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Abstract. The available kinematical data 011 OH/IR stars is discussed, and dynamical models 
for the OH/IR stars are presented. 

1. Introduction 

In this contribution I would like to present you one part icular way of modelling 
the kinematics of a tracer populat ion of stars in our Galaxy. This contr ibut ion is a 
continuat ion of the previous one. One of the things tha t I hope to convince you of 
is t ha t the definition of such a thing as "a dynamical model for the O H / I R stars" , 
involves quite a number of elements. Therefore I will highlight in boldface every 
i tem tha t is essential in defining the models presented here. 

Circular orbit models will not work as representations of the kinematics of 
O H / I R stars, and this is immediately obvious f rom Figure 1. There you see a fa-
mil iar (/, v) plot for a sample of O H / I R stars, compiled by Peter te Lintel Hekkert, 
who, very unfor tunate ly and unexpectedly, was unable to a t tend this sympos ium 
in order to present these results himself. I will call it the tLH sample. It consists of 
a lmost 900 stars. 
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Fig. 1. The (/, v) diagram of the L sample. Note the counterrotators. 

T h e smoking gun in Figure 1 is the presence of counterrota t ing s tars (especially 
in the Bulge region), which, in any case, point to orbits tha t are not simply circular. 
It is nice to see this come out s traight f rom the da ta , though nobody will argue 
with the s ta tement tha t we cannot expect the stars in the Bulge to form only a 
thin disk on these small scales. By the way, I'll tentatively define the Bulge here as 
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a "not further specified volume inside a 3 kpc. radius". . . In any case, the greater 
variety in the orbits there does not mean that a thin disk with stars in circular 
orbits isn't there (after all, our solar system is a great example of a thin disk on 
even smaller scales), but I'll return to this in a while. 

I will not expand on the way the data in Figure 1 were acquired, nor on the 
physics of the OH/ IR ' s that .we can learn from it, since these topics are covered by 
Habing (this symposium) and can also be found in te Lintel Hekkert (1990,1991a). 
Suffice it to say that this particular data set is a c o m p i l a t i o n f r o m ca ta logues 
by Eder et al (1988), t,e Lintel Hekkert et al (1991a) and Sivagnanam et al (1989), 
all based on the IRAS PSC from which positions were selected according to infrared 
colours, fluxes ( / ) and IRAS flux qualities. Essentially, you see here all sources with 
colours R21=/25/ m i / / i2/ im between 0. and .9. This was done in an a t t empt to obtain 
a homogeneous sample of O H / I R stars with thick dust shells and a reasonably 
constant bolometric. correction ftot/v/fi2ßm. Additional s e l e c t i o n cr i ter ia were 
the presence of the two regular 1612 MHz peaks which had to be separated by 
more than 10 km/s , and the requirement that the /i2^m had to be larger than 3 Jy. 
Finally, one must keep in mind that samples based on IRAS da ta are incomplete in 
the areas where IRAS was confusion limited. The models therefore will not include 
da ta from a region with approximate boundaries |/| < 45° and |6| < 2°. 

Simple models are great to answer simple questions, and such questions are likely 
to be of particular interest to the physicist inside the astronomer: determination 
of the rotation curve, estimates of the total mass, the total power emitted, etc. . . 
And yet, even the progress on these questions is slow. This is due partly because 
any adequate theory tends to become complex nevertheless, partly because some 
parameters are hard or impossible to measure (such as stellar ages, distances), partly 
because of the nagging problem of the extinction, partly because the parameters of 
interest are often statistical properties of samples (e.g. determination of the local 
s tandard of rest), and finally because there are so many interrelated parameters. It 
would seem that one really needs a "model for everything". Such may be a great 
proposal for ambitious nationals of wealthy countries who aspire large grants from 
well-grown funding agencies, but it 's simply not very realistic. 

All the problems mentioned above are present in this contribution. I will not 
address them any further, since this would be restating the obvious. But allow me 
to expand on something else: why, apart from the above question, could one be 
interested in dynamical models in the first place? I think that , for the cartographer 
inside the astronomer, it 's a natural thing to do. In order to motivate this opinion 
meaningfully, we must, agree on what we mean by dynamical modelling. 

