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Abstract 

The rapid and efficient removal of weeds is currently a research hotspot. With the 

integration of robotics and automation technology into agricultural production, intelligent field 

weeding robots have emerged. The development status of weeding robots is overviewed based 

on bibliometric and scientific mapping methods. Secondly, the two key technologies of weeding 

robots are summarized. Then, the research progress of precision spraying weeding robots, 

mechanical weeding robots, and thermal weeding robots with laser devices, categorized by their 

weeding methods, is reviewed. Finally, a summary and an outlook on the future development 

trends of intelligent field weeding robots are provided, aiming to offer a reference for further 

promoting the development of weeding robots. 

Keywords: field navigation, machine vision, weeds, weeding robots   

https://doi.org/10.1017/wsc.2024.95 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2024.95


Introduction 

As the global population continues to grow, the increasing demand for food has made 

improving agricultural productivity and reducing resource waste one of the key challenges in 

agricultural development. In traditional farming, weeds not only compete with crops for nutrients 

and water but also provide habitats for various pests and diseases, leading to a decline in crop 

yields. According to data from the United Nations Food and Agriculture Organization (FAO) in 

2023, more than 8,000 species of weeds have been identified worldwide, with over 26% causing 

crop yield reductions. Given the detrimental effects of weeds, effectively controlling their growth 

has become a critical aspect of crop cultivation (Deng et al. 2018). 

To eliminate the impact of weeds on crops, various weed control methods have been 

explored. Traditional manual weeding methods, such as using hoes, sickles, or push mowers, are 

simple to operate but have high labor intensity, low efficiency, and high costs. The effectiveness 

of these methods often depends on the skill level of the workers, frequently leading to missed 

weeds. Although mechanical weeding improves efficiency, its application in large-scale fields 

remains limited (Bloomer et al. 2024). Chemical herbicide spraying is highly efficient, but it can 

result in herbicide waste, environmental pollution, and negative impacts on non-target plants and 

surrounding ecosystems. 

In the face of these limitations of traditional weeding methods, especially with the rapid 

advancements in sensor technology(Shaikh et al. 2022), machine learning algorithms(Liakos et 

al. 2018), artificial intelligence (AI)(Sharma et al. 2023), and drone technology in the 21st 

century (Wen et al. 2018), intelligent field weeding robots have emerged. These robots, equipped 

with advanced image processing technology and AI algorithms, use vision sensors, GPS systems, 

robotic arms, laser tools, and automated control systems to accurately detect, locate, and 

eliminate weeds without harming crops. Based on different weeding techniques, intelligent 

weeding robots can be classified into precision spraying robots, mechanical weeding robots, and 

thermal weeding robots (Hall et al. 2017; Hu et al. 2012; Quan et al. 2021; Xing et al. 2022). 

Among these, laser weeding technology, which allows for precise weed removal, represents a 

future trend. Precision weeding, which targets only specific weeds and avoids affecting crops and 

soil, relies on sensor technology and AI algorithms. Unlike traditional broad-spectrum weed 

control methods, precision weeding significantly improves resource efficiency and reduces 

environmental pollution, making it especially suitable for sustainable agriculture and organic 
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crop production. Sustainable agriculture refers to the practice of conducting agricultural 

production in an eco-friendly and economically viable manner to meet the current food demands 

while protecting the environment and natural resources. The goal is to ensure that future 

generations can continue farming. Sustainable agriculture aims to reduce over-reliance on land, 

energy, and water resources, minimize the excessive use of chemicals and harmful substances, 

and promote soil health, biodiversity, and ecosystem balance. 

Compared to traditional weeding methods, intelligent field weeding robots can significantly 

reduce labor costs, improve weeding efficiency, and minimize environmental impacts. Precision 

weeding in inter-row and near-row areas will be a key area for technological breakthroughs in 

future farmland weed control. Under the broader context of smart agriculture, intelligent field 

weeding robots are becoming a research hotspot in agricultural technology. A review of key 

technologies and research advancements in intelligent field weeding robots will not only provide 

valuable insights for researchers in related fields but also offer new perspectives for the 

intelligent development of agricultural production. 

To understand the development process of intelligent weeding robots, this study used 

bibliometric and scientific mapping methods (Chen et al. 2015) to analyze literature on 

intelligent weeding from the core database SSCI of the Web of Science (WOS) platform. 

Keywords such as "Weeding Robot," "weeder," and "Robot platform for weeding" were set in the 

search interface, covering the years 2009-2023, and literature types including "Article," "Review 

Article," "Early Access," and "Book Chapters" were selected. After removing irrelevant and 

duplicate documents, a total of 385 relevant papers were identified. Using CiteSpace 6.2.R4(64-

bit) Basic software(Xu et al. 2023), the number of publications, years, and keyword co-

occurrence maps, as well as country, author, and institution maps were obtained.6 

As shown in Figure 1, the number of relevant publications has been increasing 

exponentially. From 2009 to 2015, the number of publications was relatively low and stable. 

After 2016, the number of publications increased steadily, indicating growing interest and rising 

attention to the research theme of intelligent weeding. 

Figure 2 shows the clustering based on keywords such as weeding, recognition, deep 

learning, navigation, and weeding equipment. The colors range from blue (weakest relevance) to 

red (strongest relevance). The clustering was based on the two key technologies of intelligent 

weeding and the current development status, selecting 15 major clusters with 277 nodes and 1114 
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links, resulting in a network density of 0.0291, a Q value of 0.7189 (>0.3), and a Mean 

Silhouette value of 0.8921 (>0.4), indicating a reasonable clustering structure and good 

homogeneity within clusters. The diagram also shows that researchers focus on deep learning 

technology, machine vision, and the development of weeding robots, with strong interrelations 

between these content areas, consistent with practical applications in production. 

In recent years, researchers have optimized deep learning algorithms(Chong et al. 2023; 

Weyler et al. 2023) to achieve weed and crop recognition and localization within the machine 

vision field. They have also developed mobile robot platforms to plan navigation routes(Diao et 

al. 2023; Li et al. 2023), thereby achieving automated precision weeding(Guo et al. 2023; Li et al. 

2023; Tran et al. 2023). Analysis of Figure 3 shows that institutions such as China Agricultural 

University(Li et al. 2023), University of California(Su et al. 2020), Indian Council of 

Agricultural Research (ICAR)(Pandey et al. 2023), and Consejo Superior de Investigaciones 

Científicas (CSIC)(Emmi et al. 2023)have produced significant research outcomes in recent 

years. Scholars from the United States, such as Fennimore , Slaughter and Johnson; Chinese 

experts such as Cao C., Tian L., and Ge J.; Spanish researchers like Ribeiro Angela and Perez-

ruiz Manuel; and scholars from Germany, India, Australia, and Japan have all made notable 

contributions to international research. 

Overall, the field of intelligent weeding has been a focus of attention, with substantial 

research results from countries including the United States, China, Spain, Germany, India, 

Australia, and Japan. Concurrently, deep learning technology has been applied to address weed 

removal issues. Future research will continue to focus on the development of weeding robots. 

Recognition based on machine vision is a prerequisite for effective weed removal, while 

navigation and localization technology determine the efficiency of precision weeding. These two 

aspects constitute the key technologies of intelligent weeding, as illustrated in Figure 4 This 

paper reviews the research status of intelligent weeding robots and summarizes the critical 

technologies of intelligent robots, including an overview of some public datasets. It elaborates on 

the research progress of intelligent weeding robots categorized by weeding methods. Finally, the 

paper concludes with a summary and a discussion of future development trends for intelligent 

weeding robots. 
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Research Progress of Key Technologies in Intelligent Weeding Robots 

Accurately and intelligently distinguishing between weeds and crops in the field is a 

prerequisite for the precise weeding operations of weeding robots. Navigation and localization 

technology, which determines the efficiency of precision weeding, is essential. These two aspects 

constitute the key technologies of intelligent weeding robots (Yuan et al. 2020). This paper 

reviews these two key technologies. 

