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Abstract

More than half a century ago, it was proved that the increasing failure rate (IFR) prop-
erty is preserved under the formation of k-out-of-n systems (order statistics) when
the lifetimes of the components are independent and have a common absolutely con-
tinuous distribution function. However, this property has not yet been proved in the
discrete case. Here we give a proof based on the log-concavity property of the func-
tion f (ex). Furthermore, we extend this property to general distribution functions and
general coherent systems under some conditions.
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1. Introduction

A k-out-of-n system with n components functions if at least k components work. Parallel and
series systems are particular cases of such systems corresponding to k = 1 and k = n, respec-
tively. These systems play an important role in reliability theory and life testing with several
practical applications. The lifetime of such a system is described by the (n − k + 1)th-order
statistic in a sample of size n (or the corresponding ordered component lifetime). For many
years, different properties of such systems have been studied assuming that the lifetimes of the
components are independent and identically distributed (i.i.d.) and continuously distributed.
For thorough details of these concepts, we refer the readers to [5], [17], [18], [20], [26] and the
references therein.

It is well known that the monotonicity property for the failure (or hazard) rate function of
a life distribution plays an important role in modeling failure time data since it describes the
ageing process. Therefore the identification and properties of increasing failure rate (IFR) and
decreasing failure rate (DFR) distributions have been extensively studied in the literature. In
the continuous case, the IFR property is equivalent to possessing ordered residual lifetimes, in
which the residual lifetime of a younger used unit is more reliable than the residual lifetime
of any older one. Hence the preservation of this natural property in systems is to be expected.
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Preservation of the IFR property in discrete models 645

The preservation of the IFR ageing class under the formation of k-out-of-n systems with i.i.d.
components with a common absolutely continuous distribution function can be traced back to
the 1963 paper by Esary and Proschan [9]. However, the DFR class is not preserved except in
the case of series systems (see [20, p. 122]).

The preservation of the IFR class in k-out-of-n systems with i.i.d. components cannot be
extended to coherent systems with different structures. In the i.i.d. continuous case, this preser-
vation will depend on the structure of the system. In this sense, a sufficient condition for that
preservation based on the signature of the system was obtained by Samaniego [25]. More
recently, a necessary and sufficient condition was obtained in [21] (see also Theorem 4.1 of
[20]). Surprisingly, there exist coherent systems with i.i.d. components that do not preserve the
IFR property (see e.g. Example 4.1 of [20]). The condition provided in [21] can also be applied
to systems with dependent and identically distributed (i.d.) component lifetimes. In this case,
the preservation will also depend on the copula that describes the dependence between the
component lifetimes.

As the IFR property was not preserved in all the coherent systems with i.i.d. components,
another ageing class was considered, the new better than used (NBU) property, which just
assumes that new units are always more reliable than used units (of any age). In this sense
Esary et al. [10] (see also [5, p. 85] or [20, p. 131]) proved that the NBU ageing class is
preserved in all the coherent systems with independent components. The same holds for the
class of increasing failure rate average (IFRA) distributions. Also, Block and Savits [6] proved
that the IFRA class is closed under convolution. Another relevant ageing class is the decreasing
mean residual life (DMRL) property. Abouammoh and El-Neweihi [1] proved that this class
is preserved under the formation of parallel systems with i.i.d. components. This result was
extended in [19] given sufficient conditions for the preservation of DMRL/IMRL classes in
systems with i.d. components. Preservation properties for NBUE/NWUE classes can be seen
in [15] and [16]. Recent preservation results for systems under the exponential distribution
were obtained in [24].

In another direction, discrete failure rates arise in several common situations in reliability
theory where clock time is not the best scale to describe lifetimes. For example, in weapons
reliability, the number of rounds fixed until failure is more important than the age at the time of
failure. However, for the discrete case, the preservation of the IFR and DFR properties is not
straightforward because of the complexity of the discrete failure rate. Some properties on age-
ing notions and order statistics in the discrete case can be found in [2], [7], [8], [11] and [14].

In the discrete case, Roy and Gupta [23] proved that IFRA ageing class is preserved in
coherent systems with independent components. This property also holds in the discrete case
for the NBU ageing class (see Proposition 4.1 of [20]). However, the IFR closure property has
not yet been proved in the discrete case.

In this article we prove that the IFR class is preserved in k-out-of-n systems with i.i.d.
components with a common discrete distribution. The proof is based on a characterization
of log-concavity of the function f (ex). This method motivated us to extend the result to
general coherent systems having i.d. components with discrete distributions or with general
distributions.