2. Elements of Dynamical Modelling 

The equations that govern the motion of 1011 starlike objects in mutual interactions 
and the interpretation of their solutions are hopeless. Both theory and assumptions 
will be needed to make them suitable for human grasp. It is a well-known textbook 
topic (e.g. Binney L· Tremaine 1987) that in most cases of astrophysic.al interest it 
suffices to simplify the motion of each of these objects to the motion of one (hypo-
thetical) object, moving in the gravitational field which is generated collectively by 

https://doi.org/10.1017/S0074180900123125 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900123125


75 

all the others. This reduces phase space from 6 χ 1011 coordinates to β coordinates, 
together with a potential function that is loosely coupled by an integral operator 
to the contents of that space, which is characterized by a d i s t r i b u t i o n f u n c t i o n , 
which is a probability density in phase space. 

The potential generates structure in phase space, because it creates orbits. The 
quintessential orbit is the linear harmonic oscillator, e.g. a spring. At every moment 
it has a length ζ which changes at a rate vz. Phase space is the 2-dirnensional 
space (z, vz). If we do not know the dynamical state of the spring completely, it is 
natural to ask what information we can single out as particularly impor tant . The 
maximum length zm must be such a quantity, because then, at least, we can confine 
the length of the spring, though we've lost the ability to predict its actual length 
at any particular moment . This zm is an example of an integral of the motion: it 
is a function of phase space coordinates that remains a constant along the orbit, 
and therefore it can be used as a label for that orbit. Hence, we can now describe 
the linear harmonic oscillator with zm (a constant) and only one rapidly changing 
coordinate (z, or v2, or something else). 

In 3 dimensions, one would expect 3 constants <5f the motion and 3 rapidly 
changing variables for every orbit. This is true for integrable potentials, by def-
inition. Most potentials however are not integrable, but it is likely that for most, 
astrophysical purposes there exist good integrable fits (Goodman and Schwarzschild 
1981, Dejonghe fc de Zeeuw 1988), safe possibly for tumbling triaxial figures. A very 
elegant class of integrable potentials are the Stäckel potentials, which have the nice 
property that the integrals of the motion are quadratic functions of the velocities. 

In order to better understand the significance of these integrals, let's consider 
the following experiment. We affix many springs to a flat surface. The springs 
only vibrate in the ^-direction (perpendicular to the surface), and hence their χ 
and y coordinates which are markers on the surface are constants of the motion. 
Now we disturb the springs, for example by pushing them down simultaneously by 
hand. The imprint of the hand will be lost very quickly, and in the analysis of the 
resulting dynamical state, it will certainly not mat ter very much to focus on the 
description of the rapidly changing coordinates. If we only knew zm(x,y), then we 
would know the profile of the perturber, which is everything that there is to know 
in this experiment. 

Consider next the somewhat different situation that at every location (x, y) there 
are a lot of springs (for example molecules), which may or may not s tar t to vibrate 
due to infalling light,, then the number of excitations Ν will be proportional with 
the intensity, while the degree of excitation (the zm) will tell us something about 
the wavelength of the infalling light. The function N(x, y, zm) we call a distribution 
function. It is written here as a function in integral space. It cannot exist without 
a medium for which it is a probability density, though it may provide us with 
important information on something else (the infalling light). This function is very 
analogous to the concept with the same name in stellar dynamics; the medium there 
is called a tracer population. On a photographic plate, the distribution function is 
a faithful representation of the perturbing radiation, and the resulting picture is 
its own justification. In stellar dynamics, and now comes a more personal view, the 
distribution function could serve the same purpose: it is "simply" a picture of the 
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stellar component. By analogy with ordinary pictures, this picture may very well 
be its own justification. One is not necessarily unimaginative if no more questions 
are asked, just as one does not ordinarily inquire about the "origin and evolution" 
of some feature in a portrait when looking at i t . . . 

Of course, it is hoped that the distribution function will teach us a lot about 
the origin and evolution of galaxies and bulges. 

3. The input: data and assumptions 

My first assumption is far reaching: I'll assume that the data can be modelled by an 
equi l ibrium model . This is to a lesser extend a statement about physical intuition 
than it is a poor man's choice: within the framework of a dynamical model with a 
distribution function, there is simply no other choice, for lack of adequate theories. 
One can show however that equilibrium models are fine for slowly evolving systems, 
if one translates the results to so called action space, but this is not my intention 
here. 
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Fig. 2. The (/, b) diagram of the tLH sample. 

