity of preempting the opponent’s sunlit areas by flying between the observer
and the sun for observation. To address the ever-evolving landscape of emergency response operations,
mainstream military command and control strategies predominantly employ two methodologies: highly
procedural command and control, and intuitive or heuristic approaches characterised by lower data den-
sity requirements. Traditional command and control methodologies rely on comprehensive and formal
decision-making processes, emphasising the collection of complete data sets followed by decision out-
puts derived from established models. Major Blair S. Williams [7] critiques this approach as a “stolid
template,” noting that it necessitates extended decision-making periods. As the command-and-control
environment becomes increasingly complex and volatile, there has been a rise in the adoption of intuitive
or heuristic approaches, which demand lower computational requirements and facilitate rapid decision-
making and response, exemplified by the OODA (Observe, Orient, Decide, Act) loop [8]. However, the
OODA loop’s sole focus on swift responses is not universally applicable to all emergency response
scenarios [9], as rapid heuristic methods are generally perceived as unreliable, carrying significant
decision-making risks. For satellites, where fuel is exceedingly precious and non-renewable, careful
decision-making is paramount. It is reductive to evaluate these two methodologies without consider-
ing the decision-making environment. Yun [10] posits that both the quality and timing of decisions
influence their effectiveness. Competent decision-makers must discern between decisions necessitating
immediate responses and those that allow for delayed responses. In the specific context of satellite orbital
manoeuvers examined in this study, if the satellite is in the transitional orbital phase at a considerable
distance, with ample time for observation, orbit determination, and adjustment, the error risks associated
with heuristic methods become unacceptable. Conversely, during the close-proximity pursuit phase, fail-
ure to promptly respond to target orbital manoeuvers renders the risks associated with heuristic errors
tolerable, as prolonged decision-making inherently increases the likelihood of failure. Consequently,
decision-makers must seek an optimal balance between decision-making time and accuracy to ensure
the rationality of onboard decisions.

In recent years, systems engineering and granular computing methods have both emphasised the need
to balance model accuracy and computational complexity. Systems engineering [11] emphasises the
ability of human beings to abstract problems and solve complex problems through modeling and model
organisation and management. When establishing system models, a balance must be struck between the
authenticity and manageability of the models, utilising models with varying degrees of fidelity in fitting
the physical system to address different problems. By discarding the encumbrance of details, one can
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oversee the entire problem, thereby avoiding reaction cycles that the expenditure of system analysis and
evaluation does not permit. Additionally, granular computing and the concept of multiple granularities
similarly involve constructing multi-granularity models with different fitting degrees, utilising models
of varying granularity to accomplish decision-making, making them suitable for handling the balance
between decision speed and accuracy [12]. Thus, constructing multi-granularity decision models for
space observation planning is a viable approach.

The use of multi-granularity models hinges on the description of decision model granularity and the
selection of granularity. Due to the intricate calculation processes involved in fine-grained computations
of orbit determination (OD) and orbital manoeuver (OM), optimisation algorithms are predominantly
employed. The stochastic nature of initial values and uncertainties in iteration cycles contribute to the
existence of uncertainties in the cost and outcomes of multi-granularity decision-making. Three-way
decision [13] making has emerged in recent years as a novel approach to address uncertain decision-
making. In other domains, it has successfully resolved a series of uncertainty-related decision problems
[14–16]. Building upon the foundation of multi-granularity models and incorporating the concept of
three-way decision-making, this approach enables swift judgements in situations with sufficient infor-
mation and employs delayed decision-making in scenarios with insufficient information, allowing for
decisions to be made after acquiring additional information. To strike a balance between decision
speed and quality, this paper proposes an optical space surveillance multi-granularity on-board decision
method based on three-way decision-making.

The remaining sections of this paper are organised as follows. Section 2 introduces the orbital
pursuit-evasion model of optical space surveillance satellites. Section 3 outlines the definition of multi-
granularity observation models and granularity selection methods. Section 4 details the experimental
procedures conducted to validate the proposed methodology under varying conditions. Finally, in
Section 5, the conclusions of this research are presented.

2.0 Problem formulation
This section primarily aims to provide the mathematical description of the pursuit-evasion game under
study and an introduction to the objective functions involved.

2.1 Scenario definition
This paper studies the orbital pursuit-evasion games problem of optical space surveillance satellites. The
primary consideration is that for the important asset satellite whose space moving target is close to its
own side, the observation satellite needs to observe the moving target and continuously monitor it. The
intention of the moving target can be judged by means of load identification and orbit prediction, which
can provide support for further defensive actions.

Three types of spacecrafts are defined: important asset spacecraft (Asset), such as space station, relay
satellite, etc., running on geosynchronous orbit (GEO); the target satellite (Target), a non-cooperative
target satellite close to the asset, runs near GEO; the chasing satellite (Chaser), our monitoring satellite
carrying optical payload, is designed to approach the target satellite and observe it at close range. As
shown in Fig. 1, assuming that the chasing satellite finds that the target satellite is close to the important
asset spacecraft, the chasing satellite needs to apply multiple pulses to reach the target satellite’s solar-
illuminated area in advance.

The safe approach region is defined with the target satellite as the vertex, encompassing the conical
solar-illuminated area between the target satellite and the sun. Within this region, the camera field of
view of the target satellite experiences a sunlit background, creating an approximate blind spot, while
the chasing satellite’s camera field of view is optimal. This optimal field of view lays the foundation for
subsequent assessments of the target satellite’s intentions and the subsequent response. The target satel-
lite also carries optical payloads. Upon detecting the approach of the chasing satellite, the target satellite
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Figure 1. The orbital pursuit-evasion game.

should undertake specific evasion manoeuvers based on the chasing satellite’s position and velocity. This
is done to prevent the chasing satellite from entering its own solar-illuminated area. Simultaneously,
the target satellite, in order to maintain its mission of observing asset spacecraft, needs to preserve its
original orbital position and orientation as much as possible.

