
REPRESENTING VARIETIES OF ALGEBRAS
BY ALGEBRAS

WALTER D. NEUMANN

(Received 6 February 1969)

Dedicated to my father on his 60th birthday

Communicated by G. B. Preston

1. Introduction

In this paper we describe a wav of representing varieties of algebras
by algebras. That is, to each variety of algebras we assign an algebra of a
certain type, such that two varieties are rationally equivalent if and only
if the assigned aleebras are isomorphic.

Various methods of representing varieties by other objects are known.
The earliest seems to be the clones of Philip Hall, described in fl] chapter 3.
A pretty representation of varieties by semigroups with operators, using
braids, is due to E. C. Dale [2], see also [6]. We mention also the algebraic
theories of Lawvere and I.inton. which represent varieties by certain
enriched categories of sets ([4], [5]).

All these methods have something in common, namely in each case
the class of representing obiects is in a natural way a category, and the
categories one obtains in this way are essentially the same (at least if one
only represents varieties defined by finitary operations). In fact it follows
from the results of [3] that the morphisms of representing objects correspond
precisely to set preserving functors in the opposite direction between the
varieties. That is. the category of representing objects is equivalent to the
dual of the category of represented varieties and set preserving functors
"between these varieties. (We shall not worry unduely about the logical
difficulties inherent in talking here of a class of classes, as many ways are
known of avoiding them.)

It turns out that if one allows varieties to have operations of countably
infinite rank, then the dual of the category of varieties and underlying set
preserving functors between varieties is equivalent to the category of a variety
of algebras. These algebras by which we represent varieties are a slight
modification of Philip Hall's clones. We call them K0-clones.

Everything except theorem 3 in this paper carries through with only
l
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2 Walter D. Neumann [2]

formal changes if one replaces Xo by any infinite cardinal number or by
the number 1. Theorem 3 works for infinite regular cardinals.

Since in Linton's terminology an "algebraic theory" of rank n (n a
regular cardinal) is one whose variety of algebras is definable by operations
of rank < tt, our main theorem may also be formulated as: the category of
varietal algebraic theories of rank ^ Ki is equivalent to the category of the
variety of #,>-clones.

2. The representation

In the following variety always means variety defined by operations of
at most countably infinite rank. To avoid nuisance with the empty algebra
we make the convention that it be included in a variety 21 if and only if it
occurs as intersection of non-empty subalgebras of some algebra in 21.
Thus even if one defines the variety of groups for example by right division
alone, the empty group is not allowed. '

We recall the definition of rational equivalence. Let 2t and 93 be
varieties. Then a map 0 from 21 to 95 is equational [3] if there exist terms in
the defining operations of 21, such that for each A e 21 the sets underlying
A and 0{A) are equal and the operations of 0(A) are just the operations
induced in A by the given 2l-terms. A rational equivalence is a bijective
equational map whose inverse is also equational. Examples of rational
equivalence are boolean lattices with boolean rings, and the various ways of
defining groups by operations and laws.

By Felscher [3], the equational maps from 21 to 93 are precisely the
functors from 21 to 93 which preserve underlying sets. Mal'cev's theorem on
rational equivalence is of course a special case of this.

Now let 21 be a variety of algebras. We denote by #(21) the set of
2l-algebraic operations of rank $ 0 . The following description of if (21)
suffices for our purposes.

Let X be a standard alphabet of letters pi,pz, • • •, and let F(X, 21)
be the free 2t-algebra with basis X. Then the elements of F(X, 21) can be
interpreted in the well known way as algebraic operations of rank Ko-
For example if © is the variety of groups, then the element / = p2p%1pi e
F(X, ©) defines the algebraic operation f(alt a2 • • •) = a2aj1a3, where
alt a2, • • • are any elements of any group A. In general if feF(X, 21);
A e 21; ax, a2, • • • e A; then f(al, a2, • • •) is defined as <p(f), where tp is the
homomorphism from F(X, 21) to A with (p(p{) = a{ for each *. It is important
to note that we consider this as an operation of rank #0, even though it may
only depend on finitely many of its arguments.