When studying the dynamics of a tracer population, it is obvious that self-
consistency is not required, i.e. the gravitational potential is not generated by the 
tracer population. This means that the gravitational potential can be decoupled 
from the original set of equations, and this potential therefore must be a given. 
The specification of the gravi tat ional potent ia l is the first important decision 
one has to make when building a dynamical equilibrium model. In particular, one 
has to decide on the prevailing geometry , i.e. whether the potential is spherical, 
axisymmetric or triaxial. 

Figure 2 presents the (/, b) distribution of the tLH sample. There is no obvious 
triaxiality in the data, which is also the case for the (/, v) diagram in Figure 1. It 's a 
very sad thing to note, especially since everybody now seems to detect more or less 
the same barlike structure; I suffice with referring to the index of the proceedings 

https://doi.org/10.1017/S0074180900123125 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900123125


77 

to illustrate this point. On the other hand, the absence of triaxiality in a tracer 
population does not mean that the potential isn't triaxial! Conversely, triaxiality in 
a tracer population does not imply triaxiality of the potential, but that is something 
you're not supposed to say. . . Well, anyway, let me say the unspeakable: I'll settle 
for a x i s y m m e t r i c po tent ia l s , and I'll forgive the very few who still have not quit 
reading for doing so now. 

The IRAS satellite was severely confused in the GP, because of the high density 
of sources. In order to find O H / I R stars there, one must resort to mapping type 
surveys. Lindqvist ei.al (1992a), hereafter L, searched for O H / I R in a limited region 
close to the GC, harvesting 134 stars. None of the surveys have been completely 
satisfactory in their velocity coverage, for technical and feasibility reasons. This 
means that (a few) high velocity stars can be expected to turn up when searching 
for them (van Langevelde 1992). 
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Fig. 3. (a) The L sample (crosses) and the truncated tLH sample (triangles) in (f,b) on 
the sky. (b) The L sample (crosses) and the truncated tLH sample (triangles) in (ί, vr) 
space. 

I will not compare in any great detail the tLH and L samples. Some of that can 
be found in te Lintel Hekkert et.ai (1991b), and Lindqvist et.al. (1992b). Posters 
by Whitford and Winnberg, Lindqvist L· Habing also address different aspects of 
this. 

There is one observation I would like to make however, which is, I hope, strik-
ingly clear in Figure 3. Figure 3a shows the (£,b) diagrams for the L and the t,LH 
samples, the latter being truncated to ±3° in longitude and ±5° in latitude. It is ob-
vious that both samples are complementary, but certainly not enough so: the IRAS 
confusion zone is not covered. If the 2 samples are drawn from different galactic 
O H / I R populations, we miss the da ta in the important transition region. Currently 
a consortium headed by Habing is working on surveys at the VLA and the AT to fill 
in a few gaps. Figure 3b shows the (£, vr) plot for both samples (heliocentric veloc-
ities). The regression lines are the linear approximations to the "rotation curves". 
The L rotation curve (crosses) in this plot has a slope of about 500 km/s /degree or 
about 3.7 k m / s / p c , using RQ — 7.5kpc.. On the ot! ^r hand, the slope of the tLH 
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sample is 11 km/s /degree or about 82 km/ s /kpc . Such a rotation curve reaches its 
presumed peak value of about 220 k m / s at about 2.5 kpc, which is very reasonable. 

There are two quite different opinions here. The first one answers positively on 
the question whether the very different regression lines have anything to do with 
the sampling of different galactic populations. It is convincingly argued by Habing 
(this symposium) that the nature of the OH/ IR ' s in both samples are different. 
If this also translates into the kinematics in such a way as it does here, than this 
connection would constitute one of the most dramatic links between abundance 
and kinematics that we know of. The other opinion would merely see the different 
regression lines as the result of a different dynamical environment. In particular, 
the tLH regression line would be representative for the rotation curve as we know 
it, while the L regression line would indicate a (fairly modest) mass concentration 
in the very center. Values are given in Lindqvist et. ai (1992b). This second opinion 
implies that we would do well not to combine both samples, unless there is a mass 
concentration provided in the potential. 