This paper considers close-range pursuit-evasion tasks with a dynamic model based on the two-
body problem centred on Earth. During the orbital manoeuver process, the relative distance between the
chasing satellite and the target satellite is much smaller than the orbital radius of GEO. The Clohessy–
Wiltshire (CW) equations [17] are employed to approximate the relative orbital motion of the two
satellites. These equations are expressed as:

⎧⎪⎨
⎪⎩

ẍ = 2ωẏ + 3ω2x + fx

ÿ = −2ωẋ + fy

z̈ = −ω2z + fz

(1)

where ω = √
μ/a3

0 represents the average orbital angular velocity of the reference spacecraft.
Equation 1 is a second-order differential equation, and its solution is:[

r(t)

ṙ(t)

]
=

[
Φrr(τ ) Φrv(τ )

Φvr(τ ) Φvv(τ )

] [
r(t0)

ṙ(t0)

]
+

∫ [
Φrv(τ )

Φvv(τ )

]
f (s)ds (2)

where r(t) = [
x(t)y(t)z(t)

]T is the relative position vector, ṙ(t) = [
ẋ(t)ẏ(t)ż(t)

]T is the relative velocity
vector, τ = t − t0 is the flight time, and the state transition matrices are:

Φrr(τ ) =
⎡
⎢⎣

4 − 3 cos ωτ 0 0

6( sin ωτ − ωτ ) 1 0

0 0 cos ωτ

⎤
⎥⎦ (3)
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Φrv(τ ) =

⎡
⎢⎢⎢⎢⎢⎣

1

ω
sin ωτ

2

ω
(1 − cos ωτ ) 0

2

ω
( cos ωτ − 1)

1

ω
(4 sin ωτ − 3ωτ) 0

0 0
1

ω
sin ωτ

⎤
⎥⎥⎥⎥⎥⎦ (4)

Φvr(τ ) =
⎡
⎢⎣

3ω sin ωτ 0 0

6ω( cos ωτ − 1) 0 0

0 0 −ω sin ωτ

⎤
⎥⎦ (5)

Φvv(τ ) =
⎡
⎢⎣

cos ωτ 2 sin ωτ 0

−2 sin ωτ 4 cos ωτ − 3 0

0 0 cos ωτ

⎤
⎥⎦ (6)

Considering impulse-type orbital manoeuvers, the expression for the solution to Equation 1
becomes: [

r(t)

ṙ(t)

]
= Φ(t, t0)

[
r(t0)

ṙ(t0)

]
+

N∑
i=1

Φ(t, ti)

[
0

E

]
�vi (7)

where ti is the time of the impulse orbital manoeuver, N is the number of manoeuvers that occurred
before time t, and �vi is the impulse velocity increment vector corresponding to the moment ti.

Geometrically defining the safe approach region, let rS denote the position of the sun in the Earth’s
equatorial inertial frame. In the calculations, obtained based on ephemerides, the position vector from
the target satellite to the sun at time t is given by:

L (t) =rS − rT (t) (8)

2.2 Objective function
In the pursuit-evasion game, the chasing satellite needs to optimise its strategy to approach the safety
proximity region of the target satellite, while the target satellite simultaneously optimises its strategy
to prevent the chasing satellite from entering its own safety proximity region. Constructing the game
model:

ẋC = f (xC, uC, t)

ẋT = f (xT , uT , t)
(9)

xC , xT represent the states of the chasing and target satellites, where C represents the chasing satellite,
T represents the target satellite, and u denotes a pair of strategies.

The initial states constitute the initial boundary conditions for the game:

xC(t0) = xC0

xT(t0) = xT0

(10)

Terminal time constraint:

t < tf (11)
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To ensure that the chasing satellite enters the safety proximity region of the target satellite at the
terminal time, there are terminal position constraints:{ ||ro

CT(tf )|| ≤ rlim

θT(tf ) < θlim

(12)

The objective of the target satellite is to perform orbital manoeuvers to ensure that, at the terminal
time, the chasing satellite is not within its safety proximity region:⎧⎪⎨

⎪⎩
||ro

CT(tf )|| > rlim

or

θT(tf ) > θlim

(13)

Simultaneously, the total fuel constraint is expressed through velocity increments:{ ||�VC|| ≤ �VC max

||�VT || ≤ �VT max

(14)

The objective function uC
∗, uT

∗ for a set of optimal saddle point strategies is:

ηT(u∗
C, u∗

T) =
{

max ||ro
CT(tf )||

min ||�VT ||

ηC(u∗
C, u∗

T) =
{

min ||ro
CT(tf )||

min ||�VC||

(15)

3.0 Multi-granularity onboard decision method
This section introduces a multi-granularity decision-making approach to address decision-making under
various mission urgency scenarios, comprising two main components: the multi-granularity observation
algorithm model and the multi-granularity onboard decision module. The multi-granularity observation
algorithm model includes the orbit determination algorithm model and the orbit manoeuver algorithm
model. The orbit determination algorithm model is divided into coarse-grained orbit determination
(coarse-grained OD), medium-grained least squares coarse fitting (medium-grained OD), and fine-
grained least squares fine fitting (fine-grained OD). The orbit manoeuver algorithm model is divided
into coarse-grained numerical approximation solution (coarse-grained OM), medium-grained coarse
optimisation (medium-grained OM), and fine-grained fine optimisation (fine-grained OM). The multi-
granularity onboard decision module includes orbit game strategies, decision cost analysis methods,
and a granularity selection method based on sequential three-way decision. A granularity inheritance
criterion is designed for multiple rounds of the game to reduce the computational load of the sequential
three-way decision top-down architecture. The basic design concept of the multi-granularity decision
framework is illustrated in Fig. 2.

During the game process, the relative orbital parameter

[
rDet

ṙDet

]
is obtained by calculating the

observation parameter

[
r(t1)

ṙ(t1)

]
,

[
r(t2)

ṙ(t2)

]
, · · · ,

[
r(tn)

ṙ(tn)

]
. In the orbit determination phase, the multi-

granularity on-board decision-making module may choose different granularity levels based on the
specific conditions, triggering multiple iterations of the relative orbit determination algorithm. After
determining the relative orbit, the obtained parameters are used as input to calculate the velocity
impulses �v1, �v2, · · · , �vm required for orbit manoeuvering. In the manoeuvering calculation process,
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Figure 2. The multi-granularity decision framework.

Figure 3. The state variables for relative orbit determination.

the multi-granularity on-board decision-making module may also opt for different granularity levels,
invoking multiple iterations of the orbit manoeuvering algorithm.

