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Abstract
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’
induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph
either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter
case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption
of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces.
In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract
wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof
is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally,
we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph
has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
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1. Introduction

This paper is a contribution to the descriptive combinatorics and large-scale geometry of Borel equiv-
alence relations and graphs. A countable Borel equivalence relation (CBER) E on a standard Borel
space X is a Borel equivalence relation 𝐸 ⊆ 𝑋2 each of whose classes is countable. CBERs have been
widely studied over the past few decades in connection with many different areas, including topolog-
ical and measurable dynamics, probability, operator algebras, logic and classification problems, and
combinatorics. For recent surveys, see [Kec24], [Pik21], [KM20].

A recurring theme in the theory of CBERs is their stratification according to the types of graphs and
other combinatorial structures that may be uniformly assigned to each equivalence class; see [CK18],
[JKL02] for the general aspects of this so-called structurability theory. In this paper, we are primarily
concerned with graph-theoretic structurability. A Borel graphing of a CBER 𝐸 ⊆ 𝑋2 is a (locally
countable) Borel graph𝐺 ⊆ 𝑋2 which generates E as an equivalence relation (i.e., whose connectedness
relation is precisely E). One regards such a G as the ‘Borel assignment’ to each equivalence class
𝐶 ∈ 𝑋/𝐸 of the connected component 𝐺 |𝐶. By requiring each 𝐺 |𝐶 to be some specific type of
connected graph, one then obtains various natural restricted subclasses of CBERs. In particular, the
class of treeable CBERs, for which it is possible to find a graphing all of whose components are
trees (a treeing), plays a similar role in the theory of CBERs as free groups in group theory, and has
been extensively studied from this perspective; see, for example, [Ada90], [Gab00], [JKL02], [GL09],
[Hjo12], [Mil12], [CGMTD21].

The main results in this paper provide new sufficient criteria for treeability of CBERs. We work
purely in the Borel context; however, our results are new even in the measurable setting (where one is
allowed to discard a null set).

1.A. Notions of tree-like graphs

Two metric spaces 𝑋,𝑌 are quasi-isometric if they are isometric up to a bounded multiplicative and
additive error; see Definition 2.65. A metric space quasi-isometric to a simplicial tree is called a quasi-
tree. Quasi-isometry of metric spaces and especially of Cayley graphs of groups has played a central
role in metric geometry and geometric group theory since the work of Gromov [Gro93].

Our work was initially motivated by a classical result in this tradition, which states that a finitely
generated group which is a quasi-tree must be virtually free (i.e., contain a finite-index free subgroup);
see [GdlH90, 7.19]. In the context of CBERs, a treeable CBER is the analogue of a free group, since the
orbit equivalence relation of a free action of a free group is treeable;1 moreover, free actions of virtually
free groups are also known to be treeable [JKL02, 3.4]. Thus, a natural question is whether the class of

1In fact, a converse is true as well, up to ‘measuring the number of generators’ [Hjo06].
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treeable CBERs is robust in some sense under quasi-isometry, and this was asked by Robin Tucker-Drob
at the 2015 Annual North American Meeting of the ASL. We give a positive answer to this question:
Theorem 1.1 (Corollary 5.21). If a CBER admits a locally finite Borel graphing whose components are
quasi-trees, then it is Borel treeable.

We note that the local finiteness assumption is natural, since the conclusion of treeability is equivalent
to locally finite treeability [JKL02, 3.12], and since without this assumption, every CBER would admit
the complete graphing as a quasi-treeing (each of whose components is quasi-isometric to a point). By
strengthening the assumption, we may refine the conclusion from the level of the equivalence relation
to the graph itself:
Theorem 1.2 (Corollary 5.26). If a Borel graph has every component a bounded degree quasi-tree,
then it is Borel quasi-isometric to a componentwise bounded degree Borel forest.
Remark 1.3. Both preceding results admit (easy) natural extensions to Borel (pseudo)metrics which
are quasi-trees on each equivalence class; see Corollary 5.29.

A different notion of ‘tree-like graph’ originates from finite combinatorics – namely, the graph
minor theory of Robertson–Seymour [RS91]. A tree decomposition of a graph G over a tree T is a
homomorphism from G to the intersection graph on the subtrees of T, and the graph G has tree-width
< 𝑁 if it has a tree decomposition such that each vertex of T is in the images of at most N vertices of
G; see Definition 5.31. Tree decompositions have been considered by [Car15] for infinite graphs, where
bounded tree-width becomes a natural notion of ‘tree mod finite’. We prove
Theorem 1.4 (Corollary 5.35). If a CBER admits a locally finite Borel graphing with components of
bounded tree-width, then it is Borel treeable.

Note that a bounded degree quasi-tree graph has bounded tree-width, but a general locally finite
quasi-tree need not, nor conversely does bounded tree-width imply quasi-tree; see Example 1.6. Thus,
Theorems 1.1 and 1.4 are not directly comparable.

We were informed in a private communication that a version of Theorem 1.4 has also been proved
by Héctor Jardón-Sánchez [JS23], using different methods.

1.B. Dense families of cuts

Both of our concrete Theorems 1.1 and 1.4 are instances of the following abstract result, which aims to
capture the general concept of a ‘large-scale tree-like’ graph.

In both concrete results, the ‘tree-likeness’ of the graph G we start with is witnessed on each
component C by a function/binary relation 𝐺 |𝐶 → 𝑇𝐶 from that component to a genuine tree 𝑇𝐶 which
‘roughly preserves’ the structure in some sense – namely, a quasi-isometry/tree decomposition. The
issue is to find such 𝑇𝐶 in a canonical Borel manner simultaneously for each component C. Rather
than proceed directly, we use that the mere existence of such a 𝐺 |𝐶 → 𝑇𝐶 allows us to transport the
edges of the 𝑇𝐶 over to a canonical set of ‘pseudo-edges’ of 𝐺 |𝐶 witnessing that it is ‘tree-like’. These
‘pseudo-edges’ take the form of cuts in the graph 𝐺 |𝐶; and the fact that they render the graph ‘tree-like’
is captured by conditions (i) and (ii) in the following theorem, which is our main result concerning
treeability of Borel graphs.
Theorem 1.5 (Corollary 5.16). Let 𝐸 ⊆ 𝑋2 be a CBER with a locally finite Borel graphing G. Suppose
there exists a Borel assignment 𝑋/𝐸 � 𝐶 ↦→ H(𝐶) ⊆ 2𝐶 to each component C of a collection of sets
of vertices 𝐻 ⊆ 𝐶 with finite boundary (the ‘cuts’) such that both H and 𝐶 \ 𝐻 are connected, so that
the following conditions hold for each C:
(i) each vertex 𝑥 ∈ 𝐶 lies on the boundary of only finitely many 𝐻 ∈ H(𝐶);

(ii) each end of the graph 𝐺 |𝐶 has a neighborhood basis in H(𝐶).
Then E is Borel treeable.
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Here, in (ii), we mean neighborhoods in the end compactification 𝐶𝐺 of 𝐺 |𝐶, meaning the compact
zero-dimensional space of ends together with vertices as isolated points converging to ends. We express
this condition by saying that H(𝐶) is dense towards ends of 𝐺 |𝐶. The notion of Borel assignment
𝐶 ↦→ H(𝐶) can be made precise by, for example, identifying each 𝐻 ∈ H(𝐶) with its boundary in the
standard Borel space of finite subsets, or by considering an E-bundle (see Definition 4.2).

From the above abstract result, Theorem 1.1 follows by taking H(𝐶) to be the collection
Hdiam(𝜕) ≤𝑅 (𝐶) of cuts with boundary of diameter ≤ 𝑅 for some 𝑅 < ∞ (see Corollary 5.20). Theo-
rem 1.4 follows by taking H(𝐶) to be the collection Hmin 𝜕≤𝑁 (𝐶) of cuts with minimum cardinality of
the inner and outer boundaries ≤ 𝑁 for some 𝑁 < ∞ (see Proposition 5.34).

Example 1.6. Consider graphs of the following form:

where the 𝐺𝑛 are finite graphs which are increasingly ‘complex’ in the various senses below. Note
that regardless of what the 𝐺𝑛 are, both Hdiam(𝜕) ≤2 and Hmin 𝜕≤1 are dense towards the single end (the
example may clearly be generalized to produce multi-ended graphs); the bolded line depicts a typical
cut in both of these collections.

◦ If the 𝐺𝑛 are increasingly large finite cliques, we get a quasi-tree with unbounded tree-width.
◦ If the 𝐺𝑛 are increasingly long finite cycles, we get a non-quasi-tree with bounded tree-width.
◦ If the 𝐺𝑛 contain both increasingly large cliques and increasingly long cycles (without shortcuts), we

get a graph which neither is a quasi-tree nor has bounded tree-width.

This shows that Theorems 1.1 and 1.4 are incomparable with each other and that Theorem 1.5 strictly
generalizes both of them combined.

1.C. Wallspaces and median graphs

In order to prove Theorem 1.5, one needs to canonically convert a ‘nice’ family of cuts in a graph into a
tree. Broadly speaking, our method belongs to the tradition of Stallings’ theorem on multi-ended groups
[Sta71], the techniques of which have been widely influential (see [DK18] for a survey), including in
Borel and measurable combinatorics [Ghy95], [GL09], [Tse20].

However, there are difficulties in directly applying the Stallings machinery to our setting, which are
ultimately rooted in the precise meaning of ‘canonical’ in Borel combinatorics (see Section 1.E below
for more on this point). In the usual Stallings proof, one reduces the initial collection of cuts to an
automorphism-invariant subfamily of pairwise nested cuts, from which one builds a tree with those
edges by taking the vertices to be ‘ultrafilters’2 of those cuts. But starting from a Borel graph, such a tree
will usually not be standard Borel if the nested cuts are too sparse. On the other hand, the requirement
of full automorphism-invariance is stronger than needed (again, see Section 1.E). This mismatch is the
reason that the Borel version of Stallings’ theorem in [Tse20] does not apply in our context.

Our approach is therefore to work with the entire (non-nested) collection of cuts H(𝐶) as in Theo-
rem 1.5. Again, we in fact prove a more general result that isolates the key features of such a collection.
By a proper wallspace, we mean a set X equipped with a family H(𝑋) ⊆ 2𝑋 of subsets obeying cer-
tain ‘local finiteness’ conditions; see Definition 4.1 for the precise definition. (The term ‘wallspace’
derives from metric geometry [Nic04], [CN05].) We call a CBER 𝐸 ⊆ 𝑋2 properly wallable if there

2In this paper, we prefer the term ‘orientation’; see Definition 2.40 and Footnote 7.
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Figure 1. The process of converting ‘tree-like’ structures into trees. Number on arrow refers to result(s)
showing that step for a countable structure. Number on box refers to end result on treeability of CBERs.

is a Borel assignment of such collections 𝑋/𝐸 � 𝐶 ↦→ H(𝐶) ⊆ 2𝐶 (called a proper walling of E); see
Definition 4.2. We prove the following general treeability result, no longer just about graphs:

Theorem 1.7 (Theorem 4.6). A CBER is properly wallable iff it is treeable.

Given this, the proof of Theorem 1.5 reduces to showing that conditions (i) and (ii) from there imply
that 𝐶 ↦→ H(𝐶) is a proper walling. This is done in Lemma 5.2 and Proposition 5.12.

Finally, we discuss the proof of Theorem 1.7. Since we do not assume H(𝐶) to be nested, the
‘ultrafilters’ on it form not a tree, but a generalization thereof. A median graph is, roughly speaking, a
graph with the same well-behaved notions of ‘flatness’ and ‘convexity’ as in a tree, but not necessarily
required to be ‘one-dimensional’; see Definition 2.8 for the precise definition. Median graphs have been
well studied in geometry as (1-skeleta of) CAT(0) cube complexes, in which form they were previously
used in a Borel combinatorics context by [HSS20]; and they are also well known in lattice theory as
interval-finite median algebras. See Sections 2.B to 2.D for detailed background and references on
median graphs.

Most importantly for our purposes, there is a Stone-type duality for median graphs, due to Isbell
[Isb80] and Werner [Wer81], that we review in Theorem 2.39. This duality shows that a general walling
H(𝐶) as in Theorem 1.7 provides exactly the data required to construct (not a tree but) a median
graph, with the sets in H(𝐶) forming (not the edges but) the ‘hyperplanes’. Moreover, the additional
requirement that H(𝐶) be proper implies that each of these hyperplanes is finite (see Corollary 2.50
and Definition 4.1). Theorem 1.7 thus reduces to

Theorem 1.8 (Theorem 3.5). Every Borel median graphing of a CBER with finite hyperplanes has a
Borel subtreeing.

This result can be regarded as the combinatorial heart of our paper, to which all of the aforementioned
treeability results reduce via abstract machinery, as summarized in Figure 1.

1.D. The case of one end

It is well known that a CBER with a one-ended treeing, or more generally a treeing with a Borel
selection of one end per component, is hyperfinite [DJK94]. This suggests that the same might hold for
the various ‘tree-like’ graphings considered above. In Section 6, we show that this is the case:

Theorem 1.9 (Corollary 6.24). If a CBER admits a locally finite Borel graphing whose components are
quasi-trees or of bounded tree-width, together with a Borel selection of one end per component, then it
is hyperfinite.

As before, this is in fact an instance of a more general result on Borel graphs equipped with dense
families of cuts in each component (see Corollary 6.23), which in turn reduces to a core result for
median graphs:

Theorem 1.10 (Corollary 6.22). If a CBER admits a median graphing with finite hyperplanes and a
Borel selection of one end per component, then it is hyperfinite.
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The proof of this result is based on defining a single transformation that ‘moves towards’ the chosen
end in each component (see Figure 6), generalizing the same idea for trees, and further showcasing the
usefulness of the rich geometry of median graphs in Borel combinatorics.

On the other hand, in the restricted case of ‘tree-like’ graphings which have only one end in total,
we give in Section 6.A a much simpler proof of hyperfiniteness, that is conceptually based on a similar
idea of ‘moving towards’ the one end, but can be read independently of the rest of the paper, without
knowing the definitions of ‘median graph’, ‘walling’, or even ‘end’. In fact, there we (re)formulate a
simple notion of one-ended proper walling, which easily implies hyperfiniteness, and which is easily
implied by one-ended quasi-treeing or bounded tree-width graphing, all comfortably fitting onto two
pages; see 6.1–6.10.

1.E. Remark on Borel versus countable combinatorics

As usual in countable Borel combinatorics, and as alluded to in Section 1.C, our results are in some sense
not about ‘Borel’ structures at all, but rather about ‘canonical’ constructions of countable structures.
That is, in order to prove a theorem of the form

(a) every CBER admitting a Borel ‘♥ing’ (e.g., quasi-treeing) also admits a ‘♣ing’ (e.g., treeing)

one really proves

(b) every countable ‘♥’ can be canonically turned into a ‘♣’

where ‘canonical’ refers to (countable) operations which can be uniformly performed on each equiv-
alence class of a CBER. For example, picking a single point is not allowed, nor is quotienting by an
arbitrary equivalence relation (even if that relation is fully “canonical” – for example, automorphism-
invariant). However, certain non-automorphism-invariant operations are allowed, such as taking a count-
able coloring of the intersection graph on all finite subsets [KM04, 7.3].

In this paper, we fully embrace this perspective by largely working explicitly with countable structures
throughout and only occasionally pointing out why the preceding countable constructions are ‘canonical’
in the above sense. For instance, Theorem 1.8 is really the following result:

Theorem 1.11 (Theorem 3.1). Let (𝑋, 𝐺) be a countable median graph with finite hyperplanes. Then
we may construct a canonical subtree 𝑇 ⊆ 𝐺.

Remark 1.12. In fact, the equivalence between (a) and (b) above can be made fully precise by taking (b)
to mean that there is a certain kind of interpretation in the infinitary logic L𝜔1𝜔 from the theory of ♣ to
the theory of ♥ expanded with two additional pieces of structure – namely, the aforementioned countable
coloring of the intersection graph on finite subsets and a countable family of subsets separating points.
By interpretation, we mean that in any countable ♥-structure X, we can define a ♣-structure in X (by
a collection of L𝜔1𝜔 formulas), and this definition does not depend on X. We do not use this precise
equivalence at all in this paper but refer the interested reader to [CK18, arXiv version, Appendix B] and
[BC24] for details.

2. Preliminaries

2.A. Graphs

A graph G on vertex set X will mean a symmetric irreflexive binary relation 𝐺 ⊆ 𝑋2, where (𝑥, 𝑦) ∈ 𝐺
represents the oriented edge from x to y. We will refer to the graph by G or (𝑋, 𝐺).

Given a connected graph (𝑋, 𝐺), we let 𝑑 = 𝑑𝐺 : 𝑋2 → [0,∞) denote the path metric, and Ball𝑟 (𝑥)
denote the closed ball of radius r around 𝑥 ∈ 𝑋 . More generally, for 𝐴 ⊆ 𝑋 ,

Ball𝑟 (𝐴) :=
⋃
𝑥∈𝐴

Ball𝑟 (𝑥).
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Definition 2.1. For a subset 𝐴 ⊆ 𝑋 of vertices, we write ¬𝐴 := 𝑋 \ 𝐴.

◦ The inner vertex boundary of A is 𝜕iv𝐴 := 𝐴 ∩ Ball1 (¬𝐴).
◦ The outer vertex boundary of A is 𝜕ov𝐴 := Ball1(𝐴) ∩ ¬𝐴 = 𝜕iv¬𝐴.
◦ The total vertex boundary of A is 𝜕v𝐴 := 𝜕iv ∪ 𝜕ov𝐴.
◦ The inward edge boundary of A is 𝜕ie𝐴 := 𝐺 ∩ (¬𝐴 × 𝐴) = 𝐺 ∩ (𝜕ov𝐴 × 𝜕iv𝐴).
◦ The outward edge boundary of A is 𝜕oe𝐴 := 𝐺 ∩ (𝐴 × ¬𝐴) = 𝐺 ∩ (𝜕iv𝐴 × 𝜕ov𝐴) = 𝜕ie¬𝐴.

Note that even though our graphs are symmetric, we always consider oriented edge boundaries. When
the graph G is not clear from context, we will specify it via superscript (e.g., 𝜕𝐺iv 𝐴 = 𝜕iv𝐴).

Definition 2.2. The interval [𝑥, 𝑦] between 𝑥, 𝑦 ∈ 𝑋 is the union of all geodesics between 𝑥, 𝑦:

𝑧 ∈ [𝑥, 𝑦] :⇐⇒ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) = 𝑑 (𝑥, 𝑦).

For 𝑧 ∈ [𝑥, 𝑦], we say z is between 𝑥, 𝑦, also denoted as the ternary relation

(𝑥—𝑧—𝑦) :⇐⇒ 𝑧 ∈ [𝑥, 𝑦] .

The following formal properties of intervals/betweenness are easily seen:

𝑥, 𝑦 ∈ [𝑥, 𝑦] = [𝑦, 𝑥], (2.3)

((𝑥—𝑦—𝑧) and (𝑦—𝑥—𝑧)) ⇐⇒ 𝑥 = 𝑦, (2.4)

((𝑤—𝑥—𝑦) and (𝑤—𝑦—𝑧)) ⇐⇒ ((𝑤—𝑥—𝑧) and (𝑥—𝑦—𝑧)). (2.5)

Both sides of this last relation hold iff there exists a geodesic from w to x to y to z, in which case we also
write (𝑤—𝑥—𝑦—𝑧). The notation (𝑥0—𝑥1—𝑥2— · · ·—𝑥𝑛) is defined similarly.

Definition 2.6. A set of vertices 𝐴 ⊆ 𝑋 is convex if 𝑥, 𝑦 ∈ 𝐴 =⇒ [𝑥, 𝑦] ⊆ 𝐴, i.e., every geodesic
between every two vertices in A is contained in A. This clearly implies A is connected or empty.

For 𝐴 ⊆ 𝑋 , let cvx(𝐴) denote the convex hull of A, meaning the smallest convex set containing A.

For detailed information on the axiomatics of intervals and convexity in graphs and related structures,
see [vdV93].

