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We present generalized additive latent and mixed models (GALAMMs) for analysis of clustered data
with responses and latent variables depending smoothly on observed variables. A scalable maximum like-
lihood estimation algorithm is proposed, utilizing the Laplace approximation, sparse matrix computation,
and automatic differentiation. Mixed response types, heteroscedasticity, and crossed random effects are
naturally incorporated into the framework. The models developed were motivated by applications in cog-
nitive neuroscience, and two case studies are presented. First, we show how GALAMMs can jointly model
the complex lifespan trajectories of episodic memory, working memory, and speed/executive function,
measured by the California Verbal Learning Test (CVLT), digit span tests, and Stroop tests, respectively.
Next, we study the effect of socioeconomic status on brain structure, using data on education and income
together with hippocampal volumes estimated by magnetic resonance imaging. By combining semipara-
metric estimation with latent variable modeling, GALAMMs allow a more realistic representation of how
brain and cognition vary across the lifespan, while simultaneously estimating latent traits from measured
items. Simulation experiments suggest that model estimates are accurate even with moderate sample sizes.

Key words: brain and cognition, generalized additive mixed models, latent variable modeling, lifespan
trajectories, mixed response.

Generalized linear mixed models (GLMMs) and nonlinear mixed models are widely used
whenever observations can be divided into meaningful clusters. However, they require the para-
metric form of the effects to be exactly specified, and in many applications this may be impractical
or not possible. For example, when studying how the human brain changes over the lifespan, vol-
umes of different brain regions exhibit distinctive trajectories, differing with respect to rate of
increase during childhood, age at which maximum is attained, and rate of decline in old age
(Bethlehem et al., 2022; Sørensen et al., 2021). Similarly, domain-specific cognitive abilities fol-
low unique lifespan trajectories, with traits like episodic memory and processing speed peaking
in early adulthood, while acquired knowledge like vocabulary peaks in late adulthood (McArdle
et al., 2002; Tucker-Drob, 2019). Generalized additive mixed models (GAMMs) (Wood, 2017a)
flexibly estimate nonlinear relationships by a linear combination of known basis functions subject
to smoothing penalty and are ideally suited to these applications.

Both GLMMs and GAMMs can be used for analyzing multivariate response data, allowing
estimation of correlated change across multiple processes. However, when multivariate responses
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are considered noisy realizations of lower-dimensional latent variables, GLMMs and GAMMs
essentially assume a parallelmeasurementmodel (Novick, 1966), inwhich the coefficients relating
latent to observed variables are known at fixed values. Structural equation models (SEMs) offer
more flexible latent variable modeling, and extensions of the SEM framework include nonlinear
models (Arminger & Muthén, 1998; Lee & Zhu, 2000), latent basis models (Meredith & Tisak,
1990), random forests (Brandmaier et al., 2016, 2018) and models for categorical and ordinal
response data (Muthén, 1984). Despite these advances, use of SEMs can be impractical when
analyzing multilevel unstructured data, with explanatory variables varying at different levels
(Curran, 2003). Several proposed models bring SEMs closer to the flexibility of GLMMs, while
retaining their ability to model latent variables (Driver et al., 2017; Driver &Voelkle, 2018;Mehta
& Neale, 2005; Mehta & West, 2000; Muthén, 2002; Oud & Jansen, 2000; Proust-Lima et al.,
2013; Proust-Lima et al., 2017; Rabe-Hesketh et al., 2004). In particular, generalized linear latent
and mixed models (GLLAMMs) (Rabe-Hesketh et al., 2004, Skrondal & Rabe-Hesketh, 2004)
exploit the equivalence between random effects and latent variables (Skrondal & Rabe-Hesketh,
2007) to model latent and explanatory variables varying at any level. GLLAMMs are nonlinear
hierarchicalmodelswhosemarginal likelihood can be approximated by numerical integration over
the latent variables (Rabe-Hesketh et al., 2005).AsGLLAMMsmodel the observed responseswith
an exponential family distribution, they are not limited to factor analytic measurement models and
incorporate important psychometric methods like item response models and latent class models.

While nonlinear modeling is possible with GLLAMMs, as with GLMMs the functional para-
metric forms are assumed known. In this paper, we introduce generalized additive latent and
mixed models (GALAMMs), a semiparametric extension of GLLAMMs in which both the linear
predictor and latent variables may depend smoothly on observed variables. Utilizing the mixed
model view of smoothing (Kimeldorf & Wahba, 1970; Ruppert et al., 2003; Silverman, 1985;
Wood, 2017a), we show that any GALAMM can be represented as a GLLAMM, with smoothing
parameters estimated bymaximummarginal likelihood.Next, we showhow aLaplace approxima-
tion to marginal likelihood of GLLAMMs can be computed efficiently using direct sparse matrix
methods (Davis, 2006), and maximized using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm with box constraints (L-BFGS-B) (Byrd et al., 1995) with gradients computed
by automatic differentiation (Baydin et al., 2018).

The proposed methods are similar to fully Bayesian approaches to semiparametric latent
variable modeling (Fahrmeir & Raach, 2007; Song & Lu, 2010; Song et al., 2013a, 2013b, 2014),
all of which have been limited to latent variables varying at a single level. In contrast, GALAMMs
allow any number of levels, and due to the use of sparsematrixmethods, crossed randomeffects are
easily accommodated. A related Bayesian approach to semiparametric latent variable modeling
has been based on finite mixture models (Bauer, 2005; Kelava & Brandt, 2014; Kelava et al.,
2014; Yang & Dunson, 2010).

The paper proceeds as follows. In Sect. 1 we give brief introductions to GAMMs and
GLLAMMs. InSect. 2we start by presenting the proposed framework, then showhowGALAMMs
can be represented as GLLAMMs with an additional level of latent variables corresponding to
penalized spline coefficients. In Sect. 3 we propose an algorithm for maximum marginal likeli-
hood estimation of the models. In Sect. 4.1 we present an example application illustrating how
lifespan trajectories of abilities in three cognitive domains can be estimated from longitudinal
data, combining the results of multiple tests taken at each timepoint. Next, in Sect. 5.1 we study
how socioeconomic status is associated with hippocampal volume across the lifespan. Each appli-
cation example is followed by simulation experiments in Sects. 4.2 and 5.2, respectively, closely
following the data structure and parameters of the real data analysis. We discuss the results in
Sect. 6 and conclude in Sect. 7.
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1. Background

Before presenting the proposed model framework, we start by providing brief background
on its two major components, generalized additive models (GAMs) (Hastie & Tibshirani, 1986)
and GLLAMMs. Along the way we also introduce the notation used in the paper.

1.1. Generalized Additive Models as Mixed Models

We here show how GAMs can be represented as mixed models, considering a model with a
single univariate term for ease of exposition. The extension to multiple smooth terms or multi-
variate terms (Wood, 2006a; Wood et al., 2013) follows the same steps. The ideas date back to
Kimeldorf & Wahba, (1970), and have been presented in various forms since then (Lin & Zhang,
1999; Silverman, 1985; Speed, 1991, Verbyla et al., 1999;Wood, 2004, 2011). For an introduction
to GAMs, we refer to the books Ruppert et al. (2003) and Wood (2017a).

Consider n responses y1, . . . , yn , independently distributed according to an exponential fam-
ily with density

f (y|θ, φ) = exp

(
yθ − b (θ(μ))

φ
+ c (y, φ)

)
(1)

whereμ = g−1(ν) is the mean, g−1(·) is the inverse of link function g(·), ν is a linear predictor, φ
is a dispersion parameter, and b(·) and c(·) are known functions. For ease of expositionwe consider
a canonical link function, so θ(·) = g(·) and thus θ(μ) = θ(g−1(ν)) = ν. GAMsmodel the effect
of a variable x on the linear predictor with a function f (x), constructed as a weighted sum of K
basis functions, b1(x), . . . , bK (x) with weights β1, . . . , βK . In the intermediate rank approach
to smoothing (Wood, 2011) the basis functions are regression splines, and the number of basis
functions is much smaller than the sample size, while still being large enough to represent a wide
range of function shapes. Possible basis functions for the methods discussed in this paper include
cubic regression splines (Wood, 2017a, Ch. 5.3.1), P-splines (Eilers & Marx, 1996), thin-plate
regression splines (Wood, 2003), and quadratic spline bases (Ruppert et al., 2003, Ch. 3.6).

In matrix–vector notation, with y = [y1, . . . , yn]T , β = [β1, . . . , βK ]T , and X ∈ R
n×K

with elements Xi j = b j (xi ) for i = 1, . . . , n and j = 1, . . . , K , the linear predictor is ν = Xβ,
which together with (1) defines a generalized linear model (GLM). We also assume that f (x) is
smooth, as measured by the integral of its squared second derivative overR, which can be written∫

f ′′(x)2dx = βTSβ for a K × K matrix S (Wood, 2020, Sec. 2).1 This gives a log likelihood
penalizing deviations from linearity,

l (β, φ, λ) = φ−1
(
yTXβ − b (Xβ)

)
+ c (y, φ)T 1n − (λ/2)βTSβ. (2)

As shown by Reiss and Ogden (2009) and Wood (2011), estimation of λ by maximizing either
the restricted or marginal likelihood is less prone to overfitting in finite samples than prediction
based criteria like generalized cross-validation (Golub et al., 1979). In this paper we usemaximum
marginal likelihood, and now illustrate how this allows interpreting (2) as the log-likelihood of a
GLMM, following Wood (2004, Appendix).