There is a lot to say about the nature of the O H / I R stars, and whether we can 
differentiate the class into different galactic populations (Habing, this symposium). 
For example, the conjecture by Baud et al. (1981) and Olnon et al. (1981) that the 
velocity of the expanding circumstellar shell may indicate an age, in the (statistical) 
sense that larger expansion velocities are associated with younger stars, has been a 
working hypothesis ever since it was first proposed. It looks like this simple picture 
may need amendment, and therefore I will in the sequel indicate this' by quoting 
"old" and "young". 

l o n g i t u d e ( d e g r e e s ) l a t i t u d e ( d e g r e e s ) 

Fig. 4. The histograms of "old" stars (shells expanding at a rate between 10 and 13 km/s) 
in the tLH sample (dashes) and the "young" stars (solid lines, shells with expansion 
velocities between 16 and 20 km/s) , as a function of galactic longitude and latitude 

In any case, trom the analysis by Lindqvist et.al. (1992b) it would seem that 
indeed the projected velocity dispersion of the "younger" stars is smaller than the 
dispersion for the "older" stars, as one could expect if stars are born on primarily 
circular orbits. In Figure 4 we see histograms as a function of longitude and latitude 
for a selection of the tLH sample, divided into two g r o u p s defined by the "oldest" 
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and "youngest" stars, each containing about 150 stars. If the aforementioned effect 
is real, it points in any case into the right direction: the "younger" population is 
more confined to the disk, and somewhat more bulgy, i.e. centrally concentrated. 
Whether you believe it or not may depend on whether you are an astronomer or a 
statistician. 

Finally, since the available positions and radial velocities do not give much 
informatipn on the ^-component of the velocity for stars in the GP, it is natural to 
try two integral models first (based on the specific binding energy Ε and the z-
component of the angular momentum, which are both integrals of the motion in an 
axisymmetric potential). Such models have the property that σΓ = σζ. Only when 
the projected velocity dispersion turns out to be much too small (since for two-
integral models ar is determined by the thinness of the disk), will we be able to rule 
out two-integral models. In view of Kent's (1992) success in modelling the Bulge 
with 2-iptegral hydrodynamical models, it is instructive to see whether this result 
holds when 2-integral models are considered that go all the way to the distribution 
function. 

4. The model: method and results 

So far we have made modelling choices based on arguments that could be deduced 
from the data alone. Now it is time to consider the options that are rather a matter 
of preference. 

We need an explicit potential function. For this we used either a Stäckel fit to 
the Bali call-Soneira potential (Dejonghe k de Zeeuw 1988) or a simple Stäckel 
lialo-disk potential of the type discussed by Batsleer k Dejonghe (this sympo-
sium). The Stäckel fit is not needed at this point, but will come in handy when 
3 integral models are made, which must be done eventually. It is important to 
note however that the adopted potentials all more or less reproduce the Burton k 
Gordon (1978) peak at .5 kpc. Recent analysis (Burton k Liszt 1993), allowing for 
non-circular motions, puts into question this peak, reminding us how little we know 
for sure about the potential of the Bulge. 

We need a distance to the GC. We adopt 7.5 kpc, for no particular reason. 
From the sample we can construct a body of data that can be very inho-

mogeneous, including star counts, mean velocities, velocity dispersions and line 
p r o f i l e s . . o n a few selected patches in the sky. The left panels in Figure 5 are 
smoothed renditions of the data, based on running averages (counts, mean veloci-
ties and velocity dispersions) over the 15 closest data points, which for this figure 
were selected among the "youngest" stars. The white (or light gray) areas corre-
spond to the regions where there are no data because of completeness problems 
(IRAS confusion) or simply because of paucity of data points. The left panels were 
used to create the input data for the modelling. 

No general theorem exists that would enable us to decide on the uniqueness of 
the distribution function for such data, and few analytic procedures are known to 
construct it. These procedures are applicable only in special cases (e.g. homoge-
neous data on the mass density, see a contribution by Hunter (this symposium)). 
Therefore, it might be useful to consider a method that is more or less independent 
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Fig. 5. A qualitative comparison of data (left panels) and model (right panels) on the 
sky, produced for the sample with highest circumstellar expansion velocities. The bottom 
panels represent the logarithm of the counts per square degree; the gray scales range 
from -1.5/sq.deg. to l . / sq.deg. The middle panels are the (projected) mean velocity fields, 
with values from 0 km/s to 220 km/s . The top panels represent the (projected) velocity 
dispersions, gray scales range from 10 km/s to 115 km/s. 

of the diversity in the data. 
In almost all cases the relation of this distribution function with the observable 

quantities takes on the form of an average of the distribution function: 

μοδ(χ*,ν*)= / /£(x,v)F(£7,/2 , / 3)dxdv, (1) 

with (x£,v^) a label for a region in the space of observables (e.g. a region on the 
sky, a region in i>r) space...), the region in phase space that contributes to the 
mean, and the observable (counts/sqare degree, mean velocity,...) The operator 
is linear, which means that we can construct models by superposition. 

