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AUTOMATIC CONTINUITY OF SEPARATING LINEAR 
ISOMORPHISMS 

BY 

KRZYSZTOF JAROSZ 

ABSTRACT. A linear map A : C(T) —• C(S) is called separating if 
/ • g = 0 implies Af • Ag = 0. We describe the general form of such maps 
and prove that any separating isomorphism is continuous. 

Let T, S be compact Hausdorff spaces and let A be a linear map from the Banach 
space C(T) into C(S). The map A is said to be separating or disjointness preserving 
if / • g = 0 implies Af • Ag = 0 for a l l / , g in C(T). For/ in C(T) or C(S) we define 
the cozero set of/ by coz(/ ) = {t :f(t) ^ 0}. Hence A is separating if and only if it 
maps functions with disjoint cozero sets into functions with disjoint cozero sets. 

The concept of separating maps in this context was introduced by E. Beckenstein 
and L. Narici [5-7]. However, disjointness preserving maps between general vector 
lattices and similar automatic-continuity problems were considered earlier by other 
authors; see e.g., [1, 2, 8] and [3, 4]. In [7] the authors prove that if A is separating 
and satisfies a number of additional conditions then it is automatically continuous. 

In this note we describe the general form of a separating linear map A : C(T) —• 
C(S). Roughly speaking we can always divide S into three subsets. On the first part A 
is just the zero map, on the second part A is given by a composition of a continuous 
map from a subset of S into T and a multiplication by a continuous scalar function. 
The third part of S is finite, possibly empty, and A is discontinuous at every point of 
this part. As a consequence we prove that any separating isomorphism is automatically 
continuous but we also show that there is always a discontinuous separating linear map 
A from C(T) into C(5), provided T is infinite. 

Our results hold both in the real and in the complex case. 

THEOREM. Let A be a linear separating map from C(T) into C(S). Then S is a sum 
of three disjoint sets S\, S2, S3 where S2 is open and S3 is closed, there is a continuous 
map (f : S1US2 —• T and a continuous, bounded, non-vanishing scalar-valued func­
tion x on Si such that for any f G C(T) 

A(f)(s) = X(s)foip(s) Vs€Si 
(*) 

A(/)(5) = o v*es3. 
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Furthermore the set F = (pfâ) is finite, all junctionals of the form 

C(T)3f*-*A(f)(s) forseS2 

are discontinuous and 

A(f)\s2=0 / / s u p p / H F - 0 . 

PROOF. For any s G S we denote by Ôs the functional "evaluation at the point s". 
We define S$ = {s € S : 8S o A = 0}, S2 = {s € S : 6S o A is discontinuous} 
and S\ — S \ (S2 U S3). For any s G S we define supp(& o A) to be the set of 
all t G T such that for any open neighborhood U of t there is a n / in C(T) with 
A(f)(s) ^ 0 and coz(f) Ç £/. We contend that supp(^5 oA) contains at most one 
point. Assuming the contrary we get two open, disjoint sets U\ and £/2, both having 
non-empty intersection with supp(<55 o A) and then/1,/2 G C(T) with coz(fj) Ç Uj, 
A(fj)(s) y£ 0, j = 1,2 which contradicts the assumption that A is separating. Assume 
now suppO^ o A) — 0. Then there is an open finite cover of T, T — U\ U U2 U . . . U Un 

such that Af(s) = 0 if coz(/ ) C £/,-, for some 7 = 1, . . . , n. Let 1 = Ylj=\fj ^ e a 

continuous decomposition of the identity subordinate to {Uj}j=l. For any / G C(7) 
we have Af (s) = A(52]=ifjf)(s) = £y=i A(fjf)(s) = 0, and this means ^ o A = 0, so 
5 G 53. Hence we can define a function </? : S\ U S2 —-> T by {^(s)} = supp(£5 o A). 

Note that by exactly very similar arguments as above, we also get Af (s) = 0 for 
any/ G C(T) such that <̂ (.s) 0 coz(/ ) =: supp/. 

LEMMA 1. <̂  /s continuous. 

PROOF OF THE LEMMA. Assuming the contrary, by the compactness of T, there is a 
net (sa)aer in Si U S2 convergent to so G Si U S2 such that (f(sa) = £a converges to 
h ^ fo = (fiso)- Let L̂ o, £/i be open, disjoint neighborhoods respectively of to and t\, 
and let/o G C(7) be such that coz(/0) C UQ and Afo(s0) ^ 0. Fix an a G T such that 
Afo(sa) ^ 0 and ta £UX. Let/i G C(7) be such that coz(/0 C t/i and A/\0a) ^ 0. 
We get/o -/i = 0 but A/0. 4/i(s«) ^ 0, which contradicts the assumption that A is 
separating. 