Recognition technologies based on machine vision 

Research on the recognition of farmland weeds has been extensive, with methods including 

manual recognition, spectral analysis, spectral imaging, infrared recognition, and machine vision 

recognition (Chen et al. 2013). The proportions of these recognition methods in the WOS 

platform are shown in Figure 5 Manual recognition is inefficient, labor-intensive, and costly, 

with no recent references, indicating its eventual phase-out. With the continuous advancement of 

science and technology, computer vision technology has gradually been applied to various fields. 

In the 1980s, computer vision technology began to be used in agricultural applications (Wang et 

al. 2001). Currently, weed recognition mainly relies on machine vision technology, and the 

research and development of intelligent field weeding robots cannot be separated from machine 

vision technology. As shown in Figure 5, other recognition methods have a smaller proportion 

and are less commonly used in actual weeding operations. 

Weeds are generally found in complex field environments, and any recognition technology 

must apply specific characteristics to the objects being identified. Weed recognition primarily 

involves extracting features such as morphology, color, and texture of crops and surrounding 

weeds. Researchers provide these extracted features to machine learning algorithms for 

recognition, as shown in Figure 6, which depicts the traditional machine learning-based 

recognition workflow. This stage of feature extraction is referred to as manual feature 

recognition, which includes recognition technologies based on color, shape, texture, and 

spectrum. As the cost of computer hardware decreases and CPU computing power increases, 

deep learning, which requires extensive data computation, has gradually expanded into the 

agricultural field. Deep learning methods extract weed features more effectively than manual 

feature extraction, and this stage of feature extraction is referred to as deep learning recognition 

technology. The following sections will detail recognition technologies based on manual features 

and deep learning. 
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Color-based recognition 

Compared to other feature-based recognition methods, color features require less 

computational effort and are more effective for weed detection in fields with crops that have 

distinctive colors. Researchers have utilized color indices to segment weeds, crops, and soil, 

employing recognition methods based on RGB (Chen et al. 2009; Nieuwenhuizen et al. 2007; 

Jafari et al. 2006), HSV (Hamuda et al. 2017; Miao et al. 2020), and HSI color spaces (Li et al. 

2016). 

In the RGB color space, the green channel contains more useful information compared to 

the red channel, thus requiring the integration of threshold algorithms to accomplish the 

segmentation task. However, it is challenging to segment plant pixels under low or bright 

lighting conditions in this space, whereas HSV and HSI color spaces are more robust to changes 

in lighting conditions. This paper presents some references to color-based recognition algorithms 

and their recognition accuracy in Table 1.  

Color features are easy to recognize and allow for quick decision-making, making them 

suitable for real-time image processing. Additionally, ordinary cameras can meet the 

requirements for feature extraction, making this approach applicable to various crops and weed 

types. However, variations in lighting and shadows can affect recognition performance. When 

the colors of the plants are similar, relying solely on color features may not provide satisfactory 

separation. To improve recognition accuracy, it is necessary to combine other features. 

Shape-based recognition 

Shape features are crucial morphological characteristics in biology and play a key role in 

distinguishing between crops and weeds. Researchers have combined these features with 

machine learning algorithms, such as artificial neural networks (ANN), morphological 

processing algorithms, and classification algorithms like support vector machines (SVM) 

(Bakhshipour A et al. 2018; Murawwat S et al. 2018). Some studies have integrated shape 

features with other features, such as color and spectral features, utilizing a comprehensive set of 

morphological characteristics for analysis (Hussin et al. 2013).  

Murawwat et al. applied SVM and blob analysis techniques for weed recognition. In non-

occluded scenarios, the recognition accuracy reached 100%; however, in complex scenes where 

weeds overlap with carrot plants, the recognition accuracy dropped to 90%, as shown in the 

segmented image in Figure 7a Bakhshipour et al. compared the performance of SVM and ANN 
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in classifying sugar beet plants and weeds. SVM achieved a crop recognition accuracy of 96.67% 

and weed accuracy of 93.33%, while ANN achieved 93.33% accuracy for crops and 92.5% for 

weeds. The classification results are shown in Figure 7b An autonomous fine tuning and feature 

selection using Genetic algorithm (GA) was proposed by Wong et al. and tested with the 

assumption that the weeds are young and non-occluded. The results show that solidity of the 

shapes are the most prominent feature and alone could be used to achieved 90% recognition rates. 

100 % Recognition was achieved with the combination of shape and moment invariants, as 

shown in the segmented image in Figure 7c Kiani et al. combined Discriminant Analysis with 

Backpropagation Neural Networks (BPNN) to classify maize plants and weeds, achieving a 

maize recognition accuracy of 100% and a weed recognition accuracy of 96%, as depicted in 

Figure 7d. 

Additionally, Jeon et al. conducted research on recognizing crops against the soil 

background using machine learning algorithms such as ANN, utilizing shape features to identify 

weeds. Li et al. employed morphological operations and distance transformation-based threshold 

segmentation to separate overlapping leaves. They then used the Ant Colony Optimization (ACO) 

algorithm and SVM classifiers for feature selection and classification, achieving a recognition 

accuracy of 95%. 

Shape features are effective when plant leaves are intact and not overlapping. However, 

when there is significant overlap or damage to the leaves, extracting shape features becomes 

much more difficult. Furthermore, when multiple plant species with similar shapes are present in 

field images, classification based on shape features becomes highly complex. 

Texture-based recognition 

Texture features represent the spatial arrangement of pixel grayscale levels in an image 

region, which are critical for recognizing objects or regions of interest in images. Researchers 

have used the gray-level co-occurrence matrix to extract texture features of crops and weeds 

(Mustafa MM et al. 2007; Wu LL et al. 2009), and employed supervised learning algorithms, 

such as SVM and ANN, for weed recognition. To address the challenge of significant leaf 

occlusion hindering effective texture feature extraction, some studies have adopted wavelet 

decomposition methods combined with supervised learning algorithms for recognition 

(Bakhshipour A et al. 2017).  
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As shown in Figure 8, the horizontal axis represents crop/weed recognition methods based 

on texture features, and the vertical axis indicates the corresponding crop and weed recognition 

accuracy. PCA refers to Principal Component Analysis; GLCM refers to Gray-Level Co-

occurrence Matrix; FFT refers to Fast Fourier Transform. The figure shows that the crop 

recognition accuracy across different methods ranges from 89% to 92%, and weed recognition 

accuracy ranges from 85% to 98%. The method by Wu et al. achieves the highest recognition 

accuracy. Their image segmentation process involves converting the original color image to 

grayscale based on the statistical values of the red, green, and blue components. The texture 

features of weeds and maize seedlings are then obtained using GLCM and the statistical 

properties of the grayscale image histogram. These texture features are used in the classification 

process. PCA is employed to select texture features that contribute best to reducing spatial 

dimensions. SVM is used as the classification tool to identify weeds and maize seedlings in the 

early growth stages of a maize field. The results show that the SVM classifiers with different 

feature selection strategies can successfully identify weeds and maize, achieving an accuracy 

ranging from 92.31% to 100%. 

Like shape features, the extraction of texture features is a computationally intensive image 

processing task. Typically, feature selection and dimensionality reduction algorithms are used to 

select the most contributory feature parameters for input into classifiers. Effective texture 

analysis requires a large amount of high-quality labeled data for training. The advantage of 

texture features lies in their stability when dealing with occluded leaves and in distinguishing 

between crops and weeds, even under varying lighting conditions. 

Spectrum-based recognition 

The main challenge in classifying weeds and crops lies in their similar spectral 

characteristics. If the weed and crop leaf colors are different, this recognition technique can 

effectively distinguish them; if their colors are similar, other features must be combined for 

efficient recognition, such as shape. Researchers have used hyperspectral cameras to collect data 

and then integrated machine learning algorithms for recognition (Bai J et al. 2013; Gao JF et al. 

