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Abstract

Facemilling is performed on aluminum alloyA96061-T6 at diverse cutting parameters proposed
by the design of experiments. Surface roughness is predicted by examining the effects of cutting
parameters (CP), vibrations (Vib), and sound characteristics (SC). Sound characteristics based
on surface roughness estimation determine the rarity of the work. In this study, a unique ANN-
TLBO hybrid model (Artificial Neural Networks: Teaching Learning Based Algorithm) is
created to predict the surface roughness from CP, Vib, and SC. To ascertain their correctness
and efficacy in evaluating surface roughness, the performance of these models is evaluated. First
off, the CP hybrid model demonstrated an amazing accuracy of 95.1%, demonstrating its
capacity to offer trustworthy forecasts of surface roughness values. The Vib hybrid model, in
addition, demonstrated a respectable accuracy of 85.4%. Although it was not as accurate as the
CP model, it nevertheless showed promise in forecasting surface roughness. The SC-based
hybrid model outperformed the other two models in terms of accuracy with a remarkable
accuracy of 96.2%, making it the most trustworthy and efficient technique for assessing surface
roughness in this investigation. An analysis of error percentages revealed the exceptional
performance of SC-based Model-3, exhibiting an average error percentage of 3.77%. This
outperformed Vib Model-2 (14.52%) and CP-based Model-1 (4.75%). The SC model is the best
option, and given its outstanding accuracy, it may end up becoming the go-to technique for
industrial applications needing accurate surface roughness measurement. The SC model’s
exceptional performance highlights the importance of optimization strategies in improving
the prediction capacities of ANN-based models, leading to significant advancements in the field
of surface roughness assessment and related fields. An IoT platform is developed to link the
model’s output with other systems. The system created eliminates the need for manual, physical
surface roughness measurement and allows for the display of surface roughness data on the
cloud and other platforms.

Introduction

Machining operations are performed on materials to attain better dimensional accuracy and
surface roughness. Surface roughness is a crucial factor in manufacturing operations that
influences the product’s quality. Several factors influence material surface roughness, like cutting
parameters, vibrations, cutting forces, coolant used, tool wear, chip formation, cutting tools, etc.
(Anagün et al., 2023; RS et al., 2020; Chebrolu et al., 2022). A stylus probe device is used to
manually test the surface roughness of the machined components. The probe instrument causes
visible scratches on the machined parts by physically moving them (Raju et al., 2017; Guleria
et al., 2022). Several researchers proposed artificial intelligence models for the prediction of
surface roughness using the parameters that influence surface roughness to do away with the
manual method of measurement (Huang et al., 2023; Yücel et al., 2023). Machine learning
algorithms have been utilized more frequently lately to forecast surface roughness in manufac-
turing processes (Buj-Corral et al., 2023; Bhowmick et al., 2023). In this work, a novel hybrid
model is created by combining the Teaching Learning Based Algorithm–Artificial Neural
Networks) to enhance their capabilities. The complex relationships between the input variables
(CP, Vib, and SC) and the output variable (surface roughness) are developed using the ANN. To
improve accuracy, the ANN model’s parameters are optimized using the TLBO technique. The
study involves collecting experimental data on cutting parameters, vibration, and sound char-
acteristics for a range of machining operations, and measuring the corresponding surface
roughness. The ANN–TLBO hybrid model is trained on the gathered experimental data, and
the model’s effectiveness is assessed. The work aims to provide insights into the development of
accurate and efficient models for predicting surface roughness in manufacturing processes. To
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obtain the necessary surface finish, the manufacturing process
parameters can be optimized using the suggested ANN–TLBO
hybrid model. A mobile app is developed to interface with the
sound characteristics, predict the surface finish, and display the
same similar toMikolajczyk et al. (2018). The remaining sections of
the paper are organized as follows: 1. Introduction, 2 Literature
review, 3. Experimentation, 4. Optimization of neural network
models, 5. Models interpretation 6. Results, 7. IoT interface, and
8. conclusions

Literature review

To carefully highlight the nuances of surface roughness prediction
in CNC machining, the literature study is divided into three sec-
tions. Investigating the complex link between surface quality and
machining circumstances through the analysis of cutting
parameter-based systems. Deep insights into the critical function
of vibration signals in surface roughness prediction were obtained
by investigating vibrations-based systems. Meanwhile, the analysis
of systems based on sound characteristics provided insightful view-
points on how to use sound measurements for accurate surface
quality evaluation. This methodical tripartite approach guarantees
an exhaustive investigation of current approaches, providing a
strong basis upon which our study may innovate and contribute
to the area.

Review on cutting parameter-based systems

Mikołajczyk et al. (2020) This research investigates the effect of
oblique cutting with sintered carbide edges at different cutting-
edge angles (λs) on the minimal uncut chip thickness during free-
radial rotation. The findings show that hmin decreases as λs angle
increases, which is consistent with theoretical formulas pertaining
to the direction of chip flow. Emphasizing the importance of non-
orthogonal cutting processes in research and practice, the paper
tackles micro-cutting and abrasive wear difficulties and proposes
new avenues for finishing machining. Abbas et al. (2019) pro-
posed an algorithm using an ANN with the Edgeworth–Pareto
method that will optimize the cutting parameter in CNC face-
milling operations. Surface roughness, Ra, has been forecasted
utilizing a 3-10-1 multi-layer perceptron artificial neural network
(ANN MLP) subsequent to completing the face milling process.
The process involved parameters within the following ranges:
cutting speed ranging from 78 to 158 m/min, cutting depth
ranging from 0.5 to 1.5 mm, and feed per tooth ranging from
0.013 to 0.075 mm/tooth, with a precision of ±5.78%. In the
investigation of milling grade-H steel, neural network models
have revealed a beneficial impact of spindle speed (n) and feed
rate (vf), and a detrimental impact of the depth of cut (ap) on
surface roughness. Notably, the significance attributed to spindle
speed and feed rate was 25 times greater than that assigned to the
depth of cut. A three-axis, vertical CNCmillingmachine is used to
perform end-mill operations on Aluminum 6061 T6a workpiece.
Tseng et al. (2016) used a spindle touch probe and a Renishaw
TS27R tool setting probe to measure the surface roughness. The
cutting parameters from the experiment are taken as input vari-
ables for the fuzzy logic (FL) model to predict the surface rough-
ness. Given a set of inputs, such as cutting speed, feed rate, and
other variables, an FL model with 63 built to predict the surface
roughness. The predicted values of the surface roughness
(SR) from the FL model are compared with the values measured