First, form an eigendecomposition of the penalty matrix, S = UDUT , yielding an orthogonal
matrix U ∈ R

K×K and diagonal matrix D ∈ R
K×K with diagonal elements in decreasing order

1For P-splines, S is a banded matrix not directly interpretable as based on derivatives, but Wood (2017b) shows how
to set up derivative based penalties also in this case.
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of magnitude. Let D+ be the r × r submatrix of D with nonzero entries on the diagonal, define
βu = UTβ, and let Xu ∈ R

r be the columns of XU corresponding to D+ and XF ∈ R
K−r be

the columns of XU corresponding to zero entries on the diagonal of D. Similarly, partition βu

into ζ u ∈ R
r and βF ∈ R

K−r and let XR = Xu(
√
D+)−1 and ζ = √

D+ζ u . We now have
ν = Xβ = XFβF + XRζ , and (2) takes the form

l
(
βF , ζ , φ, λ

) = φ−1
(
yT ν − b (ν)

)
+ c (y, φ)T 1n − (λ/2) ζ T ζ . (3)

This is identical to the log-likelihood of a GLMMwith fixed effects βF ofXF and random effects
ζ ∼ N (0, ψI) of XR , where ψ = 1/λ. The marginal likelihood is defined by integrating out
the random effects from the joint density of y and ζ , which means computing the r -dimensional
integral

L
(
βF , φ, λ

) = (2π)−r/2
∫

exp
(
l
(
βF , ζ , φ, λ

))
dζ . (4)

and then finding the values of βF , φ, and λ maximizing (4). The Laplace approximation typically
yields very good approximations to the integral (4) (Wood, 2011, Sec. 2.2). The final estimates
ζ̂ of ζ would be taken as the modes of (3) at the values β̂F , φ̂, and λ̂ maximizing (4), and the
spline weights in their original parametrization can be recovered by reverting the transformations
leading up to (3). Imposing identifiability constraints on smooth terms requires an additional step
in the above derivation, cf. Wood (2017a, Sec. 5.4.1).

P-values for smooth terms can be computed following Wood (2013) and approximate confi-
dence bands following Wood (2006b) and Wood (2012). For the latter, let β̂ denote the estimated
spline weights back in the original parametrization, and Cov(β̂) ∈ R

K×K their covariance matrix.
The estimates and squared standard errors at a new set of evaluation points X are now given by
f̂ = Xβ̂ and v̂ = diag(XCov(β̂)XT ), and (1−α)100% pointwiseWald type confidence bands are
f̂±z1−α/2

√
v̂, where z1−α/2 is the α/2 quantile of the standard normal distribution (Wood, 2017a,

Ch. 6.10). Confidence bands constructed this way have close to nominal coverage averaged over
the domain of the function (Marra & Wood, 2012). In contrast, simultaneous confidence bands
covering the function over its whole domain with probability (1−α)100% require a critical value
z̃α/2 given by the (1 − α)th quantile of the random variable r = max{X(β̂ − β)/

√
v̂} (Ruppert

et al., 2003, Chapter 6.5). Since β̂ − β
approx∼ N (0,Cov(β̂)) we can obtain an empirical Bayes

posterior distribution of r by simulation, and find z̃α/2 as the (1 − α)th quantile of r . A measure
of the wiggliness of f̂ is given by its effective degrees of freedom, (XTX + λ̂S)−1XTX.

1.2. Generalized Linear Latent and Mixed Models

We now give a brief introduction to the GLLAMM framework for multilevel latent variable
modeling, referring to Skrondal and Rabe-Hesketh (2004, Ch. 4.2–4.4) and Rabe-Hesketh et al.
(2004) for details. We still consider n responses distributed according to (1), but now also assume
that these elementary response units are clustered in L levels. With Ml latent variables at level l,
the linear predictor for a single observational unit is (Skrondal & Rabe-Hesketh, 2004, eq. (4.9),
p. 103)

ν = βT x +
L∑

l=2

Ml∑
m=1

η(l)
m λ(l)

m
T z(l)

m , (5)
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omitting subscripts for observations. In (5), x are explanatory variables with fixed effects β, η(l)
m

are latent variables varying at level l, and λ
(l)
m

T z(l)
m is the weighted sum of a vector of explanatory

variables z(l)
m varying at level l and parameters λ

(l)
m . Let η(l) = [η(l)

1 , . . . , η
(l)
Ml

]T ∈ R
Ml be the

vector of all latent variables at level l, and η = [η(2), . . . , η(L)]T ∈ R
M the vector of all latent

variables belonging to a given level-2 unit, where M = ∑L
l=2 Ml .

The structural model is given by

η = Bη + �w + ζ , (6)

where B is an M × M matrix of regression coefficients for regression among latent variables
and w ∈ R

Q is a vector of Q predictors for the latent variables with corresponding M × Q
matrix of regression coefficients �. ζ is a vector of random effects, for which we use the same
notation as defined for η. Our framework is somewhat narrower than that of Rabe-Hesketh et al.
(2004) and Skrondal and Rabe-Hesketh (2004) as we assume normally distributed random effects,
ζ (l) ∼ N (0,�(l)) for l = 2, . . . , L , where �(l) ∈ R

Ml×Ml is the covariance matrix of random
effects at level l. Defining the M×M covariance matrix� = diag(�(2), . . . ,�(L)), we also have
ζ ∼ N (0,�). We assume recursive relations between latent variables, and require that a latent
variable at level l can only depend on latent variables varying at level l or higher. It follows that
B is strictly upper diagonal, if necessary after permuting the latent variables varying at each level
(Rabe-Hesketh et al., 2004, p. 109).

Plugging the structural model (6) into the linear predictor (5) yields the reduced form, which
can then be inserted into the response model (1) to give the joint density of y and ζ . Integrat-
ing ζ out of this joint density gives the marginal likelihood. Proposed methods for maximizing
this marginal likelihood include adaptive Gauss-Hermite quadrature integration combined with a
Newton method (Rabe-Hesketh et al., 2005) and a profile likelihood algorithm based on Laplace
approximation implemented in existing GLMM software (Jeon & Rabe-Hesketh, 2012; Rock-
wood & Jeon, 2019).

2. Generalized Additive Latent and Mixed Models

We here present the proposed framework, which extends GLLAMMs to incorporate GAM-
type nonlinear effects. Unless otherwise stated, the notation, basis functions, and distributional
assumptions are as defined in Sect. 1.

2.1. Proposed Model Framework

We assume the response is distributed according to the exponential family (1), with the
important extension that the functions b(·), c(·), and g(·)may vary between units, accommodating
responses of mixed type. We modify the GLLAMM linear predictor (5) to

ν =
S∑

s=1

fs (x) +
L∑

l=2

Ml∑
m=1

η(l)
m z(l)

m
′
λ(l)
m , (7)

where fs(x), s = 1, . . . , S are smooth functions of a subset of explanatory variables x. We also
modify the structural part (6) to allow the latent variables to depend smoothly on explanatory
variables w,

η = Bη + h (w) + ζ , (8)
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Table 1.
Key terms in mixed effects representation of linear predictor (7)

Description Definition

Number of spline weights K = ∑S
s=1 Ks

Number of random effects ra = ∑S
s=1 rs

Random effect predictors XR = [XR,1, . . . ,XR,S] ∈ R
n×ra

Random effects ζ
(L+1)
a = [ζ (L+1)

1
T , . . . , ζ

(L+1)
S

T ]T ∈ R
ra

Random effects covariance �
(L+1)
a = diag(�(L+1)

1 , . . . , �
(L+1)
S ) ∈ R

ra×ra

Fixed effect predictors XF = [XF,1, . . . ,XF,S] ∈ R
n×(K−ra)

Fixed effects βF = [βT
F,1, . . . , β

T
F,S]T ∈ R

K−ra

where h(w) = [h2(w), . . . ,hL(w)] ∈ R
M is a vector of smooth functions whose components

hl(w) ∈ R
Ml are vectors of functions predicting the latent variables varying at level l, and

depending on a subset of the elements w. We denote the scalar valued mth component of hl(w)

by hlm(w), and note that hlm(w) can only depend on elements of w varying at level l or higher;
otherwise, the latent variable it predicts would vary at a level lower than l. If the (l,m)th latent
variable is not predicted by any elements of w, we set hlm(w) = 0. We assume that both fs(x) in
(7) and hlm(w) in (8) are smooth, as measured by their second derivatives. Together, the response
distribution (1), linear predictor (7), and structural model (8) define a GALAMM with L levels.

2.2. Mixed Model Representation

Using the mixed model representation of GAMs described in Sect. 1.1, we now show that an
L-level GALAMM can be represented by an (L + 1)-level GLLAMM, in which the (L + 1)th
level contains penalized spline coefficients.

