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Abstract. In this brief review I summarise recent progress in the area of stellar dynamics,
focusing on the dynamics of bound, self-gravitating stellar associations in isolation and (ap-
proximate) equilibrium. The basics of stellar dynamics are first outlined and the importance
of stellar evolution is stressed. Subsequently, I argue that the evolution of anisotropic clusters
of stars still holds solutions to current outstanding problems, such as the dynamics of galactic
nuclei. I take a more personal standpoint when discussing the role of stellar evolution in the
dynamics on relaxation timescales and draw from several recent models to underscore that a
major step forward has been made in coupling stellar evolution and dynamics. I then briefly
visit the issue of multiple stars and highlight some as yet unsolved problems.
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1. Introduction

It has been a long while since Newton wrote down the basic equations that govern the
evolution of self-gravitating systems of point sources. That a general, exact solution to
the problem of evolving a set of N mass elements over time will forever elude us must
have come as a shock to the pioneers of stellar dynamics, who realised that progress
in this field would come only through a statistical approach to constructing observables
derived from theory. That long-ish statement can be rephrased as monlinearity rules in
Newtonian stellar dynamics, and so one must resort to statistical methods to solve for
the dynamics of individual clusters (mainly drawn from a Fokker—Planck treatment of
the equations) or, from averaging over large ensembles of models to smooth over singular
solutions that could be attributed to the choice of initial conditions.

In this short review, I will take up the last point, but start with general considerations
and the point-mass treatment of stellar clusters. I will then highlight what has been
learned from evolving models with inclusion of a mass spectrum and stellar evolution.
The single stellar evolution approach has been extended to multiple stars (binaries and
hierarchical higher-order multiples), which are an essential ingredient to understand the
demographics of exotic stellar remnants (pulsars, blue stragglers and the like). I will end
with an overture to ongoing efforts by modellers to include ever more detailed physics in
their calculation but with a view to ‘packaging’ software for the benefit of the broader
community. The scope of this paper is narrow and not much will be found here by those
seeking updates on observational campaigns and techniques: those aspects are covered in
depth in the recent conference proceedings by Richtler & Larsen (2009) and Vazdekis &
Peletier (2007). Constraints of time and space (and skills) mean that I have to select what
instinctively seems more in tune with the spirit of the meeting in Rio. More substantial
recent surveys of the field start with the well-balanced Meylan & Heggie (1997) review
and include, among many others, several excellent contributions in Vesperini et al. (2008).
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2. Basics

It will help to follow a thread of increasing complexity when discussing stellar cluster
dynamics. Let me recall that the problem of retracing orbits in a self-gravitating system
of identical point sources, satisfying the scalar virial theorem

Tg

o (2.1)
(where o is the average squared velocity dispersion, M the total mass and r, the gravita-
tional radius: not equal to the truncation radius, in general), boils down to two timescales:
one measuring the time needed to cross a nominal volume enclosed by the truncation
radius, and the other the time required for kinetic energy to diffuse effectively through
the system by repeated two-body interactions. Since we are focussing on the internal
cluster dynamics, it is convenient to introduce the (spherical) half-mass radius r, and
define the crossing time thus

2ry

ter =

. (2.2)

and note that I make no distinction between the one- and three-dimensional velocity
dispersion because the definition of %, is not unique and this issue is not important here.
This is clear from the definition of the two-body relaxation time, t,, of Meylan & Heggie
(1997), which features r,:

Th 3/2 N
t=0.138 <2rg) In(0.4N) fer- 23)
In the latter equation, the numerical factor in front of ¢, is not fixed by mass (i.e.,
particle number) alone, but rather includes a dimensionless ratio ry, /ry, which together
with N encompasses the basic physics that drives analysis: whenever the ratio ¢, /te, > 1,
we can treat the system as being in near equilibrium and in the regime of slow evolution.
It is remarkable that profiling of the mass in space only enters in the considerations
through 71, /r,. In the regime of slow evolution, one aims to solve the Boltzmann equa-
tions, suitably rewritten with Rosenbluth potentials to account for the collisional terms.
This is the ‘large-N’ limit, when a distribution function is a sensible representation of
the background mean potential. Formally, one writes

df(r,v,t)  (0f(r,v,t)
dt B ( ot >coll (24)

and expands the right-hand side using diffusion coefficients to evolve the distribution
function, f, through phase space (e.g., Spitzer 1987). An appealing variant of this ap-
proach is to consider the diffusion coefficients as statistical weights for a two-body en-
counter leading to an exchange of kinetic energy: this is the road to Monte Carlo mod-
elling. Now the core-halo structure of star clusters implies shorter dynamical times in the
core and therefore more efficient diffusion there than in the outer envelope. This leads to
core collapse, as the envelope drains potential energy from the core (by expanding) which
loses mass and shrinks. Both Fokker—Planck and gas-dynamical solutions (treating the
flow of mass in the continuous-fluid limit) have long confirmed theoretical expectations
already developed in the 1960s of the irreversibility of this process, once the core density
exceeds 709% the cluster average density (Cohn 1979; Lynden—Bell & Eggleton 1980). It
may seem far-fetched to treat the decoupled collapsing core from a distribution-function
perspective given that the dense core drops to zero size and mass in a finite time: clearly,
methods based on distribution functions are aimed at massive, rich clusters: see Aarseth
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& Heggie (1998) for a discussion. The potential mapped by a small number of stars
confined to the core of a cluster becomes ever more granular and no longer amenable
to a fluid approach. Indeed, small-N systems depart from spherical symmetry (through
Poissonian noise) and so the fine details of the evolution of the cluster in the final stages
of core collapse derived from Fokker—Planck modelling become more uncertain. This is
where N-body modelling become essential, as it supplements other approaches to stellar
dynamics through more general three-dimensional coding of the equations of motion.
The caveat, of course, is that to date the largest-N calculations performed are limited
to N ~ 10° (e.g., Hemsendorf & Merritt 2002; Baumgardt et al. 2003, 2008; Fujii et al.
2008) which is still below the average of ~ 4.3 x 10° for Galactic clusters (assuming a
standard stellar mass function; Meylan & Heggie 1997) and further still from the large-N
regime sought. It is reassuring to find that the simple problem of core collapse for equal-
mass systems over a time t ~ 15¢, is well reproduced by completely different methods
(e.g., Takahashi 1995; Makino 1996; Baumgardt et al. 2003; Spurzem et al. 2005).

Against this backdrop, let me chart the few issues that I will address in the remainder
of this paper. Once more, my leitmotiv is the complexity of systems in terms of the physics
that they include. I divide these into four broad classes of problems that are of interest
here, which are organised according to whether or not one includes stellar evolution (SE)
in the calculations and whether or not multiple stars are included in the initial conditions.
Needless to say, the combination of multiple stars with full stellar evolution (including
mass exchange, etc.) is the more challenging case to theorists. Below, I start with the
point-mass dynamics of single stars.

3. Point-mass dynamics
3.1. Single stars with anisotropy

Surely, one should be content with the outline of Section 2 above, as this is a well-
beaten path. Not quite. One problem still causing headaches is to deconvolve projected
data while relaxing the hypothesis of isotropy. Recall that two-body relaxation tends
to make the central region of clusters isotropic, while the outer expanding envelope is
more and more anisotropic as a result of excess radial motion. Louis & Spurzem (1991),
Takahashi (1995) and Drukier (1999) discussed the Fokker—Planck evolution towards core
collapse of initially anisotropic clusters (see Giersz & Spurzem 1994 for an earlier similar
study of gas-dynamical models). These models were all nonrotational and while evolution
proceeded roughly as for the isotropic models, Takahashi (1995) reported delayed core
collapse, from 15 to 17.6 ¢,, which may be a source of scatter in comparative photometric
surveys of cuspy clusters (see, e.g., Noyola & Gebhardt 2006 for a sample of 38 clusters
from HST archive data). The importance of anisotropy was stressed in an application to
the G1 cluster in M31, where excellent fits to observed parameters (both kinematics and
photometry) were recovered from merging two smaller clusters (Baumgardt et al. 2003).
Such an interpretation has been challenged by Gebhardt et al. (2005) based on higher-
resolution photometric data indicating a profile best adjusted with a M}y, ~ 20000Mg
central black hole. Pooley & Rappaport (2006) and Kong (2007) pointed out that X-ray
data could provide confirmation of the presence of a black hole, if angular resolution
could pin down the source well enough to rule out alternatives based on a hypothetical
population of X-ray binary sources (for example). Whatever the ultimate outcome of
these investigations, the point was not lost that anisotropy has to be factored in when
exploring the dynamics of clusters at the most basic level.