3.1 Multi-granularity onboard relative orbit determination model
This study contemplates using an optical camera and lidar data for relative orbit determination. The
onboard relative orbit determination algorithm utilises multiple images and distance measurements
within the instrument coordinate system to obtain state parameters for various relative position points.
Employing fitting calculations at different computational granularities, the algorithm determines the
initial relative position, thereby deriving the orbital parameters of the target. Subsequently, the orbit is
extrapolated to facilitate the computation of proximity manoeuvers in the subsequent stages.

Due to pixel constraints in optical cameras, the relative positions rx, ry in the instrument coordinate
system are determined by the centre position of the pixel block where the target is located in the cam-
era’s field of view. For instance, if the actual relative position of the target with respect to the camera’s
instrument centre is (+30.3, −20.7) m, and each pixel block on the camera represents a spatial distance
of 1m, then the measured values from the camera would be (+30, −21) m at this distance. The lidar
measurement rz is subject to systematic errors and is directly proportional to the actual distance. The
velocities vx, vy, vz are obtained through interval sampling and interpolation.

The state equation and observation equation are defined as follows, with input and output state
variables shown in Fig. 3.

X(t) =
[

r(t)

ṙ(t)

]
, XDet =

[
rDet

ṙDet

]
(16)
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Selecting state parameter Xi, i = 1, · · · , N, the motion state equation for the studied object can be
expressed in the following form of first-order differential equations:

dX(t)/dt = f (X) + G(t) · W(t) (17)

where W(t) is a random disturbance, with a mean value E[W(t)] = 0.
The correlation function is:

COV[W(t), W(τ )] = Q(t)δ(t − τ )

δ(t − τ ) =
{

1 t = τ

0 t �= τ

(18)

where Q(t) is the variance of W(t).
The initial estimate of the state vector is:

X(t0) = X0 (19)

The observation quantityYj, j = 1, · · · , M expresses the observation equation in vector form.

Y(t) = h(X) + V(t) (20)

where V(t) is a random disturbance, with a mean value E[V(t)] = 0.
The correlation function is:

COV[V(t), V(τ )] = R(t)δ(t − τ ) (21)

where R(t) is the variance of V(t).
Assume that W(t) and V(t) are mutually independent.

COV[W(t), V(τ )] = 0 (22)

Both the medium-grained OD and fine-grained OD models utilise the least squares fitting method.
Assuming that at time t0, the state of the studied object is X0, the state at time t is obtained by solving
the state equation using numerical methods:

Xt = X0 +
∫ t

t0

f (X) + G(t) · W(t) (23)

The deviation between observed measurement values and calculated values

�Y = YM − Y(Xt) (24)

The change in state variables after one iteration is defined as �X = ∧
X0 −X0

Using the numerical finite difference method, calculate the partial derivative matrix of the observa-
tions with respect to the improved state.

H(�X) = ∂Y

∂�X
= Y(X0 + �X) − Y(X0)

�X
(25)

So, the new estimate after one iteration is
∧

X0 = X0 + (
HTWH

)−1
HTW�Y (26)

Repeatedly iterate until convergence to obtain the value of XDet.
The following introduces three granularity levels of orbit determination models.

(1) Coarse-grained OD

At the coarse-grained level, only a small number of observations are calculated. The orbit is propa-
gated by the observation time interval, and pairwise averages are taken. This granularity level has the
smallest computational load but the poorest fitting effect.
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Figure 4. The three-impulse orbital manoeuver.

(2) Medium-grained OD

At the medium-grained level, the least squares fitting algorithm is employed with fewer iterations,
resulting in a slightly better fitting effect. At this granularity level, adopting a small number of observa-
tions and a larger convergence error helps the algorithm quickly exit the iteration, reducing computation
time.

(3) Fine-grained OD

At the fine-grained level, a larger number of observations, a smaller convergence error and a larger
maximum iteration count are adopted to achieve higher fitting accuracy and obtain better initial orbit
fitting results. However, the corresponding fitting time is also the longest.

3.2 Multi-granularity onboard impulse orbit manoeuver model
The orbital manoeuver model employs a variable-timing multi-impulse orbital manoeuver design. To
mitigate the risk of the chasing satellite adopting a two-impulse strategy, where the first impulse con-
cludes before the target executes an evasive manoeuver, resulting in the need for additional fuel to correct
the orbit after the initial impulse, a multi-impulse orbital manoeuver approach is employed. The multi-
impulse orbital manoeuver, after a certain degree of optimisation, generally results in a smaller first
impulse compared to the first impulse of a two-impulse manoeuver. Subsequent orbital manoeuvers
incur reduced fuel consumption. A representative three-impulse scenario is illustrated in Fig. 4.

(1) Coarse-grained OM

The numerical solution coarse optimisation granularity initially employs numerical approximation to
calculate and obtain multiple pulse values, swiftly yielding usable initial values. Utilising the numerical
solution as a starting point, a narrow-range optimisation is performed in the vicinity of the numerical
solution. This approach involves fewer iterations and computational steps, resulting in the fastest com-
putational speed. However, the optimisation effect on fuel consumption is comparatively worse, often
converging to a local saddle point.

Using the orbit determination result XDet as the input parameter at time t0.
From the state transition matrix, the relationship between the position and velocity states at time t0

and tf is given by: [
r(tf )

ṙ(tf )

]
=

[
Φrr(τ )Φrv(τ )

Φvr(τ )Φvv(τ )

] [
r(t0)

ṙ(t0)

]
(27)

The straight vector ρ f ,0 from r(tf ) to r(t0) represents the expected approach orbit. Let r(t) be the
relative position vector of the satellite to the straight vector ρ f ,0 at time t. Obviously, t0 ≤ t ≤ tf , and the
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boundary conditions for ρ(t) are: {
ρ(t0) = ρ f ,0

ρ(tf ) = 0
(28)

Using N(N ≥ 3) velocity impulses, the chasing satellite moves from the initial position r(t0) (i.e.,
ρ(t0) = ρ f ,0) to the final position r(tf ) (i.e., ρ(tf ) = 0) within the time T. The straight vector ρ f ,0 is decom-
posed into N-1 equally spaced segments. A velocity impulse is applied at the beginning and end of each
segment. The time interval between the two impulses in each segment is the same, i.e., �t = T (N-1).