First considering the linear predictor (7), we assume the sth smooth function fs(x) is
represented by Ks basis functions b1,s(x), . . . , bKs ,s(x) with weights βs , yielding S matrices
Xs ∈ R

n×Ks with elements (Xs)i j = b j,s(xi ), for s = 1, . . . , S, j = 1, . . . , Ks , and i = 1, . . . , n.
Letting fs ∈ R

n denote the sample values of fs(x), we can repeat the steps leading up to (3) to
obtain fs = Xsβs = XF,sβF,s + XR,sζ

(L+1)
s , where ζ

(L+1)
s ∼ N (0,�(L+1)

s ). Let rs denote the

dimension of the range space of the smoothingmatrix of fs(x), so�
(L+1)
s ∈ R

rs×rs ,XR,s ∈ R
n×rs ,

and XF,s ∈ R
n×(Ks−rs ). Repeating this for the S smooth terms in the measurement model, we

obtain the key terms defined in Table 1. The sample values of
∑S

s=1 fs(x) in the linear predictor
(7) are now given by

∑S
s=1 fs = XFβF + XRζ

(L+1)
a , where ζ

(L+1)
a ∼ N (0,�(L+1)

a ).
Next considering the structural model (8), we assume the (l,m)th smooth function is rep-

resented by Plm basis functions and define the matrix of sample values of basis functions as
Wlm ∈ R

n2×Plm with elements (Wlm)i j = b j,l,m(wi ) for j = 1, . . . , Plm and i = 1, . . . , n2,
where n2 is the total number of level-2 units. Eigendecomposing the smoothing matrix of hlm(w),
the sample values can be written hlm = Wlmγ lm = WF,lmγ F,lm + WR,lmζ

(L+1)
lm ∈ R

n2 ,
where WF,lm contains the part of hlm(w) in the penalty nullspace, with fixed effects γ F,lm ,
and WR,lm contains the components in the penalty range space, with random effects ζ lm ∼
N (0,�(L+1)

lm ). Letting rlm denote the dimension of the range space of the smoothing matrix,

we have �
(L+1)
lm ∈ R

rlm×rlm , WR,lm ∈ R
n2×rlm , and WF,lm ∈ R

n2×(Plm−rlm ). Repeating for all
smooth functions predicting latent variables varying at level l, we obtain the level-l terms in Table
2, with ζ

(L+1)
l ∼ N (0,�(L+1)

l ). Next, repeating for smooth functions at all levels, we obtain the

”all-level terms” in Table 2, with ζ
(L+1)
b ∼ N (0,�(L+1)

b ).
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Table 2.
Key terms in mixed effects representation of structural model (8)

Description Definition

Level-l terms
Random effect predictors WR,l = [WR,l1, . . . ,WR,lMl ]

Random effects ζ
(L+1)
l = [ζ (L+1)

l1
T , . . . , ζ

(L+1)
lMl

T ]T

Random effects covariance �
(L+1)
l = diag(�(L+1)

l1 , . . . ,�
(L+1)
lMl

)

Fixed effect predictors WF,l = [WF,l1, . . . ,WF,lMl ]
Fixed effects γ F,l = [γ T

F,l1, . . . , γ
T
F,lMl

]T
All-level terms

Number of spline weights P = ∑L
l=2

∑Ml
m=1 Plm

Number of random effects rb = ∑L
l=2

∑Ml
m=1 rlm

Random effect predictors WR = [WR,2, . . . ,WR,L ] ∈ R
n2×rb

Random effects ζ
(L+1)
b = [ζ (L+1)

2
T , . . . , ζ

(L+1)
L

T ]T ∈ R
rb

Random effects covariance �
(L+1)
b = diag(�(L+1)

2 , . . . ,�
(L+1)
L ) ∈ R

rb×rb

Fixed effect predictors WF = [WF,2, . . . ,WF,L ] ∈ R
n2×(P−rb)

Fixed effects � = [e1 ⊗ γ T
F,2, . . . , eL−1 ⊗ γ T

F,L ] ∈ R
(L−1)×(P−rb)

In the bottom row, {e1, . . . , eL−1} denotes the canonical basis for RL−1 and ⊗ is the Kronecker product

Finally, we combine the random effects from the linear predictor summarized in Table 1
and the structural model summarized in Table 2, to get the vector of random effects at level
L+1, ζ (L+1) = (ζ

(L+1)
a

T , ζ
(L+1)
b

T )T ∈ R
ML+1 , where ML+1 = ra +rb. It follows that ζ (L+1) ∼

N (0,�(L+1))where�(L+1) = diag(�(L+1)
a ,�

(L+1)
b ) ∈ R

ML+1×ML+1 . Let xTF and xTR correspond
to rows of the matrices XF and XR defined in Table 1, i.e., the values for a single level-1 unit.
Similarly let wT

F and wT
R correspond to rows of the matrices WF and WR defined in Table 2,

i.e., the values for a single level-2 unit. It follows that an L-level GALAMM with response (1),
measurement model (7), and structural model (8) is identical to an (L + 1)-level GLLAMM
defined by

ν = βT
FxF +

L+1∑
l=2

Ml∑
m=1

η(l)
m z(l)

m
′
λ(l)
m (9)

η = Bη + �wF + ζ , (10)

where ζ ∼ N (0,�), with � = diag(�(2), . . . ,�(L+1)), subject to constraints which we now
specify. Letting xR,m and wR,m denote the mth elements of xR and wR , we require

z(L+1)
m =

{
xR,m m = 1, . . . , ra
wR,mz

(l)
n m = ra + 1, . . . , ML+1

λ(L+1)
m =

{
1 m = 1, . . . , ra
λ

(l)
n m = ra + 1, . . . , ML+1
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with l in z(l)
n and λ

(l)
n , given m, defined by l = {l : ∑l−1

k=2 Mk < m ≤ ∑l
k=2 Mkm}, and given l

and m, n = m − ∑l−1
k=2 Mk . The first case in each constraint ensures that the random effects at

level L + 1 corresponding to smooth terms in the measurement model receive a factor loading
equal to 1 and hence can be placed in the structural model. The second case in each constraint
ensures that random effects at level L+1 corresponding to smooth terms predicting themth latent
variable at level l are multiplied by the same factor loading and predictor as the fixed effect part
of their smooth term when entering the linear predictor.

3. Maximum Marginal Likelihood Estimation

We now present an algorithm for estimating both GALAMMs and GLLAMMs with nor-
mally distributed latent variables. An alternative approach would be to use the profile likelihood
algorithm described by Jeon and Rabe-Hesketh (2012) and Rockwood and Jeon (2019), and we
have confirmed that this algorithm gives practically identical estimates for the models considered
in Sect. 5 as well as simplified versions of the models considered in Sect. 4. However, for the
applications considered in this paper, the proposed algorithm has been orders of magnitude faster,
and it also offers increased flexibility by allowing mixed response types.

In the representation (9)–(10), the linear predictor for all n elementary units of observation
can be written ν = X(λ,B)β + Z(λ,B)ζ (Skrondal & Rabe-Hesketh, 2004, eq. (4.21), p. 121),
where X(λ,B) ∈ R

n×p is a matrix of fixed effect predictors, with corresponding fixed effects
β ∈ R

p, andZ(λ,B) ∈ R
n×r is a matrix of random effect predictors, with random effects ζ ∈ R

r ,
ζ ∼ N (0,�). This notation makes it explicit that both matrices depend on factor loadings λ and
regression coefficients between latent variables in B. We allow dispersion parameters varying
between observation by defining φ ∈ R

n with i th element φg(i), where g(i) denotes the group
g to which the i th observation belongs. Following Bates et al. (2015), we write the covariance
matrix in terms of a relative covariance factor � ∈ R

r×r , � = φ1��T , where the dispersion
parameter for group 1 is used as reference level.

The matrices Z(λ,B) and � are often very sparse, and sparse matrix methods have been
shown to be efficient in the case of LMMs (Bates et al., 2015; Fraley & Burns, 1995). With
nested random effects, algorithms using dense matrix methods can also be efficient (Pinheiro
& Bates, 1995, 2000; Pinheiro & Chao, 2006; Rabe-Hesketh et al., 2005), but these methods
scale poorly with crossed random effects. The R package lme4 uses sparse matrix methods also
for GLMMs and nonlinear mixed models with normally distributed responses, as described in a
package vignette (Bates, 2022). We here extend these methods to the case of GALAMMs, the
key differences being the presence of mixed response types, the parameters λ and B, and our use
of automatic differentiation to obtain derivatives of the marginal likelihood to machine precision.
We assume throughout that necessary identifiability constraints have been imposed.

3.1. Evaluating the Marginal Likelihood

Through the transformation �u = ζ , we define uncorrelated random effects u ∈ R
r dis-

tributed according to N (0, φ1Ir ) (Bates et al., 2015). Integrating over these random effects yields
the marginal likelihood

L (β,�,�,λ,B,φ) = (2πφ1)
−r/2

∫
Rr

exp (g (β,�,�,λ,B,φ,u)) du, (11)

with the term in the exponent given by

g (β,�,�,λ,B,φ,u) = yTWν − b (ν)T W1n + c (y,φ)T 1n − (2φ1)
−1 ‖u‖2 , (12)
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where W = diag{φ−1} ∈ R
n×n and we omit in the notation that b(·) and c(·) may vary between

observations. Define the conditional modes of u as

ũ = argmax
u

{g (β,�,�,λ,B, φ,u)} . (13)

Following Pinheiro and Chao (2006), these modes can be found with penalized iteratively
reweighted least squares, by noting that the gradient and Hessian of g(·) with respect to u are

∇g = �TZTW (y − μ) − (1/φ1)u ∈ R
r

Hg = −�TZTVZ� − (1/φ1) Ir ∈ R
r×r ,

where μ = b′(ν) and V ∈ R
n×n is a diagonal matrix with i th diagonal element b′′(νi )/φg(i).

We form a sparse Cholesky factorization (Davis, 2006) of the Hessian, LDLT = −PHgPT ,
where L ∈ R

r×r is lower triangular, D ∈ R
r×r is diagonal, and P ∈ R

r×r is a permutation
matrix chosen to minimize the number of operations in the Gaussian elimination steps for solving
a linear system of the form LDLT x = b, as we do in (14) below. Importantly, P only depends
on the location of the structural zeroes, and not on particular values of the nonzero elements of
the Hessian. P can hence be computed a single time for some initial values of the parameters,
and then stored for reuse in all subsequent iterations. We used the approximate minimum degree
algorithm of Amestoy et al. (1996) for defining P, which is further described in Davis (2006, Ch.
7) and Duff et al. (2017, Ch. 11.3).