The rest of the paper is organized as follows. In Section 2 we include definitions and some
preliminary results. The proof for the discrete case is in Section 3. The extension for arbitrary
distributions and systems is presented in Section 4.
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2. Preliminaries

Throughout the paper, increasing and decreasing mean non-decreasing and non-increasing,
respectively. Furthermore, ratios, derivatives, and conditional distributions are assumed to be
well-defined whenever they are used.

In this section we review some notions related to our main results (see [5]). First we give
the following definition extracted from [3].

Definition 1. Let f : R �−→R+ be a Lebesgue-measurable function. Suppose

{x : f (x)> 0} = (l, u) ⊆R.

The function f is said to be log-concave in (l, u) if

f (αx + (1 − α)y) ≥ [f (x)]α[f (y)]1−α

for all x, y ∈ (l, u) and α ∈ (0, 1).

With this definition, f is log-concave if and only if log f is concave. Moreover, it is known
(see e.g. [3]) that if the function f is continuous, then this definition is equivalent to

f (x1 + δ)f (x2) ≥ f (x1)f (x2 + δ) (1)

for all δ ≥ 0 and all l ≤ x1 ≤ x2 ≤ x2 + δ ≤ u.

Definition 2. Let X and Y be subsets of the real line R. A function f : X ×Y →R is said to
be totally positive of order 2 (TP2) if

f (x1, y1)f (x2, y2) − f (x1, y2)f (x2, y1) ≥ 0 (2)

for all x1, x2 ∈X and all y1, y2 ∈Y such that x1 ≤ x2 and y1 ≤ y2.

In the next lemma we give a useful characterization for log-concavity of the function f (ex).

Lemma 1. Let f : R+ �−→R+ be a Lebesgue-measurable function. Suppose

{x : f (x)> 0} = (l, u) ⊆R+.

Then f (ex) is log-concave in (log l, log u) ⊆R if and only if

f (x)f (y) ≥ f (x/ε)f (yε) (3)

for all ε ≥ 1 and all l ≤ x ≤ y ≤ yε ≤ u.

Proof. (Necessity) In [12] it is pointed out that f (ex) is log-concave if and only if f (s/t) is
TP2 in (s, t) ∈R+ ×R+. So, from (2), f (ex) is log-concave in (log l, log u) if and only if

f

(
s1

t1

)
f

(
s2

t2

)
≥ f

(
s1

t2

)
f

(
s2

t1

)

for any 0< s1 ≤ s2 and 0< t1 ≤ t2 such that these values are inside the interval (log l, log u).
Now, for any ε ≥ 1 such that l ≤ x ≤ y ≤ yε ≤ u, consider the following values: s1 = x, s2 = εy,
t1 = 1, and t2 = ε. Thus the desired result follows since s1 = x ≤ y ≤ εy = s2 and t1 = 1 ≤ ε =
t2.
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(Sufficiency) Let us assume now that (3) holds and let g(x) = log (f (ex)). Since f is
Lebesgue-measurable, hence so is g. Letting x = y in inequality (3), we have

(f (y))2 ≥ f (y/ε)f (yε)

for all ε ≥ 1 such that l ≤ y ≤ yε ≤ u. Taking y = ex and ε = ec, we get

2g(x) ≥ g(x − c) + g(x + c)

for all real numbers x and c such that c> 0 and log l ≤ x − c ≤ x + c ≤ log u. Let a = x − c and
b = x + c. Then

g

(
a + b

2

)
≥ g(a) + g(b)

2

for all real numbers a and b. So, g is mid-concave (for the definition and properties of mid-
concavity, we refer the readers to [22]). As g is mid-concave and Lebesgue-measurable, then
it is continuous (see e.g. [22, p. 221]). Now, since mid-concavity with continuity implies
concavity, g is concave and thus f (ex) is log-concave. �

Let X1, . . . , Xn be a random sample of size n formed with i.i.d. random variables with a
common cumulative distribution function (CDF) F(x) = P(X ≤ x) and survival (or reliability)
function (SF) F̄(x) = P(X > x). We denote the SF of its order statistics X1:n ≤ · · · ≤ Xn:n by
F̄k:n for k = 1, . . . , n. From expression (2.2.15) in [4], the SF of the kth-order statistic can be
written as F̄k:n(x) = Gk:n(F̄(x)), where

Gk:n(x) = k

(
n

k

) ∫ x

0
yn−k(1 − y)k−1dy (4)

is the CDF of a beta distribution. To get the proof of our main result, we would also need the
following technical lemma.