We can hence identify #(21) with F{X, 21) as a set. The elements
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plt p2, • • • of H(K) are the trivial operations.
If feHCH) we can apply / to F(XJl) and form f(f1, /2, • • •) for

fi,f2,'''zF(X,(;&). As an operation f(fx, /2, • • •) is defined by

/ ( / l . h , • • O K . « 2 . • • 0 = / ( / l ( « l . « 2 . ' • - ) . / 2 ( « l . « 2 . • • • ) . • • • ) •

Instead of /(/1( /2, • • •) we write (/ /, /2 • • •) and consider (• • •) as an opera-
tion of rank Xo on J¥(2l). We consider px, p2, • • • as nullary operations
(constants) on #(21).

DEFINITION. The #0-clone Hfil) of the variety 91 is the algebra of
91-algebraic operations of rank Ko» with algebraic structure given by the

operation (• • •) and the nullary operations px, p2, • • •.

clearly satisfies the laws

Cl (xpiPn- • •) =x,

C2 (p( x1x2 • • •) = Xi (i = 1 , 2 , • • • ) ,

C 3 { ( x y i y 2 • • - K * 2 • • • ) = ( x ( y i z i z 2 • • - ) { y 2 z i z z • • • ) • • • ) •

DEFINITION. An (abstract) ^^-clone. is an algebra defined by an ^ 0 -arv
operation (• • •) and nullary operations p\,p%,%'~, satisfying the laws
Cl, C2, and C3.

THEOREM 1. Every abstract f&^-clone is the R0-clone of a variety. Two
varieties have isomorphic l$0-clones if and only if they are rationally equivalent.

PROOF. If K is an abstract Xn-clone, define to each k EK an operation
of rank Ko

 o n K by
h(KK---) = (kk^---).

Denote the algebra with set K and these operations fk by F(K). We claim
F(K) is relatively free with basis X = {pi,pz, • • •). Indeed, firstly it is
clear that X generates F(K), for if k eK then k = fi;(p1: p2, ' ' ") by Cl.
Secondly any map of X into F(K) extends to an endomorphism of F(K),
for if 99 : X -> F(K) is any map, define <p : F(K) —* F(K) by

V(k) = ft(v(fii), <p(Pz), • • •)

for k eK. C2 and C3 give respectively that (p\X = 95 and that <p is an endo-
morphism of F(K).

Hence F(K) is the free algebra on basis X of the generated variety
QSP(F(K)).

DEFINITION. The variety of K-modules %$(K) is defined to be
= QSP(F(K)).

Since we can identify F(K) with F(X, %$(K)), it is immediate from the
definitions that H(%(K)) = K as K0-clones.
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Furthermore for any variety 21, the transition from F(X, 21) to
F(HC$L)) = F(X, 23(#(2I))) is given by replacing the defining operations
of F(X, 9t) by all algebraic operations of rank Xn o n F(X, 91). This does not
alter the rational equivalence type, and since a variety defined by at most
countably infinitarv operations is already determined by its free algebra
of rank Ko, 2lis rationally equivalent to $(#(21)).

Thus the transitions 9} from J$o -clones to varieties and H from varieties
to K9-clones are mutually inverse (up to rational eouivalence of varieties),
so the theorem follows.

We have seen that every variety 21 is, up to rational equivalence, a
variety of /^-modules for some (unioue up to isomorphism) fc$0-clone K.
K is the set of 2l-algebraic operations of rank fc{0, so every 2l-algebra is given
by the action of K on a set. Compare this with the case of varieties defined
by at most unary operations. It is well known that such a variety is rationally
equivalent to a variety of r-modules for some monoid T. In fact this is
precisely what one obtains if one does everything for the cardinal number 1
instead of fc$0. Thus "1-clones" are simply monoids.

We now come to the theorem promised in the introduction. Let © be
the category of X<rcl°nes a n ( l homorphisms, "far the category of varieties
and underlying set preserving functors between varieties.

THEOREM 2. 93 : (£ ->• ~far and H : "far -> ® are in a natural way
contravariant functors, and they define an equivalence of the category © with
the dual category 'far* of 'far.

In view of the previous discussion, this theorem is essentially the
theorem of Felscher on equational maps (loc. cit.). We therefore only define
the functors, and omit the proof that they do what is required.

Suppose q> : K -> L is a homomorphism of Xn~cl°nes- For any L-module
A there is a natural X-module structure on A, namely for k eK and
ax, a2, • • • e A define k(alt a2, • • •) to be <p(k)(a1, a2, • • •). This defines a
functor %$(<p) : SS(Z-) -> %$(K), and by construction it preserves underlying
sets. Thus SS is a contravariant functor from © to 'far.