A Newton method for finding the conditional modes (13) starts at an initial estimate u(0) and
then at step k solves the linear systemH(k)

g δ(k) = ∇g(k), whereupon the estimates are updatedwith
u(k+1) = u(k) + τδ(k) for some stepsize τ ensuring that g(·) increases at each step (Bates, 2022,
eq. 40). In terms of the sparse matrix representation, at each iteration the Cholesky factorization
must first be updated so it satisfies L(k)D(k)L(k)T = −PH(k)

g PT and then the linear system

L(k)D(k)L(k)TPδ(k) = P
(
�TZTW(k)

(
y − μ(k)

)
− (1/φ(k)

1 )u(k)
)

(14)

must be solved for δ(k). The superscript inW(k) is due to the fact that for somedistributions, e.g., the
normal, the explicit formula for the dispersion parameter depends on u. Our implementation uses
step-halving, i.e., starting from τ = 1, τ ← τ/2 is repeated until g(β,�,�,λ,B,φ,u(k+1)) >

g(β,�,�,λ,B,φ,u(k)). In the case of Gaussian responses and unit link function, (14) is solved
exactly in a single step.

At convergence at some k, we set ũ = u(k), L = L(k), and D = D(k). A second order Taylor
expansion of (12) around its mode is then given by

g (β,�,�,λ,B,φ,u) ≈ g (β,�,�,λ,B,φ, ũ) − (1/2) (u − ũ)T PTLDLTP (u − ũ) . (15)

The Laplace approximation uses (15) to approximate the marginal likelihood (11) with

L(β,�,�,λ,B,φ) ≈ exp(g(β,�,�,λ,B,φ, ũ))|PTL
√
D|−1.

It follows that the Laplace approximate marginal log-likelihood is

log L (β,�,�,λ,B,φ)

= yTWν − b (ν)T W1n + c (y,φ)T 1n − (2φ1)
−1 ‖ũ‖2 − (1/2) log tr (D) , (16)
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where all terms are evaluated at ũ and we used the identity log |PTL
√
D|−1 = −(1/2) log tr(D),

tr(·) denoting matrix trace.

3.2. Maximizing the Marginal Likelihood

Having an iterative algorithm for computing the Laplace approximatemarginal log-likelihood
(16), we now consider the problem of maximizing it. This is a constrained optimization problem
since, e.g., elements of � and φ may be required to be non-negative. We here treat the general
problem of maximizing the marginal likelihood with respect to all its parameters, but note that
in special cases the dimension of the optimization problem can be reduced. For example, in
the Gaussian unit link case, expressions for values of β and φ maximizing (16) given the other
parameters are directly available (Bates et al., 2015, Sec. 3.4).

For each new set of candidate parameters, the terms in (16) also need to be updated, and
for X, Z, and � this requires special care. For �, we use the mapping between the structural
non-zeros of� and fundamental parameters described in Bates et al. (2015, pp. 11–13). Updating
of Z was obtained by initializing Z with λ and B set at some default values, and a function
fi (λ,B) representing a factor the i th structural nonzero of Z needs to be multiplied with. Hence,
if zi denotes the i th structural nonzero of Z, it gets updated according to zi ← zi × fi (λ,B).
An equivalent approach was used for X ∈ R

n×p, but since this matrix typically is dense, with
the number of fixed effects p being relatively low, the updating iteration was performed over all
matrix elements.

Forwardmode automatic differentiationwith first-order dual numberswas used to evaluate the
gradient of (16)with respect to all its parameters, by extending the sparsematrixmethods provided
by the C++ library Eigen (Guennebaud et al., 2010) with dual numbers provided by the C++
library autodiff (Leal, 2018), using template metaprogramming (Meyers, 2015). Automatic
differentiation exploits the fact that every computer program performs a set of elementary arith-
metic operations, so by repeatedly applying the chain rule derivatives are obtained with accuracy
at machine precision (Baydin et al., 2018; Margossian, 2019; Skaug, 2002). Next, the gradients
were used by the L-BFGS-B algorithm (Byrd et al., 1995) implemented in R’s optim() func-
tion (R Core Team, 2022) to maximize the log-likelihood. L-BFGS-B is a quasi-Newton method
which uses gradient information to approximate the Hessian matrix and gradient projection to
keep the solutions inside the feasible set (Nocedal &Wright, 2006, Ch. 7.2). RcppEigen (Bates
& Eddelbuettel, 2013) was used for interfacing R and C++, and the memoise package (Wickham
et al., 2021) for caching during optimization.

At convergence, the Hessian of (16) with respect to parameters of interest can be computed
using forward mode automatic differentiation with second-order dual numbers. The negative
inverse of this matrix is the asymptotic covariance matrix, which can then be used to compute
Wald type confidence intervals for parameters and pointwise and simultaneous confidence bands
for smooth terms, as described in the last paragraph of Sect. 1.1.A requirement for such uncertainty
estimation toworkwell is that themarginal log-likelihood (16) iswell approximated by a quadratic
function in a region near its maximum, i.e., that we are sufficiently close to the asymptotic regime
(Pawitan, 2001, Ch. 5.2–5.3). In Sect. 4.2 belowwe describe a parametric bootstrapping procedure
which can be used to check this assumption.

4. Latent Response Model with Factor-by-Curve Interaction and Mixed Response Types

4.1. Estimating Lifespan Trajectories of Abilities in Three Cognitive Domains

Dating back at least to Spearman (1904), individual abilities in cognitive domains are known
to be correlated, and a recent meta-analysis has confirmed that also change in cognitive abilities
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during adulthood is highly correlated across domains (Tucker-Drob et al., 2019). However, a topic
which has been more debated is the timing of age-related decline in cognitive function (Nilsson et
al., 2009; Raz & Lindenberger, 2011; Salthouse, 2011; Schaie, 2009), with cross-sectional studies
indicating that the decline starts around the age of 20 (Salthouse, 2009) and longitudinal studies
showing a stable level until the age of 60 (Rönnlund et al., 2005). Furthermore, cognitive abilities
involving fluid reasoning typically peak earlier than crystallized knowledge, which depends more
on previously acquired knowledge (Tucker-Drob, 2019, Fig. 1). Common to all the mentioned
studies is the use of purely parametric models, typically linear, or categorization into discrete age
groups which have been analyzed separately.

In this section we demonstrate how GALAMMs can be used to estimate lifespan trajectories
of abilities in three cognitive domains involving fluid reasoning, using data from the Center for
Lifespan Changes in Brain and Cognition (Fjell et al., 2018; Walhovd et al., 2016). Episodic
memory involves recollection of specific events, for which the California verbal learning test
(CVLT) (Delis et al., 1987, 2000) is widely used. During the test, the experimenter reads a list of
16 words aloud, and subsequently the participant is asked to repeat the words back. The procedure
is repeated in five trials, as well as two delayed trials after 5 and 30min. Each complete CVLT
hence gives 7 elementary units of observation recording the number of successes in 16 trials.
Working memory involves the ability to hold information temporarily and can be assessed by
digit span tests, in which a sequence of numbers of increasing length is read out loud, and the
participant is asked to immediately repeat the digits back (Blackburn & Benton, 1959; Ostrosky-
Solís & Lozano, 2006). The initial list was of length 2, step-wise increasing to length 9, and
then repeated once more. The final score was an integer between 0 and 16 representing the total
number of lists correctly recalled. The data also contained results from an otherwise identical
digit span backwards task (Hilbert et al., 2015), in which the participants were asked to repeat the
list of numbers backwards. Hence, each digit span test contained at least two elementary units of
observation, one for the forward task and one for the backward task. The Stroop test is a test of
executive function and processing speed2 (Scarpina & Tagini, 2017; Sisco et al., 2016; Stroop,
1935). The D-KEFS version (Delis et al., 2001) was used, consisting of four tests (Fine & Delis,
2011, p. 797). Baseline conditions 1 and 2 involve naming of color squares and reading of color
words printed in black. In condition 3 color names are printed in ink which conflicts with the
color name, and the participant must name the color (e.g., if the word ’blue’ is printed in red,
the participant must read ’red’), the point being that to persons who can read, reading is more
automatic than retrieving color names, so there is a conflict. In condition 4, the participant must
switch between naming colors as in condition 3 and reading words printed in dissonant ink color.
Each of the four conditions constitutes an elementary unit of observation, and each response is a
measure of the time taken to complete the tests under the condition.

The CVLT trials consisted of 24,147 observations of 1873 healthy individuals, the digit span
trials of 6758 observations from 1858 individuals, and the Stroop trials of 9929 observations
from 1695 individuals, with a large degree of overlap between tests. In total, there were 40,834
elementary units of observation, the number of timepoints for each individual varied between 1
and 6, and the time interval between two consecutive measurements varied between 11 days and
9.9 years, with mean interval 2.4 years. Further details about the data can be found in Online
Resource 1.

Figure1 shows plots of the observed responses, illustrating that the scores on each test vary
nonlinearly across the lifespan.3 For CVLT we see that the participants recalled a larger number
of words in later trials, illustrating a within-timepoint learning effect. Ceiling effects were also

2For simplicity we use the term ’executive function’ in what follows.
3Fig. 1 and all subsequent plots were created in R using ggplot2 (Wickham, 2016), patchwork (Pedersen, 2020),

ggthtemes (Arnold, 2021), and gghalves (Tiedemann, 2020).
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Figure 1.
Cognitive test scores. Observed responses to the thirteen test scores used in Sect. 4.1, plotted versus age. Dots show
individual responses, and gray lines connect multiple timepoints for the same participant.

apparent in later CVLT trials, as a large number of participants remembered all 16 words. For
the digit span tests, it is clear that the backward test is more challenging than the forward test, as
illustrated by the lower number of correct answers. For the Stroop test, the relationship with the
latent ability is inverted, as a low time to completion implies high performance. The higher times
to completion for conditions 3 and 4 in the Stroop test show that these are more challenging than
conditions 1 and 2.