2018; Herrmann I et al. 2013; Pantazi XE et al. 2017; Piron A et al. 2008).  

Gao et al. explored the feasibility of using a Near-Infrared (NIR) snapshot mosaic 

hyperspectral camera for weed and maize classification. They tested Random Forest (RF) models 

to build classifiers with different spectral feature combinations, identifying an optimal RF model 
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with 30 key spectral features. The average accuracy for corn (Zea mays L.), field bindweed 

(Convolvulus arvensis L.),  Rumex spp.,  and Canada thistle [Cirsium arvense (L.) Scop.] was 1.0, 

0.789, 0.691, and 0.752, respectively, as shown in Figure 9a.  Pantazi et al. achieved optimal 

results with active learning by using a Self-Organizing Map (SOM) and Mixture of Gaussians 

(MOG) single-class classifiers. The crop recognition performance was 100% for both methods. 

For the MOG-based single-class classifier, the correct recognition rate for different weed species 

ranged from 31% to 98%. The SOM-based single-class classifier's correct recognition rate varied 

between 53% and 94%, as illustrated in Figure 9b Zhao et al. proposed a multi-feature weed 

recognition method based on multispectral imaging and data mining, where the multi-feature 

recognition rate was higher than single-feature recognition. The combination of spectral, texture, 

and fractal dimension features yielded the highest recognition accuracy of 96.3%, as depicted in 

Figure 9c Bai et al. used stepwise discriminant analysis to select spectral reflectance data at four 

key wavelength points-710, 755, 950, and 595 nm-for precise weed recognition. By determining 

prior probabilities based on category size, the Bayesian discriminant function model achieved a 

recognition accuracy of 98.89%, enabling precise and stable weed recognition during the early 

growth stage of winter oilseed rape, as shown in Figure 9d Herrmann et al. used ground-level 

image spectroscopy data, with high spectral and spatial resolutions, for detecting annual grasses 

and broadleaf weeds in wheat (Triticum aestivum L.) fields. The image pixels were used to cross-

validate partial least squares discriminant analysis classification models. The best model was 

chosen by comparing the cross-validation confusion matrices in terms of their variances and 

Cohen’s Kappa values. This best model used four classes: broadleaf, grass weeds, soil and wheat 

and resulted in Kappa of 0.79 and total accuracy of 85%. 

Using hyperspectral cameras can capture subtle spectral differences between crops and 

weeds. However, pixel-based recognition is inefficient. Machine learning algorithms, such as 

SVM and Random Forests, can be employed to build weed recognition classification models, 

significantly improving efficiency and accuracy in large-scale crop production. Nevertheless, 

these methods also face challenges, such as changing lighting conditions, the similarity of 

spectral features between crops and weeds, and the complexity of processing and analyzing 

image data. 

Therefore, relying on a single feature for recognition often results in low accuracy and poor 

stability, as it fails to fully utilize multi-feature information for recognition. It is essential to 
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consider a combination of factors, optimize model algorithms, and integrate other agricultural 

technologies to achieve more accurate and reliable weed detection and management. How to 

optimize the fusion of features and resolve the contradiction between recognition accuracy and 

response time remains a critical issue that needs to be addressed. 

Analysis of these references and comparison of various feature-based recognition methods 

indicate that techniques using color, shape, texture, and spectral features can achieve high 

recognition rates. However, the performance of these techniques in real-time weed detection is 

hindered by the complex field environment, as the recognition rate depends on image acquisition 

methods, preprocessing methods, and the quality of feature extraction. 

Deep learning-based recognition 

Deep learning algorithms effectively avoid the subjectivity introduced by the feature 

extraction process in traditional machine learning methods. They can automatically extract deep 

features from images, offering stronger representation capabilities and unique network feature 

structures, thereby improving weed recognition accuracy. 

On the one hand, deep learning methods can extract weed features. For instance, Peng MX 

et al. (2019) proposed a two-stage algorithm based on Faster Region-based Convolutional Neural 

Networks (Faster R-CNN) integrated with Feature Pyramid Networks (FPN), which achieved 

good detection performance in complex backgrounds in cotton fields. Fawakherji et al. (2019) 

developed a model that accurately classified crops and weeds by generating patches from binary 

images for robotic use. Dos et al. (2017) trained a neural network using the Caffe Net 

architecture, achieving 97% accuracy in weed detection. 

On the other hand, deep learning algorithms can directly recognize weeds. Naveed et al. 

(2023) proposed a novel weed detection model that can be executed on central processing unit 

(CPU) systems, reducing computational costs. Some researchers have optimized deep learning 

algorithms for better recognition performance (Bah MD et al. 2019; Krizhevsky A et al. 2017; 

Sun Jun et al. 2018). Other studies have utilized One-Stage object detection algorithms from the 

YOLO series for weed detection (Sun H., et al. 2024; Ying BY et al. 2021; Zhang WK et al. 

2023). In deep network research, Li et al. (2023) proposed E2CropDet, a deep learning-based 

crop row detection network that achieved end-to-end detection at 166 frames sec
-1

, with a lateral 

deviation of 5.945 pixels in centerline extraction, surpassing semantic segmentation (7.153) and 

Hough transform-based methods (17.834). You et al. (2020) continuously improved a weed/crop 
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segmentation network by integrating four additional components, reducing weed density. Some 

experts have achieved good recognition results in multi-stage algorithm design (Adhikari SP et al. 

2019; Huang S et al. 2020). Table 2 provides information on deep learning-based seedling and 

weed recognition technologies. 

Analysis of the experimental results of recognition algorithms indicates that this technology 

makes weed detection and classification more accurate in complex field environments. 

Traditional feature-based recognition technologies primarily focus on image-level 

classification, while deep learning-based recognition focuses on pixel-level classification, where 

each pixel is segmented and labeled as either weed or crop. In recent years, some scholars have 

combined deep learning methods with traditional methods, proposing solutions for different 

processing steps in fruit and vegetable recognition against similar color backgrounds. This 

demonstrates that the integration of image processing technology and deep learning technology 

is a significant research direction for the future. 

Navigation and localization technologies 

Navigation and localization technologies are critical for intelligent weeding. After seedling 

and weed recognition, accurate localization of weeds is necessary to assist intelligent weeding 

devices in completing real-time calculations and weeding tasks. With the continuous 

development of artificial intelligence technology in recent years, this key technology has been 

increasingly researched and improved by experts and scholars. Satellite navigation, visual 

navigation, and integrated navigation are the most widely used, and the following sections will 

introduce the research and development status of these three navigation and localization 

technologies. 

Satellite navigation and localization 

Currently, the application of GNSS navigation is widespread and mature. Agricultural 

machinery equipped with GNSS can significantly improve operation quality and efficiency in the 

field, although GNSS signal loss can occur in complex environments, such as dense foliage. 

Examining the history of satellite navigation development, GNSS can be applied in three 

ways: 

GPS Localization: Stoll et al. (2000) used GPS as the sole localization sensor for 

autonomous driving experiments, achieving a standard deviation better than 100mm under 

various conditions, with a lateral deviation range of 25-69mm during straight-line driving. Corpe 
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et al. (2013) developed a GPS-based agricultural robot equipped with multiple sensors for 

environmental information detection, considering complex field conditions. 

RTK-GPS Localization: Kise et al. (2001) applied this localization method to a tractor 

control system, reducing heading response and error during trajectory-following operations. 

Researchers have used this method for intra-row weed control (Nørremark et al. 2012; Pérez-

Ruiz et al. 2012). 

