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Probabilities of Concordance of Twins With 
Respect to Genetic Markers 
A General Formulation 

Seppo Sarna 

Department of Public Health Science, University of Helsinki 

The formulas needed in the determination of monozygosity in twin pairs using genetic 
markers are derived and presented. A general formula for the calculation of concordance 
probabilities independent of gene frequencies and allele number is derived, enabling 
either manual computation or computer programming for any Mendelian markers usable 
in twin zygosity diagnosis. 
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INTRODUCTION 

Twins have been much studied in the attempt to determine the relative importance of en­
vironmental and genetic effects on many human attributes. In twin studies there is an ob­
vious need to differentiate accurately between monozygotic (MZ) and dizygotic twins (DZ). 

When the individuals of a twin pair differ with respect to a mendelian trait, the pair is 
classified DZ. On the other hand, a pair without such a difference is MZ with only a certain 
probability. The availability of an increasing number of blood markers has made twin zyg­
osity diagnosis by blood markers a method of first choice. Formulas for the calculation of 
the probability of monozygosity and other closely related quantities have been developed 
by, inter alia, Smith and Penrose [5], Sutton et al [6], Gaines and Elston [2], Selvin [4], 
and Lykken [3]. 

Smith and Penrose [5] presented the basic formulas for the system of one dominant and 
one recessive allele, though tabulated results are given for some other types of systems. 
Selvin [4] described a more general method for the calculation of the concordance prob­
ability by phenotypes of a DZ twin pair. He presented formulas expressing some of the con­
ditional probabilities shown in Tables I—IV, in the Appendix. These formulas, however, are 
not sufficient for all systems, eg, the Rh system. Wyslouchowa and Orczykowska-Swiat-
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kowska [7] have presented the formulas for frequencies of different combinations of geno­
types of sibs, which were also applied to the Rh system. 

The basic formulas derived in this paper are not dependent on the markers used or on the 
gene frequencies of the population to be studied. The tables of Smith and Penrose [5], used 
by many investigators, are based on English gene frequencies. Gene frequencies vary, how­
ever, in different populations, resulting in different concordance probabilities, and thus the 
use of Smith and Penrose's tables in other populations can produce inaccuracies in classifi­
cation probabilities. As universally applicable formulas and algorithms have not been avail­
able, some authors have resorted to simplifications based on two allelic cases. 

Sutton et al [6] derived and presented some of the formulas needed for the calculation 
of probabilities of misclassification and a posteriori probabilities. Gaines and Elston [2] 
present some of the general principles for constructing an algorithm for calculating the 
ratio of the probability of dizygosity to the probability of monozygosity for cases with 
more than two alleles at a single locus, after presenting detailed formulas for two-allele 
cases. In this paper completely general formulae for the calculation of this ratio are derived 
and presented in a form that makes possible computer programming. In addition tables of 
formulae are also presented should manual calculation be more convenient in special cases. 
Both sets of formulae are presented and derived in a totally general form. 

GENERAL FORMULATION 

Probability of Concordance of a Dizygotic Twin Pair for One Multiallelic Locus 

In the following we will consider a random mating population operating under the Hardy-
Weinberglaw [1, pp 45—59]. Let us consider a set of blood markers M (Mj}j = \ and let 
A = (Aj}f= i be a set of alleles of an arbitrary blood marker M belonging to the set M. 
The combinations (An, Ai2), AJI, Ai2 £ A form all possible genotypes associated with the 
marker in question. Because the order of alleles in the pair (AJI, A*2) is irrelevant, the num­
ber of possible genotypes of the marker M is g = n(n + l)/2. For brevity we denote the 
genotypes with A;i AJ2- All the possible parental mating types associated with the marker 
M are then formed by combining the couples A;Aj in all possible ways. We denote them 
with Aji Aj2 X Ai3Ai4, where An, A,2, AJ3, and AJ4 are any elements of the set A. The 
number of all possible parental mating types of the marker M is g(g + l)/2. The frequen­
cies of the alleles Aj, i = 1 , . . . , n in each blood marker, are denoted by pj = P(Ai), i = 

1 , . . . , n, where 2 Pi = 1 • Assuming that random union of gametes follows from random 
i = 1 

mating, the genotype frequencies can be computed from the expansion of: 

(P, + • • • + Pn)2 0 ) 

Homozygote genotypes A;Aj are then found by frequency pf and correspondingly the fre­
quency of heterozygote genotypes AjAj is 2pjpj. 