Lemma 2. If Gk:n is defined as in (4), then Gk:n(ex) is log-concave in (−∞, 0) for k = 1, . . . , n.

Proof. The function Gk:n(ex) is log-concave in (−∞, 0) if and only if ψ(x) = log Gk:n(ex) is
concave in (−∞, 0). This property holds if

ψ ′(x) = exgk:n(ex)

Gk:n(ex)
= α(ex)

is decreasing in (−∞, 0), where

gk:n(x) = G′
k:n(x) = k

(
n

k

)
xn−k(1 − x)k−1 (5)

and α(u) = ugk:n(u)/Gk:n(u). A straightforward calculation shows that the function α is
decreasing in (0,1) for k = 1, . . . , n. �

Finally we include here the basic definitions and properties of systems needed for our
results. For more properties we refer the reader to [5] and [20]. A system with n components is
a Boolean function φ : {0, 1}n → {0, 1}, where xi = 1 (resp. 0) indicates that the ith component
works (does not work) and where the state of the system φ(x1, . . . , xn) just depends on the
state of these components. A system is semi-coherent if φ is increasing, φ(0, . . . , 0) = 0 and
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φ(1, . . . , 1) = 1. A system is coherent if φ is increasing and it is strictly increasing in each
variable for at least one point (see [5]).

Another well-known property is that the lifetime T of a system is also a function of the life-
times X1, . . . , Xn of its components. Moreover, if these component lifetimes have a common
SF function F̄(t) = P(Xi > t), then the system SF F̄T (t) = P(T > t) can be written as (see e.g.
Theorem 2.11 of [20])

F̄T (t) = q̄(F̄(t)) (6)

for all t, where q̄ : [0, 1] → [0, 1] is a distortion function, that is, it is continuous, increasing,
and satisfies q̄(0) = 0 and q̄(1) = 1. This function q̄ does not depend on F̄. In Theorem 4.1
of [20] it is proved that if F̄ is absolutely continuous and q̄ is differentiable in (0,1), then
the IFR (DFR) class is preserved if and only if the function α(u) = uq̄′(u)/q̄(u) is decreasing
(increasing) in (0,1). It can be proved that this alpha function is decreasing for T = Xk:n and
i.i.d. components, that is, the IFR class is preserved under the formation of k-out-of-n in the
i.i.d. continuous case. However, the DFR class is not preserved in these systems except in the
case of series systems.

3. Preservation of the IFR class in the discrete case

Let us suppose in this section that X is a discrete random variable with ordered support SX =
{xi}i∈I , with xi < xi+1 for all i, i + 1 ∈ I and probability mass function (PMF) p(x) = P(X = x).
The failure rate of a discrete distribution is (see [13, p. 45])

h(xi) = P(X = xi | X ≥ xi) = P(X = xi)

P(X ≥ xi)
= p(xi)

F̄(xi−1)
= 1 − F̄(xi)

F̄(xi−1)
, i ∈ I.

Then we say that X is IFR (DFR) if and only if h(xi) is increasing (decreasing) in i, which is
equivalent to F̄(xi)/F̄(xi−1) is decreasing (increasing) in i. This property holds if and only if

(F̄(xi))
2 ≥ ( ≤ )F̄(xi−1)F̄(xi+1) for all i − 1, i, i + 1 ∈ I.

Let us now study the preservation of the IFR/DFR ageing classes in k-out-of-n systems. First
we note that it is not difficult to see that the DFR class is not preserved under the formation of
k-out-of-n systems in the discrete case by constructing a parallel system with two components
having a common geometric distribution which are both DFR and IFR. Both IFR and DFR
classes are closed under the formation of series systems with n i.i.d. components because their
survival functions are (F̄(x))n for n = 1, 2, . . . .

Now we focus on the preservation of the IFR property in the discrete case.

Theorem 1. Let X be a discrete random variable with ordered support {xi}i∈I . Let X1, . . . , Xn

be independent random variables with the same distribution as X. If X is IFR, then Xk:n is IFR
for k = 1, . . . , n.