Assuming that the number of correct answers to the CVLT tests are noisy measurements of
the participants’ episodic memory, that the number of correct answers to the digit span tests are
noisy measurements of working memory, and that the negative of the time required to complete
the Stroop tests are noisy measurements of executive function, our goal was to estimate how
abilities in these domains vary with age. We defined a three-level GALAMM, in which the first
level contained the elementary units of observation, the second level contained all tests taken by
an individual at a given timepoint, and the third level contained each individual participant. For
CVLT and digit span tests, the responses yi ∈ {0, . . . , 16} were assumed binomially distributed,
using a logit link νi = g(μi ) = log(μi/(1 − μi )), where μi was the expected proportion of
successes. For the continuous responses from the Stroop tests, a normal distribution with unit link
function was used.
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The measurement model took the form4

νi = zTtiβ t + zTriβr +
3∑

m=1

zTtiλmηm, (17)

where zti is an indicator vector of size 13 whose kth element equals one if the i th elementary unit
of observation is the kth test in the order of appearance in Fig. 1. Accordingly, β t ∈ R

13 was a
vector of trial effects. Retest effects, which can be defined as the marginal effect of having taken
the test previously, have been documented for all the three tests used in this study (Davidson et al.,
2003; Steele et al., 1997; Woods et al., 2006) and were accounted for by the term zTriβr . Due to
the different scales of the responses in Stroop conditions 1 and 2 compared to conditions 3 and 4,
both retest effects and residual standard errors were estimated independently for these two groups.
Accordingly, zri was a vector of size 4, whose first element was an indicator for the event that the
participant had taken the CVLT at a previous time, the second element a corresponding indicator
for the digit span test, the third element for Stroop condition 1 or 2, and the fourth element for
Stroop condition 3 or 4. Thus, βr = (βr1, βr2, βr3, βr4)

T contained retest effects for CVLT, digit
span, Stroop conditions 1 and 2, and Stroop conditions 3 and 4. Considering the last term in (17),
λ1 ∈ R

7 contained loadings relating the CVLT trials to latent episodic memory η1, λ2 ∈ R
2

contained loadings relating digit span scores to latent working memory η2, and λ3 contained
loadings relating Stroop scores to latent executive function η3. In λ1 and λ2, the first element was
constrained to 1 for identifiability, and in λ3 it was constrained to −1, since a high time taken in
each Stroop condition is associated with lower executive function. During model estimation, the
results for Stroop conditions 1 and 2 and Stroop condition 3 and 4 were standardized to have zero
mean and unit variance, but the results shown are transformed back to units of seconds.

Next, we used the structural model

ηm = hm (w) + ζ (2)
m + ζ (3)

m , m = 1, 2, 3, (18)

wherew denotes age. The smooth functions hm(w)model the lifespan trajectories of abilities, with
m = 1 denoting episodic memory, m = 2 working memory, and m = 3 executive function. The
level-2 random intercepts ζ

(2)
m ∼ N (0, ψ(2)

m ), varying between timepoints for the same participant
were assumed uncorrelated, taking the role of residuals in the structural model (18). Level-3
random intercepts ζ (3) = (ζ

(3)
1 , ζ

(3)
2 , ζ

(3)
3 )′ ∼ N (0,�(3))had a freely estimated covariancematrix

�(3) ∈ R
3×3 with six non-redundant parameters. Each smooth term hm(w)was constructed from

10 cubic regression splines subject to sum-to-zero constraints (Wood, 2017a, Ch. 5.4.1), and had
its own smoothing parameter. Estimating the model using the algorithm described in Sect. 3 took
about five hours, and the proportion of structural zeroes in the random effects design matrix Z
used in model fitting was 99.9%.

The estimated regression coefficients and factor loadings are summarized in Table 3. Con-
sidering episodic memory first, the trial effects increased with trial number 1–5, reflecting that
participants on average achieved higher scores in later trials, while the effects declined again in
the delayed trials, indicating increasing difficulty. The factor loadings for CVLT were markedly
higher in the later trials, indicating that these trials have a better ability to discriminate between
high and low values of latent episodic memory. For digit span tests, the factor loadings were
of similar magnitude, indicating that the tests had similar ability to discriminate between latent
working memory, but as expected the trial effect for the forward test was higher than the backward

4Because an inner product is computed between both βt and λm and the variable zti , we use the letter z for all terms
in the measurement model, although the letter x would be more consistent with the definition (7).
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Table 3.
Estimates and standard errors of parametric terms in the model presented in Sect. 4.1.

Parameter Trial effect (SE) Factor loading (SE)

Episodic memory
CVLT trial 1 βt1 = −0.26 (0.01) λ11 = 1 (−)

CVLT trial 2 βt2 = 0.74 (0.02) λ12 = 1.79 (0.03)
CVLT trial 3 βt3 = 1.42 (0.02) λ13 = 2.44 (0.05)
CVLT trial 4 βt4 = 1.84 (0.03) λ14 = 2.76 (0.05)
CVLT trial 5 βt5 = 2.17 (0.03) λ15 = 3.02 (0.06)
CVLT 5 min delay βt6 = 1.62 (0.03) λ16 = 3.04 (0.06)
CVLT 30 min delay βt7 = 1.81 (0.03) λ17 = 3.22 (0.06)
Working memory
Digit span backward βt8 = −0.39 (0.01) λ21 = 1 (−)

Digit span forward βt9 = 0.29 (0.01) λ22 = 0.96 (0.03)
Executive function (units = seconds)
Stroop 1 βt10 = 32.2 (0.19) λ31 = −7.05 (−)

Stroop 2 βt11 = 23.3 (0.18) λ32 = −3.96 (0.23)
Stroop 3 βt12 = 58.3 (0.34) λ33 = −20.2 (0.45)
Stroop 4 βt13 = 65.4 (0.36) λ34 = −21.7 (0.49)
Retest effects
CVLT βr1 = 0.11 (0.02) Odds ratio 1.12
Digit span βr2 = 0.07 (0.02) Odds ratio 1.08
Stroop conditions 1 and 2 βr3 = −1.24 (0.23) –
Stroop conditions 3 and 4 βr4 = −2.21 (0.35) –

test, since it is easier. For the Stroop tests, the factor loadings for the time taken to complete the
trials under condition 3 and 4 were of considerably higher magnitude than for conditions 1 and 2,
reflecting the increased variance for these more challenging trials.5 As expected, significant retest
effects were found for each test. For Stroop, having taken the test previously was associated with
1.24 s lower time to completion under conditions 1 and 2, and 2.21 s lower time under conditions 3
and 4.We also note that simulation experiments reported in Sect. 4.2 suggest that confidence inter-
vals for the factor loadings for Stroop conditions 2–4 and the trial effects for Stroop conditions 1
and 2 should be based on bootstrapping rather than using the Wald procedure with the asymptotic
standard error reported in Table 3. Complete bootstrap and Wald type confidence intervals for all
parameters in Table 3 are given in Tables S2 and S3 of Online Resource 1.

Table 4 shows the estimated variance components. At level 2, the variance ofworkingmemory
and executive function were estimated exactly to zero. While it seems implausible that the ”true”
variances are exactly zero, simulations described in Sect. 4.2 and shown in Fig. 5 (right) indicate
that zero estimates occur frequently with these data when the ratio of level-2 variance to total
level-2 and level-3 variance is low, and we hence take these estimates to indicate that the within-
subject variance between timepoints is lower than the between-subject variance. The correlation
between levels of the three cognitive abilities varies between 0.32 and 0.43, which is slightly
below the meta-analytic results of Tucker-Drob et al. (2019), who found a level communality of
0.56 across a large range of cognitive domains.

Figure2 shows the estimated lifespan trajectories for the three cognitive domains, with point-
wise and simultaneous 95% confidence bands. The latter were obtained by sampling 100,000

5The factor loading for Stroop condition 1 was fixed to −1 on the scale used during fitting. Transformed back to the
original parametrization it took to the value −7.05 s.
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Table 4.
Estimates of variance components in the model presented in Sect. 4.1.

CVLT and digit span Stroop 1+2 Stroop 3+4

Level 1: Dispersion parameters
Residual standard error Fixed to 1

√
φ̂1 = 7.46 s

√
φ̂2 = 8.94 s

Episodic memory Working memory Executive function

Level 2: Between-timepoint, within-participant variation

Estimated variance ψ̂
(2)
1 = 0.06 ψ̂

(2)
2 = 0 ψ̂

(2)
3 = 0

Level 3: Between-participant variation
Episodic memory 0.076 cor = 0.43 cor = 0.32
Working memory 0.040 0.112 cor = 0.36
Executive function 0.043 0.059 0.237
Level 4: Spline smoothing

Estimated variance ψ̂
(4)
1 = 5.66 × 10−3 ψ̂

(4)
2 = 2.04 × 10−3 ψ̂

(4)
3 = 4.57 × 10−2

Smoothing parameter λ̂1 = 1/ψ̂(4)
1 = 177 λ̂2 = 1/ψ̂(4)

2 = 490 λ̂3 = 1/ψ̂(4)
3 = 21.9
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Figure 2.
Estimated lifespan trajectories. Units on the y-axis are standard deviations of the underlying latent variable ηm . Shaded
regions are 95% pointwise confidence bands (inner) and 95% simultaneous confidence bands (outer).

spline coefficients from the empirical Bayes posterior distribution, and following the description
at the end of Sect. 1.1 we found critical values z̃.025 close to 3 for all three domains. 100 randomly
selected curves for each domain are shown in Fig. 3 (left). The trajectories suggest that executive
function reaches its maximum earliest, at the age of 22, while episodic memory peaks at 28 and
working memory at 34 years of age. As expected, the curves also indicate a steep increase during
childhood, and a steep decrease after about 75 years of age. Given the ceiling effects apparent for
CVLT trials in Fig. 1, some care should be taken should be taken when interpreting the shape of
the estimated trajectory for episodic memory, as the test may not be able to discriminate the higher
levels of episodic memory. Figure3 (right) shows posterior densities for the age associated with
maximum ability in each domain. While the posteriors for age at maximum episodic and working
memory have some overlap, for executive function the posterior is highly peaked, although with
a small additional bump around the age of 40. Table S1 in Online Resource 1 shows the posterior
probability of each possible ordering of the age at maximum across the three domains, giving
88.4% probability to the ordering implied by the point estimate (executive function < episodic
memory < working memory), and 88.4+ 6.82 ≈ 95.2% to the event that executive function has
the lowest age at maximum.
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Figure 3.
Empirical Bayes posteriors. Left: for each cognitive domain, 100 curves for the posterior are shown. Right: posterior
densities of the age at which maximum level is attained for each domain.