Convention 2.7. We will be interested in several families H ⊆ 2𝑋 of subsets of the vertex set X of a
graph (and later, more generally an arbitrary set X), which have the property of being closed under the
complement operation ¬ : 2𝑋 → 2𝑋 . For example, Hcvx will denote the family of convex sets whose
complement is also convex; see Definition 2.22.

For such families H, we will always use the plain symbol H to denote the family including the two
trivial subsets ∅, 𝑋 ∈ H, while H∗ := H \ {∅, 𝑋} will denote the nontrivial elements of H. We also
write H𝐺 (𝑋) = H(𝑋) = H (e.g., H𝐺

cvx(𝑋)) when the vertex/edge set needs to be specified.

2.B. Median graphs

Definition 2.8. A median graph (𝑋, 𝐺) is a connected graph such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 , the
intersection of the pairwise intervals between them is a singleton; this single vertex is called the median
of 𝑥, 𝑦, 𝑧, denoted 〈𝑥, 𝑦, 𝑧〉:

[𝑥, 𝑦] ∩ [𝑦, 𝑧] ∩ [𝑧, 𝑥] = {〈𝑥, 𝑦, 𝑧〉}.

Median graphs have been widely studied from many different perspectives and under different guises,
including in combinatorics, geometry and group theory (as CAT(0) cube complexes), universal algebra
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and lattice theory (as interval-finite median algebras), and logic and computer science (in relation to
the 2-satisfiability problem). For comprehensive surveys, see [BH83], [Rol98], [Bow22]. In this and the
next few subsections, we give a brief, self-contained exposition of the basic theory of median graphs
needed in this paper from a purely combinatorial perspective; we hope that such an account will also
facilitate future applications of median graphs in Borel combinatorics.

In the rest of this subsection, let (𝑋, 𝐺) be a median graph.

Remark 2.9. For 𝑥, 𝑦 ∈ 𝑋 , 〈𝑥, 𝑦, ·〉 : 𝑋 → 𝑋 is idempotent, with image = fixed points = [𝑥, 𝑦]. Thus,
the median operation and the interval relation may be (positively) defined from each other.

Definition 2.10. A median homomorphism 𝑓 : (𝑋, 𝐺) → (𝑌, 𝐻) between two median graphs is a
function between the vertex sets 𝑓 : 𝑋 → 𝑌 which preserves the ternary median operation 〈·, ·, ·〉, or
equivalently by the preceding remark, the ternary interval relation.

(This neither implies nor is implied by being a graph homomorphism. See, however, Remark 2.19.)

Lemma 2.11. For any 𝑥, 𝑦, 𝑧 ∈ 𝑋 , we have [𝑥, 𝑦] ∩ [𝑥, 𝑧] = [𝑥, 〈𝑥, 𝑦, 𝑧〉]; and for any w in this set, we
have 〈𝑤, 𝑦, 𝑧〉 = 〈𝑥, 𝑦, 𝑧〉.

Proof. [𝑥, 𝑦] ∩ [𝑥, 𝑧] ⊇ [𝑥, 〈𝑥, 𝑦, 𝑧〉] follows from (2.5).
Now let 𝑤 ∈ [𝑥, 𝑦] ∩ [𝑥, 𝑧]. Then 〈𝑤, 𝑦, 𝑧〉 ∈ [𝑤, 𝑦] ∩ [𝑤, 𝑧] ∩ [𝑦, 𝑧] ⊆ [𝑥, 𝑦] ∩ [𝑥, 𝑧] ∩ [𝑦, 𝑧] again

by (2.5), whence 〈𝑤, 𝑦, 𝑧〉 = 〈𝑥, 𝑦, 𝑧〉.
Since 𝑤 ∈ [𝑥, 𝑦] and 〈𝑥, 𝑦, 𝑧〉 = 〈𝑤, 𝑦, 𝑧〉 ∈ [𝑤, 𝑦], again by (2.5), 𝑤 ∈ [𝑥, 〈𝑥, 𝑦, 𝑧〉]. �

Definition 2.12. For two vertices 𝑥, 𝑦 ∈ 𝑋 , the cone at y away from x is

cone𝑥 (𝑦) := {𝑧 ∈ 𝑋 | (𝑥—𝑦—𝑧)}.

Lemma 2.13. For any 𝑥, 𝑦 ∈ 𝑋 , the set cone𝑥 (𝑦) is convex.

Proof. Let 𝑎, 𝑏 ∈ cone𝑥 (𝑦) and 𝑐 ∈ [𝑎, 𝑏]; we will show

(𝑎—〈𝑎, 𝑐, 𝑥〉—〈𝑎, 𝑏, 𝑥〉—𝑦—𝑥),

which by (2.5) along with (𝑐—〈𝑎, 𝑐, 𝑥〉—𝑥) gives (𝑐—𝑦—𝑥), as desired. By (2.5), it suffices to show
the following:

◦ (𝑎—〈𝑎, 𝑏, 𝑥〉—𝑥) by definition of 〈𝑎, 𝑏, 𝑥〉.
◦ (〈𝑎, 𝑏, 𝑥〉—𝑦—𝑥), i.e., 𝑦 ∈ [𝑥, 〈𝑎, 𝑏, 𝑥〉], by Lemma 2.11.
◦ (𝑎—〈𝑎, 𝑐, 𝑥〉—〈𝑎, 𝑏, 𝑥〉) again by Lemma 2.11, because 〈𝑎, 𝑐, 𝑥〉 ∈ [𝑎, 𝑥] and 〈𝑎, 𝑐, 𝑥〉 ∈ [𝑎, 𝑏], the

latter because 〈𝑎, 𝑐, 𝑥〉 ∈ [𝑎, 𝑐] ⊆ [𝑎, 𝑏] by (2.5). �

Proposition 2.14. For any ∅ ≠ 𝐴 ⊆ 𝑋 and 𝑥 ∈ 𝑋 , there is a unique point in the convex hull of A which
is between x and every point in A, called the projection proj𝐴(𝑥) of x toward A.3 Thus,

cvx(𝐴) ∩
⋂
𝑎∈𝐴

[𝑥, 𝑎] = {proj𝐴(𝑥)}.

Moreover, proj𝐴 = projcvx(𝐴) ; that is, proj𝐴(𝑥) is also between x and every point in cvx(𝐴).

Proof. Pick any 𝑎0 ∈ 𝐴, and inductively given 𝑎𝑛, if there is 𝑎 ∈ 𝐴 such that 𝑎𝑛 ∉ [𝑥, 𝑎], then put
𝑎𝑛+1 := 〈𝑥, 𝑎, 𝑎𝑛〉. Then (𝑎0—𝑎1—𝑎2— · · ·—𝑥) by repeated application of (2.5), so this sequence must
terminate in at most 𝑑 (𝑎0, 𝑥) steps at a point in cvx(𝐴) which is between x and every point in A; this
proves existence.

3The projection is also known as the gate [vdV93], [Bow22] (especially in connection with Proposition 2.20); however, that
term also has other meanings [Rol98].
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proj𝐴(𝑥) is also between x and every point in cvx(𝐴), since cone𝑥 (proj𝐴(𝑥)) is convex and contains
A. Now for uniqueness: if there were two such points 𝑎, 𝑏 ∈ cvx(𝐴), then we would have (𝑥—𝑎—𝑏)
and (𝑥—𝑏—𝑎), whence 𝑎 = 𝑏 by (2.4). �

Example 2.15. 〈𝑎, 𝑏, 𝑥〉 = proj{𝑎,𝑏} (𝑥). It follows that [𝑎, 𝑏] = im(〈𝑎, 𝑏, ·〉) = cvx({𝑎, 𝑏}) is convex.

In light of this example, the following generalizes Lemma 2.11, and is proved similarly:

Lemma 2.16. For any 𝑥 ∈ 𝑋 and ∅ ≠ 𝐴 ⊆ 𝑋 , we have
⋂
𝑎∈𝐴[𝑥, 𝑎] = [𝑥, proj𝐴(𝑥)]; and for any w in

this set, we have proj𝐴(𝑤) = proj𝐴(𝑥).

Remark 2.17. It follows from the proof of Proposition 2.14 that for a median homomorphism 𝑓 :
(𝑋, 𝐺) → (𝑌, 𝐻) between median graphs, for any 𝐴 ⊆ 𝑋 and 𝑥 ∈ 𝑋 , we have

𝑓 (proj𝐴(𝑥)) = proj 𝑓 (𝐴) ( 𝑓 (𝑥)).

Indeed, proj𝐴(𝑥) = · · · 〈𝑥, 𝑎3, 〈𝑥, 𝑎2, 〈𝑥, 𝑎1, 𝑎0〉〉〉; this expression is preserved by f.

Proposition 2.18. proj𝐴 : 𝑋 � cvx(𝐴) is the unique median homomorphism fixing cvx(𝐴).

Proof. First we check proj𝐴 is a median homomorphism. Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 with (𝑥—𝑦—𝑧). Then

𝑤 := 〈proj𝐴(𝑦), proj𝐴(𝑥), proj𝐴(𝑧)〉 ∈ [proj𝐴(𝑦), 𝑥] ∩ [proj𝐴(𝑦), 𝑧] = [proj𝐴(𝑦), 〈proj𝐴(𝑦), 𝑥, 𝑧〉]

since (proj𝐴(𝑦)—𝑤— proj𝐴(𝑥)—𝑥), and similarly for z; and

[proj𝐴(𝑦), 𝑥] ∩ [proj𝐴(𝑦), 𝑧] = [proj𝐴(𝑦), proj[𝑥,𝑧 ] (proj𝐴(𝑦))] ⊆ [proj𝐴(𝑦), 𝑦]

by Lemmas 2.11 and 2.16. Thus, 𝑤 ∈ [𝑦, proj𝐴(𝑦)], so by definition of proj𝐴(𝑦), we have 𝑤 = proj𝐴(𝑦),
which means that (proj𝐴(𝑥)—proj𝐴(𝑦)—proj𝐴(𝑧)).

For uniqueness, note that if 𝑓 : 𝑋 → cvx(𝐴) is a median homomorphism fixing cvx(𝐴), then for
𝑥 ∈ 𝑋 , for every 𝑎 ∈ 𝐴, we have 〈𝑥, 𝑓 (𝑥), 𝑎〉 ∈ cvx(𝐴), whence 〈𝑥, 𝑓 (𝑥), 𝑎〉 = 𝑓 (〈𝑥, 𝑓 (𝑥), 𝑎〉) =
〈 𝑓 (𝑥), 𝑓 ( 𝑓 (𝑥)), 𝑓 (𝑎)〉 = 〈 𝑓 (𝑥), 𝑓 (𝑥), 𝑎〉 = 𝑓 (𝑥), i.e., 𝑓 (𝑥) ∈ [𝑥, 𝑎]; thus, 𝑓 (𝑥) = proj𝐴(𝑥). �

Remark 2.19. For a median homomorphism 𝑓 : (𝑋, 𝐺) → (𝑌, 𝐻):

◦ Preimage 𝑓 −1 is easily seen to preserve convex sets.
◦ For 𝐴 ⊆ 𝑋 , by Remark 2.17, we have

𝑓 (cvx(𝐴)) = 𝑓 (proj𝐴(𝑋)) = proj 𝑓 (𝐴) ( 𝑓 (𝑋)) = cvx( 𝑓 (𝐴)) ∩ 𝑓 (𝑋).

Thus, if f is surjective, then image under f also preserves convex sets.
◦ Hence, a surjective median homomorphism maps a geodesic onto a geodesic possibly with some

repeated vertices, and is in particular a reflexive graph homomorphism.

These apply in particular to proj𝐴 : 𝑋 � cvx(𝐴).

Proposition 2.20. Let ∅ ≠ 𝐴, 𝐵 ⊆ 𝑋 be two convex sets. Then

proj𝐴 ◦ proj𝐵 ◦ proj𝐴 = proj𝐴 ◦ proj𝐵 = projproj𝐴 (𝐵) : 𝑋 � proj𝐴(𝐵).

Thus, this map and proj𝐵 ◦ proj𝐴 restrict to inverse graph isomorphisms proj𝐴(𝐵) � proj𝐵 (𝐴).
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Moreover, if 𝐴 ∩ 𝐵 ≠ ∅, then proj𝐴 ◦ proj𝐵 = proj𝐵 ◦ proj𝐴 = proj𝐴∩𝐵.
Proof. By Remark 2.17, we have proj𝐴 ◦ proj𝐵 = projproj𝐴 (𝐵) ◦ proj𝐴; thus, composing on the right
with another proj𝐴 or proj𝐵 yields the same thing. In particular, proj𝐴 ◦ proj𝐵 is an idempotent median
homomorphism. Its image is clearly proj𝐴(𝐵), which is convex by Remark 2.19; thus in fact, the map
is projproj𝐴 (𝐵) .

If 𝐴∩ 𝐵 ≠ ∅, then 𝐴∩ 𝐵 is fixed by both proj𝐴 and proj𝐵, and thus contained in im(proj𝐴 ◦ proj𝐵) =
proj𝐴(𝐵), which is clearly contained in A. To see that it is also contained in B: let 𝑐 ∈ 𝐴 ∩ 𝐵; then for
any 𝑏 ∈ 𝐵, we have proj𝐴(𝑏) ∈ [𝑐, 𝑏] ⊆ 𝐵. �

Corollary 2.21 (Helly’s theorem). Any finitely many pairwise intersecting nonempty convex sets
𝐴0, . . . , 𝐴𝑛−1 ⊆ 𝑋 have nonempty intersection.
Proof. All of the projections proj𝐴0

, . . . , proj𝐴𝑛−1
commute; thus, applying the composite of all of them

in any order to any point yields a point in the intersection (since each proj𝐴𝑖 could have been applied
last). �

2.C. Hyperplanes and half-spaces

We continue to let (𝑋, 𝐺) be a median graph.
Definition 2.22. A half-space 𝐻 ⊆ 𝑋 is a convex set whose complement is also convex.

Let Hcvx = Hcvx(𝑋) = H𝐺
cvx(𝑋) ⊆ 2𝑋 denote the set of all half-spaces, and H∗cvx(𝑋) := Hcvx(𝑋) \

{∅, 𝑋} be the nontrivial half-spaces (recall Convention 2.7).
For 𝐻 ∈ H∗cvx, its inward edge boundary 𝜕ie𝐻 ⊆ 𝐺 is an (oriented) hyperplane. Thus, we have a

canonical bijection 𝜕ie between H∗cvx and the set of hyperplanes in G.4
Lemma 2.23. Each edge (𝑥, 𝑦) ∈ 𝐺 is on a unique hyperplane – namely, the inward boundary of

cone𝑥 (𝑦) = proj−1
{𝑥,𝑦 } (𝑦) = {𝑧 ∈ 𝑋 | 𝑑 (𝑥, 𝑧) > 𝑑 (𝑦, 𝑧)}.

Conversely, each nontrivial half-space 𝐻 ⊆ 𝑋 is equal to cone𝑥 (𝑦) for any edge (𝑥, 𝑦) ∈ 𝜕ie𝐻. Thus,
the inverse of the bijection 𝜕ie between half-spaces and hyperplanes is induced by the quotient map

𝐺 −� H∗cvx(𝑋)

(𝑥, 𝑦) ↦−→ cone𝑥 (𝑦);

that is, hyperplanes are equivalence classes of edges, called hyperplane-equivalent.
Proof. For (𝑥, 𝑦) ∈ 𝐺, 𝐻 := proj−1

{𝑥,𝑦 }
(𝑦) is indeed a half-space, being a median preimage of a half-

space; and clearly, (𝑥, 𝑦) ∈ 𝜕ie𝐻. Conversely, for any nontrivial half-space 𝐻 ⊆ 𝑋 and (𝑥, 𝑦) ∈ 𝜕ie𝐻,
that H is a half-space means precisely that the indicator function 𝑋 � {𝑥, 𝑦} taking H to y is a median
homomorphism, which clearly fixes the convex set {𝑥, 𝑦}, thus is equal to proj{𝑥,𝑦 }. �

4Our ‘half-spaces’ are called prime convex sets in [BH83]; conventions vary as to whether the trivial half-spaces ∅, 𝑋 are
allowed (e.g., in [Isb80], [BH83], [Rol98], [Bow22]). The term ‘hyperplane’ seems to be used with several meanings which are
all isomorphic to each other and to ‘half-space’ (or the unoriented version) – for example, the unordered pair {𝐻, ¬𝐻 } [Rol98],
or the subspace of the (geometrically realized) CAT(0) cube complex cutting each boundary edge of H at the midpoint [HW08],
[Bow22].
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Remark 2.24. For a nontrivial half-space 𝐻 ⊆ 𝑋 , the inner and outer vertex boundaries 𝜕iv𝐻, 𝜕ov𝐻
are easily seen to be the convex sets proj𝐻 (¬𝐻), proj¬𝐻 (𝐻) from Proposition 2.20, with the canonical
isomorphism between them given by the edge boundary 𝜕ie𝐻 : 𝜕ov𝐻 → 𝜕iv𝐻.

Lemma 2.25. Hyperplane-equivalence is the equivalence relation on G generated by the pairs of
parallel sides of squares (4-cycles).

Proof. Given a square, each vertex is between its neighbors, from which it is easily seen that a hyperplane
containing one edge must also contain the parallel edge; thus, hyperplane-equivalence contains said
equivalence relation. Conversely, if (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝜕ie𝐻 for some𝐻 ∈ H∗cvx(𝑋), find a geodesic between
𝑎, 𝑐, which must lie in the convex set 𝜕ov𝐻 and hence be matched via 𝜕ie𝐻 to a geodesic between 𝑏, 𝑑,
which together with the matching forms the desired strip of squares. �

Definition 2.26. Two half-spaces 𝐻, 𝐾 ∈ Hcvx(𝑋) are nested if H is comparable (under inclusion) with
one of 𝐾,¬𝐾 , or equivalently, one of 𝐻,¬𝐻 is disjoint from one of 𝐾,¬𝐾 .

The corners of 𝐻, 𝐾 are ¬𝑎𝐻 ∩ ¬𝑏𝐾 , where 𝑎, 𝑏 ∈ {0, 1} – that is, the four sets

𝐻 ∩ 𝐾, 𝐻 ∩ ¬𝐾,¬𝐻 ∩ 𝐾,¬𝐻 ∩ ¬𝐾.

Thus, 𝐻, 𝐾 are nested iff they have an empty corner.

(Here and below, ¬0𝐻 := 𝐻 and ¬1𝐻 := ¬𝐻.)

Lemma 2.27. Half-spaces 𝐻0, . . . , 𝐻𝑛−1 ∈ Hcvx are pairwise non-nested iff there exists an embedding
�𝑎 ↦→ 𝑥 �𝑎 of the Hamming cube graph on {0, 1}𝑛 such that 𝑥 �𝑎 ∈ ¬𝑎0𝐻0 ∩ · · · ∩ ¬

𝑎𝑛−1𝐻𝑛−1.

(Recall that the Hamming cube on {0, 1}𝑛 is the graph with edges precisely between any two strings
differing in a single bit.)

Proof. Given such an n-cube, the n hyperplanes cutting it are clearly pairwise non-nested. Con-
versely, given pairwise non-nested 𝐻0, . . . , 𝐻𝑛−1 ∈ Hcvx(𝑋), pick 𝑥 ∈ ¬𝐻0 ∩ · · · ∩ ¬𝐻𝑛−1, let
𝑥�1 := proj𝐻0∩···∩𝐻𝑛−1

(𝑥) = (proj𝐻0
◦ · · · ◦ proj𝐻𝑛−1

) (𝑥), and let 𝑥 �𝑎 := proj¬𝑎0𝐻0∩···∩¬
𝑎𝑛−1𝐻𝑛−1

(𝑥�1) for
each �𝑎 ∈ {0, 1}𝑛; using Proposition 2.20, this is easily seen to be an n-cube. �

Corollary 2.28. G is a tree iff all of its half-spaces are pairwise nested.

Proof. =⇒: Two non-nested half-spaces yield a 4-cycle by the preceding lemma.
⇐=: A cycle has two distinct edges on a hyperplane, whence there is a 4-cycle by Lemma 2.25. �

Definition 2.29. 𝐻 ∈ Hcvx(𝑋) is a successor of 𝐾 ∈ Hcvx(𝑋) if 𝐻 � 𝐾 but there is no half-space
strictly in between, or equivalently, 𝐻 ∪ ¬𝐾 = 𝑋 , 𝐻 ∩ ¬𝐾 ≠ ∅, and 𝐻,¬𝐾 are each minimal as such.