But the yet more important effect attributable to anisotropy must be systematic
streaming, which leads to net rotation and strong deviations from spherical symmetry.

https://doi.org/10.1017/51743921309991104 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921309991104

TAUS266. Stellar dynamics 241

That Galactic clusters such as w Cen and 47 Tuc are rotating has been known for a
long time and ideas were already put forward many years ago to include rotation in the
models (e.g., Agekian 1958; Shapiro & Merchant 1976; Hachisu 1979). Still, it is only
relatively recently that self-consistent two-dimensional Fokker—Planck modelling with
distribution functions of the form f(E, L.) was introduced by Einsel & Spurzem (1999),
who confirmed Hachisu’s gravo-gyro catastrophe [see also Ernst et al. (2007) and Kim
et al. (2008) for investigations of this problem with N-body integrations]. The inclusion
of rotation speeds up core-collapse in single-mass cluster dynamics, by a multiplicative
factor of up to ~ 3 compared to isotropic models. Interestingly, projected quantities
derived from these models have only been made available relatively recently by Fiestas
et al. (2006), who ran a grid of models with an improved version of Einsel’s original
Fokker—Planck code. As in the Baumgardt et al. work on anisotropic clusters resulting
from the merging of two clusters, and hence quite possibly residual rotation from that
event, one should hope that rotation will, in the future, become an integral part of the
parameter space explored to fit data. Some work is underway to embed black holes in
clusters with rotation and it will be interesting to monitor the outcome of such models in
applications to clusters such as G1 or M15 (see Fiestas et al. 2008 for preliminary work).

3.2. Chaos and sensitivity to the initial configuration

The orbit integration of the collisional N-body problem is known to be sensitive to the
initial configuration of the system, in the sense that small deviations in the coordinates
of a body are amplified exponentially with time at the onset of integration. To track this
issue, Miller (1971) set up a variational method to monitor the orbits of massless bodies,
given a small shift in phase space with respect to actual massive bodies that define the
potential. The game consists of measuring the distance A between orbits traced out by
the massless bodies to that of the body nearest to them in the initial configuration. Linear
perturbation analysis tells us that A grows exponentially with time. One’s instinct is that
the e-folding time should become longer with increasing N as one moves closer to the
idealised limit of the smooth (and static) mean field for which orbits must satisfy the
collisionless Boltzmann equation (CBE; see Binney & Tremaine 2008). Detailed analysis
indicates instead that the e-folding time, t., decreases with N, a trend driven mainly
by accrued small-scale two-body scatter (Goodman et al. 1993). Hemsendorf & Merritt
(2002) confirmed this expectation with a series of N-body calculations with N running
from 100 to =~ 132000, and obtained a rough fit for N 2 32000 of the form (see their
figure 2)
012t

‘ In0.7lnN’
with a notable weak dependence on N. Hut & Heggie (2002) argue that the exponential
growth saturates at a few xt. o ... Their analytical approach, backed up by numerical
experiments, leads to a turnover, from an exponential, to a power-law growth rate over a
relaxation time. Since two diverging paths will have, sensibly, the same potential energy
but different kinetic energy, this growth can be expressed as a relative shift in total
energy,

(3.1)

%E x (;) . (3.2)

This near-saturation has two immediate consequences for the purpose of tracing orbits
numerically: (i) it implies that the orbits can be known up to a finite precision, beyond

t See http://www.ari.uni-heidelberg.de/clusterdata/
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which interpretation becomes unphysical and (ii) it sets a constraint on the level of
fluctuations that can be ‘spontaneously’ transmitted from the background potential, to
a multiple star (say, a binary or triple star).