experimentally, and theModel predicted themwith an accuracy of
95%. Ho et al. (2009) conducted the end milling operation with
various input parameters, such as speed feed rate and depth of cut,
and measured the corresponding surface roughness value. With
the aid of experimental values, they developed a novel hybrid
Taguchi-genetic learning-based adaptive neuro-fuzzy inference
system (HTGLA-based ANFIS) algorithm to predict the surface
roughness value. In all, there are 72 experiments, of which 48 are
used to train the model and 24 to test it. The developed model
demonstrates superior performance and achieved an average
error percentage of 4.06%. Eser et al. (2021) developed an experi-
mental model using ANN and RSM to predict surface roughness
in milling AA6061 alloy with TiCN-coated carbide tools. They
found that the depth of cut had the most significant impact on
surface roughness (35.48%), followed by cutting speed (23.38%),
and feed rate (16.74%). This study underscores the importance of
optimizing cutting parameters for improved surface quality in
milling operations. Kara et al. (2023) investigated the impact of
cutting parameters and nose radius variation on milling 17-4 PH
stainless steel. They found that using a 0.4 mm cutting nose radius
resulted in lower cutting force, temperature, and tool wear
(approximately 2.35%, 28.89%, and 1.18% lower, respectively)
compared to a 0.8 mm nose radius. Moreover, increasing the nose
radius improved surface quality by an average of 47.48%. These
findings highlight the importance of optimizing cutting param-
eters for enhanced machining performance and surface finish in
stainless steel milling. Mikolajczyk et al. (2014) explored the
critical influence of the thickness of an irreversible cut layer on
the cutting process in low thickness layers, with reference to the
radius of the cutting-edge rounding. It highlights how important
this impact is for turning, especially when feed values are less
than 0.05mm/rev for lower cutting-edge radii, allowing for higher
feed rates for bigger radii. The created program facilitates the
analysis and visualization of this impact, which is useful for
maximizing machining parameters and comprehending the
subtleties of surface roughness in turning processes.

Review on vibrations-based systems

In the earlier section, the researchers built the predictive models for
determining the surface roughness values by making use of the
cutting parameters. Some studies on vibration-based surface
roughness estimation are as follows: Wu and Lei (2019) performed
the milling operation on S45C steel material using a tungsten
carbide cutter, and corresponding vibrations were measured in all
directions (i.e., X, Y, and Z directions). The vibrational signals have
been extracted using a sensor and analyzed using time and fre-
quency domain analysis in all specified directions. A BP-ANN
model is developed to predict the surface roughness from cutting
parameters and acquired vibration signals. The Z-direction vibra-
tion signal had more impact on the surface roughness than the
other two directions. They also developed the three models
(i.e., model 1: considering the cutting parameters as input param-
eters, model 2: considering the vibration data as input parameters,
and model 3: combining both cutting and vibrational data) for
predicting the surface roughness values. From the results, they
found that the first model’s mean absolute percentage error
(MAPE) of the BP-ANNmodel is 29%. In the secondmodel, MAPE
is 25% when vibration signals are given as input for the prediction
of surface roughness value. In the third model, MAPE is 19% when
vibrations and cutting parameters are given as input. It is noticed
that the surface roughness predictions are enhanced by combining
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the vibration signals and cutting parameters. Feng et al. (2020)
conducted the ultrasonic vibration-assisted slot milling operation
on Aluminum alloy 2A12 samples using a five-axis machining
center approach. The surfaces of workpieces are measured six times
by an optical interferometer. The surface roughness of the slot after
feed rate directional ultrasonic vibration-assisted milling is ana-
lyzed through the analytical predictive model. The analytical pre-
diction model is compared with experimental measurements. The
average percentage error is 13.4% for the first group of experiments
under a spindle speed of 5,000 rpm. The average percentage error is
25.7% under the feed rate per tooth of 4 μm.The average percentage
error is 17.3% for the second group of experiments when the
vibration amplitude is 4 μm. The average percentage error is
10.9% when the vibration amplitude is 7 μm. The proposed model
achieved high accuracy in all cases. Župerl and Čuš (2019) per-
formed the dry turning operation on AISI 8620 steel samples. In
this experiment, the vibration signals are measured with acceler-
ometers placed close to the tool. The signals from the accelerom-
eters are processed and logged via a data acquisition card (DSPT
Siglab Model 20-42) and d the vibrational information is extracted
during the experimentation. Surface roughness prediction is based
on singular spectrum analysis (SSA), a unique signal processing
technology that analyses the vibrations of cutting tools. In all, there
are 60 experiments, of which 40 are used to train the model and
20 to validate it. The SSA model predicted SR values are predicted
with an average percentage error of 4.72%.