The finding that executive function seems to peak at an earlier age than episodic and working
memory is in agreement with previous studies (Gajewski et al., 2020; Salthouse et al., 2003;West,
1996). Furthermore, the steady decline after the peak apparent in all three trajectories in Fig. 2
is in some agreement with Salthouse (2009). On the other hand, the peak in working memory at
around 33 years of age does not agree with Grégoire and Van Der Linden (1997), who found the
performance on digit span backward and forward tasks to be steadily declining from the age of
16. The peak in episodic memory at around 27 years of age is in some agreement with the cross-
sectional results in Rönnlund et al. (2005, Fig. 1), but not with the longitudinal effects adjusted
for retest effects from the same study, which suggest a steady level of episodic memory until the
age of 60 (Rönnlund et al., 2005, Fig. 5). However, all previous studies of the topic which we are
aware of have either relied on restrictive parametric models, or categorization into discrete age
groups, and are hence not directly comparable. The GALAMM-based model presented in this
section offers the opportunity for more accurate estimation of lifespan cognitive development,
without sacrificing the factor analytic models used to relate multivariate test measurements to a
lower number of latent traits.

4.2. Simulation Experiments

A parametric bootstrap (Efron & Tibshirani, 1993, Ch. 6.5) can be used to assess the bias of
point estimates and standard errors computed using the proposed maximum marginal likelihood
algorithm, by repeatedly sampling new observations from the fitted model. If the marginal log-
likelihood (16) is regular, i.e., well approximated by a quadratic function in the neighborhood of
its maximum, bootstrap standard errors will be close to the standard errors computed from the
asymptotic covariance matrix, and accordingly Wald type confidence intervals will have good
coverage properties (Pawitan, 2001, Ch. 5.2–5.3). The frequentist interpretation of smoothing via
random effects is that each dataset from the population contains a random sample of penalized
coefficients, implying that a new curve from the empirical Bayes posterior should be used as the
true value in each simulation. If instead viewed as a computational trick to compute maximum
marginal likelihood estimates under an empirical Bayes prior, using the point estimate would be
appropriate. We here took the latter view.

When simulating, the data structure, values of all covariates, and parameter estimates were
retained, but the linear predictor was updated by sampling new random intercepts ζ

(2)
m and ζ

(3)
m

(m = 1, 2, 3) from normal distributions with covariance components from Table 4. New elemen-
tary responses were then sampled from the binomial distribution for CVLT and digit span items
and from the normal distribution for the Stroop items, and the whole procedure was repeated 500
times.
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Figure 4.
Bootstrap assessment of bias and standard errors. The top row shows true values plotted against the simulation averages,
and the bottom row shows bootstrap standard error estimates plotted against the average standard errors across bootstrap
samples. Outlying observations are labeled

The top rowof Fig. 4 shows the true values of factor loading and regression coefficients plotted
against their average across simulations, indicating that the bias in these terms is close to zero.
In the bottom row of Fig. 4, the standard deviation of point estimates of a given parameter across
bootstrap samples was plotted against the bootstrap average of the standard error of the same
parameter obtained from the asymptotic covariance matrix. For the factor loadings, the bootstrap
estimated standard errors for Stroop condition 3 and 4were larger than the average standard errors,
whereas the bootstrap estimate for Stroop condition 2 were lower. Considering the regression
coefficients, the bootstrap estimated standard errors for the trial effects of Stroop conditions 1
and 2 were lower than the average standard errors. This means that the profiled marginal log
likelihood is not well approximated by a quadratic function for the mentioned parameters, and
that confidence intervals for factor loadings should be based on profile likelihood estimation or
bootstrapping (Pawitan, 2001, Ch. 5.3) (see also Jeon and Rabe-Hesketh (2012, Sec. 3.1.2)). This
is in agreement with results reported for other mixed models, e.g., Booth (1995), Brockwell &
Gordon (2001), and Demidenko (2013, Sec. 3.4). For all other parameters, the bottom row of
Fig. 4 shows that the average standard errors were close to their bootstrap counterparts. Bootstrap

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 01:45:04, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Ø SØRENSEN ET AL. 473

and asymptotic confidence intervals for all regression coefficients and factor loadings are reported
in Tables S2 and S3 of Online Resource 1.

Figure S2 inOnline Resource 1 shows that the average estimates of the smooth functions were
almost overlapping with the true functions. In units of standard deviations of the latent variable
ηm , the root-mean-square error over bootstrap estimates was 0.041 for episodic memory, 0.058 for
workingmemory, and 0.081 for executive function. For comparison, the range (difference between
maximum and minimum) of the trajectories over the lifespan were 1.73, 1.96, and 4.94 standard
deviations, respectively. The three trajectories shown in Fig. 2, which were the ground truth in
the simulation experiments, had total effective degrees of freedom equal to 24.6. In contrast,
the average effective degrees of freedom over the bootstrap samples was 20.4, and only on two
occasions did it exceed 24.6.6 This confirms that the maximum marginal likelihood estimation
protects against overfitting by yielding estimates which (for finite samples) are smoother than the
data generating function, as expected by the results of Reiss and Ogden (2009) and Wood (2011).

The across-the-function coverage of pointwise 95% confidence bands was conservative for
episodic andworkingmemorywith 100%and 98%coverage, but too liberal for executive function,
with an average of 91% coverage. The simultaneous 95% confidence bands contained the true
function with almost 100% probability for episodic memory and 98% probability for working
memory, but only 82% probability for executive function. Figure5 (left) shows one source of the
poor simultaneous coverage for executive function: the true function (in red) is below a sizeable
proportion of the lower simultaneous confidence bands for ages below 10. Also here bootstrapping
would likely yield better coverage properties (Härdle & Bowman, 1988; Härdle &Marron, 1991;
Härdle et al., 2004), and in this case 95% bootstrap confidence bands did contain the true function
over the full range. However, addressing the coverage of bootstrap based confidence bands over
a range of datasets sampled from the population is beyond the scope of this paper.

We finally investigated the level-2 variances variance for working memory and executive
function, whichwere estimated to be exactly zero in the previous section, cf. Table 4.We gradually
increased the value of ψ

(2)
m , m = 2, 3, otherwise simulating data as before, and recorded the

proportion of simulated samples for which these variance parameters were estimated to zero. The
results are shown Fig. 5 (right). For working memory, the level-2 variance was given a nonzero
estimate in all simulated samples alreadywhen the level-2 variance reach 20%of the total variance.
In contrast, the level-2 variance for executive function was estimated to zero until it reached half
the total variance.

5. Latent Covariates

5.1. Socioeconomic Status and Hippocampus Volume

The association between socioeconomic status and brain development has been the subject
of much research. It has been proposed that higher socioeconomic status protects against late-life
dementia (Livingston et al., 2017), whereas a meta-analysis found that the associations between
socioeconomic status and brain structure varied considerably between samples (Walhovd et al.,
2021). The hippocampus is a brain region which plays an important role in memory consolidation,
and is one of the first regions to be damaged in Alzheimer’s disease (Dubois et al., 2016). Positive
associations have been found between socioeconomic status and hippocampal volume in children
(Hanson et al., 2011; Noble et al., 2012, 2015; Yu et al., 2018), and between childhood socioe-
conomic status and adult brain size (Staff et al., 2012). However, while hippocampal volume is
known to be a nonlinear function of age, most studies investigating the association have used
linear regression analyses. An exception is Nyberg et al., (2021), who used GAMMs to model the

6A histogram of effective degrees of freedom across bootstrap samples is shown in Figure S3 of Online Resource 1.
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Figure 6.
Hippocampal volume curves. Left: Total volumes of left and right hippocampus (in mm3) plotted versus age. Repeated
observations of the same individual are connected with gray lines. Right: Estimated hippocampal volume trajectories
at mean socioeconomic status (SES) and at two standard deviation above or below mean. Shaded regions show 95%
pointwise confidence intervals for SES two standard deviations above or below mean.

hippocampal trajectory, and found evidence for a close-to-zero association between longitudinal
change in hippocampal volume and educational attainment in two large adult samples.