Point (ii) is best left for Section 5. Point (i) is easier to understand if we carry out a
Gedankenexperiment such that after a crossing time of evolution (say), the phase-space
coordinates are synchronised and a restart performed. If the data were synchronised to
arbitrary accuracy by interpolation of the known positions and velocities, that precision
would be lost after ~ ¢, of integration through exponential growth of rounding errors.
That remark can be turned on its head, by saying that when coordinates are made syn-
chronous, the procedure can tolerate less-than-perfect accuracy and be equally valid for
a restart (as long as one uses an integration time well exceeding a crossing time). Beyond
issues of recovering accurate data for the sake of dissecting the orbits of a model cluster,
one is confronted with the problem of data storage associated with a core-halo structure.
In such a system, the dynamical time t., varies significantly: for a rich cluster, one may
compute t.. ~ 103 years in the core, and t.. ~ 10 years in the halo. Clearly, resolving
orbits everywhere requires a large throughput in the core, and a much reduced one in
the halo. But synchronicity required over the whole system to construct snapshots trans-
lates to huge data sets. Practitioners have long realised that a self-respecting integrator
would negotiate orbits more carefully where needed, by adopting a smaller time step
(the block time step procedure in conjunction with the Hermite integration scheme is
the standard of choice; McMillan 1986; Makino & Aarseth 1992; see Aarseth 2003 for
more background). A major space-saving procedure is to dump phase-space coordinates
at a fixed number of integration steps (instead of equal time intervals) and reconstruct
the orbit using the same scheme for integration to interpolate to the desired time (e.g.,
Faber et al. 2009). It is not clear how to translate the precision achieved using this ap-
proach to requirements that meet the same level of tolerance as what is achieved by the
divergence in energy over a crossing time (Hut & Heggie 2002), although one can guess
that the optimal approach (to orbit reconstruction) factors in the uncertainty associated
with the reference orbit.

I will now show that only statistics can save us from compiling heaps of data only to
follow a single-mass cluster up to core collapse. The classical solution has the core radius
going to zero at a time ¢ = t.. Prior to that instant, the core radius o (¢, —)%/(6=%) — 0
as t — t. (the constant o = 2.21; e.g., Lynden—Bell & Eggleton 1980; see Spitzer 1987).
The mass fraction of stars confined to the core M, o< (t. — t)(6=20)/(6=a) o (¢, — $)0-42
drops rapidly as t — t., however the central density p. o (t. —t)=2%/(6=) o (t, —t)~ 116
diverges to the same limit, which in turn implies that the orbital periods of stars near
the centre oc 1/y/Gpe o (t. — t)"*® also drop to zero. But owing to the Lagrangian
nature of the Hermite scheme, the volume of data stored over one revolution remains
constant. As a result, the net volume of data scales with o« M. x /Gp, o (t, —t)70-16
and therefore increases as a weak power of time. The singularity as ¢t — t. will not be
attained in practice owing to the formation of binary stars by three-body interactions
(the probability oc p? x pr2o o< (t. —t)~29? is a steep function of a vanishing argument).
Nevertheless, the trend with time will be real and may require a fix in the form of a
coarser sampling in the later phases of a cluster’s evolution.