Conversely if 0 : 21 ->- 33 is a set preserving functor of varieties, then
the map of F{X, 93) into its "universal 2l-algebra" (given by the front
adjunction belonging to the adjoint functor to 0) gives a map
F(X, 93) -> F(X, 21). This is compatible with the X0-clone structure, so it
defines a homomorphism H(0) : H(S&) ^#(21) . Thus H is a contravariant
functor from ~far to K.

One is often only interested in varieties defined by finitary operations.
For want of a better place we insert the following theorem here, which is
an immediate consequence of theorem 2 in [7].
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THEOREM 3. The variety 21 is definable by countably many finitary
operations if and only if H^i) is countable.

3. Examples and discussion

Let 91 be a variety, and / an ^-operation of finite rank n. If we consider
/ as an operation of rank Ho, we need a law or laws which say that / only
depends on n of its arguments. For « ^ l a law with this effect is

( 1 ) f ( x l y x 2 > • • -, x n , x x , x x , • • • ) = f ( x 1 > x 2 , • • •, x n , x n + 1 , • • • ) ,

for (1) says that / does not depend on what is substituted for
xn+1, xn+t, • • •. For n = 0 one can use

(2) f { x l t x 3 , x b , • • • ) = = f{x2, x t , x 6 , • • • ) •

In #(21) (1) and (2) become

(i)'

(2)'

EXAMPLE 1. Let @ be the variety of groups, G = H(&) the correspond-
ing Xo-Cl°ne- ^ is the X0-clone generated by three elements m, i, and e
subject to the relations

(3)

(4)

(5)

(6)

(?)

(8)

(*PiPiPiPi •••)=i

{ePiPsPsp7 • • •) = (ep2ptP6 * * •)

{mmpzpxpx •••) = (m p^m p2pzpxpx •

(mp1ip1p1---) = e

(mp1ep1p1- • •) =px.

• ')PiPi

Indeed (3), (4), (5) state respectively that m is binary, i unary, and e
constant; (6) is the associative law

m ( m ( x l l x 2 , • • • ) , a r 3 , • • • ) = m ( x 1 , m { x 2 , x 3 , • • • ) , • • • ) ;

(7) is the inverse law m(x1, i{xlt • • •), • • •) = e; and (8) is the identity law
m ( x 1 ) e , • • • ) = = x x .

EXAMPLE 2. The Ko~cl°ne ^ o
 OI *n e variety %a of abelian groups is

obtained from G by adding the relation

(9) {mp2pxpx---) = m.

The obvious epimorphism G ->• Ga corresponds (via theorem 2) to the
inclusion of ©„ in ®.
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EXAMPLE 3. The ])$0-clone M of the variety W of monoids is generated
by two elements m and e satisfying relations (3), (5), (6), and (8). The
obvious homomorphism M -> G is injective, and corresponds to the "forget
functor" © -> 3Ji which assigns to each group the underlying multiplicative
monoid.

EXAMPLE 4. The Xo~cl°ne S containing only the elements p1,p2, " ' '
corresponds to the variety © of algebras with no non-trivial operations —
that is sets. For any non-singular J$0-clone K the inclusion S QK corresponds
to the underlying set functor %$(K) -> S.

In general it is clear that a surjective homomorphism K -> L of
fc$0-clones, since it is just an "addition of laws" to $$(if), corresponds to an
inclusion of 33 (L) as a subvariety of 33(K). Similarly an injective homomor-
phism K^rL corresponds to a pure forget functor from 3S(£) to 33 (K) (that
is a set preserving functor 0 : 3i(L) -> %(K) such that QSP&(f8{L)) =
%$(K)). Since the monos in © are just the injective homorphisms (this holds
in any variety), the pure forget functors are precisely the epis in far.
However the monos in 'far turn out to be the injective functors, which
includes more than just the inclusions of subvarieties. For instance the pure
forget functor from groups to monoids is injective, since a group structure
is determined by its underlying monoid structure, so this functor is both
mono and epi in "far.

EXAMPLE 5. Consider the variety of semigroups which satisfy the
laws xx = x and xyz = xz (these laws are equivalent to the single law
xyx = x). The corresponding K0-clone is generated by an element m subject
to (3), (6), and

(10) (mp1p1---)=p1

(11) (mmp3- • •) = {npxpz- • •).