Since these events are independent of each other, the probability of the mating AJIA}2 

X AJ3AJ4 is obtained as a product of the frequencies Pjj, p i 2 , PJ3, and pi 4 of the alleles 
Aji, AJ2, AJ3, and A{4, taking into account the number of combinations of allele pairs 
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(parental genotypes) for the alleles under consideration. Thus we obtain the following 
formula for the probability of the mating AfiAj2 X AJ3AJ4: 

P(AuAi2 X Ai3Ai4) = C(ilJi2,i3,i4) • 

PilPi2Pi3Pi4(l + 5fU 2)(l + Sf344), (2) 

where 

C(il,i2,i3,i4) = 1 + (5f1>i3 + 5f2>i4 - Sf1;i3S?2;i4)• (5f1>i4 + 6f2>i3 -Sf1 ; i 48?2 ; i 3) (3) 

and 

( 4 ) «fr,« 

that is, 

H 11. 

"ir,is 

, ifir 
, if ir 

= 1 -

= is, 
f is, 

" 5 i i , ir,is> where 5 ir^js is Kronecker's delta. The value of the coefficient 
C(il,i2,i3,i4) is 2 when the genotypes of the mating pairs are different; otherwise its value 
i s l . 

In order to compute the probability of the combination of the genotypes Ajj Aj2 and 
Aj3Aj4 for the sib pair in the specified mating type An Aj2 X Aj3Ai4, we must take into 
account the relations between pairs Ajj Aj2 and Aj3Aj4 and the relations of both of these 
pairs to the mating type in question. 

The relations between pairs Aji Aj2 and Aj3Aj4 can be taken into account using a co- -
efficient C(jl,j2,j3,j4) as in Equation (2). The relations between both of the pairs, AjiAj2, 
Aj3,Aj4, and the mating type, An A;2 X A,3Ai4, are derived from the fact that from this 
parental type only four kinds of genotype combinations are possible for children: Aji Aj3, 
AJI Aj4, A;2Aj3, and Aj2Aj4, one gene being inherited from the mother and one from the 
father. Each of these combinations is assumed to be equiprobable. 

The relations can be expressed in the form of logical expressions for the indexes of 
alleles. As an example, we take the relations fpr AjiAj2: 

((il = j l ) A (i3 = j2)) v ((il =j2) A 03 = j l)) 

((il = j l ) A (i4 = j2)) v ((il = j2) A (i4 = jl)) 

((i2 = j l ) A (i3 = j2)) v (02 = j2) A (i3 = jl)) 

(02 = j l ) A (i4 = j2)) v ((12 = j2) A (i4 = jl)) 

When all of these expressions are false, the corresponding probability is zero. Thus the 
parental type A\\ A;2 X Aj3Aj4 is impossible for the genotype combination Aji Aj2. The 
probability increases from zero to one by increments of 1/4 when any of the expressions 
becomes true. The corresponding relations for the other pair Aj3Aj4 are obtained by sub­
stituting jl and j2 by j3 and j4. These logical expressions can be transformed into the form 
of probabilities with aid of Kronecker delta symbols 5jris defined above. 

So we obtain the following formula for the probability of the pair Aji Aj2 n Aj3Aj4 in 
the mating m' = AnAi2 X Aj3A;4: 
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P(AjlAj2 n Aj3Aj4 lm') = CQ1 J2j3j4) • 

r 2 
Ml,i2 k = i3, 

5i,jl5k,j28i,j28k,jl)/4' 

C 2 (Si,j35k,j4 
= il,i2 k = i3,i4 J J 

Si,j3Sk,j4Si,j45k>j3)/4 (5) 

| 5 i i 4 2 k W 8 u i 6 k J 2 + 6lJ28kJI 

2 „ 2 . (6i,j35k,j4 + 5i(j48k,j3 
i = il,i2 k = i3,i4 

where 

C(jl,j2,j3,j4) = 1 + (5j*j3 +5*2)j4 - 5jl,j35j2j4)" (5fl,j4 + 5j*2,j3 ~ 5jl,j45j*2,j3) 