3.3. Single stars with a mass spectrum

The dynamics of point-mass clusters becomes more entertaining once a spectrum of
masses is included. The most immediate effect is the segregation of stars (by mass)
through a process which Spitzer termed the asymptotic tendency towards equipartition
of kinetic energy: since this is driven by two-body interactions, one finds that segregation
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operates on the relaxation time t,., but for a multiplicative factor that accounts for the
spread in the mass spectrum of the point masses (Spitzer 1969; Meylan & Heggie 1997):

toeg ™ _m) _»p (“)3/2, (3.3)

max{m} pn \ g

where (...) denotes ensemble averaging, and overbar mass-averaged quantities, and I have
taken an estimate of ¢y, at the half-mass radius where the density p(r) is evaluated.
Note that ts, presumes that each mass element in the set {m;} is constant, so that one
expects the initially more massive stars to orbit closer to the centre than less massive
bodies. The hierarchy of masses would also define a hierarchy of ts, times, using the
same definition (3.3) but replacing the maximum mass by the one of interest.

In practice, an application of Equation (3.3) only makes sense if the segregation time
is shorter than the lifetime of the zero-age main sequence stars of the same initial mass
(metals are not taken into account for the moment). Several authors have bounced on
this observation to deduce that massive stars converging near the centre of a cluster
would inevitably dissipate tidal energy through their envelope or by a direct hit, coalesce
and then possibly form a black hole (e.g., Portegies Zwart & McMillan 2002; Portegies
Zwart et al. 2004; Giirkan et al. 2004; Freitag et al. 2006a,b; Ardi et al. 2008; Gaburov
et al. 2008). Therefore, mass segregation would provide a natural setup to trigger the
formation of very massive stars or even a black hole in any sufficiently rich and dense
cluster at birth (with a full spectrum of stellar masses). The implications for current and
future gravitational waves from inspiraling black holes and their detection are clear (see
Fregeau et al. 2006; Amaro—Seoane et al. 2007).

There are several issues related to the formation of a black hole and the migration of
stars in its neighbourhood. Spitzer (1969) realised that when two populations of stars
cohabit in a cluster, the trend towards equipartition leads to the more massive component
decoupling from the other, lighter component to form a (quasi-) self-bound core. This
occurs in two-population systems of masses mj, mo, with mo > my, whenever the ratio
of total mass in each group satisfies

My N
— — A4
r<a(m) (34

where the dimensionless constant 3 = 0.16. This relation goes a step further than Equa-
tion (3.3), which does not take into consideration the self-gravity of the most segregated
group. Now, in first instance one would like to know what degree of segregation a cluster
can reach, and whether Equation (3.4) will take it back to the evolutionary track of single-
mass clusters and core collapse (which involves the innermost region only). Gaburov et al.
(2009) and Glebbeek et al. (2009) pointed out that a star orbiting in the core of a dense
cluster may undergo sewveral collisions, leading to fusion once dissipative effects are taken
into account. Paramount to understanding how this will bear on observations is the state
of equipartition of the system at the onset of evolution (be it numerical modelling or
otherwise). Several observations point to clusters being segregated at birth (e.g., de Grijs
et al. 2002; McCrady et al. 2005), while theoretical studies now seem to favour segrega-
tion taking place at the very formation of a cluster (mainly by scattering of substructures:
McMillan et al. 2007; Allison et al. 2009; Vesperini et al. 2009). Baumgardt et al. (2008)
and Decressin et al. (2008) explore some observational consequences of early mass seg-
regation. A crucial result from theory is that mass segregation in clusters with rotation
proceeds in a nontrivial way, on a timescale that optimises angular-momentum diffusion
(see Kim et al. 2004 for details). Here, I mention an application to galactic nuclei where
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multimass models have drawn mainly from Monte Carlo simulations of dense environ-
ments (Fregeau et al. 2002; Freitag et al. 2006b), while N-body modelling has focussed
on the orbital migration of black-hole binaries or the interplay between single-star pop-
ulations and black-hole binaries (see Berentzen et al. 2009 for a recent update on this
problem). An important distinction with respect to stellar clusters is the inclusion of a
massive black hole in the calculations at rest at the centre of the system. The segregation
time (Equation 3.3) may yet be shorter than a massive-star lifetime, 7, owing to the high
density of light stars around the black hole (Freitag et al. 2006a). In that case, the mas-
sive stars will sink to the centre rapidly and hit the stalling radius (Merritt 2006), where
the orbits are quasi-Keplerian. At that point, little evolution was expected from star—star
scattering, an issue revisited recently by Alexander & Hopman (2009), who introduced
the dimensional parameter A (rewritten in the notation of Equation 3.4),

A = 4N, M2 /[N, M?(3 + My /M)).