Positions along the manoeuvers at each instance from ρ f ,0:

�ρ = ρ f ,0

N − 1
(29)

For the kth impulse,

r(tk−1) = r(tf ) + ρ f ,k−1

r(tk) = r(tf ) + ρ f ,k

(30)

The initial velocity after the kth manoeuver can be obtained.

ṙ(t+k−1) = Grrr(tk−1) + Grvr(tk) (31)

Similarly, the final velocity before the kth manoeuver.

ṙ(t−k−1) = Gvrr(tk−2) + Gvvr(tk−1) (32)

where:
Grr = −Φ−1

rv (T)Φrr(T), Grv = Φ−1
rv (T)

Gvr = Φvr(T) − Φvv(T)Φ−1
rv (T)Φrr(T), Gvv = Φvv(T)Φ−1

rv (T)
(33)

The velocity increment required for the kth impulse is

vk,k−1 = ṙ(t+k−1) − ṙ(t−k−1) (34)

(2) Medium-grained OM

At the medium-grained level, particle swarm optimisation [18] is used for the solution. In this gran-
ularity, a smaller number of particles, a smaller upper limit of iteration count, and a larger iteration
termination error are employed. The optimisation effect is better, but the calculation time is longer
compared to coarse-grained.

Using the sum of N impulse velocity increments as the optimisation objective.

J =
N∑

i=1

|�vi| (35)

From Equation 34, the fuel optimisation function is constructed and expressed as follows:

min J =
N∑

i=1

|�vi|

s.t.⎧⎪⎨
⎪⎩

t0 ≤ ti ≤ t0 + T , i = 1 · · · N

ti ≤ tj, i < j

|�vi|� 0, i = 1 · · · N − 2

(36)
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The optimisation variables for the multi-pulse orbital manoeuver problem are the pulse moments for
each pulse. Given the intricate nature of the constraints, the particle swarm optimisation algorithm can
effectively solve the global optimal solution.

(3) Fine-grained OM

At the fine-grained level, using a larger number of particles, a larger upper limit of iteration count and
a smaller iteration termination error for global optimisation results in the best fuel optimisation effect.
However, the corresponding computation time is the longest.

3.3 Multi-granularity onboard decision module
In this section, manoeuvering game strategies were designed for the chasing satellite using a multi-
granularity observation model. Simultaneously, corresponding manoeuvering game strategies were also
designed for the target satellite that did not adopt a multi-granularity observation model. The orbital
manoeuver strategies for the chaser and target are illustrated in Fig. 5.

The multi-granularity game process for the chasing satellite is outlined as follows:

(1) Selects an appropriate orbit determination granularity for determining the orbit of the target.
Refers to the orbit determination model in Section 3.1 and proceeds to step (2).

(2) The orbit determination results from (1) are used to calculate the minimum distance between
the target and the asset dminTargetToAsset, as well as the time to reach the minimum distance tminDisCha.
Proceed to step (3).

(3) Check whether the minimum distance between the target and the asset is less than the threat
distance of the asset dTreatAsset. If true, proceed to step (4).

(4) If the minimum distance between the target and the asset is less than the threat distance of the
asset, the chaser selects an appropriate orbit manoeuver granularity to calculate the orbit manoeu-
ver impulse for approaching the target. It also stores the orbit determination parameters, time
of reaching the minimum distance, manoeuver time and manoeuver components. Proceed to
step (5).

If the minimum distance between the target and the asset is greater than the threat distance of
the asset, return to step (1) to re-determine the orbit for the target.

(5) Check whether the manuoeuver time has been reached based on the stored manoeuver time. If the
recorded time has been reached, execute the corresponding impulse manoeuver. If the manoeuver
time has not been reached, proceed to step (6).

(6) Continues to select an appropriate granularity to determine the orbit of the target. Both the current
orbit determination result and the stored previous orbit determination result are propagated to
the stored time of reaching the minimum distance. Compares the propagated results of the two
orbit determinations, denoted as dLastTarToAssTerminal and dTarToAssTerminal.

If the difference is less than the set manoeuver detection threshold, it is considered that the
target has not made an avoidance manoeuver. Return to step (6) to re-determine the orbit of the
target. If the difference is greater than the set manoeuver detection threshold, it is considered that
the target has made an avoidance manoeuver. Proceed to step (7).

(7) Further checks whether the propagated result of the current orbit determination is less than the
threat distance of the asset. If the result is less than the threat distance, it is considered that
the target has manoeuvered and has not changed its threat intent. Clears the stored minimum
distance, time of reaching the minimum distance, manoeuver time, and manoeuver components.
Return to step (1) to re-determine the orbit for the target and recalculate the minimum distance
and time of reaching the minimum distance.
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Figure 5. The orbital manoeuver strategies for the chaser and target.

If the result is greater than the threat distance of the asset, it is considered that the target has
manoeuvered, but the end position does not pose a threat to the asset. There are two possibilities:
either the target has abandoned the mission of threatening the asset, or the target executes the
initial pulses of a multi-pulse orbit manoeuver and is on a transitional orbit where the threat
cannot be determined. In either case, the target intended to threaten the asset. Therefore, the
chasing satellite adopts a strategy of approaching the asset for both possibilities. Simultaneously,
it selects an appropriate orbit manoeuver granularity, solves and stores the manoeuver time and
impulse components. Proceed to step (5).

The orbital game process for the target is as follows:
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Figure 6. The target’s evasion manoeuver.

The target does not have multi-granularity computing capability. As referenced in Section 3.1, the
orbit determination model fixedly selects one of the granularities, and the orbit manoeuver model, as
referenced in Section 3.2 Multi-granularity onboard impulse orbit manoeuver model, fixedly selects one.

(1) Selects an appropriate orbit determination granularity for determining the orbit of the target.
Refers to the orbit determination model in Section 3.1 and proceeds to step (2).

(2) The target determines its orbit as the chaser and proceeds to step (3).
(3) Based on the orbit determination results from (2), solve for the minimum distance between the

chaser and the target dminChaserToTarget, as well as the time to reach the minimum distance, and
proceed to step (4).

(4) If the minimum distance between the chaser and the target is less than the threat distance of the
target, proceed to step (5).

(5) If the minimum distance between the chaser and the target is less than the threat distance of the
target, the target uses a fixed granularity for orbit determination to calculate the orbital manoeuver
pulse to evade the chaser. Additionally, store the orbit determination parameters, time of reaching
the minimum distance, manoeuver time, and manoeuver components. Proceed to step (6). If the
minimum distance exceeds the threat distance, go back to step (1) and re-determine the orbit for
the chaser.