RTK-DGPS Localization: Luo et al. (2009) achieved a maximum linear tracking error of 

less than 0.15m at a travel speed of 0.8m/s, with an average tracking error of less than 0.03m 

using this method. Bakker et al. (2011) conducted autonomous navigation research in sugar beet 

fields using an RTK-DGPS-based agricultural robot platform, achieving centimeter-level 

precision in field trials. Subsequently, centimeter-level localization accuracy RTK-DGPS has 

been widely used in agricultural machinery navigation systems (Hu et al. 2015). Li et al. (2017) 

combined dual-loop steering control technology with this navigation method, achieving a path 

tracking error average of less than 1.9cm and a standard deviation of less than 4.1cm. 

Additionally, some experts have combined satellite localization technology with other navigation 

techniques to achieve better localization accuracy. 

Visual navigation and localization 

In the 1980s, the UK and the US were the first to research visual navigation systems. This 

localization technology has been a great success, and to this day, experts and scholars continue to 

use visual navigation systems for precise pesticide spraying, intelligent mechanical weeding, and 

physical weeding, despite some drawbacks during usage. This localization technology is often 

used in combination with intelligent robots. 

Marchant et al. (1996) developed a weeding robot based on visual navigation and 

localization technology using a grayscale band-pass filter. At a traveling speed of 1.6 m/s, the 

lateral localization error was 15.6 mm. Lee et al. (1999) developed an intelligent weeding robot 

based on machine vision. This robot is equipped with two cameras, one for navigation and the 

other for weed recognition. Kise et al. (2005) applied stereo vision to the navigation system of 

agricultural vehicles in the field, enabling accurate localization of crop rows in weedy fields and 

guiding the tractor to travel precisely along both straight and curved lines. Zhang et al. (2006) 

also proposed a field automatic navigation system based on machine vision. Meng et al. (2013) 

used visual navigation and localization technology and proposed a crop row centerline detection 
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method constrained by linear correlation coefficients, solving the problems of slow detection 

algorithms and susceptibility to external interference. García-Santillán et al. (2018) developed a 

system for detecting crop and weed rows in early growth stages of corn fields using a camera 

mounted at the front of a tractor, based on visual navigation and localization technology. 

Some researchers have applied machine learning algorithms to visual navigation systems. 

Hiremath et al. (2014) proposed a vision-based navigation algorithm using particle filtering, and 

experiments demonstrated that this algorithm has good robustness, enabling accurate navigation 

in the field. Zhou J et al. (2014) applied a self-learning visual navigation method to a wheeled 

mobile robot. Yao et al. (2016) proposed a navigation control algorithm based on binocular 

vision, and experiments showed that the system had a small navigation offset. Wang et al. (2019) 

applied deep learning algorithms to orchard environment navigation systems, extracting new 

orchard road navigation lines that solved issues of susceptibility to other conditions. 

Li et al. (2022) proposed an Aster-U-Net model to address issues such as complex image 

backgrounds in visual navigation systems in both field and greenhouse environments, as well as 

weed and light interference. Thakur et al. (2023) published an academic work aimed at using 

acquired knowledge to guide the construction of practical agricultural machine vision systems. 

This work thoroughly examined the components of machine vision systems, investigated image 

acquisition, processing, and classification techniques, and explored the methods adopted by each 

technology. Additionally, it studied how to integrate these processes to perform various 

agricultural activities, such as weeding, seeding, harvesting, fruit counting, overlapping, and 

sorting. 

Integrated navigation and localization 

A combined navigation system typically consists of two or more subsystems based on 

different navigation technologies. By leveraging the error characteristics and advantages of each 

navigation technology, a continuously operating combined navigation system can provide 

continuous and comprehensive navigation parameters. In recent years, researchers have mainly 

employed the following three methods to achieve integrated navigation and localization 

functions. 

Firstly, the combination of GPS navigation technology and machine vision navigation 

technology has been applied to weeding systems. Francisco et al. (2005) fused these two 

navigation technologies with a fuzzy logic model, utilizing the relative information from vision 
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to correct GPS errors. Bakker et al. (2009) combined these navigation technologies in a 

multifunctional automatic weeding robot, enabling row navigation and herbicide spraying. Zhang 

et al. (2015) designed a system that integrates these two navigation technologies and uses corn 

crop row information captured by cameras for inter-row mechanical weeding. 

Secondly, the combination of laser navigation and inertial navigation systems has been 

explored. Kim et al. (2012) designed a paddy field weeding robot based on multi-sensor fusion, 

combining laser navigation and inertial navigation systems, achieving a maximum operational 

deviation of 6.2 cm. 

Thirdly, the GPS/DR integrated navigation system has been applied to weeding robots. Ding 

et al. (2005) applied a GPS/DR integrated navigation system to a weeding robot, improving the 

navigation accuracy and addressing the issue of signal interruptions. 

Additionally, Ding et al. (2015) combined GPS localization technology with a fuzzy control 

navigation system. Simulation results showed that this method is feasible, with the system 

achieving rapid and stable performance. Currently, the most widely used integrated navigation 

system is the GNSS/INS integrated navigation system. This system combines satellite navigation 

and inertial navigation technologies to achieve high-precision localization, speed measurement, 

attitude determination, and timing functions. Developing a highly reliable navigation system is a 

challenge rather than a simple task. Furthermore, some researchers have developed autonomous 

robots with integrated navigation and localization systems based on total stations and 2D LiDAR 

laser scanners for plant phenotyping studies. Reiser et al. (2018) combined a 2D laser scanner 

with a four-wheel autonomous robot to navigate between corn rows, achieving differential 

steering at a 30-degree downward angle and collecting concurrent timestamped data. Data fusion 

generated a three-dimensional (3D) point cloud, which can be used for various applications and 

navigation purposes, particularly for phenotypic analysis, individual plant treatment, and precise 

weeding. As shown in Figure 10, the robot platform used for data collection is represented in the 

Robot Operating System (ROS) visualization tool "rviz"(Kam et al. 2015) during LiDAR data 

assembly. Reiser et al. (2019) also developed a rotary weeding implement for autonomous 

electric robots to address weeding between orchard and vineyard rows. This implement 

autonomously followed rows based on 2D LiDAR data at a forward speed of 0.16 m/s and a 

working depth of 40 mm. In the future, the combination of autonomous navigation and weeding 

can improve weeding quality and reduce power consumption. 
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It should be noted that high-precision GPS and increasingly popular LiDAR technology 

provide new options for field weeding robot navigation systems. Combining machine vision with 

GPS or LiDAR to design efficient weeding robot navigation systems could be a significant trend 

in future developments. 

Establishing public datasets 

Images of crops and weeds are generally required to be acquired and processed in real-time, with 

cameras mounted on mobile robots operating in the field. Most datasets comprise RGB images 

of crops and weeds taken with high-resolution digital cameras from around the world, with some 

datasets containing information on multiple weed species. This paper will present the sources 

and descriptions of the public datasets obtained, detailed in Table 3. 

Progress in research on intelligent weeding robots 

Precision spraying and physical weeding are currently the mainstream methods for 

intelligent weeding. This paper reviews intelligent spraying weeding robots, mechanical weeding 

robots, and thermal weeding robots, focusing on these two weeding methods. 

Precision spraying weeding robots 

The Smart Sprayer combines sensors, AI algorithms, and automated control systems to 

optimize the use of pesticides and herbicides. In the late 20th century, Lee et al. (1999) 

developed a prototype robot for precision herbicide spraying on tomato plants based on a 

machine vision system, achieving real-time identification accuracy of 73.1% for tomatoes and 

68.85% for weeds. Åstrand and Baerveldt (2002) developed an autonomous agricultural robot for 

mechanical weed control in outdoor environments, utilizing a grayscale vision system. This 

system could detect crop row structures and guide the robot with an accuracy of ±2 cm. It also 

employed a color-based vision system capable of identifying single crops among weeds, 

allowing the robot to manage weeds within crop rows. 