Lemma 2.30. For 𝐻, 𝐾 ∈ H∗cvx, H is a successor of K iff 𝐻 ⊇ 𝐾 and 𝜕iv𝐻 ∩ 𝜕ov𝐾 ≠ ∅.

Proof. =⇒ is clear. Conversely, suppose 𝐻 ⊇ 𝐾 and 𝑥 ∈ 𝜕iv𝐻 ∩ 𝜕ov𝐾; then clearly 𝐻 � 𝐾 , and any
𝐻 ⊇ 𝐿 ⊇ 𝐾 must either contain x but not proj¬𝐻 (𝑥) ∈ 𝜕ov𝐻, hence equal H, or contain proj𝐾 (𝑥) ∈ 𝜕iv𝐾
but not x, hence equal K. �

Corollary 2.31. For 𝐻, 𝐾 ∈ H∗cvx, we have 𝜕v𝐻 ∩ 𝜕v𝐾 ≠ ∅ iff 𝐻, 𝐾 are equal, or complementary, or
non-nested, or one of 𝐻,¬𝐻 is a successor of one of 𝐾,¬𝐾; in other words, either none of 𝐻,¬𝐻 is
comparable with 𝐾,¬𝐾 , or one pair is comparable but there is no third half-space strictly in between.

If these hold, we say the hyperplanes 𝜕ie𝐻, 𝜕ie𝐾 are adjacent.
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Proof. By flipping 𝐻, 𝐾 if necessary, we may assume there is 𝑥 ∈ 𝜕iv𝐻∩𝜕ov𝐾 ⊆ 𝐻∩¬𝐾 . If proj𝐾 (𝑥) ∈
¬𝐻 or proj¬𝐻 (𝑥) ∈ 𝐾 , then these points are equal and𝐻 = ¬𝐾 = coneproj𝐾 (𝑥) (𝑥). Otherwise,𝐻∩𝐾 ≠ ∅
and¬𝐻∩¬𝐾 ≠ ∅. If also¬𝐻∩𝐾 ≠ ∅, then𝐻, 𝐾 are non-nested. Otherwise,𝐾 ⊆ 𝐻 and 𝑥 ∈ 𝜕iv𝐻∩𝜕ov𝐾 ,
so H is a successor of K. �

Lemma 2.32. For any 𝑥, 𝑦 ∈ 𝑋 , 𝑑 (𝑥, 𝑦) = |{𝐻 ∈ Hcvx (𝑋) | 𝑥 ∉ 𝐻 � 𝑦}|.

Proof. Let 𝑥 = 𝑥0 𝐺 · · · 𝐺 𝑥𝑛 = 𝑦 be any geodesic, so 𝑛 = 𝑑 (𝑥, 𝑦). Then each half-space 𝑥 ∉ 𝐻 � 𝑦 has
𝑥𝑖 ∉ 𝐻 � 𝑥𝑖+1 for a unique 𝑖 < 𝑛, so we get a bijection between the set of such H and n. �

Lemma 2.33. Two disjoint convex sets 𝐴, 𝐵 ⊆ 𝑋 can be separated by a half-space 𝐴 ⊆ 𝐻 ⊆ ¬𝐵.

Proof. If A or B is empty, this is trivial; so suppose not. Pick a geodesic 𝐴 � 𝑥0 𝐺 · · · 𝐺 𝑥𝑛 ∈ 𝐵, where
𝑛 = 𝑑 (𝐴, 𝐵). Then𝐻 := cone𝑥1 (𝑥0) works. Indeed, note that 𝑥0 = proj𝐴(𝑥𝑛) (being the closest point in A
to 𝑥𝑛), whence 𝐴 ⊆ cone𝑥𝑛 (𝑥0) ⊆ cone𝑥1 (𝑥0) by (2.5), and similarly 𝐵 ⊆ cone𝑥0 (𝑥𝑛) ⊆ cone𝑥0 (𝑥1). �

Corollary 2.34. Every interval [𝑥, 𝑦] in a median graph is finite. More generally, a convex hull
cvx({𝑥0, . . . , 𝑥𝑛}) of finitely many points is finite.

Proof. By Lemma 2.32, there are finitely many half-spaces 𝐻 ⊆ [𝑥, 𝑦]; by Lemma 2.33, a vertex
𝑧 ∈ [𝑥, 𝑦] is determined by the half-spaces containing it, whence [𝑥, 𝑦] is finite. By the proof of Propo-
sition 2.14, cvx({𝑥0, . . . , 𝑥𝑛}) consists of points of the form 〈𝑥, 𝑥𝑛, 〈𝑥, 𝑥𝑛−1, 〈· · · 〈𝑥, 𝑥2, 〈𝑥, 𝑥1, 𝑥0〉〉〉〉〉
which are in an interval between 𝑥𝑛 and a point in an interval between 𝑥𝑛−1 and . . . . �

Corollary 2.35. For two median graphs (𝑋, 𝐺), (𝑌, 𝐻), a function 𝑓 : 𝑋 → 𝑌 is a median homomor-
phism iff preimage 𝑓 −1 preserves convex sets (or even just half-spaces).

Proof. =⇒ follows from Remark 2.19. Conversely, suppose 𝑓 −1 preserves half-spaces, and let 𝑥, 𝑦, 𝑧 ∈ 𝑋
with 𝑓 (𝑥) ∉ [ 𝑓 (𝑦), 𝑓 (𝑧)]; then there is a half-space 𝐻 ⊆ 𝑌 containing 𝑓 (𝑥) but not 𝑓 (𝑦), 𝑓 (𝑧), whence
𝑥 ∈ 𝑓 −1(𝐻) ∌ 𝑦, 𝑧, whence 𝑥 ∉ [𝑦, 𝑧]. �

2.D. Pocsets and duality

The half-spaces H𝐺
cvx(𝑋) of a median graph (𝑋, 𝐺) have the following structure:

Definition 2.36. A pocset 𝑃 = (𝑃, ≤,¬, 0) is a poset equipped with an order-reversing involution and
a least element such that 0 ≠ ¬0, and for any 𝑝 ∈ 𝑃, 0 is the only lower bound of 𝑝,¬𝑝.5

A profinite pocset is a pocset equipped with a compact topology making ¬ continuous and satisfying
the Priestley separation axiom6: for any 𝑝 �≤ 𝑞, there exists a clopen upward-closed𝑈 ⊆ 𝑃 containing
p but not q. This easily implies that the topology is Hausdorff zero-dimensional and that the partial
order ≤ is a closed set in 𝑃2.

Example 2.37. 2 = {0, 1} is easily seen to be a profinite pocset, whence so are its powers 2𝑋 , whence
so are the closed subpocsets of 2𝑋 ; this includes Hcvx(𝑋) for a median graph (𝑋, 𝐺).

For a median homomorphism 𝑓 : (𝑋, 𝐺) → (𝑌, 𝐻), taking preimage under f is easily seen to yield a
continuous pocset homomorphism 𝑓 ∗ : Hcvx(𝑌 ) → Hcvx(𝑋), thereby making (𝑋, 𝐺) ↦→ Hcvx(𝑋) into
a contravariant functor.

Lemma 2.38. Every nontrivial half-space 𝐻 ∈ H∗cvx(𝑋) is an isolated point in Hcvx(𝑋) ⊆ 2𝑋 .

Proof. For any (𝑥, 𝑦) ∈ 𝜕ie𝐻, by Lemma 2.23, H is the unique half-space containing y but not x. �

5We use the term ‘pocset’ from [Rol98]; other terms include proset [Bow22] and binary message [Isb80], with differing
conventions as to whether 0 and its complement are included.

6also known as totally order-disconnected; see, for example, [Joh82].
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Theorem 2.39 (Isbell [Isb80], Werner [Wer81]). We have a contravariant equivalence of categories{
median graphs,

median homomorphisms

}
−→

{
profinite pocsets with every nontrivial element isolated,

continuous pocset homomorphisms

}
(𝑋, 𝐺) ↦−→ Hcvx(𝑋)

𝑓 : (𝑋, 𝐺𝑋 ) → (𝑌, 𝐺𝑌 ) ↦−→

(
𝑓 ∗ : Hcvx(𝑌 ) → Hcvx(𝑋)

𝐻 ↦→ 𝑓 −1(𝐻)

)
.

We devote the rest of this subsection to constructing the inverse of this functor.
Definition 2.40. Let P be a pocset. An orientation7 on P is an upward-closed subset𝑈 ⊆ 𝑃 containing
exactly one of 𝑝,¬𝑝 for each 𝑝 ∈ 𝑃. This last condition means that letting ¬(𝑈) denote the image of U
under ¬ : 𝑃→ 𝑃 while ¬𝑈 := 𝑃 \𝑈 denotes the complement, we have

¬(𝑈) = ¬𝑈.

If only ⊆ holds, we call U a partial orientation. We let U (𝑃) ⊆ 2𝑃 denote the set of orientations.
If P is a topological pocset, then note that the clopen orientations 𝑈 ⊆ 𝑃 are equivalently the

closed or open orientations, since ¬ : 𝑃 → 𝑃 is a homeomorphism. We denote the set of these by
U◦(𝑃) ⊆ U (𝑃).

Two orientations 𝑈,𝑉 ⊆ 𝑃 are adjacent if |𝑈 \𝑉 | = 1 (equivalently, |𝑉 \𝑈 | = 1).
Intuitively, if P is thought of as a collection of ‘abstract half-spaces’, then an orientation is a consistent

and complete description of where a ‘point’ lies in relation to each ‘half-space” in P.
Example 2.41. For a median graph (𝑋, 𝐺), each vertex 𝑥 ∈ 𝑋 determines a principal orientation
𝑥 := {𝐻 ∈ Hcvx(𝑋) | 𝑥 ∈ 𝐻} ⊆ Hcvx(𝑋), which is clopen. Moreover, by Lemma 2.33,

⋂
𝑥 = 𝑥, while

by Lemma 2.32, 𝑥 𝐺 𝑦 iff 𝑥, �̂� are adjacent, so that

𝑋 −→ U◦(Hcvx(𝑋))

𝑥 ↦−→ 𝑥

is a graph embedding.
Proposition 2.42. For any median graph (𝑋, 𝐺), the above embedding 𝑥 ↦→ 𝑥 is an isomorphism.
Proof. We must show that every clopen orientation 𝑈 ⊆ Hcvx(𝑋) is 𝑥 for some 𝑥 ∈ 𝑋 . Since U is
clopen, there is a finite 𝐴 ⊆ 𝑋 , which we may assume to be convex by Corollary 2.34, such that for
every 𝐻 ∈ Hcvx(𝑋), 𝐻 ∈ 𝑈 iff there is 𝐾 ∈ 𝑈 with 𝐻 ∩ 𝐴 = 𝐾 ∩ 𝐴. If 𝐾 ∩ 𝐴 = ∅ for some 𝐾 ∈ 𝑈, then
∅ ∈ 𝑈, a contradiction; thus, A intersects every element of U. Also, every 𝐻, 𝐾 ∈ 𝑈 have 𝐻 ∩ 𝐾 ≠ ∅,
or else 𝐻 ⊆ ¬𝐾 =⇒ ¬𝐾 ∈ 𝑈. Thus, by Corollary 2.21, there is 𝑥 ∈

⋂
𝑈 ∩ 𝐴, whence 𝑈 ⊆ 𝑥, whence

𝑈 = 𝑥 since both are orientations. �

To complete the proof of Theorem 2.39, it remains to show that starting from an abstract profinite
pocset P with every nontrivial element isolated, U◦(𝑃) is a median graph with Hcvx(U◦(𝑃)) � 𝑃.
Lemma 2.43. Let P be a profinite pocset. Then every closed partial orientation 𝐹 ⊆ 𝑃 extends to a
clopen orientation 𝐹 ⊆ 𝑈 ⊆ 𝑃.
Proof. First, note that compactness together with the Priestley separation axiom implies that a closed
upward-closed 𝐹 ⊆ 𝑃 disjoint from a closed downward-closed 𝐷 ⊆ 𝑃 may be separated by a clopen
upward-closed 𝐹 ⊆ 𝑈 ⊆ ¬𝐷, by a standard finite covering argument.

7We borrow ‘orientation’ from [Rol98], which, however, does not include the upward-closure condition. That work calls
upward-closed orientations ultrafilters, while noting that these are weaker than the usual usage of that term in Boolean algebras,
and in particular, need not be filters in the usual order-theoretic sense. We have chosen our present terminology since we will also
be dealing extensively with Boolean ultrafilters (see Section 2.G), and since we will never need non-upward-closed orientations.
The equivalent term flow is used in [Bow22].
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Now for a closed partial orientation 𝐹 ⊆ 𝑃, we have 𝐹 ⊆ ¬¬(𝐹), whence there is a clopen upward-
closed 𝐹 ⊆ 𝑈 ⊆ ¬¬(𝐹), whence also 𝐹 = ¬(¬(𝐹)) ⊆ ¬(¬𝑈) = ¬¬(𝑈), whence F is contained in the
clopen partial orientation 𝑈 ∩ ¬¬(𝑈). Thus, we may assume to begin with that F is clopen.

Taking 𝐹 = {𝑞 ∈ 𝑃 | 𝑞 ≥ 𝑝} shows that each 0 < 𝑝 ∈ 𝑃 is in a clopen partial orientation.
Thus, we may assume ¬0 ∈ 𝐹, that is, 0 ∉ ¬¬(𝐹). So each 𝑝 ∈ ¬¬(𝐹) is in a clopen partial

orientation, and so by compactness ¬¬(𝐹) is contained in a finite union of such sets𝐺0, . . . , 𝐺𝑛−1 ⊆ 𝑃.
Now put 𝐹0 := 𝐹 and 𝐹𝑖+1 := 𝐹𝑖 ∪ (𝐺𝑖 ∩ ¬¬(𝐹𝑖)); then𝑈 := 𝐹𝑛 works. �

Proposition 2.44. Let P be a profinite pocset with every nontrivial element isolated. Then the adjacency
graph on U◦(𝑃) is a median graph, whose

◦ Neighbors of𝑈 ∈ U◦(𝑃) are𝑈�{𝑝,¬𝑝} for each minimal 𝑝 ∈ 𝑈 \ {¬0}.
◦ Path metric 𝑑 (𝑈,𝑉) = |𝑈 \𝑉 | = |𝑉 \𝑈 |.
◦ Intervals 𝑊 ∈ [𝑈,𝑉] ⇐⇒ 𝑈 ∩𝑉 ⊆ 𝑊 ⇐⇒ 𝑊 ⊆ 𝑈 ∪𝑉 ⇐⇒ (𝑈 \𝑊) ∪ (𝑊 \𝑉) ⊆ 𝑈 \𝑉 .
◦ Medians 〈𝑈,𝑉,𝑊〉 = {𝑝 ∈ 𝑃 | 𝑝 belongs to at least two of𝑈,𝑉,𝑊}.

Proof. There is at least one vertex, by Lemma 2.43 applied to {¬0}.
By definition,𝑈,𝑉 are neighbors iff𝑈 \𝑉 is a single vertex, which must then be minimal in U since

V was upward-closed. Conversely, for minimal 𝑝 ∈ 𝑈 \ {¬0}, 𝑉 := 𝑈�{𝑝,¬𝑝} is still an orientation
(since 𝑝 ∈ 𝑈 is minimal and ¬𝑝 ∈ ¬(𝑈) = ¬𝑈 is maximal), and clopen since p is isolated.

It follows that 𝑑 (𝑈,𝑉) = |𝑈 \𝑉 |: ≥ because a path may modify one element at a time; ≤ because we
may modify U to V in |𝑈 \𝑉 | steps by flipping minimal elements. In particular, note that 𝑑 (𝑈,𝑉) < ∞,
that is, the graph is connected, since 𝑈 \𝑉 is a compact set of isolated points.

The conditions𝑈 ∩𝑉 ⊆ 𝑊 and𝑊 ⊆ 𝑈 ∪𝑉 are equivalent since𝑈,𝑉,𝑊 are orientations (take image
under ¬ : 𝑃→ 𝑃 followed by complement). The condition (𝑈 \𝑊) ∪ (𝑊 \𝑉) ⊆ 𝑈 \𝑉 is equivalent to
𝑈 \𝑊 ⊆ ¬𝑉 and𝑊 \𝑉 ⊆ 𝑈, which are equivalent to the two former conditions. This third condition is
equivalent to 𝑑 (𝑈,𝑊) + 𝑑 (𝑊,𝑉) = 𝑑 (𝑈,𝑉), that is, 𝑊 ∈ [𝑈,𝑉].

Thus,𝑀 ∈ [𝑈,𝑉]∩[𝑉,𝑊]∩[𝑊,𝑈] iff (𝑈∩𝑉)∪(𝑉∩𝑊)∪(𝑊∩𝑈) ⊆ 𝑀 ⊆ (𝑈∪𝑉)∩(𝑉∪𝑊)∩(𝑊∪𝑈)
iff 𝑀 = {𝑝 ∈ 𝑃 | 𝑝 belongs to at least two of 𝑈,𝑉,𝑊}; and this set is easily seen to still be a clopen
orientation if𝑈,𝑉,𝑊 are. �

Proposition 2.45. Let P be a profinite pocset with every nontrivial element isolated. Then

𝑃 −→ Hcvx (U◦(𝑃))
𝑝 ↦−→ 𝑝 := {𝑈 ∈ U◦(𝑃) | 𝑝 ∈ 𝑈}

is a topological pocset isomorphism.

Proof. It is an order-embedding, since for 𝑝 �≤ 𝑞 ∈ 𝑃, 𝐹 := {𝑟 ∈ 𝑃 | 𝑝 ≤ 𝑟 or ¬𝑞 ≤ 𝑟} is a closed
partial orientation, and hence extends by Lemma 2.43 to 𝑈 ∈ U◦(𝑃) such that 𝑈 ∈ 𝑝 \ 𝑞. To see that it
is surjective: take a nontrivial half-space 𝐻 ⊆ U◦(𝑃) and an edge (𝑈,𝑉) ∈ 𝜕ie𝐻; then by Proposition
2.44, 𝑉 \𝑈 = {𝑝} is a singleton, and so by Lemma 2.23, 𝐻 = cone𝑈 (𝑉), which by Proposition 2.44 is
the set of 𝑊 ∈ Hcvx(U◦(𝑃)) such that 𝑉 \𝑈 ⊆ 𝑊 , which means that 𝐻 = 𝑝. �

Corollary 2.46. Let 𝑃,𝑄 be profinite pocsets with every nontrivial element isolated, 𝑔 : 𝑃 → 𝑄 be a
continuous pocset homomorphism. Then

𝑔∗ : U◦(𝑄) −→ U◦(𝑃)
𝑈 ↦−→ 𝑔−1(𝑈)

is a median homomorphism.
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Proof. By Corollary 2.35, this is equivalent to (𝑔∗)−1 : 2U◦ (𝑃) → 2U◦ (𝑄) mapping half-spaces to half-
spaces. Indeed, the composite of (𝑔∗)−1 with the canonical isomorphism 𝑃 � Hcvx(U◦(𝑃)) ⊆ 2U◦ (𝑃)
is easily seen to be g composed with 𝑄 � Hcvx(U◦(𝑄)). �

This completes the construction of the inverse functor in Theorem 2.39.

Remark 2.47. Theorem 2.39 is a special case of the duality between median algebras and profinite
pocsets (not necessarily with nontrivial elements isolated) due to Isbell [Isb80] and Werner [Wer81].
This duality in turn belongs to the general theory of Stone-type dualities induced by homomorphisms
to 2 = {0, 1}; see [Joh82, VI §3].

2.E. Finiteness conditions on median graphs and pocsets

Corollary 2.48. A median graph is finite iff it has finitely many half-spaces.

Proof. =⇒ is obvious;⇐= by Proposition 2.42. �

Corollary 2.49. A median graph (𝑋, 𝐺) has finite hyperplanes iff each half-space is non-nested with
finitely many others.