In this process, the target’s evasion manoeuver is depicted in Fig. 6. The chaser floats past the
target at the minimum distance, dividing the circle with the target as the centre and the target
threat distance as the radius into two halves: one containing the minimum distance and the other
without. The target moves towards the half-circle without the minimum distance by a distance
equal to the target threat distance. The target must ensure it stays within the threat distance of the
asset satellite. In this plan, the target performs a small-distance pulse manoeuver.

(6) Check whether the manoeuver time has been reached based on the stored manoeuver time. If the
recorded time has been reached, execute the corresponding impulse manoeuver. If the manoeuver
time has not been reached, proceed to step (2).

The orbit determination algorithm and the orbit manoeuver algorithm adopt an iterative optimisation
method. The initial iteration value and direction are stochastic. Therefore, when the algorithm jumps
out of the iteration, the number of cycles is not necessarily the same, resulting in uncertainty in the
decision-making time cost of the multi-granularity observation model. The output of the orbit determi-
nation algorithm is the relative position vector and the relative velocity vector at the end of the orbit
determination. An input of the orbit manoeuver algorithm is to allow the manoeuver time of the first
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pulse. If the actual decision end time exceeds the calculated first pulse manoeuver time due to uncer-
tainty, the first pulse cannot be applied as planned and needs to be recalculated, even leading to mission
failure.

Chaser employing the Absolute Robust Criterion follows the decision-making steps outlined below:

(1) Determine the set of potential scenarios for statistical uncertainty variables.
(2) Identify the set of viable options.
(3) Compute the benefits or costs for each feasible option under each potential scenario.
(4) Determine the minimum benefit or maximum cost for each option along with its corresponding

worst-case scenario. In this context, the benefits or costs associated with each option represent
the decision time cost, so calculate the maximum cost for each option.

(5) Compare the costs under the worst-case scenarios for each option and identify the option with
the minimum cost.

In the context of the uncertainty problem associated with the decision time cost for the same deci-
sion granularity scheme in this section, the Absolute Robust Criterion method is applied. This involves
statistically analysing the actual decision time costs for each scheme under different conditions. The
maximum decision time cost across all conditions is then used as the basis for both scheme selection
and execution.

In the context of the space dynamic target tracking game considered in this paper, there is inherent
uncertainty in the parameters used for each orbit determination, leading to uncertainties in the observed
orbit determination errors. As the distance between the chaser and the target diminishes, the spatial scale
corresponding to the one-pixel unit decreases gradually. The positional errors caused by pixel units will
reduce from the meter level to the centimeter level. To address such dynamic uncertainties, the paper
introduces the concept of sequential three-way decision-making.

This section establishes a sequential three-way decision granularity selection method framework for
the space dynamic target pursuit-evasion game, as illustrated in Fig. 7.

The framework relies on the multi-level granularity structure defined earlier, which is divided into
coarse-grained, medium-grained and fine-grained layers. Each layer utilises three-way decisions to par-
tition the gaming scenarios into three categories. The decision to move to the next granularity layer is
based on the requirements of the gaming scenario. Each layer is divided into three regions: positive, neg-
ative and boundary. The positive and negative regions adopt acceptance and rejection strategy schemes,
respectively. The boundary region employs a delay decision strategy to gather more information to
further support decision-making.

Let g(S) be the relative orbit determination algorithm for each granularity layer, encompassing
two outputs, denoted asg1(S), g2(S). h(S) represents the pulse orbital manoeuver algorithm for each
granularity layer.

g1(S) = dChaserToTarget

g2(S) = dminTargetToAsset

h(S) = J
(37)

(1) Firstly, for each granularity selection problem, enter the coarse-grained layer initially:
In the coarse-grained layer, divide the solution space UCoarse into three regions
RCoarse,POS, RCoarse,BND, RCoarse,NEG using the boundary region threshold αCoarse, positive and
negative region thresholds βCoarse, and evaluation function gCoarse(S), hCoarse(S):
For the OD process, coarse-grained models are used for calculations. Given a coarse-grained
distance threshold to divide the positive and negative regions and the boundary region, when the
distance between the chaser and target is less than the coarse-grained distance threshold αCoarseOD,
it is classified into the coarse-grained layer’s boundary region, and the decision is delayed. When
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Figure 7. The sequential three-way decision granularity selection method framework.

dChaserToTarget is greater than αCoarseOD, it is classified into the positive or negative region based on the
calculation results. If the minimum distance dminTargetToProperty obtained from the orbit determination
is less than the threat distance to the asset dTreatProperty, it is classified into the positive region. If
dminTargetToProperty is greater than dTreatProperty it is classified into the negative region.⎧⎪⎨

⎪⎩
RCoarseOD,POS = {S ∈ UCoarseOD|g1(S) ≤ αCoarseOD , g2(S) ≤ βCoarseOD}
RCoarseOD,BND = {S ∈ UCoarseOD|g1(S) > αCoarseOD}
RCoarseOD,NEG = {S ∈ UCoarseOD|g1(S) ≤ αCoarseOD , g2(S) > βCoarseOD}⎧⎪⎨

⎪⎩
RCoarseOM,POS = {S ∈ UCoarseOM|g1(S) ≤ αCoarseOM , h(S) ≤ βCoarseOM}
RCoarseOM,BND = {S ∈ UCoarseOM|g1(S) > αCoarseOM}
RCoarseOM,NEG = {S ∈ UCoarseOM|g1(S) ≤ αCoarseOM , h(S) > βCoarseOM}

(38)

For the OM process, if dChaserToTarget is less than αCoarseOM, it is classified into the boundary region
of the coarse-grained layer, and the decision is delayed. For fuel solving in orbit manoeuver, if
the fuel consumption J is less than the remaining fuel upper limit for the chaser, it is classified
into the positive region. If J is greater than the remaining fuel upper limit, it is classified into the
negative region.
According to the three-decision rule, the following three decision rules are obtained:
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If classified into the positive region, take action to accept the calculation results of this granularity
layer.
If classified into the boundary region, take action to acquire more observation information and
enter the next granularity layer for calculation.
If classified into the negative region, take action to reject the calculation results of this gran-
ularity layer, obtain observation information again, and enter the current granularity layer for
calculation.