Subsequent designs focused on Site-Specific Weed Management (SSWM) for smart 

sprayers. Hussain et al. (2020) designed a variable-rate smart sprayer  that achieved the highest 

accuracy using the YOLOv3-tiny model, saving up to 42% of spray liquid. Partel et al. (2018) 

developed a low-cost spraying system  that utilized AI and YOLOv3 for weed recognition and 

classification, with an NVIDIA GTX 1070 GPU achieving 71% accuracy in detecting and 

locating weed species. Upadhyay et al. designed and developed a YOLOv4-based smart spraying 

system, achieving an average effective spray rate of 93.33%, with 100% precision and a recall 
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rate of 92.8% in indoor experiments. In contrast, field trials showed a slightly lower spray rate of 

90.6%, while maintaining 95.5% precision and an 89.47% recall rate. 

The See & Spray robot (2021) developed by John Deere combines a vision system with a 

precision spraying system, achieving an identification accuracy of over 98%. It classifies weeds 

and crops using vision technology. Powered by tractors, it can operate continuously for long 

periods, working up to 12 hours in large-scale crop fields such as cotton (Gossypium hirsutum L.) 

and soybean [Glycine max (L.) Merr.], covering 200 ha d
-1

 at 16 km hr
-1

. This robot reduces 

herbicide usage by 50-90%, significantly minimizing environmental impact (Figure 11a). 

Figure 11b is Greeneye Technology weeding robot(2021), whose core technology is its 

artificial intelligence-based selective spraying system (SSP). It uses onboard cameras to capture 

real-time field images. Combined with deep machine learning algorithms, the system accurately 

identifies and locates various types of weeds, enabling selective spraying on each plant. 

Compared to traditional weeding methods, SSP reduces herbicide usage by over 87% on average. 

The SprayBox robot (2022), developed by Verdant Robotics, is equipped with 50 nozzles 

and a sophisticated computer system that integrates computer vision and machine vision 

technology. It targets individual weeds and crops at a rate of 20 times per second, spraying 

herbicides or fertilizers with millimeter precision. The system can spray up to 1.52 ha hr
-1

 and 

identify and process over 500,000 plants, reducing chemical herbicide usage by approximately 

95% compared to traditional spraying techniques. It has been scaled for use in carrot (Daucus 

carota L.) cultivation. 

On the other hand, Demand-Driven Spraying (DoD) is a novel approach that applies 

calculated doses of herbicides to target weeds. Utstumo et al. (2018) used DoD technology to 

apply 5.3μg of glyphosate per droplet, reducing herbicide usage by tenfold. Spaeth et al. (2024) 

reported savings of 10-55% in herbicide usage through weed recognition using digital image 

processing technology. Liu et al. (2021) integrated a deep learning model and a variable-rate 

sprayer for targeted weed control, with VGG-16 demonstrating the best performance, achieving 

an F1 score of 0.88 in weed classification, and 86% of weed targets were completely sprayed 

under actual field conditions. Jin et al. (2023) presented a smart sprayer system with ResNet, 

achieving F1 scores of 92% or higher, enabling precise weed control in dormant bermuda 

[Cynodon dactylon (L.) Pers.] grass lawns. 
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These systems improve weed and crop identification accuracy, allowing for targeted 

herbicide application. EcoRobotix, a Swiss company, developed a solar-powered weeding robot 

(2017) that applies machine vision, GPS, and other sensors to autonomously track crop rows and 

detect weeds with 95% accuracy. It then uses a parallel robotic arm to quickly and precisely 

spray small doses of herbicide directly onto weeds, reducing pesticide usage by 20 times (Figure 

12a). 

The integration of remote sensing technology has undoubtedly enhanced the efficiency of 

precision spraying. Gerhards et al. (2022) used airborne and ground-based remote sensing 

technology to gather weed information and applied multi-feature fusion technology to identify 

weeds, enabling precise herbicide application. The combination of sensors and drone technology 

effectively improves identification efficiency. Figure 12b shows the Precision AI Weeding 

Drone(2022), equipped with 0.5mm resolution cameras capable of distinguishing weeds in a 

short time and accurately spraying herbicides on them. 

The application of smart sprayers in global agriculture is rapidly expanding. Precision 

spraying equipment combined with AI technology provides farmers with efficient, low-

consumption solutions. In addition to reducing chemical herbicide usage, these systems can 

increase crop yields and reduce soil and water contamination. As AI models continue to improve, 

smart sprayers are becoming adaptable to different crop types and climate conditions, providing 

greater flexibility and accuracy in real-world applications. 

The soil and water pollution caused by excessive use of herbicides and the residual drugs on 

cultivated crops have become hidden dangers to human health. The machine vision subsystem 

cannot distinguish between plants with similar characteristics, resulting in misidentification and 

thus misspraying. During weeding operations, small-sized weeds may regenerate in the targeted 

spraying area later. Although the position error caused by the change in the nozzle angle can be 

reduced through calibration, key factors such as the sensitivity and stability of the servo motor 

still need to be considered. When the robot turns, it reduces the speed of the vehicle, while the 

flow of chemicals remains unchanged, making it easier for weeds to develop resistance at the 

place where the machine turns. The best time to apply herbicides is when the weed canopy is still 

developing. Once missed, the weeds can tolerate larger doses of herbicides, and this timing is 

difficult to grasp. In addition, the realization of further precision spraying technology requires a 

high investment cost, and future technological improvements need to reduce costs. 
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Public concerns about the relationship between chemical herbicides and food safety, farm 

worker health, biodiversity, and the general environment have renewed interest in alternative 

weed control measures, primarily physical weed control methods. The subsequent sections will 

review intelligent weeding robots that utilize physical weeding methods. 

Mechanical weeding robots 

In the past century, the commercialization of inter-row mechanical weeding technology was 

limited due to the continued dominance of cost-effective chemical weeding methods, leading to 

low market demand for expensive intelligent inter-row mechanical weeding equipment. However, 

recent advancements in domestic electronic information, automatic control, and artificial 

intelligence technologies have spurred extensive research into inter-row mechanical weeding by 

researchers, driving the emergence of intelligent inter-row mechanical weeding equipment. Table 

4 details the mechanical weeding robot actuators and their characteristics. 

Mechanical weeding robots face challenges in removing inter-row weeds and eliminating 

perennial weeds. Low accuracy in weed and crop identification and positioning increases the risk 

of crop damage during the weeding process, necessitating further optimization of identification 

and positioning algorithms. High-efficiency weeding operations can cause severe soil 

disturbance, damaging crops. Therefore, the design must strike a balance between operational 

speed, reducing costs, and minimizing crop damage. Different soil conditions present varying 

levels of resistance, requiring weeding devices to adapt to different types of soil to reduce 

operational resistance. For example, heavy clay soils often result in poor weeding and soil 

fragmentation effects. Mechanical weeding also demands rapid tool movement, meaning the 

hardware needs to have a higher response speed. After completing weeding tasks, weed 

entanglement between the weeding components can affect efficiency, so further optimization of 

these components is necessary. 

 Thermal weeding robots 

Modern physical weeding methods include flame weeding, laser weeding, steam weeding, 

infrared radiation weeding, and hot water weeding, with laser weeding being the latest invention 

among thermal weeding methods. 

Laser weeding is an effective physical weeding method that involves emitting high-energy 

laser beams at weeds over a short period, directly transferring thermal energy to selectively heat 

plant material, causing the moisture within plant cells to rise and inhibiting weed growth. The 

https://doi.org/10.1017/wsc.2024.95 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2024.95


penetration of specific wavelength laser radiation into tissues, the thermal effects within 

irradiated tissues, and the associated damage mechanisms are critical for the successful control of 

laser weeds. Hoki et al. (2000) irradiated young rice plants with lasers of different wavelengths 

(532 nm and 1064 nm), discovering effect and dose-effect relationships that were neither 

uniform nor consistent. Targeting stems can be challenging for some weed species. Mathiassen et 

al. (2006) studied the effects of lasers on the apical meristems of certain weed species at the 

cotyledon stage using a handheld system under three different potted weed conditions, testing 

two lasers and two spot sizes, and applying different energy doses by varying irradiation times. 