Review of sound characteristics-based systems

In the earlier section, the researchers built the predictive models
for determining the surface roughness values by making use of the
vibrational information during the machining operation. How-
ever, there is not an extensive amount of research that is available
now that attempts to predict the surface roughness values by
making use of the sound characteristics that have been gathered
during the experiment. Salgado et al. (2009). performed the
machining operation on mild steel specimens and gathered the
friction noise characteristics as well as the contact force. With the
aid of this information, a correlation has been developed between
the surface roughness and input parameters (i.e., friction noise
characteristics and contact force). The amplitude of friction noise
and the magnitude of contact force are utilized to train a back
propagation neural network (BPNN) for future prediction of
Surface roughness. The network consisted of one output node
and four input nodes. About 300 data sets are generated after the
contactor is rubbed on surfaces made of mild steel that is
machined. Among all, 30% of the data set is used to test the
network’s performance, and 70% of the randomly selected data
is used to train the network. The data obtained from the experi-
ments demonstrate that the neural network could learn the pat-
tern for future prediction of surface roughness. Singh et al. (2004).
performed the end milling machining operation on 16MnCr5
steel specimens. A cutting experiment with variable milling depth
is carried out for the feasibility test of the cloud-based machining
platform for monitoring end-milling operations. The cutting
experiment is carried out using the CNCmachine. The developed
cloudmachining platform’s computing resources are linked to the
machine tool’s intelligent sensor system to create the two-level
cyber-physical machining system. The designed smart optical
sensor system can collect and transmit in real time the values of
the cutting chip sizes to the cloud level. Based on the established
cutting chip size, a cloud application with an adaptive neural

inference system is used to model and predict surface roughness
online. By adjusting the machining parameters and maintaining
surface roughness constant, a novel application of cognitive cor-
rective control action is used to regulate the cutting chip size based
on the in-process predictions. Controlled Ra deviated only less
than 10% from the desired surface roughness value.

Zhao et al. (2022). conducted the slot milling machining
operation on AL7075 workpiece samples with the aid of a 5-axis
CNC machine. A total of 50 experiments are designed and
conducted, out of which 40 are selected as the training set and
the remaining 10 as the test set. A novel self-learning surface
roughness prediction model has been developed based on the
Pigeon-Inspired Optimized Support Vector Machine (PIO–

SVM). The influence of cutter posture and cutting force on
surface roughness is analyzed. The average prediction error of
the proposed model was only 8.69% at the initial moment. A
surface roughness stabilization method combining the proposed
predictionmodel and digital twin technology is proposed tomake
the whole machined surface meet the surface roughness technol-
ogy requirements. The proposed method had a good influence on
making the surface roughness of the workpieces stable and helped
to improve the machined surface properties, machining effi-
ciency, and manufacturing cost.

Methodology of experimentation

Experimental setup

Face milling operations are performed on 110 × 50 ×9mm3 sized
aluminum alloy A96061-T6 flats at diverse cutting parameters. A
spectrometer chemical analysis is done on the workpieces to test the
composition, and the hardness of thematerial is measured to justify
the above-mentioned material. A conventional milling machine
named BFW VF1 (spindle motor of 3 kW and feed rate motors
of 0.75 kW) is used to perform the face milling operation. A face
milling cutter of 50mmdiameter with four numbers of teeth is used
for machining. The placement of vibration sensor and the sound
sensor are shown in Figure 1. Sensors are placed close to the spindle
to acquire the spindle vibration data and sound characteristics. The
sensors are connected to the national instruments data acquisition
system (DAC) as shown in Figure 1.

The vibration measurement device (i.e., PCB single axis accel-
erometer, model number: 352C03, sensitivity (±20%): 9.95
mV/g, frequency range (±5%): 0.5–10,000 Hz, measurement
range: ±500 g Pk, resonant frequency: ≥50 kHz, weight
(without cable): 5.8g)) is used for the measurement of vibrations
and the overall vibration values. The obtained vibrational values
are given in Table 1. The sound sensor or microphone with a
sensitivity of 45 mV/Pa is used to measure the overall sound
characteristics during the experimentation. The obtained sound
characteristics are listed in Table 1. Specifications of the sound
sensor are model number: 377B02, open circuit sensitivity:
45 mV/Pa, frequency range (±2 dB): 3.15 Hz–20 kHz, dynamic
range upper limit: 3%: 146 dB A. National instruments (NI) data
acquisition (DAQ) systems, cDAQ-SV1101 Bundle specifically
designed for vibration and sound measurements, are used in this
experiment. This system is used to capture and analyze data from
accelerometer and microphones to characterize vibrations and
acoustic signals in the test section. The cDAQ-SV1101Bundle is a
one-slot chassis that can accommodate up to four signal condi-
tioning modules (SCMs). Each SCM can support up to four
channels of measurement, and the system can sample at up to
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51.2 kS/s per channel with 24-bit resolution. In the design of
experiments (DOE), a methodical approach is used to set the
experimental cutting parameters required for machining in a
sequential order. The cutting parameters given for DOE
(Design Expert V13 software) are cutting speed (i.e., 710, 1000,
and 1400 rpm), feed rate (i.e., 100, 160, 200 mm/min), and depth
of cut (D.O.C.) (i.e., 0.2, 0.4, and 0.6 mm) and a total of 27 dif-
ferent experiments are proposed by DOE for experimentation, as
listed in Table 1. The Talysurf is used to measure the surface
roughness of each machined flat, and the measured surface
roughness values to its corresponding cutting parameters are
shown in Table 1.

Experimental results

Three alternative ANN–TLBO hybrid models are created using
the experimental data from Table 1. Model 1 is created to map the
cutting parameters and surface roughness, while model-2 and
model-3 are created to map overall vibrations and sound charac-
teristics to predict surface roughness, respectively. The model-2
and model-3 contained single data, as shown in Table 1, which
resulted in model prediction errors as high as 25%. To solve the
aforementioned issue, the maximum amplitudes at associated
frequencies are documented and displayed in Table 2 for each
experimental vibration data set. The graphs between the ampli-
tude and frequency of many tests are superimposed. To plot the

Figure 1. Vibration sensor and sound sensor connected to DAC for data acquisition.