Proof. We first note that X is IFR if and only if

F̄(xi)F̄(xi) ≥ F̄(xi−1)F̄(xi+1) (7)

for all i − 1, i, i + 1 ∈ I. Analogously, Xk:n is IFR if and only if

Gk:n(F̄(xi))Gk:n(F̄(xi)) ≥ Gk:n(F̄(xi−1))Gk:n(F̄(xi+1)) (8)
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for all i − 1, i, i + 1 ∈ I, where Gk:n is the function defined in (4). Then, from Lemmas 1 and
2, we have that

Gk:n(x)Gk:n(y) ≥ Gk:n(x/ε)Gk:n(yε) (9)

holds for any ε ≥ 1 and any 0< x ≤ y ≤ yε < 1. Hence, from (9) with x = y = F̄(xi) and ε =
F̄(xi)/F̄(xi+1) ≥ 1, we get

Gk:n(F̄(xi))Gk:n(F̄(xi)) ≥ Gk:n(F̄(xi+1))Gk:n

(
F̄2(xi)

F̄(xi+1)

)
.

Finally, by using (7) and the fact that Gk:n is non-negative and increasing, we deduce that (8)
holds, which concludes the proof. �

The same technique could be applied to other system structures with i.i.d. components or to
the case of dependent i.d. components when the common distribution is a discrete distribution
F̄ with ordered support {xi}i∈I by using (6). Thus it can be proved that the IFR class is preserved
when the function α defined in the preceding section (by using the distortion function of the
system) is decreasing. We include a general result in this sense and an example in the following
section.

4. General case

First we give a general definition for the IFR ageing class.

Definition 3. Let X be a random variable with SF F̄ and left-hand end point of the support
�= inf{x : F̄(x)< 1}. Then we say that X (or F̄) is IFR if

F̄(z + s)F̄(t) ≥ F̄(z + t)F̄(s) for all �≤ s ≤ t, z ≥ 0. (10)

Note that if F̄(t)> 0, then the condition in (10) implies that Xs ≥ST Xt for all s ≤ t, where
≥ST denotes the usual stochastic order (see Chapter 1 of [26]) and where Xz = (X − z | X > z)
represents the residual lifetime of X at age z. This is the property used in Theorem 1.A.30 of
[26] to characterize the IFR class in the continuous case. Thus the meaning of the IFR property
is clear: the younger units are ST-better (more reliable) than the older ones. It also implies that
if X has a discrete distribution, then its hazard rate function is increasing in the mass points
(see Section 3). If X has an absolutely continuous distribution, then it implies that F̄ is log-
concave and that there exists a probability density function such that its hazard rate function
is increasing. Note that the condition ‘F̄ is log-concave’ stated in [26, p. 1] cannot be used in
discrete models. However, the general definition given in (10) could be applied to any kind of
model (for example, in mixtures of discrete and continuous models). It may also be applied to
random variables that can take negative values.

However, we must note that the DFR ageing class cannot be extended to the general case
by reversing the inequality in (10). The reason is that if X has a discrete distribution and xi

and xi+1 are two consecutive mass points, then Xt is ST-strictly decreasing in t in the interval
(xi, xi+1). For example, the geometric distribution does not satisfy this reverse inequality. So
the reverse inequality in (10) can only be used in the continuous case.

Recall from (6) that if T is the lifetime of a semi-coherent system with i.d. components, then
the system SF function can be obtained as F̄T (t) = q̄(F̄(t)), where q̄ is a distortion function. If
q̄ is strictly increasing and differentiable, then we can state the following general result for

https://doi.org/10.1017/jpr.2023.63 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.63


650 M. ALIMOHAMMADI AND J. NAVARRO

the preservation of the IFR class in semi-coherent systems with i.d. components. Note that
this result can also be applied to general distorted distributions and for random variables with
negative values.

Theorem 2. Let T be the lifetime of a semi-coherent system with i.d. component lifetimes
X1, . . . , Xn. Let us assume that its distortion function q̄ in (6) is differentiable in (0,1) and
let α(u) = uq̄′(u)/q̄(u) for u ∈ (0, 1). Then the following conditions are equivalent.

(i) The IFR ageing property is preserved (that is, if X1 is IFR, then T is IFR).

(ii) The function α is decreasing in (0,1).

Proof. (i) ⇒ (ii) If X1 has a standard exponential model, then it is absolutely continuous and
IFR and, from (i), so is T . Hence its hazard rate hT is increasing. As the system SF function is
F̄T (t) = q̄(F̄(t)) = q̄(e−t) for all t ≥ 0, then its probability density function can be obtained as

fT (t) = −F̄′
T (t) = q̄′(F̄(t))f (t) = q̄′(e−t)e−t

for all t ≥ 0, where f (t) = −F̄′(t) = e−t is the probability density function of the standard
exponential. Hence the system hazard rate function is

hT (t) = fT (t)

F̄T (t)
= α(e−t)

for all t ≥ 0. Then α(u) = hT (− log (u)) for u ∈ (0, 1). Therefore, as hT is increasing in (0,∞),
α is decreasing in (0,1).