Proof. Half-spaces non-nested with 𝐻 ∈ Hcvx(𝑋) correspond to nontrivial half-spaces of 𝜕iv𝐻, by
Lemma 2.27. �

Corollary 2.50. For a median graph (𝑋, 𝐺), the following are equivalent:

(i) The adjacency graph (from Corollary 2.31) on hyperplanes of G is locally finite.
(ii) Each nontrivial half-space is non-nested with or a successor of finitely many others.

(iii) G is locally finite, and all hyperplanes are finite.

Proof. We easily have (i)⇐⇒ (ii) (using that H is a successor of K iff ¬𝐾 is a successor of ¬𝐻). By the
preceding corollary, it thus remains to show, assuming G has finite hyperplanes, that (i) iff G is locally
finite.

Suppose (i) holds. Then G is locally finite since the neighbors of x correspond to half-spaces
containing x on the inner boundary, which correspond to a clique of adjacent hyperplanes by Corollary
2.31.

Now suppose (i) fails; let 𝜕ie𝐻 for 𝐻 ∈ H∗cvx(𝑋) be adjacent to infinitely many other hyperplanes.
Then some 𝑥 ∈ 𝜕v𝐻 belongs to infinitely many other hyperplanes, whence x has infinite degree. �

Remark 2.51. Without assuming finite hyperplanes, the above shows that if the adjacency graph on
hyperplanes of G has no infinite cliques, then G is locally finite. The converse is false. Consider two
consecutive edges, the second of which is glued to one end of a strip of two squares, the second of
which is glued to one end of a stack of two cubes, etc. There are infinitely many pairwise non-nested
half-spaces; but the ‘common points on their boundaries’ are ‘median ends’ rather than vertices (see
Definition 2.57).

2.F. Subpocsets and wallspaces

We now describe ways in which Theorem 2.39 can be applied to construct a median graph, as the dual
of a pocset satisfying the required conditions. The most common examples of pocsets are subpocsets of
powersets 2𝑋 . The following characterizes when these yield median graphs:

Proposition 2.52. Let X be a set, H ⊆ 2𝑋 be a subpocset. The following are equivalent:

(i) H is closed (in the Cantor space 2𝑋 ), and every nontrivial element of H is isolated.
(ii) H is finitely separating: for every 𝑥, 𝑦 ∈ 𝑋 , there are only finitely many 𝐻 ∈ H containing x but

not y.
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Proof. (i) =⇒ (ii) follows from Proposition 2.44 applied to the principal orientations 𝑥, �̂� ∈ U◦(H).
Conversely, assume (ii), let 𝐴 ∈ 2𝑋 \ {∅, 𝑋}, and let 𝑥 ∈ 𝐴 ∌ 𝑦. For every 𝐻 ∈ H \ {𝐴} such that
𝑥 ∈ 𝐻 ∌ 𝑦, we have either some 𝑥𝐻 ∈ 𝐴 \𝐻 or some 𝑦𝐻 ∈ 𝐻 \ 𝐴. Then the set of all 𝐵 ∈ 2𝑋 containing
x and each 𝑥𝐻 but not y or any 𝑦𝐻 is a clopen neighborhood of A disjoint from H \ {𝐴}. Thus, the limit
points of H are ⊆ {∅, 𝑋}, proving (i). �

Definition 2.53. A wallspace [Nic04], [CN05] is a set X equipped with an arbitrary subpocset
H = H(𝑋) ⊆ 2𝑋 satisfying the equivalent conditions of Proposition 2.52; we call H(𝑋) the walling of
the wallspace X. Per Convention 2.7, we also put H∗(𝑋) := H(𝑋) \ {∅, 𝑋}.

Thus, for a median graph (𝑋, 𝐺), we have a canonical choice of walling – namely, Hcvx(𝑋) – while
from an arbitrary walling H(𝑋), we may construct by Theorem 2.39 the dual median graph U◦(H(𝑋))
equipped with the principal orientations map 𝑥 ↦→ 𝑥 from X, which may be thought of as a ‘median
completion’ of X.

Note however that this ‘completion’ need not extend X because the map 𝑥 ↦→ 𝑥 is not injective
in general. We call the preimage of a principal orientation an H-block; in other words, H-blocks are
equivalence classes of points contained in exactly the same sets in H. We denote the set of H-blocks by
𝑋/H, and the H-block containing 𝑥 ∈ 𝑋 by [𝑥]H.

In fact, when H above is a subset of the half-spaces of some median graph on X, this ‘median
completion’ of (𝑋,H) is just a quotient of X:

Proposition 2.54. Let (𝑋, 𝐺) be a median graph, H ⊆ Hcvx(𝑋) be a subpocset of half-spaces. Then
H is a walling, and the median homomorphism 𝑋 � U◦(Hcvx(𝑋)) → U◦(H) induced by the inclusion
H ↩→ Hcvx(𝑋) is surjective. Hence, U◦(H) may be constructed up to isomorphism as the set of H-
blocks, equipped with the G-adjacency graph.

Proof. SinceHcvx (𝑋)\H consists only of isolated points,H ⊆ Hcvx(𝑋) is closed. So given𝑈 ∈ U◦(H),
the upward-closure of U in Hcvx(𝑋) is closed by compactness of {(𝐻, 𝐾) | 𝐻 ⊆ 𝐾} ⊆ Hcvx(𝑋)

2,
and a partial orientation since U is, and hence extends by Lemma 2.43 to a clopen orientation 𝑈 ⊆
𝑉 ⊆ Hcvx(𝑋), so that 𝑈 ⊆ 𝑉 ∩ H, whence 𝑈 = 𝑉 ∩ H since both are orientations. This shows that
U◦(Hcvx(𝑋)) → U◦(H) is surjective.

The composite 𝑋 � U◦(Hcvx(𝑋)) � U◦(H) is given by 𝑥 ↦→ 𝑥 ∩H, which identifies two vertices
iff they belong to the same half-spaces in H, that is, the same H-block. If two H-blocks [𝑥]H, [𝑦]H
are joined by an edge, then that means the interval [[𝑥]H, [𝑦]H] consists of only {[𝑥]H, [𝑦]H}, whence
[𝑥, 𝑦] ⊆ [𝑥]H ∪ [𝑦]H, so any geodesic from x to y must contain an edge between [𝑥]H, [𝑦]H. �

Remark 2.55. This says that embeddings on the right side of the duality 2.39 correspond to surjections
on the left. Conversely, it is clear that a surjective median homomorphism 𝑓 : (𝑋, 𝐺) � (𝑌, 𝐻) between
median graphs induces a topological pocset embedding 𝑓 ∗ : Hcvx(𝑌 ) ↩→ Hcvx(𝑋).

2.G. Ends

Definition 2.56. Let (𝑋, 𝐺) be a connected graph. Let H𝜕<∞(𝑋) = H𝐺
𝜕<∞
(𝑋) ⊆ 2𝑋 be the Boolean

algebra of all sets with finite boundary. The end compactification 𝑋 = 𝑋𝐺 is the Stone space of ultrafil-
ters on H𝜕<∞(𝑋); thus, a clopen set in 𝑋 is the set 𝐴 of all ultrafilters containing some 𝐴 ∈ H𝜕<∞(𝑋).
We identify each 𝑥 ∈ 𝑋 with the corresponding principal ultrafilter 𝑥 ∈ 𝑋; these are dense in 𝑋 . The
nonprincipal ultrafilters are called ends of (𝑋, 𝐺).8

For another connected graph (𝑌, 𝐻) and a map 𝑓 : 𝑋 → 𝑌 , the induced map is

𝑓 := ( 𝑓 ∗)−1 : 𝑋 −→ 𝑌

𝑈 ↦−→ {𝐴 ∈ H𝜕<∞(𝑌 ) | 𝑓
−1(𝐴) ∈ 𝑈}.

8While the definition makes sense regardless, if G is not locally finite (e.g., if 𝐺 = 𝐾∞, 𝑥 ↦→ �̂� may not be injective).

https://doi.org/10.1017/fms.2025.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.22


Forum of Mathematics, Sigma 17

The induced map exists iff 𝑓 ∗ preserves sets with finite boundary. For example, this holds if f is an
injective (or more generally finite-to-one) graph homomorphism.

See [DK03] for general information on ends of graphs, including the equivalence in the locally finite
case between the point-set topological approach we have adopted (dating back to Freudenthal [Fre31]
and Hopf [Hop44]) and the more common approach via rays (due to Halin [Hal64]).

Definition 2.57. For a median graph (𝑋, 𝐺), the space U (Hcvx(𝑋)) ⊆ 2Hcvx (𝑋 ) of all (not necessarily
clopen) orientations is called the profinite median completion of (𝑋, 𝐺).9

Lemma 2.58. For a median graph (𝑋, 𝐺) with finite hyperplanes, H𝜕<∞(𝑋) ⊆ 2𝑋 is the Boolean
subalgebra generated by Hcvx(𝑋).

Proof. Let 𝐴 ∈ H∗𝜕<∞; we must show that A is a finite Boolean combination of half-spaces. By Corollary
2.34, 𝑌 := cvx(𝜕v𝐴) ⊆ 𝑋 is finite; thus (by Lemma 2.33), 𝐴 ∩ 𝑌 is a finite Boolean combination of
half-spaces in Y, whence proj−1

𝑌 (𝐴 ∩ 𝑌 ) is a finite Boolean combination of half-spaces in X. We claim
that 𝐴 = proj−1

𝑌 (𝐴 ∩ 𝑌 ). The intersections of both with Y are clearly the same; thus, it suffices to show
that for 𝑥 ∈ 𝑋 \ 𝑌 , 𝑥 ∈ 𝐴 ⇐⇒ 𝑥 ∈ proj−1

𝑌 (𝐴 ∩ 𝑌 ). Indeed, if 𝑥 ∈ 𝐴, then proj𝑌 (𝑥) ∈ 𝐴 ∩ 𝑌 , or else
the last vertex in A on a geodesic from x to proj𝑌 (𝑥) would be on the inner boundary of A but not in Y,
contradicting the definition of Y. Similarly if 𝑥 ∉ 𝐴. �

Proposition 2.59. For a median graph (𝑋, 𝐺) with finite hyperplanes, we have a homeomorphism

𝑋 −→ U (Hcvx(𝑋))

𝑈 ↦−→ 𝑈 ∩Hcvx(𝑋).

Proof. Injectivity: for 𝑈,𝑉 ∈ 𝑋 , the set of 𝐴 ∈ H𝜕<∞(𝑋) such that 𝐴 ∈ 𝑈 ⇐⇒ 𝐴 ∈ 𝑉 is a Boolean
algebra, and hence if it contains Hcvx(𝑋), must be all of H𝜕<∞(𝑋) by the above lemma. Surjectivity:
𝑉 ∈ U (Hcvx(𝑋)) has the finite intersection property by Corollary 2.21, and hence extends to an ultrafilter
𝑉 ⊆ 𝑈 ⊆ H𝜕<∞(𝑋) such that 𝑉 = 𝑈 ∩Hcvx(𝑋). �

Remark 2.60. The above homeomorphism is clearly compatible with the respective inclusions of X, in
that the following triangle commutes:

𝑋

𝑋 U (Hcvx(𝑋))

𝑥 ↦→�̂�
𝑥 ↦→�̂�

�

Lemma 2.61. For a locally finite median graph (𝑋, 𝐺) with finite hyperplanes, each end has a neigh-
borhood basis of half-spaces.

Proof. Let𝑈 ∈ 𝑋 \ 𝑋 be an end, 𝐴 � 𝑈 be a clopen neighborhood where 𝐴 ∈ H𝜕<∞(𝑋). By Corollary
2.34, cvx(𝜕ov𝐴) ⊆ 𝑋 is finite. By Lemma 2.58 (applied to it and each point on its outer boundary), it
is a finite intersection of half-spaces. One such half-space H must not contain U since 𝑈 ∉ cvx(𝜕ov𝐴).
Then 𝑈 ∈ ¬𝐻, whence 𝐴 ∩ ¬𝐻 ≠ ∅, whence ¬𝐻 ⊆ 𝐴 since 𝜕ov𝐴 ∩ ¬𝐻 = ∅. �

Corollary 2.62. For a wallspace X such that U◦(H(𝑋)) has finite hyperplanes, each end
𝑈 ∈ 
U◦(H(𝑋)) � U (H(𝑋)) is a limit of points in X (not just in U◦(H(𝑋))).
Proof. The half-space neighborhoods of U form a filter base in X converging to U. �

9The nonprincipal orientations U (Hcvx (𝑋 )) \ U◦ (Hcvx (𝑋 )) are called the Roller boundary; see [Bow22, §11.12].
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2.H. Quasi-isometries and coarse equivalences

We now review some notions from metric geometry.

Definition 2.63. A proper pseudometric is one whose balls are all finite.

Example 2.64. The path metric on a connected locally finite graph is a proper metric.

Definition 2.65. Let 𝑋,𝑌 be pseudometric spaces. A bornologous map 𝑓 : 𝑋 → 𝑌 is one with

∀𝑅 < ∞∃𝑆 < ∞∀𝑥, 𝑥 ′ ∈ 𝑋 (𝑑𝑋 (𝑥, 𝑥
′) ≤ 𝑅 =⇒ 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥

′)) ≤ 𝑆).

A quasi-inverse of f is a map 𝑔 : 𝑌 → 𝑋 with uniform distance 𝑑 (1𝑋 , 𝑔 ◦ 𝑓 ), 𝑑 (1𝑌 , 𝑓 ◦ 𝑔) < ∞. If f is
a bornologous map with a bornologous quasi-inverse, then f is a coarse equivalence; if such f exists,
then 𝑋,𝑌 are coarsely equivalent. We say that f is a coarse embedding if it is a coarse equivalence
onto its image. This is easily seen to be equivalent to: f is bornologous, and moreover,

∀𝑆 < ∞∃𝑅 < ∞∀𝑥, 𝑥 ′ ∈ 𝑋 (𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥
′)) ≤ 𝑆 =⇒ 𝑑𝑋 (𝑥, 𝑥

′) ≤ 𝑅).

Note that the above ∀∃∀ conditions are equivalent to, respectively,

∀𝑅 < ∞∃𝑆 < ∞∀𝐴 ⊆ 𝑋 (diam(𝐴) ≤ 𝑅 =⇒ diam( 𝑓 (𝐴)) ≤ 𝑆),
∀𝑆 < ∞∃𝑅 < ∞∀𝐴 ⊆ 𝑋 (diam( 𝑓 (𝐴)) ≤ 𝑆 =⇒ diam(𝐴) ≤ 𝑅).

A quasi-isometry is a coarse equivalence f such that S above can be taken to be a linear function of
R, and such that f has a quasi-inverse obeying the same condition.

See [Roe03] or [DK18] for background on large-scale geometric notions such as these.

Lemma 2.66. A coarse embedding between proper pseudometric spaces is finite-to-one. Indeed, diam-
eters of fibers of such a map are uniformly bounded.

Proof. Let 𝑓 : 𝑋 → 𝑌 be such a map, and 𝑅 < ∞ with 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥 ′)) ≤ 0 =⇒ 𝑑 (𝑥, 𝑥 ′) ≤ 𝑅. �

Lemma 2.67. Let (𝑋, 𝐺), (𝑌, 𝐻) be connected locally finite graphs.

(a) For a coarse embedding 𝑓 : 𝑋 → 𝑌 and 𝐴 ∈ H𝜕<∞(𝑌 ), diam(𝜕v 𝑓
−1(𝐴)) is uniformly bounded in

terms of diam(𝜕v𝐴). In particular, 𝑓 −1(𝐴) ∈ H𝜕<∞(𝑋), hence f induces a map 𝑓 : 𝑋 → 𝑌 .
(b) For coarse embeddings 𝑓 , 𝑔 : 𝑋 → 𝑌 with 𝑑 ( 𝑓 , 𝑔) < ∞, for 𝐴 ∈ H𝜕<∞(𝑌 ), diam( 𝑓 −1(𝐴)�𝑔−1(𝐴))

is uniformly bounded in terms of diam(𝜕v𝐴). In particular, 𝑓 , �̂� : 𝑋 → 𝑌 agree on ends.
(c) Thus, a coarse equivalence 𝑓 : 𝑋 → 𝑌 induces a homeomorphism on ends 𝑓 : 𝑋 \ 𝑋 � 𝑌 \ 𝑌 .

Proof. (a) Let 𝑆 < ∞ such that 𝑑 (𝑥, 𝑥 ′) ≤ 1 =⇒ 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑥 ′)) ≤ 𝑆. For 𝐴 ⊆ 𝑌 and
(𝑥, 𝑥 ′) ∈ 𝜕ie 𝑓

−1(𝐴), we have a path of length ≤ 𝑆 between 𝑓 (𝑥) ∉ 𝐴 and 𝑓 (𝑥 ′) ∈ 𝐴, whence
𝑑 ( 𝑓 (𝑥), 𝜕v𝐴), 𝑑 ( 𝑓 (𝑥

′), 𝜕v𝐴) ≤ 𝑆, that is, 𝑓 (𝜕v 𝑓
−1(𝐴)) ⊆ Ball𝑆 (𝜕v𝐴), whence diam( 𝑓 (𝜕v 𝑓

−1(𝐴))) ≤
diam(𝜕v𝐴) + 2𝑆. Since f is a coarse embedding, this is enough.

(b) For 𝑥 ∈ 𝑓 −1(𝐴) \ 𝑔−1(𝐴), we have a path of length ≤ 𝑑 ( 𝑓 , 𝑔) between 𝑓 (𝑥) ∈ 𝐴 and 𝑔(𝑥) ∉ 𝐴,
whence 𝑑 ( 𝑓 (𝑥), 𝜕v𝐴), 𝑑 (𝑔(𝑥), 𝜕v𝐴) ≤ 𝑑 ( 𝑓 , 𝑔). Swapping 𝑓 , 𝑔, the same holds for 𝑥 ∈ 𝑔−1 (𝐴) \ 𝑓 −1(𝐴).
Thus, 𝑓 ( 𝑓 −1(𝐴)�𝑔−1(𝐴)) ⊆ Ball𝑑 ( 𝑓 ,𝑔) (𝜕v𝐴), which similarly to (a) implies the claim.

(c) follows by taking a quasi-inverse g, so that 𝑑 (1𝑋 , 𝑔 ◦ 𝑓 ), 𝑑 (1𝑌 , 𝑓 ◦ 𝑔) < ∞. �

2.I. CBERs and graphings

We briefly review here the main definitions we need from descriptive set theory and Borel combinatorics.
For detailed background, see [Kec24], [KM04].

A countable Borel equivalence relation (CBER) E on a standard Borel space X is a Borel equiva-
lence relation 𝐸 ⊆ 𝑋2 with countable equivalence classes, denoted [𝑥]𝐸 ⊆ 𝑋 for 𝑥 ∈ 𝑋 . More generally,
[𝐴]𝐸 ⊆ 𝑋 denotes the E-saturation of 𝐴 ⊆ 𝑋 .
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Every locally countable Borel graph𝐺 ⊆ 𝑋2 generates a CBERE𝐺 whose classes are the G-connected
components. Given a CBER 𝐸 ⊆ 𝑋2, we call a Borel graph G with E𝐺 = 𝐸 a (Borel) graphing of
E; we will only ever consider Borel graphings in this paper, and henceforth drop the prefix ‘Borel’. If
♣ is a class of connected graphs, then ‘♣ing’ will mean a graphing each of whose components is in ♣.
In particular, a treeing is a graphing which is a forest (i.e., each of whose components is a tree); if a
treeing of E exists, then E is called treeable.

A CBER 𝐸 ⊆ 𝑋2 is hyperfinite if it is a countable increasing union 𝐸 = ↑
⋃
𝑛 𝐹𝑛 of finite Borel

equivalence relations (FBERs) 𝐹𝑛 ⊆ 𝑋2, meaning with finite equivalence classes. Such a sequence
(𝐹𝑛)𝑛 is called a witness to hyperfiniteness of E.

A Borel homomorphism 𝑓 : (𝑋, 𝐸) → (𝑌, 𝐹) between two CBERs is a Borel map 𝑓 : 𝑋 → 𝑌
which descends to a map between the quotients 𝑋/𝐸 → 𝑌/𝐹.