One way to proceed is with Quadratic Programming (Dejonghe 1989). In 
this method it is assumed that the distribution function can be written as a linear 
combination of (preferably analytically simple) components, with coefficients c;. A 
X2-type function (quadratic in the C;) is then mimimized, subject to the constraint 
that the distribution function must be positive everywhere (linear constraints in 
the C{). We also need to pick a series of basis functions to construct the linear 
combination, and these were Fricke components, which are basically powers in 
energy and angular momentum, and disk components, of the type discussed by 
Batsleer Sz Dejonghe (this symposium). For additional details, see also te Lintel 
Hekkert et.ai (1991b). 

The right panels in Figure 5 show the model fits to the data (in the left panels). 
The gray scales give at least a qualitative idea properties of the fit. The areas where 
there are no data are now filled in (let's call them predictions, or extrapolations if 
you insist). In figure 6 a more quantitative comparison is presented. Clearly, one 
should not expect the fit to reproduce all details in the data, which may not be all 
real anyway. Problem areas may be the projected velocity dispersion for the "old" 
stars, which is somewhat too low, and the mean velocity which rises too fast for 
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Fig. 6. The data at b = 2° (solid lines) compared with a 2-integral model (dashes). Left 
panels: logarithm of projected star counts per square degree, middle panels: projected 
mean velocity, right panels: projected velocity dispersions. Top panels: the "old" stars, 
bottom panels: the "young" stars. 
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Fig. 7. The logarithm of the spatial density in the plane, the mean rotation and the radial 
velocity dispersion for the "young" (solid) and "old" (dashed) stars 

both samples. This may indicate the need for a third integral. 
In Figure 7, the spatial number density, mean rotation and radial velocity dis-

persion are plotted for both groups of stars. The "old" stars show a nice exponential 
disk with scale factor 3.5 kpc. This is no artifact of the components used in QP, 
since none of them showed exponential behaviour but were rather polynomial. The 
mean rotation follows very closely the rotation curve. This is a consequence of the 
2-integral models, which, in order to produce fairly flat disks, must have small veloc-
ity dispersion. The "old" stars have overall a somewhat higher velocity dispersion, 
which clearly shows a bulge component. 

Finally, Figures 8 and 9 show the distribution function in turning point space 
and in integral space (the color versions are much nicer!). All well-known corripo-
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Fig. 8. The distribution function in turning point space. Every point inside the wedge-like 
region corresponds to an orbit with apocenter and pericenter as implied by the axes. 
Negative pericenter simply means negative angular momentum. Contours are chosen to 
delineate the different components. The dynamic range is of the order 1012. 

Fig. 9. The distribution function in integral space. Every point inside the wedge-like region 
corresponds to an orbit with integrals as implied by the axes. The boundaries of the region 
are the loci of the circular orbits. The distribution function is the same as in Figure 8. 
The dotted contours are loci of constant apocenter, given from 1 kpc (bottom) to 15 kpc 
(top). 
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nents are present, and are indicated in the turning point plot. The dynamic range 
is very large: the highest value is about 107 stars/kpc3/(km/s)3 in the thin disk, 
but, obviously, such values are very uncertain. 

It is possible to make predictions on the basis of these models. For example, 
since we know the distribution function, all observable kinematical quantities can 
be calculated. As an example, Figure 10 depicts the line profiles (i.e. the (/, t>) 
diagram) in the GP, drawn from the above distribution function for the "younger" 
OH/IR's, superposed on the sample. This calculation is, in a sense, a prediction, 
since there has been no fitting on the (/, t>) diagrams directly. As is obvious, the fit 
is very reasonable. 

5. Conclusions 

The OH/IR stars are excellent probes of our dynamical Galaxy. They are fairly old, 
strong infrared emittors that are reasonably representative of a relaxed population. 
As such, they can be modelled with equilibrium dynamical models. Their strong 
infrared emission makes them shine right through the dusty GP, a property which 
is needed for a sufficient spatial coverage. 
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Fig. 10. The (I, ν) diagram for the above distribution function, together with the sample 
for which it was calculated. 

Differentiation of the sample towards a definition of galactic populations is pos-
sible, but no firm conclusions can be drawn, as yet. 