The définition of ip and Lemma 1 are taken from [7]; we present the above proof 
here for the sake of completeness. 

LEMMA 2. Let (sn)^L\ be a sequence in S\ U S2 such that tn = <p(sn), n G N are 
distinct points of T. Then 

lim sup \\8Sn o A\\ < 00. 

Note that the above says, in particular, that \\bSn oA\\ < 00 for all, but finitely many 
n G N. 

PROOF OF THE LEMMA. Assume the contrary. Taking an appropriate subsequence, we 
can assume without loss of generality that 

(1) \%RoA\\>n2, VrcGN, 
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and that there is a sequence (Un) of pairwise disjoint open subsets of T with tn G Un. 
By the definition of ip and (1), there is a sequence (fn) in C(J) such that 

supp/„ C Un, \\fn\\ ^ 1/w, and \Afn(sn)\ ^ /i. 

Put 
oo 

/ = £/«• 
«=1 

By the comment preceding Lemma 1 we have 

\Af(Sno)\ = \A(fno)(Sno)+A I Y,fn J feo)| = \Mfn0)(sno)\ ^ "0-

Hence Af is unbounded, which is not possible. This proves the lemma. 
Put 

F = {t G T : sup{||<5, oA|| : s G ^ ( O } = oo}. 

By Lemma 2, F is a finite set. We want to show that F = (^(S^). The inclusion 
^(^2) Çz F is obvious by the definition of £2; to show the converse one fix a t G F 
and define 

* : C(T) — CC^CO) by * ( / ) - A/V'(0-

Since t G F, the map O is discontinuous, and by the closed graph theorem there is a 
sequence (fn)^L\ in C(T) convergent to 0 and such that (0(fn))^=l is convergent to a 
non-zero function go £ C((^_1(0)- Let 5 G <p~l(t) be such that go(s) 7̂  0. We have 
/„ —>0 and Ss oA(/„) —> g0(s) 7̂  0 so 5 G ^2 and hence F Ç y?(52). 

n=oo 

Fix now an s G 5i and put 

/5 = { / G C ( r ) : ^ ) ^ s u p p / } 

^ = {/eC(r):/wrt) = o}. 

Fix g G * , and e > 0. Put ^ = {* € 7 : |g(0| ^ e}, T2 = {t e T : \g(t)\ ^ (l/2)e} 
and let g' G C(7) be such that ||g'|| = 1, g'\Tl = 1, g'|r2 = 0. We have g-g' eJs and 
\\g ' g' ~ g\\ = e, so Js is a dense subspace of Ks. Moreover, since s G S\, 8S o A is a 
non-zero continuous functional and by the remark before Lemma 1 Js Ç ker(<55 o A). 
Hence Ks Ç ker(<55 o A) and since the codimensions of these spaces are both equal to 
one we have ker(£5 o A) — Ks and so 6S o A is of the form 

^ o A ( / ) - x W ( ^ ) ) , V/GC(7), 

for some scalar x(?) ^ 0. Let / G C(7) be such that f(<p(s)) ^ 0. In some neigh­
borhood of s, namely on {s G S\ :f(<p(s)) ^ 0} we have % = Mf)/f ° <£• Since 5 
is an arbitrary point of 5i, by Lemma 1, \ *s locally a well-defined quotient of two 
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continuous functions and so is continuous itself on S\. It is also a bounded function, 
since otherwise A(l) would be unbounded. 

It remains to prove that S2 is open. For any/ G C(T) we have 

suV{\Af(s)\ : s G S^JS~3} = sup{\Af(s)\ : s G Sx US3} £ \\X\\ \\f\\. 

Hence S\ US3 = {s G S : Ss o A is continuous} is closed, and we are done. 
From the theorem and the definition of 99, we can immediately deduce the following 

observations: 
(2) A is surjective => S3 = 0 and ip\s] is injective. 
(3) S3 = 0 => S1 is a compact subset of S. 
(4) F consists of non-isolated points only. 
(5) A is injective & (p(Si) = (p(S\US2) = T. 

Statements (2) and (3) are obvious. To prove (4), assume ip(so) — to is an isolated 
point of T. By the definition of ip, A(f )(so) = 0 if f(to) — 0, hence 6SooA = aSto for 
some scalar a, so <p(so) §£ F. Implication "4=" of (5) is obvious; to get "^>" assume 
<p(Si) Q T. By (4) and since F is finite, we get (p(S\)UF C T, so there is a n / G C(T) 
such that / ^ 0 and supp / H (<p(Si) U F) = 0. By Theorem, A/ = 0 and A is not 
injective. 