In recent years, laser weeding technology has increasingly relied on the overall regulation of 

laser weeding equipment. Xiong et al. (2017) designed a prototype robot for indoor performance 

testing, achieving a hit rate of 97% with a laser penetration speed of 30 mm s
-1

 and a dwell time 

of 0.64 s weed
-1

. Considering the high dynamic advantages of parallel mechanisms (PM), Wang 

et al. (2022) proposed a novel laser weeding frame based on a two-degree-of-freedom five-

rotation parallel mechanical arm for dynamic laser weeding. Fatim et al. (2023) designed a 

lightweight, deep-learning-based commercial autonomous laser weeding robot weed detection 

system (Figure 13a). LaserWeeder, a weeding robot developed by Carbon Robotics(2022) in the 

United States, uses lasers instead of herbicides. Combined with AI and visual technology, it 

achieves a recognition accuracy of 99%. Consuming about 30 kWh d
-1

, it can work continuously 

for 8-10 hours per charge, with a range of 1.5-3 km hr
-1

, depending on the density of weeds. The 

CO2 laser module array emits once every 50ms, with an accuracy of 3mm, and can perform laser 

weeding on 8 targets at the same time. It can handle 6-8 ha d
-1

, and the laser system can handle 

up to 100 weeds sec
-1

 without the need for chemical agents, making it particularly suitable for 

organic farmland that needs to avoid chemical residues (Figure 13b). The Tom weeding robot 

(2018), developed by the Small Robot in the UK, uses laser technology for precise weeding and 

is designed for organic farming, reducing chemical herbicide usage and being environmentally 

friendly. Its AI-based recognition system has an accuracy rate of over 95%, consuming 15-25 

kWh d
-1

, working for 12 hours on a single charge, and covering 1.5-2 km hr
-1

. It can process 20 

ha of farmland daily. The LaserWeeder robot from EcoRobotix(2020), based in Switzerland, 

combines laser technology with AI for precision weeding in refined farmland operations. Its 

vision and AI systems achieve a recognition accuracy of 99%. Powered by a battery, it consumes 

around 20 kWh d
-1

, working continuously for 8-10 hours and covering 5-10 ha d
-1

. The WeedBot 
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Laser Weeder (2022), developed by the Europe-based company WeedBot, is designed for organic 

farming and high-precision weeding scenarios, ensuring healthy crop growth. It precisely targets 

weeds and eliminates them with lasers, with a recognition accuracy of over 98%. Battery-

powered, it consumes around 25 kWh per day and can work continuously for 8 hours, covering 

1.5-2 km hr
-1

 and processing approximately 10 ha day
-1

, depending on terrain and weed density. 

Additional references for laser weeding machines are listed in Table 5. Analysis of Table 5 

reveals that the organic combination of laser generators and mechanical arms has been a research 

focus for laser weeding machines. Some scholars have also conducted research on laser 

generators. Notably, in recent years, more experts and scholars have focused on the whole 

machine aspects of weeding machines.  

The accuracy of weed centroid positioning is often inadequate, impacting the precision of 

weeding operations. The diversity in weed species and shapes makes detection challenging, 

leading to potential misidentifications. Robots may also miss some weeds, affecting the overall 

weeding effectiveness. During laser weeding, there is a risk of crop damage, especially when 

positioning is inaccurate. Optimizing laser energy usage and improving energy efficiency are 

significant technical challenges. Laser weeding may also cause reflection issues, increasing 

safety risks, and care must be taken to ensure that reflections do not harm crops or surrounding 

equipment. These challenges represent key technological hurdles for the future development of 

laser weeding robots. Future progress must address improvements in recognition accuracy, 

operational efficiency, environmental impact, and energy utilization across these systems. 

Discussion 

In the rapid development of smart agriculture today, intelligent weeding equipment, as an 

important component of intelligent agricultural machinery, is bound to undergo further 

reconstruction and upgrades with the promotion of new production operation models and the 

introduction of advanced intelligent technologies. Smart agriculture refers to the use of advanced 

technologies such as the Internet of Things (IoT), AI, big data, sensors, and robotics to enhance 

the efficiency, productivity, and sustainability of agricultural operations. It involves data-driven 

decision-making, precision agriculture techniques, and real-time monitoring to optimize crop 

management, reduce resource waste, and improve farm management systems. Smart agriculture 

focuses on increasing yields, minimizing environmental impact, and enabling automation and 

remote control of agricultural processes. 
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Although current weeding robots are still in the prototype development stage, companies 

like FarmWise (2020) and Carbon Robotics (2022) are gradually moving towards 

commercialization. This paper reviews two major technical issues of weeding robots: (1) weed 

detection; (2) vision-based navigation, as well as mainstream weeding robots. Currently, 

intelligent weeding still requires in-depth research in the following areas: 

Optimization of recognition algorithms and precision weeding efficiency   

To further improve the operational efficiency of intelligent weeding, advanced deep 

learning technologies need to be optimized, including data augmentation, feature extraction, 

attention mechanisms, and model simplification. These improvements are essential to address the 

challenges in recognizing overlapping stems or leaves between weeds and crops. Additionally, 

data annotation, particularly the labeling of massive weed datasets, deserves more attention. 

Researchers must enhance the robustness and generalization of deep learning algorithms. 

Reinforcement learning and transfer learning algorithms can be used to achieve better results 

with less data.   

The recognition of crop and weed characteristics-such as color, shape, texture, and spectral 

features-still requires an integrated approach combining novel image processing techniques and 

AI. Current algorithms face complexity and long processing times, and future optimization is 

needed to overcome these drawbacks.   

The emergence of new physical weeding technologies, such as laser weeding, offers a 

promising outlook for intelligent weeding. Intelligent weeding devices need to be closely 

integrated with AI technology, using different combinations of navigation technologies for 

different application scenarios, to further address the challenge of weed removal in inter-row 

regions. The performance of various intelligent weeding equipment developed for different 

weed-handling conditions must be further improved to enhance operational efficiency. For 

instance, small and medium-sized weeding robots need to improve in terms of cooperative 

operation, autonomy, and human-machine coordination. 

Intelligent sensing and equipment generalization   

The operation of sensors is required for navigation data, image recognition data, and more. 

In recent years, multi-modal sensors, such as visual, infrared, and ultrasonic sensors, have seen 

rapid development, providing valuable assistance in obtaining comprehensive and real-time 

information from complex field environments. Future research should further explore multi-
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sensor fusion technology, machine vision, field navigation technology, and multi-disciplinary 

integration to achieve intelligent sensing functions. Through intelligent sensing, efficient 

identification and location of crops and weeds can be realized, enabling intelligent weeding.   

With the extensive application of AI, intelligent weeding devices are also evolving toward 

wide-area operations, group intelligence, and multi-functional operations. For example, 

equipment for sowing, weeding, and fertilization can be quickly swapped. The generalization of 

robotic platforms can lower production costs. Additionally, an open platform structure with 

compatibility will significantly increase operational efficiency. Intelligent weeding systems may 

also integrate crop disease and pest monitoring for pesticide management, and through intelligent 

sensing of crop growth and maturity, facilitate automated fertilization and harvesting. 

Integration of agricultural machinery and agronomy   

In some countries, a few fields have already achieved a leveled furrow environment suitable 

for intelligent weeding equipment. Considerations for optimal inter-row spacing and leveled 

furrows can reduce crop and weed occlusion and clustering, which lowers the complexity of 

deep learning networks and facilitates the application of intelligent weeding technologies. By 

integrating agricultural machinery and agronomy, the weeding environment can be improved, 

and operational efficiency increased. Rational close planting, intercropping, and mixed cropping 

can fully utilize solar energy and spatial structure, enhancing crop growth while controlling weed 

density and damage. 