Only numerical experience at this point can give us an idea to what degree 
we can have confidence in the computed distribution function. It is obvious that 
the more the data cover phase space, the more the distribution function will be 
constrained. Also, the more restrictive we are in the functional form of F (function 

- 4 0 . 0 - 2 0 . 0 O.u 2 0 . 0 4 0 . 0 
1 on g 1 tu.de ( d e q r e e s ) 

https://doi.org/10.1017/S0074180900123125 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900123125


84 

of one, two, or three integrals), the less realistic our results may be, but the less 
indeterminacy we will encounter when trying to determine a distribution function. 
And this is, by the way, is an important reason to start with 2-integral models! 

Two integral models are reasonable fits, but it is already clear that eventually 
three integral models will be needed. This is indicated by the fit of the model in 
the transition region between Bulge and Disk, where the flatness of the Disk sets 
fairly strong constraints on the kinematics in a 2-integral approach. This is some-
what in contrast with Kent's (1992) results, possibly because the positivity of the 
distribution function is taken into account here. As soon as proper motions become 
available (see e.g. Spaenhauer, Jones L· Whitford 1992, Minniti, this symposium) 
on large areas in the sky, global models such as these will almost certainly need 
3-integral dynamics. 

The adopted potential is still very unsure. Especially for the Bulge regions, the 
potentials used in this analysis are probably inadequate. It would be worthwhile 
to reconsider the models with Bulge potentials of the kind used by Kent (1992) 
and Burton L· Liszt (1993). In a more remote future, simple theoretical models for 
orbits in rotating barlike potentials may be needed, if the bar in the Bulge turns 
out to be dynamically significant for the stellar populations. 

This contribution is only the beginning of what I consider to be long and labo-
rious but potentially extremely rewarding stellar dynamical modelling of Galactic 
populations. Moreover, not only OH/IR stars are amenable to this kind of analysis. 
Whenever a sample is available with sufficient spatial coverage, it is presumably 
worthwhile to try analyses of this kind. In particular, the IRAS PSC has also 
been used to search for Planetary Nebulae, since these, too, are strong infrared 
emittors, and occupy a fairly well defined place in the /„(ΙΖμηι)//μ(25μηι) versus 
/μ(25μηι)//„(60μηί) color diagram (Pottash et.al. 1988, Ratag ei.ai 1990). Radio 
interferometry can be used to decide on the true nature of the candidates (Zijlstra 
et.al. 1989). This method up to now yielded about 50 new PNs within 15° from 
the galactic center, on a total of about 400 in roughly the same region (Acker et.al. 
1991). 
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J O I N T D I S C U S S I O N ( H A B I N G A N D D E J O N G H E ) 

de Zeeuw: How. well does your distribution function for the Bulge, the two integral 
one, compare to simple forms that have been proposed in the literature, for example 
by Rowley, for other bulges? 

Dejonghe: The model that comes out for the Bulge is fairly isotropic. To that degree, 
since Rowley's models can also be isotropic, there is likely to be agreement. I haven't 
at this stage checked this though, but we could probably find at least one set of 
parameters for his models that would produce a qualitative fit. But producing a 
quantitative fit, that's another matter! 

Rich: If you separate your sample out just by expansion velocity, that is including 
the Winnberg sample, do you see the Winnberg kinematic disk falling out naturally 
or is there some other means of your distinction between young and old OH/IR 
stars? 

Dejonghe: The Winnberg sample is much less extended. So I'm not sure that 
this kind of comparison could be easily made. But answering your question: the 
Winnberg disk would not merely fall out naturally, simply on the basis of selection 
on expansion velocity. 

Rich: te Lintel had a group I and group II. I believe that group II is thought to 
be younger. How does that group II compare to the Winnberg stars, is it a lower 
expansion? 

Habing: They are overlapping, so there is no clear distinction on that basis. 

Sell wood: You claimed there was no evidence for triaxiality in your sample. But you 
threw out the one piece of evidence that is there, and that is the rapid rotation of 
the Winnberg sample. Surely you are looking down a bar and that is exactly what 
the Winnberg rapid rotation is telling us. 
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Dejonghe: This model does not use the Winnberg sample. Judging from the te 
Lintel sample, there is no obvious need for a triaxial bulge and it very well may be 
that the rapid rotation of the Winnberg sample could be due to high mass, but, 
then again, it might be a bar. For the big picture, out to 15kpc. (in the te Lintel 
sample), I see no need for triaxiality. 

A. Whitford, together with K. Freeman, H. Dejonghe and H. Habing 
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