The conditional probability for a given parental mating type is then obtained as a product 
of the probability of the mating, given by Equation (2), and the probability of the com­
bination of genotypes, Equation (5), of the sib pair (DZ twin pair): 

Pm(AjiAj2 n Aj3Aj4; DZ) = P(m') • P(AjiAj2 n Aj3Aj4 lm') (6) 

The total conditional probability in a given blood system is the sum of the conditional 
probabilities, Equation (6), of all possible parental mating types: 

g(g+D/2 
P(Aj lAj 2nAj 3Aj4;DZ)= 2 Pm(AjlAj2 n Aj3Aj4;DZ) (7) 

m = 1 

The above formulas can be used in the construction of an algorithm, taking into account 
all possible parental mating types for any number of alleles at a locus. Thus, a generally 
applicable computer program can be prepared. 

Computation of Probability of Concordance of DZ Pairs, for Known Genetic Markers 

The computation of the probability of concordance can alternatively be done by applying 
knowledge of the genetic properties of the markers to be used. At any one time a maxi­
mum of four different alleles can form the genotype combinations of the sib pair. As the 
intrapair permutation of alleles and interpair permutation of genotypes does not affect 
the genotypes, the greatest number of types of allelic combinations that can be formed 
is seven. 

In Tables I—VII of the Appendix the formulas for the conditional probabilities are 
derived for the seven different combinations of genotypes of sib pairs. For known genetic 
markers, the parental mating types are known. Therefore, a limited number of combina­
tions of the equations from those given in the tables below suffice for the calculation of 
concordance probability. Formulas in Tables I—V are used when considering the concord­
ance probabilities of phenotypes in the blood markers of sib pairs. Formulas in Tables VI 
and VII cannot be used, as concordance between the phenotypes of the sib pairs is never 
found. 

Computation of Phenotype Concordance Probabilities and Discriminating Powers 

Concordance of genetic markers is determined by concordance of phenotypes. Thus, the 
correspondence of genotypes and phenotypes must be known, as two or more genotypes 

https://doi.org/10.1017/S0001566000009156 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000009156


Twin Concordance Probabilities and Genetic Markers 129 

may be expressed as the same phenotype. This is determined by the laws of inheritance. 
For each marker the laws of inheritance may be expressed in the form of symmetrical 
(n X n) matrix H(i,j), where each row represents the first allele and each column the 
second allele. Let S = ( l , 2 , . . . , q) be the set of indexes of all possible phenotypes of the 
marker M. With aid of the matrix H its genotype index pair (i,j) can be transformed into 
the corresponding phenotype index s by defining: 

hi)j = s ; s eS , i , j = 1,. . . , n (8) 

Let us denote the phenotype of the genotype AjAj with As = AiAj. Let AjiAj2 and Aj3Aj4 
be the genotypes of DZ twins. If 

hji,j2=hj3,j4 = s, s S S (9) 

the pairs are phenotypically identical. When relation (9) is true the DZ twins are said to be 
concordant with respect to the marker M. The conditional probability associated with 
this event will be called concordance probability and is denoted by P(AS n As; DZ). 

When calculating the probabihty of concordance there are two situations: a) parental 
phenotypes are known; b) parental phenotypes are unknown. The situation in which the 
parental phenotypes are known will be discussed briefly before presentation of the situa­
tion where parental phenotypes are unknown. 

Parental phenotypes known. The calculation is very simple if the parental genotypes 
can be derived for the markers used, ie, each phenotype As, s 6 S has one and only one 
corresponding genotype AjAj. In this case the probability of the genotype of the sib pair 
for a specific parental mating type An AJ2 X AJ3AJ4 is used. These probabilities are given 
by Equation (5) and expressed in column 3 of Tables I—V. 

When there are two or more genotypes corresponding to a given parental phenotype, 
the probabihty of the genotype combination of the sib pair for the parental mating has to 
be weighted by the relative frequencies of all the genotypes that produce the measured 
phenotype. As weights we must use the probability of the mating (column 2 in Tables 
I—V) of each parental genotypic mating type expressed by Equation (2). The weights 
have to be standardized to sum to unity. 