If the descended map is injective (respectively bijective), then f is a Borel (bi)reduction; if such f
exists, we say E is Borel (bi)reducible to F.

A CBER is smooth if it admits a Borel reduction to equality on a standard Borel space, or equivalently,
it admits a Borel selection of a single point in each equivalence class.

A homomorphism between equivalence relations 𝑓 : (𝑋, 𝐸) → (𝑌, 𝐹) is class-bijective if for each
E-class 𝐶 ∈ 𝑋/𝐸 , f restricts to a bijection 𝐶 � [ 𝑓 (𝐶)]𝐹 .

A Borel class-bijective homomorphism between CBERs 𝑓 : (𝑌, 𝐹) → (𝑋, 𝐸) is essentially the same
thing as a Borel action of the equivalence relation (or groupoid) E on the Borel bundle 𝑓 : 𝑌 → 𝑋 ,
where each (𝑥, 𝑥 ′) ∈ 𝐸 acts via the bijection between fibers

𝑓 −1(𝑥) −→ 𝑓 −1(𝑥 ′)

𝑦 ↦−→ (𝑥, 𝑥 ′) · 𝑦 := the unique 𝑦′ ∈ [𝑦]𝐹 ∩ 𝑓 −1(𝑥 ′).

Conversely, we can recover F from this action as its orbit equivalence relation.

3. Treeing median graphs with finite hyperplanes

Theorem 3.1. Let (𝑋, 𝐺) be a countable median graph with finite hyperplanes. Then we may construct
a canonical10 subtree 𝑇 ⊆ 𝐺.
Proof. Let H∗cvx(𝑋) =

⊔
𝑛∈NH∗𝑛 be a countable coloring of the nontrivial half-spaces such that each

𝐻,¬𝐻 receive the same color, so thatH𝑛 := H∗𝑛∪{∅, 𝑋} ⊆ Hcvx(𝑋) is a subpocset, and eachH𝑛 consists
of pairwise nested half-spaces. To see that such a coloring exists: by Lemma 2.27, if 𝐻, 𝐾 ∈ H∗cvx(𝑋)
are non-nested, then in particular, their vertex boundaries obey 𝜕v𝐻 ∩ 𝜕v𝐾 ≠ ∅; so it suffices to take a
countable coloring of the intersection graph on these boundaries.

Now let K∗𝑛 :=
⋃
𝑚≥𝑛H∗𝑚 and K𝑛 := K∗𝑛 ∪ {∅, 𝑋} for each 𝑛 ∈ N, and consider the quotient median

graphs 𝑋/K𝑛 of K𝑛-blocks for each n (in the sense of Proposition 2.54). Each (𝑥, 𝑦) ∈ 𝐺 lies in a K𝑛-
block for sufficiently large n, namely for n such that cone𝑥 (𝑦) ∈ H∗𝑛−1 (and all larger n), since cone𝑥 (𝑦)
is the unique half-space with 𝑥 ∉ cone𝑥 (𝑦) � 𝑦. Thus, the increasing union of the K𝑛-block equivalence
relations is 𝑋2.

We will inductively construct subforests𝑇0 ⊆ 𝑇1 ⊆ 𝑇2 ⊆ · · · ⊆ 𝐺 such that the connected components
of 𝑇𝑛 are the K𝑛-blocks. The K0 = Hcvx (𝑋)-blocks are singletons (by Lemma 2.33); thus, put 𝑇0 := ∅.
Suppose we are given a subforest 𝑇𝑛 whose components are precisely the K𝑛-blocks. Each K𝑛+1-block
𝑌 ∈ 𝑋/K𝑛+1 is not separated by any half-spaces in H𝑚 for 𝑚 > 𝑛, but is separated by H𝑛 into the
K𝑛-blocks contained in Y. Since H𝑛 is nested, 𝑌/H𝑛 is a tree (Corollary 2.28). For each 𝑌 ∈ 𝑋/K𝑛+1
and each two G-adjacent 𝐴, 𝐵 ∈ 𝑌/H𝑛, there are only finitely many edges between 𝐴, 𝐵 (since they are
contained in the hyperplane separating 𝐴, 𝐵); we may thus choose one and add it to 𝑇𝑛+1. Then 𝑇𝑛+1 is
acyclic, being a forest of blocks which are trees (the 𝑇𝑛-components) with a single edge between every
pair of adjacent blocks. Put 𝑇 := ↑

⋃
𝑛 𝑇𝑛. �

10In the precise sense of Section 1.E; see Theorem 3.5.
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Example 3.2. The tree T constructed above might not preserve the ends of G, in that the map

�̂� : 𝑋𝑇 −→ 𝑋𝐺

induced by the inclusion 𝜄 : (𝑋,𝑇) → (𝑋, 𝐺) might not be injective (it is always surjective since
X is dense in 𝑋𝐺). In the following bounded degree one-ended median graph (thin black lines), the
hyperplanes (bold crossing lines) have been countably colored (from beneath to above), and the edges
between adjacent 𝐴, 𝐵 ∈ 𝑌/H𝑛 in the above construction have been chosen, in such a way that the
resulting T (thick highlighted edges) has two ends:

Despite this example, we may tweak the above construction so that

Proposition 3.3. If G has bounded degree, and hyperplanes in G also have bounded diameters, then
the tree T in Theorem 3.1 may be constructed so that the inclusion 𝜄 : 𝑇 → 𝐺 is a quasi-isometry.

In particular, by Lemma 2.67, �̂� must then be a homeomorphism.

Proof. We follow the notation and setup from the proof of Theorem 3.1.
If𝐷 ≥ 2 is a degree bound for G, and R is a bound on the diameters of hyperplanes, then 𝑁 := 3𝐷2𝑅+1 is

a bound on the number of colors needed for the coloring of H∗cvx. Indeed, given 𝐻 ∈ H∗cvx, any 𝐾 ∈ H∗cvx
non-nested with it must share a boundary vertex with it by Lemma 2.27. Thus, K is determined by its
inner and outer boundaries, which is a pair of disjoint subsets of Ball𝑅 (𝜕v𝐻). Because of our diameter
bound, Ball𝑅 (𝜕v𝐻) ⊆ Ball2𝑅 (𝑥) for any fixed 𝑥 ∈ 𝜕v𝐻, so

|Ball𝑅 (𝜕v𝐻) | ≤ 1 + 𝐷 + 𝐷2 + · · · + 𝐷2𝑅 ≤ 𝐷2𝑅+1.

Hence, the non-nestedness graph on half-spaces has degree ≤ 3𝐷2𝑅+1
− 1 = 𝑁 − 1, whence it has an

N-coloring.
Now we claim that for each 𝑛 ≤ 𝑁 and K𝑛-block 𝑌 ∈ 𝑋/K𝑛, any G-adjacent 𝑥, 𝑦 ∈ 𝑌 have

𝑑𝑇𝑛 (𝑥, 𝑦) ≤ 1 + 2𝑅 + 4𝑅2 + · · · + (2𝑅)𝑛−1 =: 𝑀𝑛.

In other words, the inverse of the inclusion (𝑌, 𝑇𝑛 |𝑌 ) → (𝑌, 𝐺 |𝑌 ) (where |𝑌 denotes restriction to Y)
is 𝑀𝑛-Lipschitz. This is trivial for 𝑛 = 0. Suppose it holds for n; we show it for 𝑛 + 1. If 𝑥, 𝑦 are in the
same K𝑛-block, then we are done by the induction hypothesis. Otherwise, the K𝑛-blocks containing 𝑥, 𝑦
are separated by the half-space 𝐻 := cone𝑥 (𝑦) ∈ H𝑛. Let (𝑥 ′, 𝑦′) ∈ 𝜕ie𝐻 be the unique edge in Y kept
during the construction of 𝑇𝑛+1 from 𝑇𝑛. Since 𝑥, 𝑦, 𝑥 ′, 𝑦′ ∈ 𝜕v𝐻,

𝑑𝐺 (𝑥, 𝑥
′), 𝑑𝐺 (𝑦, 𝑦

′) ≤ 𝑅,

whence by the induction hypothesis,

𝑑𝑇𝑛 (𝑥, 𝑥
′), 𝑑𝑇𝑛 (𝑦, 𝑦

′) ≤ 𝑅𝑀𝑛
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and so

𝑑𝑇𝑛+1 (𝑥, 𝑦) ≤ 𝑑𝑇𝑛+1 (𝑥, 𝑥
′) + 𝑑𝑇𝑛+1 (𝑥

′, 𝑦′) + 𝑑𝑇𝑛+1 (𝑦
′, 𝑦)

≤ 2𝑅𝑀𝑛 + 1 = 𝑀𝑛+1.

Taking 𝑛 = 𝑁 completes the proof, since there is a single K𝑁 -block. �

We now bring these notions into the Borel context:

Definition 3.4. A (Borel) median graphing of a CBER (𝑋, 𝐸) is a Borel graphing each component of
which is a median graph.

By implementing the proofs of Theorem 3.1 and Proposition 3.3 in a Borel manner, we have the
following.

Theorem 3.5. Let (𝑋, 𝐸) be a CBER, G be a median graphing of E with finite hyperplanes. Then there
is a Borel subtreeing 𝑇 ⊆ 𝐺 of E. If, moreover, G has bounded degree and hyperplanes with bounded
diameters, then T may be constructed so that the inclusion 𝑇 → 𝐺 is a quasi-isometry.

Proof. Let H∗cvx(𝑋) be the standard Borel space of nontrivial half-spaces in a component of G, where
we identify a nontrivial half-space H with the pair (𝜕iv𝐻, 𝜕ov𝐻) of nonempty sets of vertices. By [KM04,
7.3] and Lusin–Novikov, there is a Borel countable coloring H∗cvx(𝑋) =

⊔
𝑛∈NH∗𝑛 such that each 𝐻,¬𝐻

receive the same color and any two distinct non-complementary half-spaces with intersecting vertex
boundary receive distinct colors. Define inductively Borel subforests ∅ =: 𝑇0 ⊆ 𝑇1 ⊆ · · · ⊆ 𝐺 by
taking 𝑇𝑛+1 to be 𝑇𝑛 together with a single edge on the hyperplane separating any two G-adjacent 𝑇𝑛-
components in the same (K𝑛 =

⋃
𝑚≥𝑛H𝑚)-block, chosen using Lusin–Novikov, and put 𝑇 :=

⋃
𝑛 𝑇𝑛;

this works by the proof of Theorem 3.1.
In the bounded-degree case, use [KST99, 4.6] to choose a finite Borel coloring H∗cvx(𝑋) =

⊔
𝑛<𝑁 H∗𝑛

to begin with, where N is as in the proof of Proposition 3.3. �

4. Proper wallspaces

In the rest of the paper, we apply the results of the previous section to show treeability of CBERs
equipped with various kinds of geometric structures from which a median graph may be constructed in
a canonical manner (in the precise sense of Section 1.E). We begin in this section with a fairly general
kind of such structure, before specializing in the following section to ‘tree-like’ graphs.

Recall Definition 2.53 of wallspace: a set X equipped with a subpocset H = H(𝑋) ⊆ 2𝑋 , called the
walling of the wallspace, which is finitely separating, meaning

(i) For any 𝑥, 𝑦 ∈ 𝑋 , there are only finitely many 𝐻 ∈ H(𝑋) with 𝑥 ∈ 𝐻 ∌ 𝑦.

By Proposition 2.52, this means that H(𝑋) ⊆ 2𝑋 is closed and has nontrivial elements isolated.

Definition 4.1. We call a wallspace X proper if it additionally satisfies the following:

(ii) For any 𝑥 ∈ 𝑋 , there are only finitely many 𝑦 ∈ 𝑋 with ∀𝐻 ∈ H(𝑋) (𝑥 ∈ 𝐻 ⇐⇒ 𝑦 ∈ 𝐻) (i.e.,
each H-block is finite).

(iii) For any 𝐻 ∈ H(𝑋), there are only finitely many 𝐾 ∈ H(𝑋) non-nested with H.
(iv) For any 𝐻 ∈ H∗(𝑋), there are only finitely many successors 𝐻 � 𝐾 ∈ H∗(𝑋).

By Corollary 2.50, the last two conditions mean that the dual median graph U◦(H(𝑋)) is locally finite
and has finite hyperplanes. Condition (ii) means that 𝑥 ↦→ 𝑥 : 𝑋 → U◦(H(𝑋)) is finite-to-one.

Definition 4.2. A Borel walling of a CBER (𝑋, 𝐸) is a ‘Borel assignment’ of a walling H(𝐶) ⊆ 2𝐶
(i.e., subpocset satisfying Definition 2.53), for each E-class 𝐶 ∈ 𝑋/𝐸 .
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Figure 2. A dual median graph with a half-space H with no principal orientations (circled vertices)
on its boundary, and such that the set S of principal orientations in H closest to its boundary do not
uniquely identify it (the left side of the vertical hyperplane down the middle would have the same S).

To make this precise, we may first construct the Borel bundle (see Section 2.I) of powersets

2𝐸𝑋 :=
⊔
𝑥∈𝑋

2[𝑥 ]𝐸 := {(𝑥, 𝐴) | 𝑥 ∈ 𝑋 and 𝐴 ⊆ [𝑥]𝐸 }

equipped with the first projection 𝑝 :
⊔
𝑥∈𝑋 2[𝑥 ]𝐸 → 𝑋 , and the Borel structure generated by declaring,

for any partial Borel map 𝑓 : 𝑋 ⇀ 𝑋 with graph contained in E, the set

{(𝑥, 𝐴) | 𝑥 ∈ dom( 𝑓 ) and 𝑓 (𝑥) ∈ 𝐴} ⊆ 2𝐸𝑋

to be Borel. Equivalently, given a Borel family of bijections (𝑒𝑥 : N � [𝑥]𝐸 )𝑥∈𝑋 via the Lusin–Novikov
uniformization theorem, we may identify 2𝐸𝑋 with 𝑋 × 2N with the product Borel structure via the
isomorphism (𝑥, 𝐴) ↦→ (𝑥, 𝑒−1

𝑥 (𝐴)). Note that E acts on this bundle 𝑝 : 2𝐸𝑋 → 𝑋 by transporting
between fibers 𝑝−1 (𝑥), 𝑝−1 (𝑦) over E-related points (𝑥, 𝑦) ∈ 𝐸 :

(𝑥, 𝑦) · (𝑥, 𝐴) := (𝑦, 𝐴).

Now the condition for calling the walling Borel is that the set

H𝑋 (𝐸) :=
⊔
𝑥∈𝑋

H([𝑥]𝐸 ) = {(𝑥, 𝐻) | 𝐻 ∈ H([𝑥]𝐸 )} ⊆ 2𝐸𝑋

is Borel. Note that it is then an E-invariant Borel subset of 2𝐸𝑋 , to which the action 𝐸 � 2𝐸𝑋 restricts;
the orbit equivalence relation of this action is then a CBER on the space H𝑋 (𝐸).

A proper Borel walling is a Borel walling H𝑋 (𝐸) such that for each 𝐶 ∈ 𝑋/𝐸 , H(𝐶) is a proper
walling on C. We call a CBER E properly wallable if it admits a proper Borel walling.

Lemma 4.3. Let H = H𝑋 (𝐸) ⊆ 2𝐸𝑋 be a proper Borel walling of a CBER (𝑋, 𝐸). Then the orbit
equivalence relation of the action 𝐸 � H∗𝑋 (𝐸) is smooth.

Proof. We have a Borel complete section 𝑆 ⊆ H∗𝑋 (𝐸) selecting finitely many points from each orbit,
namely all those (𝑥, 𝐻) ∈ H∗𝑋 (𝐸), that is, 𝐻 ∈ H∗([𝑥]𝐸 ), such that in the median graph U◦(H([𝑥]𝐸 )),
the corresponding principal orientation 𝑥 ∈ 𝐻 is at minimal distance from the set of all �̂� ∈ ¬𝐻; there
exist such 𝑥, �̂� since 𝐻 ≠ ∅, 𝑋 , the set of nearest 𝑥 ∈ U◦(H([𝑥]𝐸 )) is finite for each H by the axioms of
Definition 4.1, and the entire set S is easily seen to be Borel using Lemma 2.32. �

Remark 4.4. The set S in the proof above can be seen as selecting the points x ‘approximately on the
inner boundary’ of each half-space H. The ‘approximate’ is needed because the genuine inner boundary
in the median graph U◦(H([𝑥]𝐸 )) may not contain any principal orientations, as in Figure 2, which also
shows that this ‘approximate boundary’ S may not uniquely identify H.

While such uniqueness is not required for smoothness of 𝐸 � H∗𝑋 (𝐸), we would like to point
out that it is possible to define a more involved (but still canonical) finite ‘approximate boundary’ of
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𝐻 ∈ H∗(𝑋) in a proper wallspace X that uniquely identifies H. Namely, we may take the union of all
minimal-diameter subsets of X that generate 𝜕v𝐻 under the median operation 〈·, ·, ·〉, and then remember
the restrictions of 𝐻,¬𝐻 to this finite set.

Remark 4.5. The significance of Lemma 4.3 is that we may construct a standard Borel space H∗𝑋 (𝐸)/𝐸
of all nontrivial half-spaces in all equivalence classes, rather than merely a bundle of such spaces varying
over a basepoint. This space is key in the main Theorem 4.6 of this section.

However, in concrete examples of wallings where there is a natural notion of finite ‘boundary’, such
as cuts in graphs as in Section 5, it is easier to bypass the bundle H∗𝑋 (𝐸) and directly construct the
standard Borel space of the half-spaces in the given walling by representing each half-space H via its
finite ‘boundary’.
Theorem 4.6. A CBER (𝑋, 𝐸) is properly wallable iff it is treeable.
Proof. Given a proper walling H𝑋 (𝐸) ⊆ 2𝐸𝑋 , let U◦𝑋 (H𝑋 (𝐸))/𝐸 be the Borel (locally finite) median
graph with finite hyperplanes given by the disjoint union of U◦(H(𝐶)) for each 𝐶 ∈ 𝑋/𝐸 , where each
clopen orientation 𝑈 ∈ U◦(H(𝐶)) is represented as its finite set of minimal elements in the standard
Borel space of half-spaces H∗𝑋 (𝐸)/𝐸 . (Equivalently, we first apply U◦ fiberwise to the bundle of pocsets
H𝑋 (𝐸), and then quotient by the E-action, hence the notation.) By Theorem 3.5, the quotient median
graph on U◦𝑋 (H𝑋 (𝐸))/𝐸 is treeable, and Borel bireducible with E via 𝑋 � 𝑥 ↦→ 𝑥 ∈ U◦(H([𝑥]𝐸 )),
whence E is also treeable by [JKL02, 3.3].

Conversely, if E is treeable, then it is locally finite treeable by [JKL02, 3.12]; the half-spaces of such
a treeing yield a proper walling. �

Remark 4.7. Given a CBER (𝑋, 𝐸) and a Borel assignment 𝐶 ↦→ H(𝐶) ⊆ 2𝐶 as in Definition 4.2,
the union of those 𝐶 ∈ 𝑋/𝐸 in which H(𝐶) forms a proper walling is Borel; this easily follows
from Definition 4.1. Thus, if we have countably many such Borel assignments (H𝑖)𝑖∈N, such that each
𝐶 ∈ 𝑋/𝐸 admits at least one H𝑖 (𝐶) which is a proper walling, then we may combine these H𝑖 into a
single H which is a proper walling, whence E is again treeable.

5. Graphs with dense families of cuts

In this section, we provide a general method for identifying proper wallings consisting of cuts in graphs
(i.e., ways of splitting the vertex set into two pieces) obeying various graph-theoretic properties. We
then apply this method to two specific classes of graphs – namely, quasi-trees and bounded tree-width
graphs – to deduce that such graphings are treeable.