Further integration of drone technology   

The development of agricultural drones provides new solutions for smart agriculture and 

represents a major trend in agricultural equipment development. Drones have natural advantages, 

such as obtaining ultra-high-resolution images at low altitudes, which allows for the detailed 

observation of crops and weeds. In addition, drones generate vast amounts of imagery during 

aerial photography, providing datasets for training and learning deep learning algorithms. 

Equipped with different sensors and perception systems, drones can capture spectral information 

from crops and weeds, which, combined with machine learning algorithms, significantly 

improves weed identification accuracy. Drones also offer flexibility in scheduling flights and can 

generate digital surface models with 3D measurements. Currently, drones are widely used in 

field weed identification and intelligent spraying. Future integration of sensor, deep learning, 

communication, and drone technologies can achieve higher weed identification efficiency. 
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Integration of 5G、Digital Twin Technology and IoT Technologies 

The integration of 5G, IoT and digital twin technologies is rapidly driving weed control 

robots towards becoming smarter and more efficient. This convergence not only enhances the 

performance and decision-making capabilities of robots but also provides precise and visualized 

operational support for agricultural management, contributing to the overall intelligence level of 

farming operations. 

Digital Twin Technology creates a digital replica of the physical weed control robot, 

enabling full lifecycle management through virtual-physical interaction. By building digital 

models that correspond to the physical robot and the farm environment, digital twins provide 

real-time status monitoring, simulation optimization, and predictive maintenance. In a virtual 

environment, robots can simulate path planning and weed control strategies to optimize paths, 

reduce energy consumption, and ensure no damage to crops. Monitoring through the digital twin 

model allows real-time simulation and analysis of the robot's components' operational status. By 

combining historical data and algorithms, the system can predict when the robot may experience 

failure, enabling timely preventive maintenance and reducing downtime. Simultaneously, the 

farm environment, crop conditions, and the robot's actual working status can be visually 

displayed. Operators can monitor the robot's work process via a virtual interface, offering remote 

guidance and adjustments. 

IoT facilitates the intelligent scheduling of weed control tasks and supports decision-making 

by integrating climate conditions and weed growth patterns with agronomy to determine the 

optimal weeding time. Weed control robots can connect to sensors installed in the field, such as 

soil moisture, weather, and crop growth status sensors, to collect environmental and crop 

condition data. This data enables robots to more accurately identify weed growth areas and 

optimize weeding strategies. Under the IoT framework, basic data processing for weeding tasks 

can be handled by edge computing devices (e.g., local servers), while more complex analyses 

and model inference tasks are transferred to the cloud for computation. Through IoT networks, 

farm management systems can monitor the status of the weed control robots (battery life, 

mechanical wear, software condition, etc.) in real-time and carry out equipment scheduling, fault 

alarms, and automatic maintenance when necessary. 

5G technology, with its ultra-low latency, ensures real-time remote operation of weed 

control robots over large farmlands, even supporting cross-regional control of multiple robots 
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working in collaboration. Multiple weed control robots can share data via 5G networks to 

perform coordinated operations, avoiding repeated weeding or missed weeds, thereby improving 

efficiency. 5G supports real-time data transmission from robots using high-definition cameras or 

other sensors (e.g., LiDAR, depth cameras), enabling a central system to analyze and make 

decisions regarding weed control.  

The integration of 5G, IoT, and digital twin technologies significantly enhances the real-

time performance and decision-making capabilities of weed control robots, enabling them to 

operate with higher precision and efficiency in complex farm environments. This reduces the risk 

of damaging crops or missing weeds. These technologies empower weed control robots with 

intelligent perception, remote control, and autonomous decision-making capabilities, supporting 

large-scale farm operations where robots can collaborate intelligently, achieving unmanned and 

automated weeding operations. Through continuous data collection and feedback, robotic 

systems can optimize their operational processes in different environments and crop conditions, 

providing personalized and precise weeding services. 

However, these integrated smart field weeding robots also face risks and challenges. The 

vast amount of data involved raises security and privacy concerns, necessitating robust 

cybersecurity measures. The interoperability between different IoT devices and systems is also a 

challenge, requiring the establishment of common standards and protocols. Furthermore, 

managing the complexity of these weeding robot systems and ensuring scalability will require 

ongoing innovation and investment.  

Moreover, for specific target users, i.e., non-technical personnel, the operation should be 

sufficiently safe and simple to facilitate quick user adoption and proficient operation. After-sales 

and technical support services should also be provided in the later stages. 
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Table 1  Color-based recognition results 

Featur

e 

Recognition 

methods 

Crops Recognition 

accuracy 

Reference 

Color 

RGB space + Otsu 

automatic 

threshold 

segmentation 

- 
crop row ：

86.35%-92.8% 

García-Santillán 

et al. (2017) 

RGB space + 

color depth fusion 

algorithm 

Broccoli 、

Lettuce 

crops ： 96.6% 、

92.4% 
Gai et al. (2020) 

RGB space + k-

means clustering 

+ adaptive neural 

network algorithm 

Beet 

weeds：97%/49% 

(different field 

environments) 

Nieuwenhuizen 

et al. (2007) 

RGB space + 

chromaticity 

method 

Cotton crops：82.1% Chen et al. (2009) 

RGB space + 

setting brightness 

threshold + 

discriminant 

analysis method 

Beet 
crops：88.5% 

weeds：88.1% 

Jafari et al. 

(2006) 

HSV space + 

shape erosion and 

dilation algorithm 

Brocco

li 
crops：99.04% 

Hamuda et al. 

(2017) 

HSI space + 

constructing 

Mahalanobis 

distance classifier 

Brocco

li 
crops：93.6% Li et al. (2016) 
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Table 2 Experimental results of deep learning algorithms 

Deep learning 

algorithms 

Crop Recognition accuracy Reference 

Mobile Robots + 

YOLOv5 

 

PC/BC-DIM 

Vege

table 

 

- 

crop：95.7% 

 

crop：94.38% 

Zhang et al. 

(2023) 

Naveed et al. 

(2023) 

Machine Vision 

Algorithms 

Tom

ato 

crop：99.19% Raja et al. 

(2020) 

Improvements to the 

Xception model 

Corn crop：98.63% Xu et al. 

(2021) 

SegNet model + CNN 

 

YOLOv4+ Attention 

mechanisms 

- 

 

Carro

t 

crop：93.58% 

 

- 

 

Bah et al. 

(2019) 

 

Ying et al. 

(2021) 

Deep backbone network Rice crop：93.22% Huang et al. 

(2020) 

Semantic graphs and 

Deep Convolutional 

Encoder-Decoder Networks 

for Data Annotation 

 

Wild 

millet 

 

- 

 

Adhikari et al. 

(2019) 

Caffe Net architecture for 

training neural networks 

 

- 

 

weeds：97% 

 

Dos et al. 

(2017) 
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Table 3 Public datasets 

Classification

s 
Description of the data set Source Reference 

Applied to 

deep learning 

models 

Annotated Carrot and Weed 

Image Dataset 

https://github.com/cwfid/dataset Haug et al. 

(2015) 

 

6 publicly available datasets 

containing 22 different plant 

species 

 

- 

 

Dyrmann et al. 

(2016) 

 

Image dataset of sugar beet 

and weeds 

https://www.ipb.uni-

bonn.de/2018/10/ 
Chebrolu et al. 

(2017) 

Crop and weed image dataset 

with 7853 annotations, 

including 6 food crops and 8 

weeds, totaling 1118 images. 

 

 

https://www.ncbi.nlm.nih.gov/p

mc/articles/ 

PMC7305380/ 

Sudars et al. 

(2020) 

The with weed image dataset 

containing 47 different 

species of plants, 315038 

plant objects representing 

64,292 individuals, totaling 

7590 RGB images. 

 

 

https://gitlab.au.dk/AUENG-

Vision/OPPD 

 

Madsen et al. 