Parental phenotypes unknown. When the parental phenotypes are unknown the proba­
bihty of concordance of a DZ twin pair is calculated assuming panmixia and using the 
population gene frequencies of the markers. The calculation of the probability of con­
cordance needs knowledge of the alleles of the system, the laws of inheritance, and the 
phenotypes that the alleles can form. This calculation is performed according to the prin­
ciples described below. 

For each phenotype As, s G S, all possible genotypes AjAj, i, j G Ii = ( l , . . . , n}, that 
fulfil the condition 

AjAj = As (10) 

are formed. Let us denote the number of these genotypes by qs. As mentioned before, 
intrapair permutations of alleles and interpair permutation of genotypes are irrelevant 
in this context. Therefore, the number of genotype combinations for the phenotype As 

becomes qs(qs + l)/2. 

https://doi.org/10.1017/S0001566000009156 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000009156


130 Sarna 

Let us denote the set of index pairs (i, j)of all genotypes that fulfil the condition (10) 
with Gs = {(i,j)}. Let Aji Aj2 and Aj3 Aj4 be any two of these and denote the set of geno­
type pair indexes with Cs = |(jl,j2), (j3,j4)}. For each of these combinations we compute 
the probability: 

PCAjiA^nAjsAj^DZ) (11) 

selecting the appropriate formula from Tables I—V or using the general algorithm based on 
Equations (2) and (5). 

As each combination of phenotypically concordant pairs of genotypes is independent, 
the probability of concordance for the DZ pair with respect to the specific phenotype As 

is obtained by summing over the set Cs the probabilities (11) to obtain: 

P(AS H AS;DZ) = 2 P(Aj!Aj2 O Aj3Aj4;DZ), s e S (12) 

Finally, we obtain the total concordance probability for a DZ pair with respect to the 
marker M: 

PM(Conc;DZ)= 2 2 P(AjlAj2 n Aj3Aj4) (13) 
s= 1 Cs 

The discriminating power of the marker system M is defined as 

QM = l -PM(Conc;DZ) (14) 

The computation of the relative chances of dizygosity and the probabilities of misclassi-
fication then follows general Bayesian principles as presented by, for example, Sutton 
et al [6]. 

CONCLUDING REMARKS 

Mathematical formulas expressing concordance probabilities with respect to blood 
markers were presented in this paper. The basic formulas are applicable to any Mendelian 
marker, whose laws of inheritance are known. It was assumed that these markers obey 
the Hardy-Weinberg law and that the markers are sex-independent, ie, markers with loci 
on sex chromosomes are excluded. Based on these, a completely general algorithm can be 
constructed that is applicable to any mendelian marker satisfying the assumptions made. 
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APPENDIX 

Derivation of Formulas for Computation of Concordance Probability of DZ Pairs for All 
Different Allelic Combinations 

TABLE 1. Derivation of Formula for Probability PfAjAj n AJAJ; DZ) Where A; Is Any Allele 
Belonging to the Set A and K is Collective Symbol for All Other Alleles 

Probability of 
Parental Probability AJAJOAJAJ pair 
mating type of mating in the mating Pm(AjAj n AJAJ; DZ) 

(1) AjAj X AiAi pj4 1 Pi4 

(2)AjAiXAiK 4 P i
3 ( l - P j ) i-- i = -4 P i M - P i ) 

(3)AiKxAiK 4 P i
J ( l - P i )

2 * •* = * i P i 2 d - P i ) 2 

-

P(AjAinAiAi;DZ)= 2 Pm(-) = ,Pi2d + Pi)2 

m= 1 

TABLE 2. Derivation of Formula for Probability PfAjAj n AjA} DZ) Where Aj, Aj <EA; K' IS 
Collective Symbol for All Other Alleles of the Set A Than Aj andAj 

Probability of 
Parental Parental AjAj n AjA; pair 
mating type mating type in the mating Pm(AjAj n AjAjjDZ) 

(1) AjAj X AiAj 4pi
3

Pj 2 • * • * = * 2Pi
3pj 

(2) AiAj X AjAj 4Pi
2pj2 2-\-\ = \ P i

2pj2 

(3) AjK1 X AiAj 8Pi
2pj(l - Pi - Pj) 2-$--i = i PiaPjd - Pi - Pj) 