5.A. Wallings of cuts

Let (𝑋, 𝐺) be a connected locally finite graph. As in Section 2.G, H𝜕<∞(𝑋) = H𝐺
𝜕<∞
(𝑋) ⊆ 2𝑋 denotes

the Boolean algebra of subsets with finite G-boundary, whose Stone space 𝑋 is the end compactification
of X.
Remark 5.1. Given a graph (𝑋, 𝐺) as above and a walling H ⊆ 2𝑋 , to say that such H is contained
in H𝜕<∞(𝑋) (which is not usually a walling, due to not being closed in 2𝑋 ) means precisely that the
principal orientations map 𝑋 → U◦(H) extends continuously to the end compactifications:

𝑋 U◦(H)

𝑋 �U◦(H)
Indeed, such an extension exists iff preimage under 𝑋 → U◦(H) preservesH𝜕<∞, which by Lemma 2.58
means precisely that the preimage H of each half-space 𝐻 ⊆ U◦(H) is in H𝜕<∞(𝑋).
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Note also that if U◦(H) has finite hyperplanes, so that �U◦(H) � U (H) by Proposition 2.59, the
induced map above becomes simply

2H𝜕<∞ ⊇ 𝑋 −→ U (H) ⊆ 2H

𝑈 ↦−→ {𝐻 ∈ H | 𝐻 ∈ 𝑈}.

By Corollary 2.62, this map is surjective on ends.

Lemma 5.2. For a subpocset H ⊆ H𝜕<∞(𝑋), the following are equivalent:

(i) H is a walling (i.e., any 𝑥, 𝑦 ∈ 𝑋 are separated by only finitely many 𝐻 ∈ H).
(ii) Each 𝑥 ∈ 𝑋 is on the boundary of only finitely many 𝐻 ∈ H.

Proof. If 5.2 holds, then each 𝑥 ∈ 𝑋 is separated from each of its finitely many neighbors by only
finitely many 𝐻 ∈ H, proving 5.2. Conversely, if 5.2 holds, then for 𝑥, 𝑦 ∈ 𝑋 , pick any path between
them; 𝐻 ∈ H separating 𝑥, 𝑦 must separate some edge along this path, and there are only finitely many
such H for each edge, proving 5.2. �

This gives a graph-theoretic reformulation of axiom 4.1(i) of walling. To reformulate the remaining
axioms of proper walling, we need to impose connectedness:

Definition 5.3. Let Hconn(𝑋) = H𝐺
conn(𝑋) ⊆ 2𝑋 denote the subpocset of 𝐴 ⊆ 𝑋 such that 𝐴,¬𝐴 are

connected or empty, and as usual (Convention 2.7), H∗conn := Hconn \ {∅, 𝑋}.

Lemma 5.4. No 𝐴 ∈ H∗𝜕<∞(𝑋) is a limit point (in 2𝑋 ) of Hconn (𝑋).

Proof. A has a clopen neighborhood of all 𝐵 ⊆ 𝑋 containing 𝜕iv𝐴 and disjoint from 𝜕ov𝐴, which is
disjoint from Hconn(𝑋) \ {𝐴}. �

Corollary 5.5. H𝜕<∞(𝑋) ∩Hconn (𝑋) = H𝜕<∞(𝑋) ∩Hconn(𝑋), with nontrivial elements isolated.

Corollary 5.6. A subpocset H ⊆ H𝜕<∞ ∩Hconn is a walling iff it is closed in 2𝑋 .

We have two main examples of families H for which the above conditions are obvious:

Example 5.7. For any 𝑅 ≥ 0, Hdiam(𝜕) ≤𝑅 := {𝐻 ⊆ 𝑋 | diam(𝜕v𝐻) ≤ 𝑅} is clearly closed in 2𝑋 , and
also clearly finitely separating. Thus, Hdiam(𝜕) ≤𝑅 ∩Hconn is a walling.

Example 5.8. For any 𝑁 ≥ 0, Hmin 𝜕≤𝑁 := {𝐻 ⊆ 𝑋 | min(|𝜕iv𝐻 |, |𝜕ov𝐻 |) ≤ 𝑁} is closed in 2𝑋 .
Thus, Hmin 𝜕≤𝑁 ∩Hconn is a walling. (However, Hmin 𝜕≤𝑁 may not be, for example, in a Z-line, since
N ∈ Hmin 𝜕≤2 is not an isolated point, being the limit of N ∪ {−1},N ∪ {−2}, . . . ∈ Hmin 𝜕≤2.)

We now turn to proper wallings, that is axioms 4.1(ii), (iii), and (iv). Among these, (iii) is automatic:

Lemma 5.9. For a walling H ⊆ H𝜕<∞ ∩Hconn, each 𝐻 ∈ H𝜕<∞ is non-nested with only finitely many
𝐾 ∈ H. Thus, by Corollary 2.49, the median graph U◦(H) has finite hyperplanes.

Proof. Let 𝐻 ∈ H𝜕<∞ be non-nested with 𝐾 ∈ H. There is a path in K between 𝐻 ∩ 𝐾,¬𝐻 ∩ 𝐾 ,
whence 𝜕v𝐻 ∩ 𝐾 ≠ ∅; similarly, 𝜕v𝐻 ∩ ¬𝐾 ≠ ∅. Now any path between 𝜕v𝐻 ∩ 𝐾, 𝜕v𝐻 ∩ ¬𝐾 must
contain a vertex on 𝜕v𝐾 . Thus, fixing for each 𝑥, 𝑦 ∈ 𝜕v𝐻 a path 𝑝𝑥𝑦 between them, we have that any K
non-nested with H must contain some z on some 𝑝𝑥𝑦 on its boundary 𝜕v𝐾 . So given H, there are finitely
many 𝑥, 𝑦 ∈ 𝜕v𝐻, for each of which there are finitely many z on 𝑝𝑥𝑦 , for each of which there are finitely
many 𝐾 ∈ H with 𝑧 ∈ 𝜕v𝐾 by Lemma 5.2. �

The following proposition characterizes the remaining axioms (4.1(ii) and (iv)) of proper walling for
cuts in graphs. For this, we introduce a density notion for cuts.
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Definition 5.10. We call a family H ⊆ H𝜕<∞ dense towards ends (of G) if H contains a neighborhood
basis for every end.

Remark 5.11. For H as above, being dense towards ends is strictly weaker than ‘H forms a basis for
the topology of 𝑋’ (since it needs only separate vertices of X into finite classes), but is strictly stronger
than ‘H restricts to a basis for the topology of 𝑋 \ 𝑋’ (e.g., in a one-ended graph, any single cofinite
𝐻 ⊆ 𝑋 yields a basis for the single end in 𝑋 \ 𝑋 , but H that is dense towards ends must be infinite).
Proposition 5.12. For a walling H ⊆ H𝜕<∞ ∩Hconn, the following are equivalent:

(i) H is a proper walling – that is, obeys 4.1(ii) and 4.1(iv) (and also 4.1(iii) by Lemma 5.9).
(ii) H is dense towards ends of G.

(iii) The induced map 𝑋 → �U◦(H) � U (H) from Remark 5.1 takes ends to ends, and is injective on
ends (hence bijective on ends by Corollary 2.62).

Proof. (ii) =⇒ (iii): An end cannot map to a vertex, since it is non-isolated, and hence does not have a
minimal neighborhood in H by (ii). And two ends cannot map to the same end, since they are separated
by some 𝐻 ∈ H by (ii).

(iii) =⇒ (ii): By Lemma 5.9, U◦(H) has finite hyperplanes. Thus, by Lemma 2.61, half-spaces form
a neighborhood basis for ends in �U◦(H). Now given an end 𝑈 ∈ 𝑋 \ 𝑋 and a clopen neighborhood
𝐴 � 𝑈, by (iii), the image of U under the induced map is not in the image of ¬𝐴, and the latter is closed
by compactness, and hence is disjoint from some half-space 𝐻 containing U.

(ii) + (iii) =⇒ (i): By Lemma 5.9, it remains to check 4.1(ii) that each H-block is finite and 4.1(iv)
each 𝐻 ∈ H∗ has only finitely many successors. The former follows from the fact that no end in 𝑋
maps to a vertex in U◦(H). For the latter, let 𝐻 ∈ H∗. For any end 𝑈 ∈ ¬𝐻, since ¬𝐻 is not a minimal
neighborhood of U, there is some 𝐻 � 𝐾 ∈ H∗ with 𝑈 ∈ ¬𝐾; by taking K minimal (which is possible
since H is isolated), we get𝑈 ∈ ¬𝐾 for some successor K of H. Thus, by compactness of ¬𝐻 \ 𝑋 , there
are finitely many successors 𝐻 � 𝐾1, . . . , 𝐾𝑛 ∈ H∗ such that every end in ¬𝐻 is in some ¬𝐾𝑖 . It follows
by compactness that 𝐾1 ∩ · · · ∩ 𝐾𝑛 \ 𝐻 must be finite. Now let 𝐻 � 𝐾 ∈ H∗ be another successor not
equal to any 𝐾𝑖; thus, for each i, we have 𝐾 \ 𝐾𝑖 , 𝐾𝑖 \ 𝐾, 𝐾 ∩ 𝐾𝑖 ≠ ∅ (the last because 𝐻 ⊆ 𝐾 ∩ 𝐾𝑖).
If ¬𝐾 ∩ ¬𝐾𝑖 ≠ ∅ for some i, then 𝐾, 𝐾𝑖 are non-nested; by Lemma 5.9, there are only finitely many
possibilities for K for each i. Otherwise, we have ¬𝐾 ⊆ 𝐾1∩· · ·∩𝐾𝑛 \𝐻, so there are again only finitely
many such K.

(i) =⇒ (iii): Since each H-block is finite by 4.1(ii), no end in 𝑋 maps to a vertex in U◦(H). Suppose
two distinct ends 𝑈,𝑉 ∈ 𝑋 map to the same end 𝑊 ∈ �U◦(H). Since half-spaces 𝐻 � 𝑊 form a
neighborhood basis for W by Lemma 2.61, it follows that the collection of 𝐻 ∈ H containing both𝑈,𝑉
(as opposed to neither) is an ultrafilter basis. But then the intersection of all such H is a set of vertices in
X not separated by any element of H, which is infinite because, for example, for any 𝐾 ∈ H separating
U from V, each such H must meet 𝜕v𝐾 which is a finite set, and we can find infinitely many such K with
pairwise disjoint boundaries. So 4.1(ii) fails. �

Proposition 5.12 is formulated only for H ⊆ Hconn, which is needed in order for Corollary 5.6 and
Lemma 5.9 to go through (see Example 5.8). However, a general H ⊆ H𝜕<∞ dense towards ends can
be converted into one contained in Hconn:
Lemma 5.13. Let H ⊆ H𝜕<∞ be dense towards ends. Then there is H′ ⊆ H𝜕<∞ ∩Hconn which is also
dense towards ends, and such that every 𝐻 ′ ∈ H′ has 𝜕ie𝐻

′ ⊆ 𝜕ie𝐻 for some 𝐻 ∈ H.
Proof. Let

H′ := {¬𝐷 | 𝐻 ∈ H and 𝐶 ∈ 𝐻/𝐺 and 𝐷 ∈ ¬𝐶/𝐺}

(where 𝐻/𝐺 denotes the set of G-components of H). Then every such ¬𝐷 ∈ H′ has 𝜕ie¬𝐷 ⊆ 𝜕ie𝐶 ⊆
𝜕ie𝐻. Now fix an end 𝑈 ∈ 𝑋 \ 𝑋 and a neighborhood 𝐴 ∈ H𝜕<∞ of U; we must find a smaller
neighborhood in H′. Let 𝜕v𝐴 ⊆ 𝐵 ⊆ 𝑋 be finite connected. Then ¬𝐵 is a neighborhood of U, so there
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Figure 3. Shrinking a neighborhood A of an end U to a connected-coconnected subneighborhood.

is ¬𝐵 ⊇ 𝐻 ∈ H such that 𝑈 ∈ 𝐻. Let 𝐶 ⊆ 𝐻 be the component containing U, and 𝐷 ⊆ ¬𝐶 be the
component containing B. Then ¬𝐷 ∈ H′, with 𝑈 ∈ 𝐶 ⊆ ¬𝐷, and ¬𝐷 ⊆ 𝐴 since ¬𝐷 is connected,
disjoint from 𝜕v𝐴 ⊆ 𝐵, and contains 𝑈 ∈ 𝐴. (See Figure 3.) �

Corollary 5.14. Let H ⊆ H𝜕<∞ be a closed subpocset which is ‘downward-closed under boundary
inclusion’ in the sense that if 𝐻 ∈ H and 𝐻 ′ ⊆ 𝑋 with 𝜕ie𝐻

′ ⊆ 𝜕ie𝐻, then 𝐻 ′ ∈ H. If H is dense towards
ends, then so is H ∩Hconn, which is thus a proper walling.

Example 5.15. Hdiam(𝜕) ≤𝑅 and Hmin 𝜕≤𝑁 are closed subpocsets of H𝜕<∞ (by Examples 5.7 and 5.8)
which are by definition clearly downward-closed under boundary inclusion. Thus, if they are dense
towards ends, then their intersection with Hconn forms a proper walling.

In the Borel context, this yields the following.

Corollary 5.16 (of Theorem 4.6 and Proposition 5.12). If a CBER (𝑋, 𝐸) admits a graphing 𝐺 ⊆ 𝐸
with a Borel assignment𝐶 ↦→ H(𝐶) ⊆ H𝐺

𝜕<∞
(𝐶) ∩H𝐺

conn(𝐶) ⊆ 2𝐶 of a walling which is dense towards
ends in each component 𝐶 ∈ 𝑋/𝐸 , then E is treeable.

Corollary 5.17 (of Corollaries 5.14 and 5.16). If a CBER (𝑋, 𝐸) admits a graphing𝐺 ⊆ 𝐸 with a Borel
assignment 𝐶 ↦→ H(𝐶) ⊆ H𝐺

𝜕<∞
(𝐶) of a closed subpocset which is downward-closed under boundary

inclusion and dense towards ends in each component 𝐶 ∈ 𝑋/𝐸 , then E is treeable.

Here, ‘Borel assignment 𝐶 ↦→ H(𝐶) ⊆ 2𝐶 ’ may be interpreted via the bundle in Definition 4.2.
However, as mentioned in Remark 4.5, since we are dealing with cuts in a graph, we may equivalently
represent each nontrivial 𝐻 ∈ H∗(𝐶) as the pair of finite sets (𝜕iv𝐻, 𝜕ov𝐻), and hence realize H globally
as a Borel subset of the standard Borel space of pairs of finite subsets of E-classes.

5.B. Coarse equivalences and quasi-trees

Recall Definition 2.65 of coarse equivalence.

Lemma 5.18. The class of connected locally finite graphs in which Hdiam(𝜕) ≤𝑅 is dense towards ends
for some 𝑅 < ∞ is invariant under coarse equivalence.

Proof. Let (𝑋, 𝐺), (𝑌, 𝑇) be connected locally finite graphs, 𝑓 : 𝑋 → 𝑌 be a coarse equivalence
with quasi-inverse 𝑔 : 𝑌 → 𝑋 , and suppose Hdiam(𝜕) ≤𝑆 (𝑌 ) is dense towards ends for 𝑆 < ∞. By
Lemma 2.67, pick 𝑅 < ∞ so that for any 𝐻 ∈ Hdiam(𝜕) ≤𝑆 (𝑌 ), we have 𝑓 −1(𝐻) ∈ Hdiam(𝜕) ≤𝑅 (𝑋).
Then for any 𝑈 ∈ 𝑋 \ 𝑋 and 𝐴 ∈ H𝜕<∞(𝑋) with 𝑈 ∈ 𝐴, letting 𝐵 := ¬Ball𝑑 (1𝑋 ,𝑔◦ 𝑓 ) (¬𝐴), we have
𝑓 −1(𝑔−1(𝐵)) ⊆ Ball𝑑 (1𝑋 ,𝑔◦ 𝑓 ) (𝐵) ⊆ 𝐴, and 𝐴�𝐵, 𝐵� 𝑓 −1(𝑔−1(𝐵)) are finite, so 𝑈 ∈ 𝑓 −1(𝑔−1(𝐵))

∧, so
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𝑓 (𝑈) ∈ �𝑔−1(𝐵), so there is 𝑔−1(𝐵) ⊇ 𝐻 ∈ Hdiam(𝜕) ≤𝑆 (𝑌 ) with 𝑓 (𝑈) ∈ 𝐻, so 𝑓 −1(𝐻) ∈ Hdiam(𝜕) ≤𝑅 (𝑋)

with𝑈 ∈ 
𝑓 −1(𝐻) and 𝑓 −1(𝐻) ⊆ 𝑓 −1(𝑔−1(𝐵)) ⊆ 𝐴. �

Recall (Section 1.A) that a graph (𝑋, 𝐺) is a quasi-tree if it is quasi-isometric to a tree.

Remark 5.19. A graph is a quasi-tree iff it is coarsely equivalent to a tree; this follows easily from the
fact that graphs are quasi-geodesic (see [Gro93, p7]).

Corollary 5.20. If G is a locally finite quasi-tree, then Hdiam(𝜕) ≤𝑅 is dense towards ends of G for some
𝑅 < ∞.

Proof. By Lemma 5.18 and that Hdiam(𝜕) ≤1 is clearly dense towards ends in a tree. �

Corollary 5.21. If a CBER admits a locally finite graphing whose components are quasi-trees, then it
is treeable.

Proof. By Corollary 5.20, Corollary 5.17, and Remark 4.7. �

Remark 5.22. Example 1.6 shows that the class of graphs in which Hdiam(𝜕) ≤𝑅 is dense towards ends
for some R is strictly bigger than just quasi-trees.

In fact, the following result gives a more explicit walling in a quasi-tree:

Theorem 5.23 (Krön–Möller [KM08, 2.8]). A connected graph (𝑋, 𝐺) is a quasi-tree iff there is some
𝑅 < ∞ such that for every 𝑥 ∈ 𝑋 , 𝑆 < ∞, and component 𝐻 ⊆ ¬Ball𝑆 (𝑥), we have diam(𝜕v𝐻) ≤ 𝑅,
that is, all H of this form, called radial cuts, are in Hdiam(𝜕) ≤𝑅 (𝑋).

This easily yields another proof of Corollary 5.20. Another consequence is the following quantitative
refinement of the above results:

Lemma 5.24. If G is a locally finite quasi-tree, then for all sufficiently large 𝑅 < ∞, there is an 𝑆 < ∞,
namely 𝑆 := 𝑅 + 1, such that any pair of sets 𝐻, 𝐾 ∈ H∗diam(𝜕) ≤𝑅 ∩Hconn with K a successor of H has
𝑑 (𝜕v𝐻, 𝜕v𝐾) ≤ 𝑆.

Proof. Take R satisfying Theorem 5.23. Let 𝐻 � 𝐾 ∈ H∗diam(𝜕) ≤𝑅 ∩ Hconn with 𝑑 (𝜕v𝐻, 𝜕v𝐾) > 𝑆;
thus, Ball𝑆 (𝐻) ⊆ 𝐾 . Pick any 𝑥 ∈ 𝜕v𝐻. Then Ball𝑅 (𝑥) contains 𝜕v𝐻 and is contained in Ball𝑆−1 (𝐻),
so Ball1 (Ball𝑅 (𝑥)) ⊆ 𝐾 , that is, Ball𝑅 (𝑥) ∩ Ball1(¬𝐾) = ∅. Thus, Ball1(¬𝐾) is contained in a single
component L of ¬Ball𝑅 (𝑥), with 𝐻 ∩ 𝐿 = ∅ since 𝐻 ∩ ¬𝐾 = ∅ and 𝜕v𝐻 ⊆ Ball𝑅 (𝑥) whence
every component of ¬Ball𝑅 (𝑥) is contained in or disjoint from H. Then ¬𝐿 ∈ H∗diam(𝜕) ≤𝑅 ∩Hconn by
Theorem 5.23 with 𝐻 � 𝐻 ∪ Ball𝑅 (𝑥) ⊆ ¬𝐿 ⊆ ¬Ball1 (¬𝐾) � 𝐾 , so K is not a successor of H. �

Corollary 5.25. If G is a bounded degree quasi-tree, then for all sufficiently large 𝑅 < ∞, we have the
following:

(a) Hdiam(𝜕) ≤𝑅 is dense towards ends of G.
(b) U◦(Hdiam(𝜕) ≤𝑅 ∩Hconn) is a bounded degree median graph with hyperplanes of bounded size (or

equivalently diameter).
(c) 𝑥 ↦→ 𝑥 : 𝑋 → U◦(Hdiam(𝜕) ≤𝑅 ∩Hconn) is a quasi-isometry.