One verifies easily that this X<rcl°ne is isomorphic to S x S by an iso-
morphism which maps m onto the element [plt p2) eSxS. Since product
in the category (£ of K0-cl°n e s corresponds to sum in the category "far,
we may denote this variety of semigroups by © + @.

More generally the sum 91+33 in the category far is given by
21+93 = 33(#(2I) X/?(»)). The projections of H{%) x#(93) onto H{%)
and .ff(93) correspond to embeddings of 21 and 93 as subvarieties of 91+93.
Lawvere has observed ([4] p. 48) that 91+93 is the variety of algebras which
split naturally as a product A X B of an ^-algebra by a ^-algebra. We briefly
sketch a proof.

The element (plt p2) e #(91) x#(33) defines as above an (21+93)-
operation which is binary, associative, and satisfies the laws xx = x and
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xyz = xz. If C is any algebra in A -\-B, consider the relation on C defined by:
cx = c2 means cx = c2cx. This relation is reflexive since c = cc, symmetric
since cx = c2cx implies c2 == c2c2 = c2cxc2 — cxc2, and transitive since
cx = c2cx and c2 = csc2 implies cx = c3c2cx = c3cx. Thus it is an equivalence,
and a little more work, using the way (px, p2) combines with the other
(9l+23)-operations, shows that it is even a congruence and that the quotient
A = Cj == is in the subvariety % of 91+S3. Similarly if cx ~ c2 is defined
to mean cx = cxc2, then the quotient Cj ~ is an algebra in the subvariety 93
of $+23. The projections p : C -> A and q : C -»- B give a homomorphism
<p:C~>AxB by q>(c) = (p{c), q(c)). This has an inverse given by
w(P(ci)> i{cii) == cic2 (ci> C2 e C)» s o ^ is a n isomorphism.

EXAMPLE 6. Given two J$0-clones K and L, one can form the free sum
K+L. This corresponds to the product %$(K) X %$(L) in the categary T^ar.
An example is given by the variety ffllR of i?-modules, where R is a ring
with unity. Let 21^ be the variety of affine i?-modules (affine spaces over R)
obtained by forgetting all but the idempotent operations from the variety
of 7?-modules. Then Satz 1 of [8] states that

where ©0 is pointed sets (the variety defined by one constant operation).
An algebra of 91X 23 is just a set carrying an 9t-algebra structure and a

23-algebra structure, these structures being unrelated by any laws. In view
of this, it is surprising that even slightly non-trivial examples occur in
"everyday life".

A question which arises in this connection is whether every variety can
be split as a product of product-irreducible varieties, and if so, in how far
such a splitting is unique. For a full species the obvious splitting into a
product of varieties each defined by one operation is the only splitting into
product-irreducible varieties, but no other results in this direction seem to
be known. The same question can of course be formulated for sums.

To close, we describe an amusing construction which yields varieties
which have isomorphic abstract categories, but are not rationally equiva-
lent.

Let K be an K0-clone, n a positive integer, and define Kln] to be the
K0-clone with underlying set Kn and structure defined as follows

Pi+l = (P,n+l,Pin+2, • • -,Pin+n) 6 K« (i = 0, 1, • • •),

(fel. • • -,gn)(fl, • • •- /.)(/«+!, • • •, /s«) • • •)

= ( t e i / i / . " 0 . fe»/i/. • • • ) . - • • . te./i/. • • • ) ) •
It is a simple calculation to show that this gives an K0-Clone structure.
For any variety 91 denote «B(#(9I)["]) by 9t[n].
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One can show that 2ltnj is the vaiiety of algebras whose underlying sets
can be written canonicaily as a power An of an Si-algebra A, and whose
homomorphisms are the maps of the form An -> Bn which are induced by
a homomorphism A -> B of 2l-algebras. In particular it follows that Wn]

has the same underlying category as 91. F. W. Lawvere has pointed out in
a letter to the author that if R is a ring with unity and SRfl the variety
of i?-modules, then 2){$] is rationally equivalent to the variety WR of
i?n-modules, where Rn is the ring of w-square matrices over R.

It can happen that 2Itn] and Wm] are rationally equivalent with n^m.
However if 9t contains finite non-singular algebras this can clearly not
happen, as the smallest non-trivial algebras in Wni and Wm> have respectively
kn and km elements, for some k > 1. Hence in this case one obtains infinitely
many varieties having the same underlying category, but no two of which
are rationally equivalent.
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