Table 1. Plan of experiments and given results of overall vibrations
(m/s2), overall sound (dB), and surface roughness (μm)

Experiment
number

Speed
(rpm)

Feed rate
(mm/min)

D.O.C
(mm)

Overall
vibrations
(m/s2)

Overall
sound
(dB)

Surface
roughness

(μm)

1 1000 160 0.6 5.00 99.68 0.846

2 1400 160 0.4 4.45 92.65 1.071

3 710 160 0.2 3.37 90.36 1.417

4 1400 200 0.2 4.45 93.74 0.306

5 1400 160 0.2 5.02 98.20 0.535

6 710 200 0.2 3.49 95.01 2.280

7 1000 100 0.2 3.95 95.94 1.801

8 1400 100 0.6 4.98 98.47 0.5

9 1400 100 0.4 4.92 98.42 0.4

10 710 100 0.2 3.34 94.55 1.22

11 1400 160 0.6 4.33 97.06 0.549

12 710 160 0.4 4.19 96.59 1.45

13 1000 200 0.4 6.09 99.91 1.529

14 710 100 0.4 3.61 95.47 0.3658

15 1000 100 0.6 4.93 98.17 1.046

16 1000 160 0.2 4.48 97.25 0.498

17 1000 100 0.4 4.68 97.90 0.839

18 710 100 0.6 3.89 96.37 0.935

19 1400 200 0.6 6.42 100.51 0.815

20 1000 200 0.6 5.78 99.74 1.226

21 710 200 0.4 4.28 96.85 1.314

22 710 160 0.6 4.42 96.98 0.587

23 1000 160 0.4 5.12 98.77 1.86

(Continued)

Table 1. (Continued)

Experiment
number

Speed
(rpm)

Feed rate
(mm/min)

D.O.C
(mm)

Overall
vibrations
(m/s2)

Overall
sound
(dB)

Surface
roughness

(μm)

24 1000 200 0.2 4.82 98.16 0.62

25 1400 100 0.2 4.85 97.81 0.552

26 710 200 0.6 4.69 97.35 1.23

27 1400 200 0.4 5.65 99.20 0.896
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graphs, the pattern has been followed, as it can involve maintain-
ing the first two cutting parameters constant and changing the
third parameter. After evaluating the results, it is noticed that the
greater amplitude peaks are observed at frequencies of 411.648,
828.416, and 1644.584 Hz with increasing speed. Similar ampli-
tude peaks are observed at different frequencies 411.648, 601.089,
and 1202.176 Hz at varied feed rate, and amplitude peaks are
observed at different frequencies at varied depth of cut is 411.648,
828.416, and 1149.95 Hz, respectively. The largest amplitudes and
their related frequencies are tabulated, and the data is utilized to
develop the hybrid model-2.

The hybrid model-3 is developed using the mean, standard
deviation, skewness, and kurtosis values that are calculated for
each experiments sound characteristics and are shown in
Table 3. The following Eqs. (1)–(4) are used to calculate average
values of sound characteristics used for prediction of surface
roughness.

Mean =
XX

N
(1)

where X is the sumof all the values, andN is the number of values in
the sample.

Standard Deviation σð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

XN
i= 1

xi�xð Þ2
vuut (2)

where xi is each value in the sample, x is the sample mean, and N is
the number of values in the sample.

Skewness =
n

n�1ð Þ n�2ð Þ
� �

×
X xi�x

σ

� �3
(3)

where n is the sample size, xi is the ith observation in the dataset, x
is the sample mean and σ is the sample standard deviation.

Table 2. Vibrations amplitudes and surface roughness values

Exp. No AMP-1 AMP-2 AMP-3 AMP-4 AMP-5 AMP-6
Measured surface
roughness (μm)

Predicated surface
roughness (μm) Error (%)

1 0.112 0.621 0.243 0.724 2.094 0.188 0.846 0.789 6.738

2 0.153 0.156 0.638 0.372 0.357 0.125 1.071 0.942 12.045

3 0.617 0.098 0.507 0.245 0.268 0.078 1.417 1.045 26.253

4 0.096 0.105 1.386 0.313 0.320 0.135 0.306 0.378 23.529

5 0.113 0.122 0.334 0.295 0.302 0.134 0.535 0.456 14.766

6 0.694 0.098 0.461 0.368 0.292 0.079 2.280 2.010 11.842

7 0.093 0.380 0.180 0.502 1.397 0.186 1.801 1.601 11.105

8 0.132 0.128 0.538 0.397 0.370 0.132 0.500 0.412 17.600

9 0.127 0.517 0.222 0.614 0.866 0.210 0.400 0.421 5.250

10 0.429 0.052 0.458 0.297 0.253 0.063 1.064 0.987 7.237

11 0.116 0.121 0.565 0.373 0.406 0.146 0.549 0.478 12.933

12 0.858 0.139 0.467 0.387 0.360 0.088 1.450 1.324 8.690

13 0.137 0.696 0.218 0.461 2.053 0.210 1.529 1.124 26.488

14 0.553 0.061 0.417 0.367 0.281 0.071 0.366 0.246 32.859

15 0.118 0.539 0.287 0.438 1.527 0.201 1.046 0.945 9.656

16 0.097 0.412 0.254 1.464 0.723 0.191 0.498 0.589 18.273

17 0.094 0.376 0.199 0.781 1.466 0.185 0.839 0.912 8.701

18 0.696 0.068 0.372 0.326 0.302 0.073 0.935 0.789 15.615

19 0.151 0.165 2.139 0.618 0.387 0.184 0.815 0.745 8.589

20 0.131 0.839 0.298 0.982 1.979 0.130 1.226 1.045 14.763

21 0.982 0.102 0.381 0.330 0.344 0.099 1.314 1.541 17.276

22 0.698 0.088 0.498 0.438 0.277 0.091 0.587 0.498 15.162

23 0.127 0.552 0.235 1.303 0.890 0.149 1.860 1.612 10.444

24 0.094 0.098 0.264 0.516 0.332 0.121 0.620 0.512 17.419

25 0.107 0.109 0.406 0.382 0.382 0.121 0.552 0.589 6.703

26 0.918 0.096 0.553 0.412 0.312 0.095 1.230 0.986 19.837

27 0.152 0.152 1.995 0.514 0.375 0.144 0.896 0.786 12.277

Average error = 14.520.
RMSE = 0.154.
R2 = 0.885.
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Kurtosis =
n× nþ1ð Þð Þ

n�1ð Þ n�2ð Þ n�3ð Þ

×
X xi�xð Þ4

σ4

� �� �� �
� n�1ð Þ2� �

n�2ð Þ n�3ð Þ½ �

(4)

where n is the sample size, xi is the ith observation in the dataset, x is
the sample mean, and σ is the sample standard deviation.