COROLLARY. Assume A is a linear, separating isomorphism from C(T) onto C(S). 
Then A is continuous and S and T are homeomorphic. 

PROOF. By (2), (3), and (5), since cp is continuous we get (p(S\) = T. For any 
f eC(T) we have 

A / | 5 l = 0 ^ / = 0 ^ A / | s 2 = 0 . 

Hence, since A is surjective, we get S2 = 0, and by (2) ip is a homeomorphism from 
S onto T. 

EXAMPLE. Let T be an infinite compact set, S a compact set, and let E be a 
linear subspace of C(S) with dim E ^ c := continuum. We show that there is a 
discontinuous, linear separating map A from C(T) onto £. Observe that the cardinality 
of any separable metric space is at most c, so E may be any separable linear subspace 
of C(S). There are also many non-separable Banach spaces E with dimE ^ c, e.g., 
E = l°°. Hence, in particular we have an example of a discontinuous, linear, separating 
map from c — Banach space of all convergent sequences onto /°°. 

Let (Un)^ be a sequence of pairwise disjoint, non-empty, open subsets of 7, 
and let tn G U„9 for n G N. Fix an JC0 G /3N — N, where /3N is the Stone-Cech 
compactification of the set of positive integers. Any sequence {any^=zl of non-negative 
real numbers can be extended to a continuous function from /3N into R+ U {+00}, 
which we denote by [ ( ^ ) ^ j ] . We define two vector spaces 

V = { ( / ( r „ ) ) ~ 1 G / 0 0 : / 6 C ( D } 

Vo - {(an)Zi ^ : i 0 ^ supp[(fln)~ J } . 
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LEMMA. dim(V/Vo) = c. 

The equation dim(V/Vo) ^ c is obvious since dm\{V /Vo) ^ dimV ^ dim/00 = c. 
The converse equation can be proven in several ways. Probably the shortest one is to 
observe that V jVo can be seen as a subset of the non-standard model *C(*R) of the 
set of all complex (real) numbers, that V /VQ contains the monad Mo of 0, and that 
M0 is a c-dimensional linear space over C(R) [9, 10]. To get a more elementary and 
self-contained proof let/w G C(T) be such that supp/M C Un and \\fn\\ = 1 = f(tn). 
Let Jl be the set of all infinite subsets of N. Clearly card(.#) = c. Let (an)

<^=l be any 
decreasing sequence of positive numbers tending to zero and such that 

hm = 0. 
n (X\ • « 2 ' . . . ' OCn 

For any A G A we define a sequence (tf£)J£=i by 

a^n — Y\_ ak for « G N, 
k€A(n) 

where A(n) = {k €N : n — k £ A}; if A(n) = 0 then we understand that a* = 1. Let 
A, # be distinct subsets of N and let ko be the smallest integer which is contained in 
exactly one of these sets, say ko £ A. Then 

(6) 0 < 4 ^ — >0. 

For any A G .# we now define/^ G C(7) by 

oo 

fA=Y^°Anfn-
n=\ 

Let Ai , . . . , A2 be distinct subsets of N. By (6) sequences (/Ày(^))£li tend to zero with 
quite "different speed", this means in particular that there is one set among Ai , . . . , A*, 
say Ai, such that 

lim J = +00 for j — 2 , . . . , &. 

Hence a non-trivial linear combination of ( / ^ ( O ^ i ? • • •, (fAk(tn))%Li is distinct from 
zero for all, except possibly finitely many, indices; hence the set 

{Mtn))Zi + V0e(V/Vo):AeJl} 

is linearly independent, so dim(V/Vo) = c. 
Let <3> be any linear map from V onto E such that Vo Ç kerO and 
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We define A : C(T) - • C(S) by 

Af(s) = <t>((f(tn))Zi) for s eS. 

The map A is evidently discontinuous. We prove that it is separating. 
Let hu h2 G C(T) be such that 

{teT:hi(f)^0}n{teT: h2(t) ^ 0} = 0. 

Put 
#,- = {/!€ N : *,-(*„) ̂  0}, for / - 1,2. 

We have N\ D N2 = 0 and hence the closures of these sets in /3N are also disjoint. 
This means that at most one of the sets N\ or N2 contains XQ. Assume that xo j£ N\. 
Then (Ai(f#.))!£i G K0 and Ahx = 0. 
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