Proof. The above lemma shows that for 𝐻, 𝐾 ∈ H∗diam(𝜕) ≤𝑅 ∩ Hconn, if one is a successor of the
other, then their boundaries are at bounded distance apart. Also, the proof of Lemma 5.9 shows that
for such 𝐻, 𝐾 which are non-nested, there is a vertex in 𝜕v𝐾 which lies on a geodesic 𝑝𝑥𝑦 between
two points 𝑥, 𝑦 ∈ 𝜕v𝐻, and hence, 𝐻, 𝐾 have boundaries at distance ≤ 𝑅 apart. Thus, 𝐻, 𝐾 which
are adjacent in the pocset Hdiam(𝜕) ≤𝑅 ∩ Hconn (in the sense of Corollary 2.31) have boundaries at
bounded distance apart. Since these boundaries also have diameter ≤ 𝑅, and G has bounded degree,
the adjacency graph on H∗diam(𝜕) ≤𝑅 ∩Hconn has bounded degree. From the proof of Corollary 2.50, we
see that U◦(Hdiam(𝜕) ≤𝑅 ∩Hconn) has bounded degree, and also from Corollary 2.49 that for each of its
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half-spaces H, the median subgraph 𝜕iv𝐻 has boundedly many half-spaces, which implies bounded size
of 𝜕iv𝐻 since 𝜕iv𝐻 ↩→ 2Hcvx (𝜕iv𝐻 ) (Lemma 2.33).

Finally, to show (c): for 𝑥, 𝑦 ∈ 𝑋 , we have

𝑑 (𝑥, �̂�) = |{𝐻 ∈ Hdiam(𝜕) ≤𝑅 ∩Hconn | 𝑥 ∈ 𝐻 ∌ 𝑦}|

by Lemma 2.32. We may upper-bound this for 𝑥 𝐺 𝑦 since any such H must have 𝑥 ∈ 𝜕v𝐻, whence
𝑑 (𝑥, �̂�) is upper-bounded for all 𝑥, 𝑦 by a multiple of 𝑑 (𝑥, 𝑦). And we may lower-bound 𝑑 (𝑥, �̂�) by a
multiple of 𝑑 (𝑥, 𝑦) using Lemma 5.24, by letting ¬𝐻 ⊆ ¬{𝑥} be the component (radial cut) containing
y, so that diam(𝜕v𝐻) is bounded by the degree bound of G (which we may assume to be ≤ 𝑅); then
letting 𝐻 ⊆ 𝐾 ⊆ ¬{𝑦} be the component containing 𝜕v𝐻; and then using Lemma 5.24 to find a sequence
𝐻 = 𝐻0 � 𝐻1 � · · · � 𝐻𝑛 = 𝐾 in Hdiam(𝜕) ≤𝑅∩Hconn with consecutive boundaries at bounded distance,
thus with n at least a multiple of 𝑑 (𝑥, 𝑦). �

Corollary 5.26. Let (𝑋, 𝐸) be a CBER, 𝐺 ⊆ 𝐸 be a quasi-treeing with components of bounded
degree. Then there is a componentwise bounded degree Borel forest (𝑌, 𝑇) and a Borel reduction
(𝑋, 𝐸) → (𝑌,E𝑇 ) which is componentwise a quasi-isometry.

Proof. The Borel reduction to a treeable CBER constructed in Corollary 5.21, ultimately Theorem 4.6,
is componentwise given by the quasi-isometry 𝑥 ↦→ 𝑥 to a median graph of the above result, followed
by the identity map to the subforest given by Theorem 3.5. �

Finally, we point out that even though we only considered quasi-trees which are graphs above, we
can easily generalize to proper pseudometric spaces:

Lemma 5.27. Let (𝑋, 𝑑) be a proper pseudometric space with a coarse equivalence 𝑓 : 𝑋 → 𝑌 to a
graph (𝑌, 𝑇). Then for some 𝑅 < ∞, (𝑋, 𝑑) is coarsely equivalent (via the identity map) to the distance
≤ 𝑅 graph on X.

Proof. Let 𝑔 : 𝑌 → 𝑋 be a quasi-inverse of f, and let 𝑆 < ∞ be such that 𝑑 (𝑦, 𝑦′) ≤ 1 =⇒
𝑑 (𝑔(𝑦), 𝑔(𝑦′)) ≤ 𝑆. Let 𝑅 := max(𝑑𝑋 (1𝑋 , 𝑔 ◦ 𝑓 ), 𝑆), and let G be the distance ≤ 𝑅 graph on X. Then
𝑔 : (𝑌, 𝑇) → (𝑋, 𝐺) is 1-Lipschitz, whence 𝑔 ◦ 𝑓 : (𝑋, 𝑑) → (𝑋, 𝐺) is bornologous, whence so is 1𝑋
since 𝑑𝐺 (1𝑋 , 𝑔 ◦ 𝑓 ) ≤ 1. And 1𝑋 : (𝑋, 𝐺) → (𝑋, 𝑑) is clearly R-Lipschitz. �

Corollary 5.28. If X is a proper pseudometric space coarsely equivalent to a (graph-theoretic) tree,
then the distance ≤ 𝑅 graph on X is a quasi-tree for some R.

Corollary 5.29. If a CBER (𝑋, 𝐸) admits a Borel classwise proper pseudometric 𝑑 : 𝐸 → [0,∞) with
each class coarsely equivalent to a tree, then E is treeable. If d-balls of each radius are of bounded
cardinality, then E is even Borel reducible to a forest via a componentwise quasi-isometry.

Proof. By the above, for each class, there is some R such that the distance ≤ 𝑅 graph has Hdiam(𝜕) ≤𝑆
dense towards ends for some S; apply Remark 4.7. The last statement follows from Corollary 5.26. �

5.C. Tree decompositions and bounded tree-width

Definition 5.30. Let (𝑋, 𝐺), (𝑌, 𝑇) be two connected graphs. For a binary relation 𝐹 ⊆ 𝑋 × 𝑌 , let
𝐹 ⊆ 𝑋 × 𝑌 denote the closure of the image of F under the canonical map 𝑋 × 𝑌 → 𝑋 × 𝑌 .

Note that a special case is when F is the graph of a function 𝑓 : 𝑋 → 𝑌 . In that case, recall from
Definition 2.56 that 𝑓 is a function 𝑋 → 𝑌 iff preimage 𝑓 −1 preserves H𝜕<∞.

In general, the domain of 𝐹 will be a compact set in 𝑋 , and thus will be all of 𝑋 iff the domain of F
is dense in 𝑋 . For locally finite G, this just means that the domain of F is all of X.

Definition 5.31. F as above is a tree decomposition if T is a tree, each image set 𝐹 (𝑥) ⊆ 𝑌 is connected,
and 𝑥 𝐺 𝑥 ′ =⇒ 𝐹 (𝑥) ∩ 𝐹 (𝑥 ′) ≠ ∅. If 𝐹−1(𝑦) ⊆ 𝑋 is finite for each 𝑦 ∈ 𝑌 , we say F has finite width
and that G has finite tree-width; if |𝐹−1 (𝑦) | ≤ 𝑁 for each y, we say F has width ≤ 𝑁 − 1 and that G
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has tree-width ≤ 𝑁 − 1; if this holds for some 𝑁 ∈ N, we say that F has bounded width and G has
bounded tree-width.

For background on tree decompositions and tree-width, see [Die17].

Lemma 5.32. Suppose G is a locally finite graph and F as above is a tree decomposition. Then there is
a tree decomposition 𝐹 ′ ⊆ 𝐹 (in particular, 𝐹 ′ has width ≤ that of F) such that 𝐹 ′(𝑥) is finite for each
𝑥 ∈ 𝑋 .

Proof. Let 𝑋 = {𝑥0, 𝑥1, . . . } be a bijective enumeration. Let 𝐹0 := 𝐹, and inductively for each n, let
𝐹𝑛+1 ⊆ 𝐹𝑛 be given by 𝐹𝑛+1 (𝑥) := 𝐹𝑛 (𝑥) for 𝑥 ≠ 𝑥𝑛, while 𝐹𝑛+1 (𝑥𝑛) ⊆ 𝐹𝑛 (𝑥𝑛) is given as follows: for
each 𝑦 ∈ Ball≤1 (𝑥𝑛), pick some 𝑧𝑦 ∈ 𝐹𝑛 (𝑥𝑛) ∩ 𝐹𝑛 (𝑦); then let 𝐹𝑛+1 (𝑥𝑛) ⊆ 𝑌 be the convex hull of
these 𝑧𝑦’s. Then each 𝐹𝑛 is a tree decomposition, whence so is 𝐹 ′ := ↓

⋂
𝑛 𝐹𝑛, since the definition of tree

decomposition only requires checking 𝐹 ′(𝑥), 𝐹 ′(𝑦) for each edge 𝑥 𝐺 𝑦. �

Lemma 5.33. Suppose G is a locally finite graph and F as above is a finite width tree decomposition.
Then there is a finitely branching convex subtree 𝑌 ′ ⊆ 𝑌 such that 𝐹 ′ := 𝐹 ∩ (𝑋 × 𝑌 ′) is still a tree
decomposition (with width ≤ that of F). Moreover, 𝐹 ⊆ 𝑋 × 𝑌 is a function on ends of X, and already
maps each such end to an end of 𝑌 ′.

Proof. For each 𝑦 ∈ 𝑌 , since F is a tree decomposition, we have a partition

𝑋 \ 𝐹−1 (𝑦) =
⊔
𝑦′𝑇 𝑦

(𝐹−1 (cone𝑦 (𝑦′)) \ 𝐹−1 (𝑦)),

which is invariant with respect to the induced subgraph on 𝑋 \𝐹−1(𝑦), whence only finitely many pieces
are nonempty. Since F has finite width, it follows that each 𝐹−1(cone𝑦 (𝑦′)) ⊆ 𝑋 has finite boundary.
This implies that 𝐹 is a function on ends: it cannot map an end to a vertex, since each 𝐹−1 (𝑦) is finite; and
it cannot map an end𝑈 ∈ 𝑋 \𝑋 to two distinct ends in𝑌 \𝑌 , since they are separated by some half-space
cone𝑦 (𝑦′) ⊆ 𝑌 whence U belongs to either 𝐹−1(cone𝑦 (𝑦′)) or its complement. Now if the 𝑦′th piece of
the above partition is empty, that means 𝐹−1(cone𝑦 (𝑦′)) ⊆ 𝐹−1 (𝑦), whence we may remove cone𝑦 (𝑦′)
from the tree Y and still maintain that we have a tree decomposition 𝐹 ∩ (𝑋 × (𝑌 \ cone𝑦 (𝑦′))) =
proj𝑌 \cone𝑦 (𝑦′) ◦ 𝐹; moreover, 𝐹 did not map any end of X into 
cone𝑦 (𝑦′) (again since 𝐹−1(𝑦) is finite).
Let 𝑌 ′ ⊆ 𝑌 be the result of removing all such cone𝑦 (𝑦′) with 𝐹−1(cone𝑦 (𝑦′)) \ 𝐹−1 (𝑦) = ∅. �

Proposition 5.34. If G is a locally finite connected graph with tree-width ≤ 𝑁 − 1, then Hmin 𝜕≤𝑁 is
dense towards ends of G.

Proof. By the preceding lemmas, let 𝐹 ⊆ 𝑋 × 𝑌 be a tree decomposition with Y locally finite, each
𝐹 (𝑥) ⊆ 𝑌 finite, and width ≤ 𝑁 − 1. Let 𝑈 ∈ 𝑋 \ 𝑋 and 𝐴 ∈ H𝜕<∞(𝑋) with 𝑈 ∈ 𝐴. Then the end
𝐹 (𝑈) ∈ 𝑌 and the finite set 𝐹 (𝜕v𝐴) ⊆ 𝑌 are separated by some half-space cone𝑦 (𝑦′) ⊆ 𝑌 such that
𝐹 (𝑈) ∈ 
cone𝑦 (𝑦′) and 𝐹 (𝜕v𝐴) ∩ ({𝑦} ∪ cone𝑦 (𝑦′)) = ∅. It follows that𝑈 ∈ 
𝐹−1 (cone𝑦 (𝑦′)) \ 𝐹−1 (𝑦),
which is a union of some of the components of 𝑋 \𝐹−1 (𝑦) (as in the proof of the preceding lemma), while
𝜕v𝐴∩ (𝐹

−1 (𝑦) ∪𝐹−1 (cone𝑦 (𝑦′))) = ∅. Thus, the component H of 𝑋 \𝐹−1 (𝑦) containing U is contained
in A, since it contains 𝑈 ∈ 𝐴 and is disjoint from 𝜕v𝐴; and 𝐻 ∈ Hmin 𝜕≤𝑁 since 𝜕ov𝐻 ⊆ 𝐹

−1 (𝑦) which
has size ≤ 𝑁 . (See Figure 4.) �

Corollary 5.35. If a CBER admits a locally finite graphing with components of bounded tree-width,
then it is treeable.

Proof. By Proposition 5.34, Corollary 5.17, and Remark 4.7. �
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Figure 4. The sides H of the parts 𝐹−1 (𝑦) of a tree decomposition F are dense towards ends.

6. Graphs with a distinguished end and hyperfiniteness

In this final section, we show that the treeability results in the preceding sections may be adapted to
instead show hyperfiniteness, when the graph or wallspace structure we start with is ‘one-ended’, or
more generally has one distinguished end per component selected in a Borel way.

6.A. Just one end

The following gives a simple, self-contained reformulation of the machinery in Sections 4 and 5 in the
one-ended case, that does not depend on familiarity with those or any other earlier sections in this paper.
In particular, the words ‘end’ and ‘wallspace’ here should be treated as merely part of the name for now
(their relevance will become clear later).
Definition 6.1. A one-ended proper wallspace is an infinite set X equipped with a set I∗ ⊆ 2𝑋 of
finite nonempty subsets such that
(i) I is cofinal among finite subsets of X (i.e., every finite 𝐹 ⊆ 𝑋 is contained in some 𝐼 ∈ I∗);
and any of the following equivalent conditions hold:

(ii) I∗ is finitely separating: for any 𝑥, 𝑦 ∈ 𝑋 , there are only finitely many 𝐽 ∈ I∗ with 𝑥 ∈ 𝐽 ∌ 𝑦;
(ii′) for any 𝐼 ∈ I∗, there are only finitely many 𝐽 ∈ I∗ with both 𝐼 ∩ 𝐽 and 𝐼 \ 𝐽 nonempty;

(ii′′) for any 𝐼 ∈ I∗, there are only finitely many 𝐽 ∈ I∗ non-nested with I.
The terminology and the equivalence of these conditions are justified by Proposition 6.12 below.

Example 6.2. Let (𝑋, 𝐺) be a one-ended locally finite quasi-tree, I∗ be the collection of all sets which
are the union of some Ball𝑆 (𝑥) and all finite components of its complement (i.e., the complements of the
radial cuts as in Theorem 5.23 which are neighborhoods of the unique end). Then (i) clearly holds, by
taking 𝑆 →∞ for fixed x. And (ii) also holds using Theorem 5.23, since any 𝐼 ∈ I∗ separating 𝑥, 𝑦 must
have a boundary point in Ball𝑑 (𝑥,𝑦) (𝑥). (Via Proposition 6.12, this is a special case of Corollary 5.20.)
Example 6.3. Let (𝑋, 𝐺) be a one-ended connected locally finite graph with tree-width ≤ 𝑁 − 1, I∗ be
the set of all finite 𝐼 ⊆ 𝑋 with both 𝐼,¬𝐼 connected and |𝜕iv 𝐼 | ≤ 𝑁 . This corresponds via Proposition
6.12 to Hmin 𝜕≤𝑁 ∩ Hconn, which is a proper walling by Proposition 5.34 (and its proof which shows
that it is enough to take |𝜕iv 𝐼 | rather than min(|𝜕iv 𝐼 |, |𝜕ov 𝐼 |)).
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Example 6.4. Let (𝑋, ≤) be an infinite poset, and let I∗ be the set of all principal ideals ↓𝑥 := {𝑦 ∈ 𝑋 |
𝑦 ≤ 𝑥}, for all 𝑥 ∈ 𝑋 . The conditions in Definition 6.1 translate to

(0) all principal ideals ↓𝑥 ⊆ 𝑋 are finite;
(i) X is directed (i.e., every finite subset has an upper bound);

(ii) for any 𝑥, 𝑦 ∈ 𝑋 , there are only finitely many 𝑥 ≤ 𝑧 �≥ 𝑦;
(ii′) for any 𝑥 ∈ 𝑋 , there are only finitely many 𝑦 �≥ 𝑥 such that 𝑥, 𝑦 have a lower bound.

Indeed, such posets can be regarded as an alternate formalization of the conditions in 6.1, since given
any I∗ obeying those conditions, the poset (I∗, ⊆) will obey these conditions.

Example 6.5. For any infinite set X, given a sequence of finite equivalence relations 𝐹0 ⊆ 𝐹1 ⊆ · · ·
with ↑

⋃
𝑛 𝐹𝑛 = 𝑋2 (i.e., a witness to hyperfiniteness of the countable set X), letting I∗ be the set of

equivalence classes of all the 𝐹𝑛, we clearly have 6.1(ii′′). Thus, Definition 6.1 can be regarded as a
generalization of the definition of hyperfiniteness.

Theorem 6.6. Let (𝑋, I∗) be a one-ended proper wallspace. We may canonically construct a sequence
of FERs 𝐹0 ⊆ 𝐹1 ⊆ · · · with ↑

⋃
𝑛 𝐹𝑛 = 𝑋2 (i.e., a witness to hyperfiniteness).

Proof. Let 𝑥 𝐹𝑛 𝑦 :⇐⇒ ∀𝐼 ∈ I∗ (|𝐼 | > 𝑛 =⇒ (𝑥 ∈ 𝐼 ⇐⇒ 𝑦 ∈ 𝐼)). By 6.1(ii), ↑
⋃
𝑛 𝐹𝑛 = 𝑋2. And

each 𝐹𝑛 is a finite equivalence relation, since for any 𝑥 ∈ 𝑋 , by 6.1(i), there is some 𝐼 ∈ I∗ with 𝑥 ∈ 𝐼
and |𝐼 | > 𝑛, whence [𝑥]𝐹𝑛 ⊆ 𝐼. �

Remark 6.7. In the above proof, it is not essential to take |𝐼 | > 𝑛 in the definition of 𝐹𝑛. Another
canonical choice is to take I of rank ≥ 𝑛 in the well-founded poset I∗; in other words, we let I0 := I∗
and I𝑛+1 := I𝑛 \ {minimal elements of I𝑛}, and take the 𝐼 ∈ I𝑛 in defining 𝐹𝑛. In this case, the above
proof can be regarded as producing a one-ended tree from I∗ through a ‘leaf-pruning’ procedure. This
is best explained from the median graph perspective; see Remark 6.13.

Definition 6.8. A one-ended proper walling of a CBER (𝑋, 𝐸) is a Borel set I∗ of finite nonempty
subsets of E-classes whose restriction to each E-class satisfies Definition 6.1.

Corollary 6.9. If a CBER admits a one-ended proper walling, then it is hyperfinite.

Corollary 6.10. If a CBER admits a one-ended locally finite graphing which is either a quasi-treeing
or has bounded tree-width, then it is hyperfinite.

Remark 6.11. Similarly, if a CBER E admits a Borel structuring by posets obeying the conditions in
Example 6.4, then it is hyperfinite. Conversely, given any one-ended proper walling I∗ of E, we may
produce a new CBER Borel bireducible with E which is instead structured by such posets, namely the
restrictions of I∗ to each E-class, as described in Example 6.4.

We now show that Definition 6.1 indeed corresponds to what the terminology suggests:

Proposition 6.12. Let X be an infinite set.

(a) For a setI∗ of finite nonempty subsets of X, the conditions in Definition 6.1 are indeed equivalent; and
if they hold, then putting I := I∗ � {∅}, the collection H := I �¬(I) (where ¬(I) := {¬𝐼 | 𝐼 ∈ I})
is a proper walling such that the median graph U◦(H) is one-ended.