Optimization of neural network models

Artificial neural network (ANN)

An artificial neural network is a simplified nonlinear computational
and mathematical model that is able to solve many engineering
problems, includingmodeling, andpredictionof experimental values
Kottala et al. (2022). Nowadays, neural networks have become the
most popular technique to predict experimental outcomes and show

comparatively better performance than the existing traditional
methods. The ANN structure consists of an input layer, an output
layer, and hidden layers. The number of neurons present in the input
layer and output layer is equal to the number of considered input and
output parameters, respectively. Typically, a neural network contains
processing elements connected via weighted interconnections. Each
processing element receives input signals via weighted incoming
connections Kumar et al. (2022). Mikolajczyk and Olaru (2015)
performed regression analysis for practical modeling is presented
in the paper, along with its uses and drawbacks. Regression analysis
offers a good mathematical model, but choosing the right model
requires a thorough understanding of the phenomena. The relative
error can be used to measure the correctness of a model, as neural
networks provide a large adjustment range but lack information on
model coefficients or factor importance. Neural network extrapola-
tion proved to be a powerful tool for assessing quality beyond
experimental data, and this capacity was investigated further. Kara

Table 3. Sound characteristics and surface roughness values

Exp. no. Mean Standard deviation Skewness Kurtosis
Measured surface
roughness (μm)

Predicted surface
roughness (μm) Error (%)

1 0.008 0.246 –0.039 1.013 0.846 0.799 5.615

2 0.007 1.057 0.008 1.390 1.071 1.117 4.314

3 �0.005 0.742 �0.091 0.915 1.417 1.446 2.040

4 0.021 0.880 0.163 2.971 0.306 0.296 3.366

5 �0.006 1.639 0.006 2.239 0.535 0.507 5.196

6 �0.003 1.283 �0.021 0.749 2.280 2.271 0.395

7 0.012 1.514 �0.109 1.371 1.801 1.727 4.131

8 0.014 1.900 0.008 1.064 0.500 0.528 5.680

9 0.012 1.660 0.026 1.301 0.400 0.401 0.175

10 �0.004 1.107 �0.055 1.703 1.064 1.109 4.248

11 0.005 2.069 �0.044 2.121 0.549 0.549 0.073

12 �0.001 1.422 0.072 1.073 1.450 1.420 2.076

13 0.005 2.091 �0.060 0.661 1.529 1.462 4.382

14 �0.008 1.261 �0.013 0.996 0.366 0.336 8.201

15 0.001 1.812 �0.101 1.363 1.046 1.020 2.199

16 �0.011 1.742 �0.095 2.117 0.498 0.466 6.337

17 �0.021 1.739 0.012 2.112 0.839 0.902 7.557

18 0.012 1.399 �0.014 0.611 0.935 0.940 0.481

19 0.008 2.301 0.006 1.448 0.815 0.819 0.442

20 �0.008 2.190 �0.121 0.372 1.226 1.181 3.703

21 0.004 1.543 0.041 0.450 1.314 1.338 1.819

22 �0.004 1.530 0.043 0.418 0.587 0.618 5.332

23 0.005 1.834 �0.017 1.035 1.860 1.733 3.750

24 �0.030 1.818 �0.034 1.548 0.620 0.586 5.565

25 0.007 1.569 �0.027 1.616 0.552 0.525 4.909

26 �0.001 1.613 �0.079 0.538 1.230 1.254 1.976

27 0.000 2.066 �0.008 1.498 0.896 0.965 7.746

Average error = 3.781 %.
RMSE = 0.048.
R2 = 0.988.
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et al. (2020) studied cutting parameter effects on surface roughness
and tool wear in AISI D2 cold work tool steel with different heat
treatments using ceramic cutting tools. They employed an ANN
model for surface roughness prediction, achieving high accuracy
(R2 > 0.97, RMSE < 0.07). The study highlights the influence of deep
cryogenic processing on material hardness and demonstrates the
ANN’s strong learning capacity for surface roughness estimation.

A suitable learning method was adopted to train the network
structure by changing the weights and bias of every neuron. The
training process continues until it reaches the lowest root mean
square error (MSE). By varying the weights and biases of the
network will reduce the error between the predicted and desired
values. The following Eq. (5) is effectively utilized to create the
network structure.

F Hnð Þ= 2

1þ e
�2 ×

Pn
j= 0

Wij ×Xið Þþbj

� ��1 (5)

Present ANN structure, the input neuron receives the total
information from the input data i.e., Xi. Equation (5) Wij

represents the connection weight from the input layer to the hidden
layer and bj is the bias of each hidden neuron.Whereas Wjk and bk
denotes weight connections between the hidden layer and output
layer and bias respectively.

Ok =
Xn
k= 0

Wjk ×Hn
	 
þbk (6)

The predicted output of each output neuron ( Ok) can be calcu-
lated by using the above Eq. (6). The Tansig activation function is
chosen between the input and hidden layer whereas the Purelin
activation functions is used for the output layer. The number of
neurons present in the hidden layer plays a vital role in the predict-
ability of the network. If too few neurons in the hidden layermay lead
to less precise outcomes, too many neurons will not give fair results.
So, it is required to optimize the number of neurons in the hidden
layer. The number of neurons can be determined by using the trial-
and-errormethod. The optimumneurons are calculated by using the
following Eq. (7) (Balasubramanian et al., 2022). The learning rate
function in this hybrid neural network is regarded as fixed and has a
value of 0.001. Freed forward neural networks that are optimized
with the aid of the TLBO algorithm eliminate the sensitivity analysis
of the learning rate function. Independent of learning rate function,
TLBO optimizes the weights and bias [19, 21].

Hn =
InputþOutput

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Train data

p
(7)

To improve the accuracy of outcomes, it is necessary to normal-
ize the input data (cutting parameters). This normalization can be
used to improve the accuracy as well as reduce the convergence
time. The input and output data are normalized within the range of
0–1 for cutting parameter as data is diverse. The data normalization
can be calculated using the following Eq. (8) ( Kottala et al., 2023).