(2020) 

Based 

on different 

industrial 

cameras 

Point-and-shoot industrial 

cameras 

https://vision.eng.au.dk/leaf-

counting-dataset/ 

Teimouri et al. 

(2018) 

Multi-spectral camera 

 

carrots ：

https://lcas.lincoln.ac.uk/nextclo

ud/index.php/s/RYni5x 

ngnEZEFkR 

Bosilj et al. 

(2020) 
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onions ：

https://lcas.lincoln.ac.uk/nextclo

ud/index.php/s/e8uiyr 

ogObAPtcN 

Includes a 

large number 

of images 

CNU Weed Dataset contains 

21 weed species from five 

families, totaling 208,477 

weed images 

https://www.sciencedirect. 

com/science/article/pii/S016816

9919319799#s0025 

Trong et al. 

(2020) 

 

The GrassClover image 

dataset contains 31,600 

unlabeled and 8,000 synthetic 

data sets for red clover, white 

clover, and other related 

weeds. 

 

https://vision.eng.au.dk/grass-

clover-dataset/ 
Skovsen et al. 

(2019) 

Standardized 

weed data 

sets 

ImageNet 
 Deng et al. 

(2009) 

MS COCO  Lin et al. (2014) 

Others 

Deepweed dataset evaluates 

encoder-decoder architecture 

to distinguish crops from 

weeds 

Deepweed:https://github.com/Al

exOlsen/DeepWeeds 
Olsen et al. 

(2019) 

 

Carrot-weed dataset 
https://github.com/lameski/rgbw

eeddetection 

Lameski et al. 

(2017) 

Corn, lettuce and weed data 

sets 

https://github.com/zhangchuanyi

n/weed-datasets 
Jiang et al. (2020) 

The "Plant Seedling" dataset 

contains 12 different plant 

species. 

 

https://www.kaggle.com/vbooks

helf/v2-plant-seedlings-dataset 

 

Giselsson et al. 

(2017) 
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Table 4 Characteristics of mechanical weeding implementations 

Mechanical 

actuators 
Specificities Reference 

Rotary Nylon 

Brush 

Suitable for removing small grass; 

horizontal weeding between rows, vertical 

weeding between rows and between plants 

 

Melander et al. (1997) 

Fogelberg et al. (1999) 

 

Claw tooth 

High assembly accuracy is required, rotation 

is required to avoid seedlings, and the 

damage rate to seedlings is less than 8%. 

 

Hu et al. (2012) 

Weed whacker 

Using laser sensors and motor control to 

avoid seedlings along the sine wave, the 

seedling damage rate is 23.7% 

 

Cordill et al. (2011) 

Oscillating hoe 

shovel 

The cam swing rod swings to avoid 

seedlings, and GPS localization technology 

can be used 

 

Wang et al. (2021) 

Rotating hoe 

shovel 

Good mechanical properties, seedling 

damage rate 4.54% 
Quan et al. (2021) 

Eight-claw style 

Taking the distance between the weeding 

blade teeth and the crop as the threshold, the 

seedling damage rate is less than 10% 

 

Chen et al. (2010) 

In-line weeding 

knife 

Use machine vision technology to detect 

seedling position information and control 

the movement trajectory of the hoe 

 

Pérez-Ruiz et al. (2014) 

Rotary press type 
Based on real-time detection by ultrasonic 

sensors, avoid seedlings through hydraulic 
Saber et al. (2015) 
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means 

 

Notched disc 

knife type 

The machine vision system is used to collect 

crop and seedling information, and the 

traverse mechanism is controlled to perform 

knife setting and rotational weeding. 

 

Garford (2023)、Tillett 

et al. (2008) 

Spring tooth type 

The structure is simple and will cause 

damage to crops in the seedling stage. 

 

Midtiby et al. (2012) 

Finger weeding 

knife 

Used to remove weeds in small areas and 

under soft soil conditions 

 

Riemens et al. (2007) 

Comb type 

 

 

During the cultivation period, corn avoids 

seedlings and performs one-way intermittent 

rotation. 

 

Jia et al. (2019) 

 

Oscillating hoe 
Use cameras to determine crop position and 

achieve inter-plant weeding 

Frank Poulsen 

Engineering (2016) 
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Table 5 Circuit design and characteristics of laser weeding device 

Main circuit 

design or 

components 

Specificities Reference 

Conveyor + 2-axis 

deflector 

 

Using stereo cameras to identify plants 

and simulate moving vehicles to target 

weeds 

Nadimi et al. 

(2009) 

Laser generator + 

robotic arm 

Robotic arm points laser beam at weeds 

with little error 

 

Ge et al. (2013) 

4-degree-of-freedom 

parallel mechanism 

The 3UPS-RPU parallel mechanism is 

synchronized in real time during the panning 

motion; there are no sudden changes or 

breakpoints during the motion.  

 

Wang et al. (2016) 

Mobile platform + 

camera + laser 

pointer 

2-DoF for Laboratory Simulation of 

Static Laser Weeding with Laser Beam, 

Proposed New Path Planning Algorithm for 

Weeding 

 

Xiong et al. (2017) 

2-axis deflector for 

mirrors + lenses 

Unable to realize the need for 

stabilization, affected by complex field 

conditions 

 

Rakhmatulin et al. 

(2020) 

Two-freedom five-

rotation parallel 

robotic arm 

For dynamic laser weeding, the average 

error in accuracy was 0.62 mm, and the 

dynamic weeding efficiency was about 0.72 

s/weed with a dwell time of 0.64 s 

 

 

Wang et al. (2022) 

Tracked mobile 

platform + weed 

recognition module 

+ robotic arm + laser 

generator 

The feasibility of blue light laser as a 

non-contact weed control tool was verified 

with an average detection rate of 92.45% 

and 88.94% for corn seedlings and weeds, 

respectively, and an average seedling injury 

rate of 4.68%. 

Zhu et al. (2022) 
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Figure 1. Annual publication volume of research literature 
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Figure 2. Co-occurrence graph of key terms  
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a) 

 

b) 

Fig. 3. Research country, author, and institutional affiliation map 
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Human-craft feature-

based recognition

Deep learning-based 

recognition

Intelligent spraying 

weed control

Mechanical 

weed control

New physical 

weed control

Satellite 

navigation

Visual 

navigation

Combined 

navigation

Color Shape Texture Spectral

Key technology 1:

Recognition 

technology based 

on machine vision

Key technology 2:

Navigation and 

localization 

technology
Weed

Crop

Intelligent 

weeding 

robots

 

Figure 4. Key technologies of intelligent weed control 
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Figure 5. The proportion of each recognition method in the references 
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Data

 acquisition

Background 

removal

Feature
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Recognition

 

Figure 6. Recognition of traditional machine learning 
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Figure 7. Classification performance based on shape features 
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Figure 8. Texture-based crop/weed recognition accuracy 

Notes: ANN and SVM represent Artificial Neural Networks; Support Vector Machines. PCA 

refers to Principal Component Analysis; GLCM refers to Gray-Level Co-occurrence Matrix; FFT 

refers to Fast Fourier Transform. 
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Figure 9. Classification performance based on spectral features 

   Notes: RF stands for Random Forest; MOG stands for Mixture of Gaussians. 
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Figure 10. Robot platform and data visualization 

Notes: SPS930 refers to Universal Total Station (Trimble, Sunnyvale, USA); Kinect v2 refers to 

a sensor(Microsoft, Washington, DC, USA); LMS111 refers to 2D-LiDAR laser scanner (SICK, 

Waldkirch, Germany); Trimble MT900 refers to Machine Target Prism (Trimble, Sunnyvale, 

USA). . 
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                                                          a)                                                                b) 

Figure 11. Precision spraying robots 
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                 a)                                                                       b) 

Figure 12. Drone weeding and weeding robots 
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a）                                                        b) 

 

Figure 13. Laser weeding robots 
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