(2) Enter the medium-grained layer for the problem classified into the boundary region of the coarse-
grained layer in the previous layer:
Similar to the logic of the coarse-grained layer, For the OD process,⎧⎪⎨

⎪⎩
RMediumOD,POS = {S ∈ UMediumOD|g1(S) ≤ αMediumOD , g2(S) ≤ βMediumOD}
RMediumOD,BND = {S ∈ UMediumOD|g1(S) > αMediumOD}
RMediumOD,NEG = {S ∈ UMediumOD|g1(S) ≤ αMediumOD , g2(S) > βMediumOD}

(39)

For the OM process,⎧⎪⎨
⎪⎩

RMediumOM,POS = {S ∈ UMediumOM|g1(S) ≤ αMediumOM , h(S) ≤ βMediumOM}
RMediumOM,BND = {S ∈ UMediumOM|g1(S) > αMediumOM}
RMediumOM,NEG = {S ∈ UMediumOM|g1(S) ≤ αMediumOM , h(S) > βMediumOM}

(40)

(3) Enter the fine-grained layer for the problem classified into the boundary region of the medium-
grained layer in the previous layer:
The fine-grained layer is the bottom layer of the sequential three-decision method and does not
further partition the boundary region.
For the OD process, {

RFineOD,POS = {S ∈ UFineOD| g2(S) ≤ βFineOD}
RFineOD,NEG = {S ∈ UFineOD| g2(S) > βFineOD} (41)

For the OM process, {
RFineOM,POS = {S ∈ UFineOM| h(S) ≤ βFineOM}
RFineOM,NEG = {S ∈ UFineOM|h(S) > βFineOM} (42)

(4) If there is only one round of decision-making, the process of gradually refining the solution from
the coarse-grained layer to the fine-grained layer is unquestionable. This stepwise abstraction of
the problem aligns with the natural thought process of human problem-solving. However, the
game problem considered in this section involves multiple rounds of interaction between the
two parties. It requires making decisions on granularity selection multiple times. If, during each
decision-making iteration, the process iterates from coarse-grained to fine-grained, the compu-
tational burden associated with the sequential three-way decision-making, particularly as the
number of decision rounds and the granularity layer divisions increase, becomes significantly
pronounced.

Therefore, in the multi-round iterative decision-making process considered in this section, a decision-
making approach that inherits prior knowledge is adopted. Once a granularity layer has been evaluated
in a previous iteration, it is not reassessed from the coarsest-grained layer in the subsequent iteration.
In the same gaming scenario, the granularity layer accepted in the previous round serves as the starting
point for the next round. For instance, if the medium-grained layer was accepted in the previous round,
the next round can directly start the division from the medium-grained, eliminating the need to solve
and assess from the coarse-grained again.
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Table 1. Single orbit game simulation satellite orbit parameters

Orbit parameters Asset Chaser Target
Semimajor axis (m) 42,164,000 42,169,712.29 42,174,965.67
Eccentricity 0 0 0
Inclination (◦) 0 0 0.0097
Longitude of the ascending node (◦) 0 0 0
Argument (◦) 0 0 0
True anomaly (◦) 0 -0.27 -0.35

Table 2. The game results under different methods

Min-distance Total velocity Min-distance Total velocity
between chaser increment of the between target increment of
and target (m) chaser (m/s) and asset (m) the target (m/s)

Multi-granularity 9.37 77.41 474.85 101.37
Coarse-grained 111.91 91.31 515.26 107.43
Medium-grained 147.87 120.81 482.42 105.37
Fine-grained 399.72 89.55 462.30 103.53
Random-granularity 391.60 139.01 473.21 104.91

4.0 Results and discussions
This chapter conducts single-time simulations and Monte Carlo batch simulations to compare the
multi-granularity decision-making method proposed in this paper with single-granularity and random-
granularity methods. Additionally, the selection of parameters used in the proposed method is discussed
in the latter part of this chapter.

4.1 Orbit game single simulation comparison
The initial orbit parameters for the asset, chaser and target are given in Table 1. Additionally, the target
is configured to plan a close-proximity orbit manoeuver towards the asset satellite at 0s.

The game results under different methods are shown in Table 2.
Table 2 and Fig. 8 compares the results of the multi-granularity decision-making method proposed

in this paper with the single-granularity and random-granularity orbital pursuit-evasion results. The dis-
tance variation curves between the chaser, target and the asset are depicted. The solid red line represents
the temporal evolution of the relative distance between the chaser and the target, while the dashed green
line illustrates the relative distance variation between the target and the asset. The solid red line in the
figure represents the temporal evolution of the relative distance between the chaser and the target, while
the dashed green line illustrates the relative distance variation between the target and the asset.

Figure 8(a) shows that, under the multi-granularity decision-making method, the chaser executes two
significant thrust manoeuvers around 400s and 2500s. These manoeuvers effectively reduce the relative
distance between the chaser and the target. From 2500s to 5000s, it is evident that the target engages
in continuous evasion manoeuvers after the chaser’s initial approach. However, the chaser responds
promptly after the target widens the gap. It identifies the target’s escape attempts and conducts multiple
rounds of OD and OM, ultimately converging to the minimum distance at the terminal position. As a
result, the chaser achieves victory in the game.

The comparison between Fig. 8(a-d) shows that as the granularity of the single-granularity method
refines, the terminal relative distance between the chaser and the target grows larger over the course of
the game. Additionally, in Fig. 8(d) and (e), the green dashed line is to the left of the red solid line during
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Figure 8. Relative distance variation curves between chaser, target and asset under different meth-
ods. (a) Multi-granularity decision-making method. (b) Coarse-grained method. (c) Medium-grained
method. (d) Fine-grained method. (e) Random-granularity method.

the terminal phase. This indicates that the target approaches the asset before the chaser approaches the
target, achieving the desired game state earlier than the chaser by the end of the game.

The three-dimensional orbit plot of the relative position between the chaser and target under the multi-
granularity decision method proposed in this paper is shown in Fig. 9. The asterisk (∗) represents the
target position. Despite the continuous evasion of the target, the chaser can still approach the target for
observation as expected by the decision, demonstrating the feasibility of the multi-granularity decision
method proposed in this paper.