X =
Xi�Xminð Þ

Xmax�Xminð Þ highvalue�Lowvalue
	 
þLowvalue (8)

Teaching learning-based optimization (TLBO) algorithm

Teaching learning-based optimization (TLBO) is the most popular
meta-heuristic approach in recent years and was proposed by Rao

et al. (2012). Compared to other stochastic searching algorithms,
TLBO has advantages like higher accuracy, simplicity in structure,
and quicker convergence. TLBO mainly comprises two parts,
i.e., the teacher phase and the learner phase. In this algorithm,
the ‘Teacher phase’modemeans learning from the teacher, whereas
the ‘learner phase’ means learning from communication between
the learners. The teacher phase and learner phase are well described
in the below sub-sections Teacher phase and Student/learner phase.

Teacher phase
The teacher phase is the preliminary stage of the TLBO algorithm
where the teacher shares knowledge with the students based on the
normal distribution function as mentioned in Eq. (9) below and the
schematic representation of the TLBO is shown in Figure 2.

f Xð Þ = 1

σ
ffiffiffiffiffi
2π

p × e
� x�μð Þ

σ2f g (9)

where σ2, μ represents the variance and mean of the sample
function, respectively.

The students gained knowledge from the teacher and enhanced
their average knowledge level by interacting with the teacher. In the
teacher phase, for a specified initial population, calculate the object-
ive function value. After that, evaluate the mean value of all indi-
viduals, the best solution is achieved. If the best solution is better
than the previous one, then it is stored as the best solution. The new
solution can be determined by the following Eq. (10).

Xnew =Xolderþ r Xteacher�T f ×meanð Þ (10)

where ‘r’ is denoted as random number and range of selection of
0–1, XTeacher means obtained results from the teacher, T f is the
teaching factor which is randomly taken from 1 to 2.

T f = round 1þ rad 0:1ð Þ 2�1ð Þð Þ (11)

The teaching factor ( T f ) value cannot be set by the user and this
parameter determined by the algorithm using the above Eq. (11).

Student/learner phase
In the learner phase, the learner’s knowledge is increased by two
processes: initially, by the teacher’s input and next, by interaction
among the neighborhood learners. These learners communicate
with each other and upgrade their knowledge with the help of
discussions between themselves.Whoever hasmore knowledgeable
student will transfer knowledge to the less knowledgeable student.
After certain iterations, the all less knowledgeable students gained
more knowledge interacting with them. As a result, the final out-
come of the generated population is better than the initial popula-
tion. The following Eq. (12) is used to evaluate the performance of
the learner by means of its fitness value.

Xnew,i =
Xoldþr Xi�Xjð Þ if f Xið Þ < f Xjð Þ
Xoldþr Xj�Xjð Þ Else where

�
(12)

where Xi, Xj are the randomly selected individuals in the learner
phase, Xnew,i is the new solution after the learner phase and ‘r’
denotes random number between 0 and 1.

ANN–TLBO

Integration of the TLBO algorithm to neural network was suggested
for current research work, in order to overcome the limitations of
conventional ANN architecture. Themajor reason for implementing
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the TLBO algorithm to ANN was able to determine the optimal
solution with minimum computational cost. This hybrid TLBO-
ANN is used to train the experimental dataset, to achieve the optimal
solutions for the weights and biases, which can be used to reduce the
MSE in a short span of period. These selected parameters are
progressively updated until they reaches the convergence criterion.
The main objective function of the TLBO is to minimize the MSE.
The working of the proposed hybrid algorithm is shown in Figure 3.
The following Eqs. (13) and (14) are used to evaluate the

performance of the hybrid ANN–TLBO algorithm. In the TLBO
algorithm, there are mainly two parameters population size; and the
number of iterations will decide the accuracy of the algorithm. Using
a trial-and-error approach, these control parameters are set to fixed
until they obtain the lowest MSE.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

XA�XPð Þ2
s

(13)

Figure 2. Schematic representation of the teacher-learner-based algorithm.

Figure 3. Schematic representation of working of ANN-TLBO hybrid model.
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R2 = 1�
P

Xi�Xp
	 
2P
Xi�Xi
	 
2 (14)

Models Interpretation

Cutting parameters based hybrid model

Due to the numerous intricate interactions between the cutting
parameters, the connection between cutting parameters and sur-
face roughness is not always linear. To overcome the non-
linearity, an ANN-TLBO hybrid model is developed to predict
surface roughness. The hybridmodel consists of three parameters,
namely the number of hidden neurons (Ho), population size ( npop),
and maximum iterations (Max It), that need to be determined to
achieve the best predictions. The number of hidden neurons is
calculated based on Eq. (7) and tested with a variance of ±5 of the
optimal hidden neurons. The hybrid model is trained and tested
by keeping the number of hidden neurons (ranging from 2, 3,
4…‥12) constant, correspondingly varying the population size
(ranging from 25, 50, 75…‥ 275) and maximum iterations
(ranging from 100, 200, 300……1100). The MSE is calculated
for each neuron in order to determine the optimal number of
hidden neurons. The number of hidden neurons with the lowest
MSE is considered the optimal number of neurons for the hybrid
model. After finding the optimal hidden neuron, population size
is kept constant by varying the number of hidden neurons and
maximum iterations, respectively. Similarly, the above procedure
is repeated by keeping the maximum number of iterations (Max
It) constant. The results of optimal hidden neuron ( Ho = 6),
population size ( npop= 125), and Max It = 700. As the algorithm
continues its iterations, it endeavors to enhance the solution by
adjusting the candidate solutions in the population. As time
progresses, the cost (or fitness) function value tends to decrease
in a gradual manner. Consequently, there is an overall downward
trend in the optimal cost as iterations proceed.