We here consider the association between hippocampal volume and socioeconomic status
across the lifespan, still using data from the Center for Lifespan Changes in Brain and Cognition
(Fjell et al., 2018; Walhovd et al., 2016). Hippocampal volumes were estimated with FreeSurfer
7 (Dale et al., 1999; Fischl et al., 2002; Reuter et al., 2012) from magnetic resonance images
obtained at four different scanners, and are shown in Fig. 6 (left). In total, we had 4248 scans of
1916 participants aged between 4 and 93 years, with between 1 and 8 scans per participant. Our
interest concerns how the lifespan trajectory of hippocampal volume depends on socioeconomic
status. For participants below the age of twenty, we defined socioeconomic status based on their
father’s and mother’s years of completed education and income, and for participants above the
age of twenty we defined it based on their own education and income. As these variables were
typically only measured at a single timepoint, they were considered time-independent. Of the
1916 participantswith hippocampal volumemeasurements, either their own or at least one parent’s
education level was available from 1661 participants, while the corresponding number for income
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was 571.7 All timepoints for 253 participants with no measurement of socioeconomic status were
also included in the analyses, yielding a total of 7264 level-1 units.

Since all outcomes were continuous, we used a unit link function and measurement model

yi = d′
s,iβs + dh,i

(
x′
h,iβh + f (ai )

) + η1z′
iλ + dh,iη2 + εi , (19)

where βs contains the intercepts for the items measuring socioeconomic status and ds,i is a vector
of length 6 whose kth element is an indicator for the event that the i th level-1 unit measures the
kth socioeconomic status item. Variable dh,i ∈ {0, 1} indicates whether the i th level-1 units is
a measurement of hippocampal volume, xh,i is a vector of linear regression terms for scanner,
sex, and intracranial volume, and βh are corresponding regression coefficients.8 The age of the
participant to which the i th level-1 unit belongs is denoted ai , and f (·) is a smooth function
composed as a linear combination of fifteen cubic regression splines, subject to sum-to-zero
constraints as described in Wood (2017a, Ch. 5.4.1). Latent socioeconomic status is represented
by η1, and λ = (λ1, . . . , λ8)

T is a vector of factor loadings. Factor loadings for paternal, maternal,
and the participant’s own education level were represented by λ1, . . . , λ3, and the corresponding
factor loadings for paternal, maternal, and the participant’s own income were represented by
λ4, . . . , λ6. Accordingly, when the i th level-1 unit is a measurement of income or education, zi is
an indicator vector which ensures that the correct factor loading among λ1, . . . , λ6 ismultiplied by
η1. Finally, λ7 represented the effect of latent socioeconomic status on hippocampal volume, and
λ8 the interaction effect of age and socioeconomic status on hippocampal volume. Hence, when
the i th level-1 unit is a measurement of hippocampal volume, zTi = (0, . . . , 0, 1, ai ). Since the
data contained repeated scans, a random intercept for hippocampal volume η2 was also included.
A heteroscedastic model for the residuals was assumed, εi ∼ N (0, σ 2

g(i)), where g(i) = 1 if
the i th level-1 unit is a measurement of income, g(i) = 2 if it is a measurement of education
level, and g(i) = 3 if it is a measurement of hippocampal volume. The structural model was
simply η = ζ ∼ N (0,�) where � = diag(ψ1, ψ2). Assuming zero correlation between level-
2 disturbances was required for identifiability, since η2 depends on η1 through λ7 and λ8. The
proportion of structural zeroes in the random effects design matrix Z was 99.8 %.

Since we used a unit link function and normally distributed residuals, the Laplace approxima-
tion was exact. Income and education variables were log-transformed to obtain response values
closer to a normal distribution. When fitting the models, all quantitative variables were trans-
formed to have zero mean and unit standard deviations. For identifiability, λ1 was fixed to unity
on the transformed scale used in model fitting.

The model described above has seven free factor loadings, λ2, . . . , λ8, and we compared it to
constrained versions using the marginal Akaike information criterion (AIC) defining the model
degrees of freedom by the number of parameters (Akaike, 1974; Vaida&Blanchard, 2005). Based
on the results shown in Table 5 we chose model (f), with equal loadings for the education items,
equal loadings for the income items, and no interaction effect between age and socioeconomic
status on hippocampal volume.

Table 6 shows the estimated parametric effects of main interest. Item intercepts βs can be
found in Table S1 of Online Resource 2. Standard errors are not reported for variance components,
as their likelihood is typically not regular. As expected, higher total intracranial volume and being
male were associated with higher hippocampal volume (Hyatt et al., 2020). From the estimated
standard deviation of the random intercept for hippocampal volume and the residual standard

7One might debate whether the measured items reflect socioeconomic status or whether socioeconomic status instead
is formed by the measured items, see Skrondal and Rabe-Hesketh (2004, p. 67) and Edwards and Bagozzi (2000). In this
example we assume a reflective model.

8Alfaro-Almagro et al. (2021) and Hyatt et al. (2020) give overviews of variables to control for in analysis of
neuroimaging data.
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Table 5.
Comparison of models for the effect of socioeconomic status on hippocampal volume

Model Parameters Log-likelihood AIC

(a): Free loadings 26 −5574 0.00
(b): (a) and no interaction, λ8 = 0 25 −5575 − 0.38
(c): Parents equal, λ1 = λ2 and λ4 = λ5 24 −5576 − 1.29
(d): (c) and no interaction, λ8 = 0 23 −5577 − 1.64
(e): Item groups equal, λ1 = λ2 = λ3 and λ4 = λ5 = λ6 22 −5576 − 5.22
(f): (e) and no interaction, λ8 = 0 21 −5577 − 5.58
(g): (f) and no main effect, λ7 = λ8 = 0 20 −5578 − 4.18

AIC values have been shifted to be zero for the full model, for ease of comparison

Table 6.
Parametric terms in model of hippocampal volume and socioeconomic status

Parameter Estimate SE Units

Effects on hippocampal volume
Scanner ousAvanto, βh1 −72.2 57.5 mm3

Scanner ousPrisma, βh2 80.9 64.5 mm3

Scanner ousSkyra, βh3 248 58.5 mm3

Total intracranial volume, βh4 0.00201 9.05 × 10−5 mm3/mm3

Sex=Male, βh5 217 32.9 mm3

Factor loadings
Education, λ1 = λ2 = λ3 0.168 – log(years)
Income, λ4 = λ5 = λ6 0.266 0.0448 log(NOK)

Hippocampus, λ7 59.1 32 mm3

Variance components
Socioeconomic status,

√
ψ1 0.669 – –

Hippocampus,
√

ψ2 601 – mm3

Income residual, σ1 0.593 – log(NOK)

Education residual, σ2 0.125 – log(years)
Hippocampus residual, σ3 134 – mm3

NOK denotes Norwegian kroner, with 10 NOK≈1 EUR. Scanner effects are relative to ‘ntnuSkyra’, see
Fig. 6 (left). Units mm3/mm3 for total intracranial volume represent mm3 of hippocampus per mm3 of total
intracranial volume. The factor loading for education does not have a standard error, as it was fixed for
identifiability

deviation for hippocampal volume, we find an intraclass correlation (ICC) of = 6012/(6012 +
1342) = 0.95. An ICC this high implies that the variation between individuals is much larger
than the variation between different timepoints of the same individual, as is also clear from the
raw data plot in Fig. 6 (left). The estimated factor loading for income was positive, with two-
sided p-value 2× 10−8 computed using a likelihood ratio test as described in the next paragraph,
indicating that both education and income are positively related to the latent construct η1. It
also follows that the difference between mean socioeconomic status and a socioeconomic status
one standard deviation above the mean is associated with a difference in education level of
exp(β̂s3 + λ̂3

√
ψ̂1) − exp(β̂s3) = 2 years and with difference in annual income of exp(β̂s6 +

λ̂6
√

ψ̂1) − exp(β̂s6) = 95 × 103 NOK, where we have taken β̂s3 = 2.81 and β̂s6 = 13.1 from
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Table S1 of Online Resource 2. Note that this effect is not additive on the natural scale, since
education and income levels were log-transformed.

Figure6 (right) shows the estimated hippocampal trajectories at three levels of socioeco-
nomic status. We tested the null hypothesis of no effect of socioeconomic status on hippocampal
volume using a likelihood ratio test. In particular, under the null hypothesis, twice the difference
between the log-likelihoods of model (f) and model (g) in Table 5 is distributed according to a χ2-
distributionwith one degree of freedom (e.g., Skrondal andRabe-Hesketh, (2004, Sec. 8.3.4)). The
resulting p-value was 0.065, thus not significant at a 5% level. From the point estimate, we see that
a one standard deviation increase in socioeconomic status is associated with a λ̂7

√
ψ̂1 = 40 mm3

increase in hippocampal volume. For comparison, the rate of increase seen during childhood in
Fig. 6 (left) is around 50mm3/year, the rate of decline during adulthood around 10–15mm3/year,
increasing to 90–100mm3/year in old age. Assuming no birth cohort effects (Baltes, 1968) and
representative sampling, the presence of a constant effect λ7 and the absence of an interaction
effect λ8, would imply that socioeconomic status affects early life brain development, rather than
the rate of change at any point later in life. However, this analysis is inconclusive with regards to
such a hypothesis.

5.2. Simulation Experiments

Simulation experimentswere performed based on themodel estimated in the previous section.
In particular, we were interested in understanding model selection with AIC as performed in
Table 5 and the estimation of hippocampal volume trajectories as in Fig. 6 (right). To this end,
we simulated data using estimated model parameters and a data structure closely following the
real data, as shown in Online Resource 2, Figure S1. For simplicity, explanatory variables related
to scanner, sex, and intracranial volume were not included in the simulations, but otherwise the
model was identical to (19), with parameter values reported in Table 6 and Table S1 of Online
Resource 2. The simulations were repeated with six discrete values of the interaction parameter
λ8, ranging from 0 to 0.12. Zero interaction implies that the trajectories for different levels of
socioeconomic status are parallel, as in Fig. 6 (right), whereas a positive interaction implies that
high socioeconomic status is associated with a lower rate of aging in adulthood. This is illustrated
in Figure S2 of Online Resource 2. For all parameter settings, 500 Monte Carlo samples with
1916 participants were randomly sampled, and models corresponding to (e) and (f) in Table 5
were fitted.