A > 1 for self-scattering among massive stars, whereas A < 1 for a depleted sample of
massive stars scattering off background light stars (here of mass m;). An interpretation
of this result is that massive stars may yet enhance their own scattering to reach below
the stalling radius. It will be interesting to derive observational consequences of this
possibility since the profile of massive bodies will differ from that of background stars:
spatial gradients in spectroscopic indices would then indicate whether effectively A > 1
in nuclei (see Alexander & Hopman 2009 for a discussion of this possibility). A most
interesting test will be the Milky Way centre, where massive S stars are known to orbit
within the stalling radius, a notoriously difficult puzzle to solve using the principle of
stellar migration alone (see, e.g., Merritt et al. 2009 or Portegies Zwart et al. 2003 for
discussions of the migration of clusters with intermediate-mass black holes in their midst).

4. Dynamics with stellar evolution

There have been great advances since 2001 in coupling dynamics with stellar evolution
tracks, in large part driven by joint efforts such as MODEST (Hut 2003) and MUSE
(Portegies Zwart et al. 2009). Below. I revisit some outstanding issues and prospects for
future developments.

4.1. Chronicle of a dissolution foretold

The basic problem with coupling stellar evolution and dynamics is that the stars lose
mass at the same time as their luminosity varies rapidly, which makes the construction
of observables a tad more tricky (all the more so with small-ish clusters for which broad-
band photometry may be dominated by a few bright stars). At a more basic level, I note
that stellar mass loss induces a steady drift in the potential not accounted for in the
dynamics of fixed point-mass elements. To illustrate this, I write the fully dimensional
Newtonian-dynamics equations for a body of mass m, which is an explicit function of
time,

d

d—lt) =mo + mv = —mV¢(r,t), (4.1)
with p the linear momentum and other quantities assume their usual meaning. If I
now specialise to the case of spherical symmetry, I can write for the density p(r,t) ~
m(t)/m(0)p(r,0) if all stars have equal mass and the structure of the cluster has changed
little over ¢ ~ t.;, and m(t) is some decreasing function of time. The same will be true

of ¢(r,t) in terms of ¢(r,0) = ¢, as for the density because of Poisson’s equation. One
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may thus compute the rate of change of the binding energy of any star in the system as

E=1m¢+mv-Vo+mdo++mv-v+ 1mv2 ~ —1h [v2 — 2m(t)¢o} , (4.2)
2 2 m(0)

where the last step follows from the ‘frozen potential’ approximation. The key insight
from Equation (4.2) is that E > 0 for any initially bound orbit since 7 < 0 by hypothesis.
If we imagine that the cluster is so evolved that the self-similar core-collapse flow applies
approximately to the inner region, then it is easy to show that the binding energy of
the decoupled core W, o GM?/r. « (t. —t)*-3! drops to zero (along with its mass) at
a rate W, o< (t, —t)7%%9. But since the net effect of mass loss through stellar winds is
to pump in energy (dE/dt > 0), there must come a time at which the binding energy
of the core is positive for a finite core mass and radius. This argument is correct for
any orbit confined to a small region around the cluster centre when mass loss begins.
Since these are generally the most bound orbits, one is drawn to the conclusion that
stellar winds must severely disrupt the classical self-similar solution by applying brakes
to core contraction. Whether this occurs before the formation of binaries by three-body
encounters, which would also halt collapse, depends on the ratio ¢, /7 of cluster relaxation
time to main-sequence lifetime, 7. For the problem at hand, we must understand that
the answer is a strong function of the cluster’s initial conditions and stellar spectral type.
One thing is clear, though, the systematic inclusion of stellar evolution in the modelling
has had a deep impact on our understanding of these objects: below I track two areas that
have benefited much from this, mass estimation of extragalactic clusters, and dynamics
of multiple star populations.