This study followed a meticulously approach called the “Leave-
One-Out Cross-Validation” (LOOCV) method of optimization. In
LOOCV, the dataset is repeatedly divided into a training set that
contains all data points except one and a test set that only contains
that onemissing data point (Kundu et al. 2022, Horňas et al, 2023). To
evaluate the model’s performance more than once, this procedure is
repeated for each data point in the dataset. The outcomes are then
averaged or otherwise compiled to determine the model’s overall
performance. LOOCV is often used to assess the predictive power
andgeneralizationability ofmachine learningmodelswhen thedataset
is limited. The above method is provided in supplemantary data file.

The scatter plot is drawn between predicted and measured
roughness over the number of experiments and is shown in
Figure 4. The variation between the predicted and measured
roughness is shown graphically. There is a significant correlation
between the predicted and measured roughness. If the data points
are close to each other and form a tight cluster, it indicates that
there is a strong relationship, whereas if the data points are widely
dispersed, it suggests that there is little correlation between the
two variables.

The RMSE and R2 are used to evaluate the performance of the
model, as shown in Figure 5. The line diagram shows the relation-
ship between the neurons with their corresponding RMSE and R2.
This shows that neuron 6 is the most accurate and precise neuron,
with the lowest RMSE value of 0.068 and the highest R2 value of
0.993 compared to other neurons. The low RMSE indicates that
predicted values are close to the actual values, while the high R2

value indicates that the model explains a large portion of the
variance in the data. The empirical formulas for calculating RMSE
and R2 are given in Eqs. (13) and (14), respectively.

The above graph shown in Figure 6 indicates the neuron 6
curve has the lowest percentage error when compared to other
neurons. This indicates that neuron 6 is the optimal neuron
among all the neurons tested. The graph indicates optimal
hidden neurons as (Ho =6), population size (npop = 125), and
Max It = 700. The RMSE, correlation coefficient (R2), and MEP

Figure 4. Measured surface roughness (Ractual) vs Predicted surface roughness (Rpredict) for model 1.
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values obtained with these algorithms for model-1 are shown in
Tables 4 and 5.

Vibrations-based hybrid model

As mentioned earlier in experimentation, the overall vibration data
is used for the vibration-based hybrid model development, and the
model prediction error percentage is high. The graphs are drawn
and superimposed between amplitude and frequency by maintain-
ing the first two cutting parameters constant and changing the
third. After evaluating the graphs, it is possible to conclude that
the greater amplitude peaks are observed at frequencies 411.648,

601.089, 828.416, 1149.95, and 1644.584 Hz. The frequencies and
their related amplitudes are tabulated in Table 2, and the data is
utilized to develop the hybrid model 2. AMP-1 in Table 2 indicates
the amplitude of vibration at a frequency of 411.648 Hz; similarly,
AMP-2 indicates the amplitude of vibration at a frequency of
601.089 Hz, and so on.

The scatter plot is drawn between predicted and measured
roughness over the number of experiments and is shown in
Figure 7. The variation between the predicted and measured
roughness is shown graphically. There is a significant correlation
between the predicted and measured roughness. If the data points
are close to each other and form a tight cluster, it indicates that

Figure 5 Calculated RMSE and R2 values at each hidden neuron for model 1.

Figure 6 Calculated error percentage at each maximum iteration and each hidden neuron for model 1.
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there is a strong relationship, whereas if the data points are widely
dispersed, it suggests that there is little correlation between the
two variables.

The RMSE and R2 are used to evaluate the performance of the
model as shown in Figure 8. The line diagram shows the relation-
ship between the neurons with corresponding RMSE and R2. This
shows that neuron 10 is themost accurate and precise neuron with
the lowest RMSE value of 0.154 and the highest R2 value of 0.885
compared to other neurons. The low RMSE indicates that pre-
dicted values are close to the actual values, while its high R2 value
indicates that the model explains a large portion of the variance in
the data.

The below graph shown in Figure 9 indicates the neuron 10
curve has the lowest %error when compared to other neurons. This
indicate that the neuron 10 is the optimal neuron among all the
neurons tested. The graph indicates optimal hidden neuron as (Ho

=10), population size ( npop= 200), and Max It = 800. The RMSE,
correlation coefficient (R2), and MEP values obtained with these
algorithms are shown in Tables 6 and 7.

Table 4. Model-1 RMSE and R2 values for different neurons generated by the
algorithm

Neuron RMSE R2

2 0.134 0.792

3 0.143 0.834

4 0.104 0.875

5 0.097 0.894

6 0.068 0.993

7 0.098 0.934

8 0.078 0.845

9 0.078 0.814

10 0.078 0.882

11 0.137 0.854

12 0.114 0.817

Table 5. Model-1 MEP values for different neurons generated by the algorithm

Max It 2 3 4 5 6 7 8 9 10 11 12

100 25.874 23.47 24.862 26.457 20.12 21.457 25.789 24.897 20.45 19.745 22.46

200 21.458 20.475 19.475 19.741 15.428 18.745 19.745 17.235 16.478 18.745 19.745

300 18.475 17.263 16.326 17.965 14.589 15.975 16.785 14.978 16.874 15.213 14.785

400 15.745 17.52 16.751 17.256 13.475 12.864 12.892 16.745 13.457 12.756 12.453

500 11.476 12.745 14.875 16.782 10.856 10.745 11.963 12.756 19.562 10.852 9.523

600 10.856 9.562 10.475 9.845 8.452 9.123 7.456 9.245 10.142 9.142 8.125

700 9.012 8.456 9.12 7.142 4.879 6.127 6.814 7.587 8.235 6.178 6.874

800 10.425 10.782 8.452 9.745 5.142 9.235 8.963 11.251 9.745 10.004 8.147

900 8.456 7.452 10.457 8.124 4.901 10.235 7.125 8.745 8.014 7.852 8.745

1000 7.452 6.745 9.412 9.243 8.452 8.145 10.963 10.76 9.004 6.475 7.547

1100 8.124 7.425 10.475 6.245 7.256 6.254 9.245 9.745 6.347 7.415 9.475

Figure 7. Measured surface roughness (Ractual) vs predicted surface roughness (Rpredict) for model 2.
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Sound characteristics based hybrid model

This section discusses the performance studies of TLBO-trained
ANN structure for sound characteristics. This hybrid neural
network provides optimized weights and biases, which are able
to reduce the error function in a short span of time. These weights
and biases are consecutively changing until they reach the con-
vergence criterion. As discussed in earlier sections, the optimized
ANN structure is obtained by changing controlling factors such as
the number of hidden neurons, population size, and number of
iterations. A smaller population size may lead to convergence

towards the global solution, whereas a larger population size takes
more time to converge the solution.