This paper’s multi-granularity decision-making approach outperforms the other four methods in both
minimum distance and total velocity increment. Regarding minimum distance, the multi-granularity
method is 92% better than the coarse-grained method, 94% better than the medium-grained method,
98% better than the fine-grained method, and 98% better than the random-grained method. Regarding
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Figure 9. The relative position change curve of chaser and target under the multi-granularity method.

Figure 10. The initial relative position states. (a) Between the target and asset (b) Between the chaser
and asset.

fuel consumption, the multi-granularity method is 15% better than the coarse-grained method, 36%
better than the medium-grained method, 14% better than the fine-grained method, and 44% better than
the random-grained method.

4.2 Monte Carlo experiments
This section presents a Monte Carlo analysis comparing the multi-granularity decision-making method
with scenarios involving coarse-grained, medium-grained, fine-grained, and randomly selected gran-
ularity models. The analysis aims to evaluate the gaming capabilities of each method under different
random conditions and their adaptability to various scenarios. A total of 400 scenarios were randomly
generated using the Monte Carlo method. Simulations were conducted 2,000 times, considering the asset
located on a circular orbit with a semi-major axis of 42,164km and an orbital inclination of 0◦.

The initial relative position states between the target and asset in the inertial coordinate system
are shown in Fig. 10(a). The value range of the x-direction component is 6km, the value range of
the y-direction is 120km, and the value range of the z-direction is 400m. A total of 400 points were
randomly generated to represent the initial state parameters of the target. Due to significant fuel
consumption associated with manoeuvers that substantially change the orbit’s inclination, this section
does not consider conditions where the z-direction has a considerable impact on the orbit inclination in
the sampled points.

Additionally, the initial relative position states between the chaser and asset in the inertial coordinate
system are shown in Fig. 10(b). The value range of the x-direction component is 4km, the value range
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Figure 11. The batch processing results of the minimum distance between the chaser and target.

of the y-direction is 40km, and the value range of the z-direction is 40m. A total of 400 points were
randomly generated to represent the initial state parameters of the chaser.

The batch processing results of the minimum distance between the chaser and target under different
granularity selection methods are shown in Fig. 11.

The red squares represent the minimum observed relative distance between the chaser and target
using the multi-granularity decision-making method proposed in this paper. The red squares of the
multi-granularity selection method are at the bottom, indicating that the minimum relative distance is
mostly within 100m. The next is using coarse-grained observation model methods, which are mostly
in the range of 10–120m. However, most of the methods using medium-grained observation model,
methods using fine-grained observation model, and random selection of granularity model methods
mostly exceed 100m, and even in some scenarios, it exceeds 1,000m, indicating that in these scenarios,
the chaser failed to complete the game task of approaching the target for observation.

The main reason for the failure of the task in the above scenarios is the different computational time
costs of the relative orbit determination algorithm models at different granularities. Due to the influence
of optical camera resolution and laser ranging accuracy, the error between the measured relative distance
parameters used for relative orbit determination and the true relative distance decreases as the distance
between the chaser and the target decreases. The accuracy of the relative orbit determination algorithm
gradually increases with the increase of granularity. In the final stage of the game, the accuracy of the
measurement parameters improves, and the granularity of the algorithm has little impact on the orbit
determination results. However, the increase in granularity will significantly increase the computational
time cost of orbit determination. It is found that at least one orbit determination is required for the target
to make an evasive action. Re-determining the orbit for the target requires another orbit determination.
The fine-grained orbit determination algorithm wastes much computation time in the late stage. If a
fine-grained orbit determination algorithm is selected at this time, it is very likely that the target has
completed two orbit manoeuvers while the chaser is still in the calculation process, ultimately leading
to the failure of the game for methods using the medium-grained model, methods using the fine-grained
model, and random selection of granularity model methods.

The coarse-grained and the multi-granularity methods have similar results in the minimum distance
at the end, but the latter is superior. This is mainly because in the final round of calculation in the game
if the second pulse of the chaser’s three-pulse orbit manoeuver algorithm converges to the vicinity of
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Figure 12. The batch results for the required velocity increments for chaser orbit manoeuvers.

the third pulse, the target cannot timely avoid after the chaser applies the second pulse. In this round of
calculation, if the chaser can choose the medium-grained orbit determination algorithm, the accuracy
of the relative distance at the end will be better than that of the coarse-grained. The sequential three-
branch decision-making granularity selection method based on the measured distance, can select the
granularity of the relative orbit determination algorithm, ensuring the accuracy of orbit determination
in the early stage of the game and meeting the timeliness requirements in the later stage. The granularity
selection method proposed in this paper can meet the accuracy and timeliness requirements of the entire
flight process.

Under different granularity selection methods, the batch results for the required velocity increments
for chaser orbit manoeuvers are shown in Fig. 12. The red squares are generally located at the bottom of
all line types, indicating that the multi-granularity decision-making method proposed in this paper can
still ensure a good fuel optimisation effect under various working conditions. The velocity increment
values generated by orbit manoeuvers for each condition are mostly maintained in the range of 50–80m/s.
The methods using coarse-grained and those using medium-grained follow, maintaining values in the
range of 70–110m/s. However, the adaptability of the method using medium-grained is relatively worse
for batch conditions, as reflected in the figure by instances where the method using medium-grained
has values exceeding 150m/s in certain conditions. The methods using fine-grained and randomly
selecting granularity for each decision perform the worst in terms of fuel optimisation, with velocity
increments exceeding 150m/s in most conditions, and even cases where velocity increments exceed
200m/s.