4.2. Chronicles of a mass not so well foretold

The virial theorem is a powerful tool when applied to averaged properties of a self-
bound cluster (at least for clusters of age > 30 Myr or so; see Bastian & Goodwin 2006;
de Grijs & Parmentier 2007). What is less clear is whether one may presume that the
age of such young clusters inevitably is < ¢, or indeed the equipartition timescale tc,.
Theoretical modelling is a way of recovering a conversion factor (I will call it 1) from
mock spectrophotometric data of the projected models. Dimensional analysis alone gives

2
Tph Ty
GM’

where 7p,}, is some photometric radius, oy a spectroscopic one-dimensional velocity dis-
persion and M the total mass of the model. Under virial equilibrium conditions, one
finds n ~ 8 for a good range of King models. The catch is that while 7 may remain
constant for mass-weighted quantities, in reality flux-weighted quantities will evolve on
the same or a similar timescale as the massive stars for several important cases (see Boily
et al. 2005; Fleck et al. 2006 for a fuller exploration of single-star models). As a result,
1 may well vary by a factor of up to three in the case of single-star populations. Note
that the idea of converting light to mass is used by observers, for instance see McCrady
& Graham (2007) or Ostlin et al. (2007), yet theorists have been slow to convert their
model data into observable quantities. Some work has attempted to draw consequences
for full globular cluster mass functions by deconvolving the mass of model clusters of
a given initial mass and age (Fleck et al. 2006; Kruijssen & Portegies Zwart 2009), al-
though much remains to be done in this area given the oversimplification of the stellar
populations modelled. Yet, it is clear that n is a key parameter to evaluate as it may hold
the answer to cluster survival and the true mass function (de Grijs & Parmentier 2007).

n=
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4.3. Chronicled desperation, or dynamics with multiple stars...

One of the main reasons for the poor situation with 7 is surely that an analytical treat-
ment is impossible, and that high-resolution numerical models are expensive computa-
tionally, regardless of the method used. As a consequence, ensemble-averaged quantities
are even more problematic to secure. A notable difficulty is that multiple stars complicate
the issue even more.

Consider a cluster of mixed stellar populations, of single and binary stars. Surely,
if the binary population represents only a small percentage of all stars, it can carry
little of the total light and mass. In that case, one would treat binaries to zeroth order
as (on average) stars twice as massive as the others and derive observables from that
perspective. If, instead, it is the single stars that are a small minority, then a binary
population with mass-independent parameters (periods, eccentricity, etc.) would produce
the same segregation pattern as single-star models (since mean and maximum masses
both double, except that ts, would be even shorter for the same initial mass function
as single stars). A little thinking and some tests with random pairing of stars leads to a
fraction & 40% of binaries for an optimal bias in the parameter 1 over time. Kouwenhoven
& de Grijs (2008), Kouwenhoven et al. (2009) and Weidner et al. (2009) have studied this
issue quantitatively. These studies indicate that massive clusters (of mass ~ 10° Mg) are
robust to a bias in spectrophotometric measures because the velocity dispersion of the
binary centres of mass are significantly larger on the mean than the internal dispersion
of the binaries. This will break down for low-mass open clusters, since now the internal
dispersion is larger than that caused by the cluster’s self-gravity.