(b) Conversely, for a proper walling H ⊆ 2𝑋 such that U◦(H) is one-ended, every set in H is either
finite or cofinite; and the set I∗ of nonempty finite sets in H satisfies Definition 6.1.

Proof. First, we verify that (ii), (ii′) and (ii′′) in Definition 6.1 are equivalent, given (i). From (ii), we
get that for any 𝐼 ∈ I∗, there are only finitely many 𝐽 ∈ I∗ separating one of the finitely many pairs
𝑥, 𝑦 ∈ 𝐼, whence there are only finitely many 𝐽 ∈ I∗ with 𝐼 ∩ 𝐽 and 𝐼 \ 𝐽 ≠ ∅, yielding (ii′). Clearly, (ii′)
implies (ii′′). From (ii′′), we get (ii′) since there are only finitely many 𝐽 ⊆ 𝐼 and since any 𝐼, 𝐽 ∈ I∗
have ¬𝐼 ∩ ¬𝐽 ≠ ∅ by cofiniteness. And from (ii′), we get (ii) by taking {𝑥, 𝑦} ⊆ 𝐼 ∈ I∗ using (i).
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Figure 5. Pruning ‘leaf half-spaces’ from a one-ended median graph to get a one-ended tree. The thick
highlighted edges form the 4th equivalence relation 𝐹4 in the resulting witness to hyperfiniteness.

Now let I∗ satisfy 6.1. Then the corresponding H := I � ¬(I) is a walling since (ii) easily implies
that H is also finitely separating. To show that H is a proper walling (Definition 4.1):

◦ (ii′′) easily implies that every 𝐻 ∈ H has only finitely many 𝐾 ∈ H non-nested with H.
◦ For any 𝑥 ∈ 𝑋 , by (i), there is some 𝑥 ∈ 𝐼 ∈ I∗, whence there are only finitely many y in the H-block

of x, as all such y must be in I.
◦ Let 𝐻 ∈ H∗ = I∗ � ¬(I∗); we must show there are only finitely many successors 𝐻 � 𝐾 ∈ H∗.

– If ¬𝐻 ∈ I∗, then ¬𝐾 ⊆ ¬𝐻, of which there are only finitely many; so suppose 𝐻 ∈ I∗.
– All the successors 𝐾 ∈ I∗ of H are pairwise intersecting and incomparable, whence there are only

finitely many such K by (ii′).
– Finally, if ¬𝐾 ∈ I∗ with K a successor of H, then in particular, 𝐻 ∈ I∗ is maximal disjoint

from ¬𝐾 . By (i), there is some 𝐻 � 𝐼 ∈ I∗, so ¬𝐾 intersects I by maximality of H, and also
𝐼 ∩ 𝐾 ⊇ 𝐻 ≠ ∅, so there are only finitely many such K by (ii′).

Thus, U◦(H) is a locally finite median graph with finite hyperplanes. Let𝑈 := ¬(I) ∈ U (H) � �U◦(H)
(Proposition 2.59). Then𝑈 ⊆ H is not clopen, or else it would have a minimal element, hence I∗ would
have a maximal element, contradicting (i); thus, U is an end of U◦(H). And it is the only end, since any
other end 𝑉 ∈ U (H) \ U◦(H) must be a nonprincipal filter in H by Lemma 2.61, hence 𝑉 ⊆ ¬(I) = 𝑈,
whence 𝑉 = 𝑈 since both are orientations.

Conversely, let H be a proper walling such that U◦(H) is one-ended. Then every 𝐻 ∈ H must be
finite or cofinite, or else 𝐻,¬𝐻 ⊆ U (H) would each contain an end by compactness. So the set𝑈 ⊆ H
of cofinite sets is the unique end; and I∗ := H∗ \ 𝑈 satisfies 6.1(ii) since H does, and satisfies 6.1(i)
since any finitely many vertices in U◦(H), in particular of the form 𝑥 for 𝑥 ∈ 𝐼 where 𝐼 ∈ I∗, may be
separated from U again by Lemma 2.61. �

Remark 6.13. The proof of Theorem 6.6, modified to take 𝐼 ∈ I∗ of increasing well-founded rank as in
Remark 6.7, may be understood in terms of the associated median graph U◦(H) (where H := I �¬(I)
and I := I∗ � {∅} as above) as follows.

Let us first assume, by replacing the original set X with U◦(H), that X is itself a one-ended median
graph with finite hyperplanes, and H = Hcvx(𝑋) is the set of half-spaces; thus, I ⊆ H is the set of
finite half-spaces. Then to construct the witness to hyperfiniteness 𝐹0 ⊆ 𝐹1 ⊆ · · · in Theorem 6.6, we
let I0 := I∗, then repeatedly delete all vertices in X belonging to a minimal half-space 𝐼 ∈ I𝑛 (the
‘leaves’), letting I𝑛+1 ⊆ I𝑛 be the remaining half-spaces, and connect these deleted vertices in 𝐹𝑛+1 to
their projection onto the remaining (convex) set of vertices, yielding a one-ended tree (see Figure 5).

If H is not already the half-spaces of a median graph, then the 𝐹𝑛 instead identify elements 𝑥 ∈ 𝑋
whose corresponding vertices 𝑥 in the induced median graph U◦(H) are identified by stage n in the tree
as above. However, in this case there might not be a canonical way of representing the 𝐹𝑛-classes as
elements of X.
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6.B. One selected end

Finally, we consider a generalization of the preceding subsection to the case where the graph/wallspace
may have more than one end, but one particular end has been selected. We will show that this is still
enough to yield hyperfiniteness, essentially by ‘moving towards’ the selected end, in a manner similar
to (though not directly generalizing) Remark 6.13. Unlike in the preceding subsection, here we find it
necessary to use the full machinery of median graphs throughout.

Definition 6.14. Let (𝑋, 𝐺) be a median graph with finite hyperplanes, so that 𝑋 � U (Hcvx(𝑋))
(Proposition 2.59), and let 𝑈 ∈ U (Hcvx(𝑋)). (We will usually think of U as an end; however, the
following also works when U is a ‘vertex’, that is, a principal orientation.) For each 𝑥 ∈ 𝑋 , let

A𝑈,𝑥 := max(𝑈 \ 𝑥) = {𝐻 ∈ 𝑈 | 𝑥 ∈ 𝜕ov𝐻}

be the set of maximal half-spaces containing U but not x, or equivalently (by Proposition 2.44), half-
spaces containing U with x on the outer boundary.

Note that we do not need to assume that G is locally finite here.

Lemma 6.15. For each x, A𝑈,𝑥 is a finite set of pairwise non-nested half-spaces. Thus,

𝑇𝑈 (𝑥) := proj⋂A𝑈,𝑥 (𝑥)

(exists and) is the corner opposite to x of a cube cut by precisely the hyperplanes in A𝑈,𝑥 , with

�𝑇𝑈 (𝑥) \ 𝑥 = A𝑈,𝑥 .

Proof. For distinct 𝐻, 𝐾 ∈ A𝑈,𝑥 , the corners 𝐻 ∩ 𝐾 and ¬𝐻 ∩ ¬𝐾 contain 𝑈, 𝑥, respectively, while
𝐻 ∩ ¬𝐾 and ¬𝐻 ∩ 𝐾 are nonempty since 𝐻, 𝐾 are distinct maximal elements of 𝑈 \ 𝑥, and hence
incomparable; thus, 𝐻, 𝐾 are non-nested. Thus, by (the proof of) Lemma 2.27, x is a corner of a
cube cut by all the hyperplanes in A𝑈,𝑥 , whose other corners are given by projections of x onto finite
intersections of half-spaces in A𝑈,𝑥 . It follows that A𝑈,𝑥 is finite, or else any 𝐻 ∈ A𝑈,𝑥 would have an
infinite-dimensional cube on its boundary. Thus,

⋂A𝑈,𝑥 is a convex neighborhood of U, in particular
nonempty, and so 𝑇𝑈 (𝑥) exists and is defined by the last equation �𝑇𝑈 (𝑥) \ 𝑥 = A𝑈,𝑥 since it is the
opposite corner of a cube with precisely the hyperplanes in A𝑈,𝑥 . �

By an orbit of the transformation 𝑇𝑈 : 𝑋 → 𝑋 , we mean a connected component of its graph, that
is, the set

⋃
𝑚∈N 𝑇

−𝑚
𝑈 ({𝑇

𝑛
𝑈 (𝑥) | 𝑛 ∈ N}) for some 𝑥 ∈ 𝑋 . The set {𝑇𝑛𝑈 (𝑥) | 𝑛 ∈ N} is called the forward

orbit of x, while
⋃
𝑚∈N 𝑇

−𝑚
𝑈 (𝑥) is the backward orbit of x.

Corollary 6.16. 𝑈 \ 𝑥 ⊇ 𝑈 \�𝑇𝑈 (𝑥) ⊇ 𝑈 \�𝑇2
𝑈 (𝑥) ⊇ · · · (with strict inclusion unless U is a vertex),

and lim𝑛→∞
�𝑇𝑛𝑈 (𝑥) = 𝑈. Thus, the graph of 𝑇𝑈 gives each 𝑇𝑈 -orbit the structure of a directed tree

converging to U (or simply a rooted tree, in case U is a vertex).

Proof. From �𝑇𝑈 (𝑥) \ 𝑥 = A𝑈,𝑥 ⊆ 𝑈, we get 𝑈 \ 𝑥 = (𝑈 \�𝑇𝑈 (𝑥)) � A𝑈,𝑥 ; thus, 𝑈 \�𝑇𝑈 (𝑥) is 𝑈 \ 𝑥
with its set of maximal elements A𝑈,𝑥 removed. It follows that each 𝐻 ∈ 𝑈 \ 𝑥 will be removed in
some 𝑈 \�𝑇𝑛𝑈 (𝑥) (namely, 𝑛 := 𝑑 (𝑥, 𝐻), by considering a geodesic of length n from x to H so that
one edge will be removed at each step); that is, 𝑇𝑛𝑈 (𝑥) eventually enters every neighborhood of U (i.e.,
lim𝑛→∞

�𝑇𝑛𝑈 (𝑥) = 𝑈). �

Remark 6.17. If we define an ℓ∞-neighbor of x to mean any vertex 𝑦 ∈ 𝑋 such that 𝑥, 𝑦 are opposite
corners of a cube, or equivalently (by Lemma 2.27) the hyperplanes separating them are pairwise
non-nested, then it is easy to see that 𝑇𝑈 (𝑥) is the ℓ∞-neighbor of x ‘nearest U’, that is, ‘between’
all other ℓ∞-neighbors of x and U, in the sense of Proposition 2.44. (Indeed, note that the inequality
𝑈\𝑥 ⊇ 𝑈\�𝑇𝑈 (𝑥) means that (𝑥—�𝑇𝑈 (𝑥)—𝑈) according to the betweenness relation of Proposition 2.44,
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Figure 6. The orbits (thick highlighted edges) of 𝑇𝑈 , for the one-ended median graph in Figure 5.

except that U here is an end, not a vertex. This can be made precise by regarding U (Hcvx(𝑋)) as the
profinite median algebra completion of X; see [Bow22].) See Figure 6.

Lemma 6.18. For any 𝐻 ∈ Hcvx(𝑋) \𝑈 and 𝑥 ∈ 𝐻, there is an 𝑛 ∈ N such that 𝑇𝑛𝑈 (𝑥) ∈ 𝜕ov𝐻. Thus,
in particular, (by finite hyperplanes), H intersects only finitely many 𝑇𝑈 -orbits.

Proof. Since 𝑥 ∈ 𝐻 but lim𝑛→∞
�𝑇𝑛𝑈 (𝑥) = 𝑈 ∉ 𝐻, there is a least 𝑛 ∈ N+ such that 𝑇𝑛𝑈 (𝑥) ∉ 𝐻, whence

𝑇𝑛𝑈 (𝑥) = 𝑇𝑈 (𝑇
𝑛−1
𝑈 (𝑥)) ∈ 𝜕ov𝐻 since it is a corner of a cube opposite to 𝑇𝑛−1

𝑈 (𝑥) ∈ 𝐻. �

Remark 6.19. An alternative to 𝑇𝑈 , that also satisfies Corollary 6.16 and Lemma 6.18 which are all we
need for this argument, is to simply move each 𝑥 ∈ 𝑋 across one arbitrarily chosen hyperplane in A𝑈,𝑥 .
This has the disadvantage of being not completely canonical (i.e., automorphism-invariant, despite still
working in the Borel context), but the advantage of producing a subforest of the original graph G.

Lemma 6.20. For any nonempty 𝐶 ⊆ 𝑋 contained in a single 𝑇𝑈 -orbit and also contained in some
𝐻 ∈ Hcvx(𝑋) \𝑈, the intersection of the forward 𝑇𝑈 -orbits of all 𝑥 ∈ 𝐶 is the forward 𝑇𝑈 -orbit of a
single vertex 𝑟𝐶 ∈ 𝑋 , which we call the 𝑇𝑈 -root of C.

Proof. For each 𝑥 ∈ 𝐶, let 𝑛𝑥 ∈ N such that 𝑇𝑛𝑥𝑈 (𝑥) ∈ 𝜕ov𝐻. Then {𝑇𝑛𝑥𝑈 (𝑥) | 𝑥 ∈ 𝐶} ⊆ 𝜕ov𝐻 is a finite
set of vertices. If it is a single vertex, then the 𝑇𝑈 -root of C is in its backward 𝑇𝑈 -orbit. Otherwise, the
first vertex in the forward 𝑇𝑈 -orbits of all the 𝑇𝑛𝑥𝑈 (𝑥) is the 𝑇𝑈 -root of C. �

Theorem 6.21. Given a median graph (𝑋, 𝐺) with finite hyperplanes and a selected end U, either

(i) 𝑇𝑈 has only finitely many orbits (yielding a ‘witness to finite-index-over-hyperfiniteness’); or
(ii) 𝑇𝑈 has infinitely many orbits, in which case we may canonically construct a sequence of equivalence

relations 𝐸0 ⊆ 𝐸1 ⊆ · · · with ↑
⋃
𝑛 𝐸𝑛 = 𝑋2 and an assignment to each 𝐸𝑛-class 𝐶 ∈ 𝑋/𝐸𝑛 of a

finite nonempty set of vertices 𝑅𝑛,𝐶 ⊆ 𝑋 (a ‘witness to hypersmoothness’).

Proof. Suppose 𝑇𝑈 has infinitely many orbits. Define 𝐸𝑛 ⊆ 𝑋2 by

𝑥 𝐸𝑛 𝑦 :⇐⇒ ∀𝐻 ∈ Hcvx(𝑋) \𝑈 (𝐻 intersects more than 𝑛 𝑇𝑈 -orbits =⇒ (𝑥 ∈ 𝐻 ⇐⇒ 𝑦 ∈ 𝐻)).

By Lemmas 2.32 and 6.18, ↑
⋃
𝑛 𝐸𝑛 = 𝑋2. Since 𝑇𝑈 has infinitely many orbits, for any 𝑛 ∈ N, each 𝑥 ∈ 𝑋

belongs to some 𝐻 ∈ Hcvx(𝑋) \ 𝑈 intersecting more than n 𝑇𝑈 -orbits, as we may separate U from x
and n other points in distinct orbits by a half-space (by Lemma 2.61). Thus, each 𝐸𝑛-class 𝐶 ∈ 𝑋/𝐸𝑛 is
contained in some 𝐻 ∈ Hcvx (𝑋) \𝑈, and so for each of the finitely many (by Lemma 6.18) 𝑇𝑈 -orbits
𝑂 ⊆ 𝑋 intersecting C, 𝑂 ∩ 𝐶 has a 𝑇𝑈 -root 𝑟𝑂∩𝐶 by Lemma 6.20. Let 𝑅𝑛,𝐶 be the set of all of these
finitely many 𝑇𝑈 -roots. �

Corollary 6.22. If a CBER (𝑋, 𝐸) admits a median graphing 𝐺 ⊆ 𝐸 with finite hyperplanes, together
with a Borel selection (𝑈𝐶 )𝐶∈𝑋/𝐸 of one end in each component, then E is hyperfinite.
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Here by a ‘Borel selection of one end in each component’, we mean that
⊔
𝑥∈𝑋 𝑈[𝑥 ]𝐸 ⊆⊔

𝑥∈𝑋 Hcvx(𝐺 | [𝑥]𝐸 ) =: Hcvx(𝐺) is Borel in the bundle of wallings as in Definition 4.2, or equivalently,
that

⊔
𝐶∈𝑋/𝐸 (𝑈𝐶 \ {∅, 𝐶}) is Borel in the global space of all nontrivial half-spaces in all components

where a half-space is identified with the pair of finite sets given by its inner and outer boundaries.
Equivalently by Proposition 2.59, if we represent ends 𝑈𝐶 as ultrafilters of boundary-finite sets (rather
than orientations of half-spaces), this means that

⊔
𝑥∈𝑋 𝑈[𝑥 ]𝐸 ⊆

⊔
𝑥∈𝑋 H𝜕<∞(𝐺 | [𝑥]𝐸 ) is Borel, or the

corresponding condition for the global space of all nontrivial cuts.

Proof. The transformation 𝑇𝑈 (𝑥) := 𝑇𝑈[𝑥 ]𝐸 (𝑥) defined componentwise as in Lemma 6.15 is easily seen
to be Borel, and we have an E-invariant Borel partition 𝑋 = 𝑌 � 𝑍 into the components on which 𝑇𝑈
has finitely many or infinitely many orbits, respectively. On Y, the orbit equivalence relation of 𝑇𝑈 is
hyperfinite by [DJK94, 8.2], and E is finite index over it, and hence hyperfinite by [JKL02, 1.3]. On
Z, by running the construction of Theorem 6.21 on each component, we get a sequence of CBERs
𝐸0 ⊆ 𝐸1 ⊆ · · · ↗ 𝐸 together with 𝐸𝑛-invariant Borel maps 𝑥 ↦→ 𝑅𝑛

[𝑥 ]𝐸𝑛
taking each 𝐸𝑛-class C

to a finite nonempty subset of [𝐶]𝐸 ; such maps are countable-to-1 Borel homomorphisms from 𝐸𝑛
to equality (on the space of finite subsets of X), and hence, each 𝐸𝑛 is smooth by Lusin–Novikov
uniformization (see also [Kec24, 3.37] or [CK18, 5.8]), whence E is hypersmooth and so hyperfinite by
[DJK94, 5.1]. �

Corollary 6.23. If a CBER (𝑋, 𝐸) admits a graphing 𝐺 ⊆ 𝐸 with a Borel walling of cuts 𝐶 ↦→ H(𝐶)
dense towards ends in each component 𝐶 ∈ 𝑋/𝐸 (as in Corollary 5.16), as well as a Borel selection
(𝑈𝐶 )𝐶∈𝑋/𝐸 of an end in each component, then E is hyperfinite.

Here, as above, ‘Borel selection of one end’ can be naturally interpreted by treating ends as ultrafilters
of boundary-finite sets. It is also easily seen to mean equivalently that the set of infinite G-rays converging
to a chosen end is a Borel set in 𝑋N, which is the definition used in, for example, [Mil08].

Proof. The dual median graph U◦(H(𝐶)) for each 𝐶 ∈ 𝑋/𝐸 constructed in Corollary 5.16, ultimately
Theorem 4.6, has ends in natural bijection with those of 𝐺 |𝐶 by Proposition 5.12, namely via pulling
back each end (ultrafilter) 𝑈 ∈ 𝐶 ⊆ 2H𝜕<∞ (𝐶) along the inclusion H(𝐶) ↩→ H𝜕<∞(𝐶) to get an
orientation in U (H(𝐶)) ⊆ 2H(𝐶) (Remark 5.1); this easily implies that we may transport the Borel
end selection (𝑈𝐶 )𝐶∈𝑋/𝐸 of G to a Borel end selection of the Borel median graphing constructed in
Theorem 4.6, which is thus hyperfinite by Corollary 6.22, whence so is the Borel bireducible E. �

Corollary 6.24 (of Corollary 6.23, Corollary 5.20, and Proposition 5.34). If a CBER admits a locally
finite graphing which is either a quasi-treeing or has bounded tree-width, as well as a Borel selection
of an end in each component, then it is hyperfinite.
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