3 
P(AiAinAiAj;DZ)= 2 Pm(-) = Pi2Pjd + Pi) 

m= 1 

TABLE 3. Derivation of Formula for Probability P(AtAj n AjA} DZ) 

Parental 
mating type 

(1) AjAi X AjAj 

(2) A4Ai X AjAj 
(3) AjAj X ASAj 
(4) AjAj X AjAj 
(5) A4Ai X AjK' 
(6) AjAj X AjK'. 
(7) AjAj X AiK' 
(8) A}Aj X AjK' 
(9) AiK' X AjK' 

P(AiAj n AjAj; DZ) = 

Probability 
of mating 

4pi
3pj 

2pi
2Pj2 

4pi*Pj2 

4piPj3 

4pi2Pj(l-Pi -
4piPj2(l - Pi -
8pi2Pj(l - Pi -
8piPj2d - Pi -
SPiPjd - Pi -

9 

= 2 Pm(-) = iPiPjd 
m = l 

Pj) 
-Pj) 
-Pj) 
-Pj) 
Pj)2 

+ Pi + Pj 

Probability of 
AjA; n AjAj pair 
in the mating 

7. ' 1 = 1 
1 
i . i - i 
T I T 
1 . 1 - 1 

1 . 1 - 1 
1 T 1 1 . 1 - 1 
? 7 7 
1 . 1 - 1 
I T T ! 
1 . 1 - 1 

1 . 1 - 1 
1 1 TS 

f 2PiPj) 

Pm(AiAjnAiAj;DZ) 

Pi"Pj 
2pi2Pj2 

Pi2Pj2 

PiPj3 . 
Pi2Pj(l - Pi - Pj) 
PiPj2(l - Pi - Pj) 
i P i 2 P j d - P i - P j ) 

7PiPj2d - Pi - Pj) 
IPiPjd - Pi - Pj)2 
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TABLE 4. Derivation of Formula for Probability PfAjAjCiAjAfcDZ) 

Parental 
mating type 

(DAjAjX AjAk 

(2) AiK X AjAk 

(3) AjAj X AjAk 

Probability 
of mating 

4Pi2PjPk 
8PiPjPk(l - Pi) 
8Pi*PjPk 

Probability of 
AjA; nAjAk pair 
in the mating 

9 . 1 . 1 - 1 
z 1 T 1 
9 . 1 . 1 = 1 

9 . 1 . 1 = 1 
• ' I T T 

Pm(AiAjnAiA k ;DZ) 

2Pi2PjPk 
PiPjPkCl " Pi) 
Pi2PjPk 

3 

P(AiAjnAjAk;DZ)= 2 Pm(-) = PiPjPkd + 2Pi) 
m = 1 

TABLE 5. Derivation of Formula for Probability PfAjAj n A^Af DZ) 

Parental 
mating type 

(1) AjAk X AjA! 
(2) A{Ai X AjAk 

Probability 
of mating 

SPiPjPkPl 
SPiPjPkPl 

Probability of 
AjAj n AkAj pair 
in the mating 

9 . 1 . 1 = 1 
*• S, ? 1 
9 . 1 . 1 - 1 

P m (AiAjnA k Ai ;DZ) 

PiPjPkPl 
PiPjPkPl 

2 
P(AiAj n AkAi; DZ) = 2 P m ( ) = 2PipjPkPi 

m = 1 

TABLE 6. Derivation of Formula for Probability P(A;Aj nAjA^DZ) 

Parental Probability 
mating type of mating 

AjAj X AjAk Spi^jPk 

Probability of 
AjAj n AjAk ' n 

the mating 

9 . 1 . 1 = 1 
L T T S 

TABLE 7. Derivation of Formula for Probability PfAjAjd AjAfDZ) 

Parental Probability 
mating type of mating 

AiAj X AjAj 4pi2
Pj J 

Probability of 
AjAj n AjAj in 
the mating 

9 . 1 . 1 = 1 
' % 1 S 

P(AjAjn AjAk;DZ) 

Pi2PjPk 

P(AiAj n AjAj; DZ) 

4Pi2Pj2 
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