In Fig. 12, using the fine-grained model method in the late stage of flight results in a significant
amount of fuel consumption, leading to an increase in velocity increment for the conditions. If the
random granularity model method randomly selects the fine-grained model in the late stage of flight,
it will also lead to an increase in velocity increment for the conditions. The coarse-grained model has
poor optimisation performance, and using the coarse-grained model method accumulates a significant
amount of fuel consumption in the early stage of flight. The multi-granularity selection method of the
sequential three-branch decision-making proposed in this paper aligns with the practical rules mentioned
above. It optimises the orbit manoeuver using the fine-grained model in scenarios where longer flight
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Table 3. Batch statistics comparing each granularity selection method

Average of Average of Min of Min of Max of Max of
min-distance velocity min-distance velocity min-distance velocity

(m) pulse (m/s) (m) pulse (m/s) (m) pulse (m/s)
Multi-granularity 75.34 71.77 1.43 44.46 396.56 115.19
Coarse-grained 105.26 85.92 4.17 55.26 429.61 121.04
Medium-grained 653.83 97.37 77.42 50.88 3,650.43 199.01
Fine-grained 664.92 120.00 92.83 61.87 3,563.02 211.56
Random-granularity 719.94 116.96 90.46 58.14 3,563.95 244.77

time is allowed and not urgent, and uses the coarse-grained model with the least computation time
cost to compute the orbit manoeuver parameters in scenarios where shorter flight time is allowed and
urgent. This granularity selection method in this paper can meet the fuel optimisation and effectiveness
requirements for various levels of threat urgency.

Batch statistics comparing each granularity selection method across 400 scenarios for average end
closest distance, average velocity increment, minimum end closest distance, minimum velocity incre-
ment, maximum end closest distance and maximum velocity increment are presented in Table 3.

According to Table 3, the proposed multi-granularity decision-making method in this paper outper-
forms the average end closest distance compared to using only coarse-grained by 28.4%, compared to
using only medium-grained by 88.5%, compared to using only fine-grained by 88.7%, and compared
to random granularity selection by 89.5%. The average velocity increment is better than using only
coarse-grained by 16.5%, compared to using only medium-grained by 26.3%, compared to using only
fine-grained by 40.2%, and compared to random granularity selection by 45.19%.

The results obtained from applying the five methods to the 400 scenarios were processed, and nor-
malisation was performed for each method in terms of the average end closest distance, average velocity
increment, minimum end closest distance, minimum velocity increment, maximum end closest distance
and maximum velocity increment. These six statistical values were plotted on the same radar chart, as
shown in Fig. 13. According to the radar chart, the proposed multi-granularity decision-making method
in this paper outperforms the other four granularity selection methods in terms of average end clos-
est distance and velocity increment, whether in terms of average, minimum or maximum values. This
demonstrates the adaptability of the proposed method to the randomly generated scenarios in the Monte
Carlo simulations, surpassing the other four granularity selection methods.

4.3 Absolute robustness criterion analysis
In this paper, the computation time is measured using the C++ high-resolution clock to track the max-
imum time consumed by the calculations at three granularities. The simulations are performed using
an Intel Core i5–10,500 processor with a Dhrystone Benchmarks integer instruction rate of approxi-
mately 36,802 MIPS [19]. As a reference, the ARM architecture with Cortex-M4 as the onboard core
has an integer instruction rate of about 225 MIPS [20]. Based on these parameters, the computational
power assumption in this paper is that the on-board computation time is approximately 160 times that
of the Core i5 processor used in this study. This assumption is utilised for subsequent calculations of
computational time costs.

The orbit determination was simulated with three granularities, using 20, 30 and 50 images, and the
simulation was repeated 200 times with different initial inputs. The statistical values for the time limits
of orbit determination and orbit manoeuver are shown in Table 4.
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Table 4. The statistical values for the time limits of OD and OM

High-resolution Estimated onboard
clock time (ms) time consumption (s)

Coarse-grained OD 28 25
Medium-grained OD 115 50
Fine-grained OD 291 100
Coarse-grained OM 26 5
Medium-grained OM 163 30
Fine-grained OM 550 100

Figure 13. The batch results for the required velocity increments for chaser orbit manoeuvers.

The definition includes a sampling interval of 1 second for each photo taken by the camera. To
ensure comprehensive statistics, the time consumption values for each granularity were appropriately
expanded.

4.4 Sensitivity analysis
For the proposed sequential three-way decision method in this paper, a sensitivity analysis was con-
ducted on the values of parameters αCoarseOD αMediumOD αCoarseOM and αMediumOM. The results of single
simulation parameters and indicators are shown in Fig. 14. For the two indicators of minimum end
distance and velocity impulse consumption, the top n indicators were individually selected, and the cor-
responding parameters for the most optimal values were obtained, resulting in two optimal parameter
sets. When n cannot be reduced further, and there is an intersection between the optimal parameter sets
for the two indicators, the intersecting elements represent the comprehensive optimal parameters for both
indicators.

Randomly selecting 50 scenarios within a relative distance range of 50–200km, simulations were
conducted with 11 different parameter values for each scenario to obtain the optimal parameters. The
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Figure 14. Single condition simulation boundary division threshold sensitivity analysis bar chart. (a)
αCoarseOD (b) αMediumOD (c) αCoarseOM (d) αMediumOM

probability of occurrence for the optimal parameters across all scenarios was then calculated and is
shown in Fig. 15. A higher probability indicates better adaptability of the indicator to different scenarios.

Threshold parameters αCoarseOD = 14km, αMediumOD = 32km, αCoarseOM = 20km, and αMediumOM = 80km
required for this method were obtained through sensitivity analysis. These parameter values were
consistently used in simulation validations.

In conclusion, the multi-granularity decision-making method designed in this paper, including the
on-board game planning framework and the granularity selection method in the sequential three-way
decision-making, not only achieves close-distance observations at the end but also ensures optimal
fuel consumption. This approach satisfies the requirements for orbit determination and orbit manoeuver
decisions in multi-round orbital game scenarios aimed at protecting the safety of the asset.

5.0 Conclusion
This paper proposed a multi-granularity decision-making method for optical space surveillance that
reasonably balanced computation cost and precision. Unlike traditional single-granularity decision-
making methods, the proposed approach could dynamically choose the most appropriate granularity for
decision-making based on the urgency of the situation. The multi-granularity decision-making method
proposed in this paper demonstrates an average terminal closest distance improvement of 28.4% over the
comprehensive decision-making method (coarse-grained) and 88.7% over the rapid heuristic method
(fine-grained). Additionally, the average velocity increment shows an improvement of 16.5% com-
pared to the comprehensive decision-making method (coarse-grained) and 40.2% compared to the rapid
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Figure 15. The probability pie chart of the optimal boundary division threshold in multi-condition
simulation. (a) αCoarseOD (b) αMediumOD (c) αCoarseOM (d) αMediumOM

heuristic method (fine-grained). This study provides an effective onboard decision-making method for
subsequent inter-satellite safety monitoring.
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