(i) ⇐ (ii) Now we assume that α is decreasing. Then we consider the function ψ(x) =
log q̄(ex) for x ∈ (−∞, 0). Its derivative is

ψ ′(x) = exq̄′(ex)

q̄(ex)
= α(ex).

Hence ψ ′ is decreasing in (−∞, 0). Therefore ψ is concave and q̄(ex) is log-concave. So we
can apply Lemma 2 to the function q̄ in the interval (0,1), that is,

q̄(x)q̄(y) ≥ q̄(x/ε)q̄(yε) (11)

for any ε ≥ 1 such that 0< x ≤ y ≤ yε < 1. If X is IFR with left-hand end point of the support
�, �≤ s ≤ t and z ≥ 0, then

F̄(z + s)F̄(t) ≥ F̄(z + t)F̄(s).

From (6), as q̄ is strictly increasing, we find that the left-hand end point of the support of T
satisfies �T = �.

Then we have two options. If t ≥ z + s, then F̄(t) ≤ F̄(z + s). Hence we apply inequality (11)
with x = F̄(t), y = F̄(z + s), and ε = F̄(s)/F̄(z + s) ≥ 1, obtaining

q̄(F̄(t))q̄(F̄(z + s)) ≥ q̄

(
F̄(t)F̄(z + s)

F̄(s)

)
q̄(F̄(s))

for s such that F̄(s)> 0.
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The other option is when t< z + s, then F̄(t) ≥ F̄(z + s). Hence we apply (11) with y = F̄(t),
x = F̄(z + s), and ε = F̄(s)/F̄(t) ≥ 1, obtaining

q̄(F̄(t))q̄(F̄(z + s)) ≥ q̄

(
F̄(t)F̄(z + s)

F̄(s)

)
q̄(F̄(s))

for s such that F̄(s)> 0.
Finally, by using the fact that X is IFR and q̄ is increasing, in both options we get

q̄(F̄(t))q̄(F̄(z + s)) ≥ q̄(F̄(z + t))q̄(F̄(s))

for all �≤ s ≤ t and z ≥ 0. Note that this inequality also holds if F̄(s) = 0, since it implies that
F̄(z + s) = 0 for all z ≥ 0. �

Note that the preceding result can be applied to systems with dependent or independent
components when they have a common distribution. This distribution can be continuous, dis-
crete, or a mixture. In the preceding section we mentioned that the function α is always
decreasing for k-out-of-n systems with i.i.d. components. Hence, from the preceding theo-
rem, the IFR class is always preserved in k-out-of-n systems with i.i.d. components having a
common general reliability function F̄.

However, it should be noted that the IFR property is not preserved in k-out-of-n systems
when the components are dependent and i.d. Thus Example 4.3 of [20] proves that the IFR
class is not preserved in X1:2 when the components are dependent with a Clayton copula since
α is strictly increasing.

Example 4.2 of [20] proves that the IFR class can be preserved in other systems (i.e. systems
without a k-out-of-n structure). It also shows that there exist systems where neither the IFR nor
the DFR classes are preserved.

To conclude, the following example shows how to apply Theorem 2 to a general SF F̄ in a
system that does not have a k-out-of-n structure.

Example 1. Let us consider the system with lifetime

T = min (X1,max (X2, X3))

and let us assume that the component lifetimes are i.i.d. with any IFR distribution. Then the
distortion function in (6) is q̄(u) = 2u2 − u3 and the associated alpha function α(u) = (4 −
3u)/(2 − u) is decreasing in (0,1) (see [20, p. 124]). Then the system is also IFR. This result
holds for continuous distributions (Theorem 4.1 of [20]), discrete distributions with ordered
support (preceding section), or in the general case by using Definition 3 and Theorem 2. For
example, we can consider the SF

F̄(t) =
{

1 for t< 0,

pe−t for t ≥ 0,

for 0< p< 1. It is a mixture of a discrete distribution with mass 1 − p at time t = 0 and a
continuous exponential distribution with mass p in (0,∞). A straightforward calculation shows
that F̄ is IFR according to Definition 3. Hence so is the system SF F̄T .
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