Figure7 (left) shows results of comparing models (e) and (f) in Table 5 with AIC and a like-
lihood ratio test. With true interaction zero, the probability of falsely rejecting the null hypothesis
λ8 = 0 was close to nominal, and the probability of AIC selecting the model containing this
interaction term was close to the expected value of 16%. Furthermore, the curves suggest that
we would have around 80% power to detect a moderate interaction λ8 ≈ 0.08. Figure7 (right)
shows the distribution of estimates λ̂8 in the larger model (e) over all Monte Carlo samples. It is
evident that the estimated interactions are symmetrically distributed around their true values. The
estimates had low bias also for the other factor loadings, except for the estimates of λ7 under the
misspecified model (f) when the true λ8 was nonzero, cf. Figure S3 of Online Resource 2.

Finally, we investigated confidence bands for lifespan trajectories at latent socioeconomic
status equal to the mean or one or two standard deviations above or belowmean, corresponding to
the curves in Fig. 6 (right). As shown in Fig. 8, pointwise confidence bands had close to nominal
coverage, whereas simultaneous confidence bands in general were conservative, with coverage
above 95%.
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Figure 7.
Interaction term in latent covariates model. Left: Probability of selecting a model containing an interaction term as a
function of the magnitude of the interaction. ‘AIC’ denotes Akaike information criterion and ‘p < .05’ denotes selection
based on testing λ8 = 0 versus λ8 > 0. Error bars show 95% confidence intervals. The horizontal gray lines shows
the p = 0.05 level, for reference. Right: Violin-dotplots (Hintze & Nelson, 1998) of estimated interactions for different
values of the true interaction. Gray line and black points indicate the true values, and colored points indicate estimates in
single Monte Carlo samples. Values are based on 500 Monte Carlo samples for each parameter combination (Color figure
online).
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Figure 8.
Coverage of smooth terms in latent covariates model. Across-the-function coverage of pointwise confidence intervals
(left) and coverage of simultaneous confidence intervals (right) for five levels of latent socioeconomic status η1. Intervals
were computed with model (e), which contained a non-zero interaction term λ8. Error bars show 95% confidence intervals
for simulation estimates.

6. Discussion

We have proposed the GALAMM framework for multilevel latent variable modeling, which
combines SEM and item response models’ ability to model a measurement process with GAMs’
ability to flexibly estimate smooth functional relationships. By transforming the GALAMM to
mixed model form, the smoothing parameters become inverse variance components which can be
estimated jointly with all other model parameters, using maximum marginal likelihood. Possible
applications beyond those presented in this paper include spatial smoothing for analysis of regional
variations in attitudes measured by social surveys (Fahrmeir & Raach, 2007).

The latent response model used in Sect. 4 accommodates a mix of continuous and discrete
responses, inducing dependence between latent responses of interest through the latent variable
distributions. This approach was inspired by GLMMs (Faes et al., 2008; Fieuws&Verbeke, 2006;
Iddi & Molenberghs, 2012; Ivanova et al., 2016) and GLLAMMs (Skrondal & Rabe-Hesketh,
2004, Ch. 14) for mixed response types discussed in the literature previously. Several exten-
sions of the model are possible. The assumption of age-invariant measurements could be relaxed
with age-dependent factor loadings, yielding a non-uniform differential item functioning model
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(Swaminathan & Rogers, 1990). With a higher number of timepoints per individual, inclusion of
random slopes would allow estimation of how individual change is correlated across cognitive
domains as well as level-slope correlation within domains. These topics were studied in a recent
meta-analysis (Tucker-Drob et al., 2019) in which all the contributing studies had analyzed sam-
ples of adults using linear models. GALAMM would more easily allow such studies of coupled
cognitive change across the lifespan, since the nonlinear effect of age is flexibly handled by smooth
terms. The simulation studies in Sect. 4.2 suggest that regularity of the likelihood function should
be carefully checked before computing Wald type confidence intervals. The bootstrap procedure
provides a natural way of checking this, albeit at a high computational cost. The simulations also
revealed someweak points worthy of further investigation. Firstly, simultaneous confidence bands
for the lifespan trajectory of executive function had too low coverage. A potential way of improv-
ing this is by incorporating smoothing parameter uncertainty into the empirical Bayes posterior
distribution used to compute the simultaneous intervals, as has been demonstrated by Wood et
al. (2016) for GAMs. Alternatively, simultaneous confidence bands can be computed using the
bootstrap as demonstrated in Sect. 4.2 (Härdle & Bowman, 1988; Härdle &Marron, 1991; Härdle
et al., 2004), albeit at a much increased computation cost. Secondly, the level-2 (within-subject
between-timepoint) variances of working memory and executive function were estimated exactly
to zero, and as shown by the simulation experiments reported in Fig. 5 (right), this will happen
for the given data structure when the level-2 variances are relatively small compared to the total
level-2 and level-3 variance. This inaccuracy might be due to the Laplace approximation used
for computing the marginal likelihood, which has been shown to work poorly for certain models
with binomial responses (Joe, 2008). More accurate integral approximations can be obtained with
adaptive Gauss-Hermite quadrature (Cagnone &Monari, 2013; Pinheiro & Bates, 1995; Pinheiro
& Chao, 2006; Rabe-Hesketh et al., 2002, 2005), which unfortunately is not directly suited for
data with crossed random effects, although Ogden (2015)’s sequential reduction method might
alleviate this. Alternatively, the Laplace approximation can be improved by retaining more terms
in the Taylor expansion (15) (Andersson & Xin, 2021; Demidenko, 2013; Raudenbush et al.,
2000). Both these methods for improving the approximation of the integral (11) have a higher
computational cost than the Laplace approximation, and developing scalable and more accurate
algorithms remains an important topic for further research.

The latent covariates model in Sect. 5 could be further extended by investigating the effect of
socioeconomic status on a larger set of brain regions. If supported by domain knowledge, increased
power in such a model could be obtained with a factor-by-curve interaction model (Coull et al.,
2001), in which the trajectories are assumed to have similar shape and/or smoothness across brain
regions.An excellent overviewof such hierarchicalGAMs is given in Pedersen et al. (2019). Factor
analytic models have also been used for integrating multiple measurements of brain structural
integrity (Dahl et al., 2022; Köhncke et al., 2020) or volumes in the left and right hemispheres
(Dahl et al., 2019), all of which can be directly incorporated in the proposed framework. In Sect. 5
we used marginal AIC for selecting parametric fixed effects. For selecting smooth terms, on
the other hand, conditional AIC with correction for smoothing parameter uncertainty would be
appropriate (Greven & Kneib, 2010; Saefken et al., 2014; Wood et al., 2016; Yu & Yau, 2012).
For GAMs, Wood et al. (2016, Sec. 4) show how the covariance matrix of the log smoothing
parameter can be used to define a corrected conditional AIC for this purpose, but for use with
GALAMMs this approach would need to be implemented with sparse matrix methods.

An interesting extension of the framework is to allow smooth functions to depend on latent
variables. This leads to a product of normally distributed latent variables in the mixed model rep-
resentation, and computing the marginal likelihood (11) thus involves integrating over variables
distributed according to the generalized chi-squared distribution, making the Laplace approxi-
mation (16) inappropriate. The algorithm proposed by Rockwood (2020) provides an efficient
solution for the case of two-level SEMs with random slopes of latent covariates and normally
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distributed responses, by first reducing the dimension of the integral and then using Gaussian
quadrature for integral approximation. A different approach to a related problem is given by
Ganguli et al. (2005), who considered single-level semiparametric models with measurement
error in the smooth terms, and used an EM algorithm to correct for measurement error bias. The
stochastic approximation EMalgorithm (Delyon et al., 1999) has also been successfully applied to
estimation of nonlinear mixed models involving intractable integrals (Comets et al., 2017; Kuhn
& Lavielle, 2005), and may be possible to extend to the models considered in this paper.

The algorithm for maximum marginal likelihood estimation presented in Sect. 3 was mainly
inspired by the sparsematrixmethods developed for linearmixedmodels byBates et al. (2015) and
the algorithm proposed by Pinheiro and Chao (2006) for estimating GLMMs with nested random
effects. Themain extension in our approach involves mapping the factor loadings λ and regression
coefficients B to the matrices X(λ,B) and Z(λ,B), and the use of automatic differentiation.
Automatic differentiation has been used for fitting mixed models by several authors (Brooks et
al., 2017; Fournier et al., 2012; Kristensen et al., 2016; Skaug, 2002; Skaug & Fournier 2006), but
we are not aware of previous use of this technique for estimating models with factor structures.

7. Conclusion

We have introduced generalized additive latent and mixed models, for multilevel modeling
with latent and observed variables depending smoothly on observed variables. We have also
proposed an algorithm for estimating the models which scales well with large and complex data.
The work was motivated by applications in cognitive neuroscience, and we have presented two
examples in which the proposedmodels enabled new analyses not easily performedwith currently
available tools.

SUPPLEMENTARY MATERIAL
Online Resource 1 Additional figures and tables to the application example and simulation
experiments described in Sect. 4. (pdf document)
Online Resource 2 Additional figures and tables to the application example and simulation
experiments described in Sect. 5. (pdf document)
OnlineResource 3Rpackagegalamm implementing themethods. (available fromhttps://github.
com/LCBC-UiO/galamm)
Online Resource 4 R scripts for analyses and simulation experiments. (available from https://
github.com/LCBC-UiO/galamm-scripts)
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