To pin down these issues more firmly will require a better understanding of cluster
properties at birth. Considering that protostars may condense on a timescale not shorter
than several x10° years, one cannot help but conclude that cluster and star forma-
tion censure each other, in the sense that protostars will trace out a significant number
of orbits in a dense cluster over their formation timescale. That this will imprint the
properties of the cluster (its mass profile and velocity dispersion) as well as the stellar
population (binary periods, destruction of loose binaries and the like) is clear, as was
shown by Wiersma et al. (2006), who concluded that pre-main-sequence stellar evolu-
tion in a cluster led to the depletion of the binary population as well as a shift in its
period distribution. Because it is doubtful whether a generic formation scenario applies
to all clusters (clumpy accretion for open clusters, e.g., McMillan et al. 2007; near-virial
equilibrium throughout the phase of star formation for more massive clusters, e.g., Tan
et al. 2006), one may have no choice but to cover as broad a range in initial conditions
as possible but aimed at modelling target clusters. Spectacular examples of this are the
study by Hurley et al. (2005) for the open cluster M67 using direct-integration N-body
models, and Giersz & Heggie (2009) and Heggie & Giersz (2008) for Monte Carlo models
of clusters M4 and NGC 6397. It is well worth stressing here that a winning strategy for
treating multiple stars in clusters (binaries, triples, quadruples, and so forth) may be in
the form of hybrid codes such as the Monte Carlo approach of Giersz & Spurzem (2000,
2004) which treats complex interactions with direct integration (no assumption on cross
sections). The caveat is that at least a few realisations will be needed for a meaningful
outcome. An important point which was made for single-star populations, that observ-
ables are best derived from light fluxes and not mass, applies here as well in the case
of binary and multiple stars: see Hurley (2007) for an application to estimates of the
core radius and a revised measure of expansion driven by binaries and intermediate-mass

black holes (e.g., Mackey et al. 2008).
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4.4. FEwvolved stellar populations: millisecond pulsars, multiple main sequences

The modelling of multiple stars is important as they open up a large array of collision
events that may lead to exotic stellar remnants, such as millisecond pulsars (see, e.g.,
Ransom 2008 for a review). The demographics of binary and multiple stars have at-
tracted much attention for a number of years, especially as regard their fraction in the
dense cores of clusters. This is were physical collisions with stars are more likely to occur.
Conventional wisdom would have primordial binaries ejected at high velocities through
gravitational recoil and it is worth mentioning once more that stellar interactions would
take place already in the protostellar stage of star formation, and that this phase ulti-
mately bears on the statistics of multiple stars (see Wiersma et al. 2006 for binary stars).
One would then infer a large fraction of primordial binaries so that at least a few percent
survive long enough in the core to form an exotic stellar remnant. It is very exciting to
find instead, with Hurley et al. (2007) using N-body simulations, that while binaries may
be ejected from the core, they may well have centre-of-mass velocities below the cluster’s
escape velocity. These binaries may then sink back towards the cluster core efficiently,
thanks to the shorter segregation time (Equation 3.3), and replenish the core. Overall,
the core binary fraction of ~ 20% remains nearly constant over time (although the core
itself will slowly shrink). I find comfort in the fact that this result was recently confirmed
by Fregeau et al. (2009), who rectified their earlier statistics published in Ivanova et al.
(2005) using an improved version of their Monte Carlo code. Thus, these two studies
and methods independently provide insight into core binary dynamics. This point may
appear banal to make, yet it is essential because one finds only partial overlap in the
parameter space that the methods each can cover.

To conclude, I should mention another big challenge to dynamicists and stellar evo-
lution experts, which illustrates perfectly the necessity of marrying these two fields and
this is the observations of multiple stellar main sequences in rich clusters (for resent up-
dates see, e.g., Piotto et al. 2007 [NGC 288] and Milone et al. 2009a [NGC 1851]). These
different main-sequence threads arise from systematic differences in CNO abundances
that are difficult to interpret through a universal stellar mass function and require self-
enrichment with a flattened high-mass stellar distribution function (d’Antona & Caloi
2004; but see Pflamm—Altenburg & Kroupa 2009 for an alternative view). So far, the
efficiency of self-enrichment was somewhat difficult to quantify, but recent developments
in models of slow winds from rapidly rotating stars (Decressin et al. 2007; d’Ercole et al.
2008) have made it more likely that a standard stellar mass function but with added
physics of rotating massive stars strongly suggest that the fine threads are, in fact, more
common than could have been anticipated (Milone et al. 2009b), a situation that will
keep cluster research buzzing for some time still.
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