The sensitivity test has been performed for a sound
characteristics-based hybrid model to find the optimal value of
population size. This sensitivity test was performed on various
population sizes ranging from 25 to 275 with a step size of 25.
From Figure 10, it is noticed that the ANN–TLBO algorithm
gives better results and takes more time to converge the solution,
and more iterations are needed when running at a smaller popu-
lation size.

Figure 9. Calculated error percentage at each maximum iteration and each hidden neuron for model 2.

Figure 8. Calculated RMSE and R2 values at each hidden neuron for model 2.
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The global best optimum is achieved at a population size of
125 with minimum computational cost. In the same way, a sensi-
tivity test was conducted for different numbers of iterations at the
obtained optimal population size of 125. This sensitivity test also
reveals that theMSE value decreases with an increase in the number
of iterations. The test has been performed with various iteration
numbers ranging from 100 to 1100 with step size 100. As Figure 12
shows the iteration number of 700 is chosen as another optimal
parameter for ANN–TLBO structure. Afterward, there is no mas-
sive difference observed in MSE when iteration increases from the
optimal value. The RMSE, correlation coefficient (R2), and MEP
values obtained with these algorithms are shown in Tables 8 and 9.

Result

Hybrid model validation: The hybrid neural network optimizes
weights through techniques like GA, PSO, ant colony, and BAT,
requiring sensitivity analysis by adjusting parameters, including

Table 7. Model-2 MEP values for different neurons generated by the algorithm.

Max It 3 4 5 6 7 8 9 10 11 12 13

100 38.876 34.874 36.784 35.126 30.457 31.451 34.964 29.475 30.152 33.256 32.415

200 30.47 28.456 27.412 24.789 31.745 32.745 30.265 31.475 29.745 30.014 29.745

300 28.475 25.123 24.756 26.475 29.475 27.451 29.475 27.897 26.147 29.235 24.789

400 20.415 21.867 19.874 18.457 26.475 30.478 28.47 19.475 20.741 17.451 20.364

500 18.125 19.784 16.879 20.123 19.475 19.475 20.14 16.472 17.54 16.457 15.784

600 16.452 17.487 17.897 20.879 18.124 20.145 17.456 17.021 16.47 20.417 19.415

700 17.456 20.745 21.476 16.451 16.745 20.007 16.748 14.889 17.523 18.654 17.451

800 14.987 15.784 14.997 16.745 15.478 15.004 16.897 14.5206 18.741 16.874 16.457

900 20.475 27.451 20.457 17.587 20.147 19.745 20.745 15.475 20.147 20.178 30.241

1000 19.456 19.475 17.456 20.475 19.475 20.478 19.745 16.124 19.542 17.562 17.584

1100 18.457 15.745 23.126 19.745 16.745 16.874 20.987 19.526 17.697 16.547 17.254

Table 6. Model-2 RMSE and R2 values for different neurons generated by the
algorithm.

Neuron RMSE R2

3 0.382 0.654

4 0.347 0.745

5 0.284 0.797

6 0.245 0.807

7 0.175 0.845

8 0.159 0.874

9 0.165 0.864

10 0.154 0.885

11 0.204 0.814

12 0.174 0.847

13 0.150 0.864

Figure 10. Measured surface roughness (Ractual) vs predicted surface roughness (Rpredict) for model 3.
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population size, crossover rate, mutation rate, and criteria. To
reduce the computational load, the TLBO algorithm is fine-tuned
for enhanced performance with reduced sensitivity to parameters,
ultimately achieving superior efficiency and performance as men-
tioned by (Togan, 2012). Examining the impact of machining
parameters (MPs) on vibration signals (VS), and surface rough-
ness (SR) in aluminum alloy CNC machining, the ANN models
show outstanding correlation factors (R values 0.97–1), providing
insights for improving CNC machining efficiency. A sensitivity
analysis fine-tunes the optimal hybrid neural network, linking
performance to hidden layer configuration, and neuron count,
with the neural independence test revealing optimal counts of

6 and 10 hidden neurons for model 1 and the remaining models,
respectively.

The sensitivity analysis: The developed hybrid models
(i.e., models 1, 2, and 3), the error percentages for each model
are depicted in Figure 13. Examining the graph presented in
Figure 13, it becomes evident that the vibration-based model
exhibits a relatively high error rate, approaching 33%, with an
average error of approximately 14.520 when predicting surface
roughness. Conversely, the cutting parameters-based model dis-
plays a more modest average error percentage of 4.746. However,
the standout performer is the sound-based surface roughness
model, boasting an impressive average error rate of 3.76. This

Figure 11. Calculated RMSE and R2 values at each hidden neuron for model 3.

Figure 12. Calculated error percentage at each maximum iteration and each hidden neuron for model 3.
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compellingly demonstrates that the sound-based model outper-
forms the other two models in terms of its predictive accuracy for
surface roughness.

Comparison with recent literature: nevertheless, the performance
assessment of the developed sound-based hybridmodel is compared
to recent studies and is listed in Table 10. From the studies presented
in Table 10, it is evident that the newly developed sound-based
hybrid neural network outperforms the others, achieving an impres-
sive accuracy rate of 96%. This finding underscores the effectiveness
of our sound-based hybrid neural network for accurately predicting
surface roughness in face-milled components.

The sound measurements and model-3 outperform vibrations
and cutting parameters. Numerous studies have demonstrated the
efficacy of sound measures for detecting bearing defects, showcasing
their ability to identify flaws before theymanifest as visible vibrations
post-failure (Tandon and Choudhury, 1999). The sensitivity of
sound measurements, capturing high-frequency data, enables early
defect detection by extracting modulations correlated to machine
fault frequencies. The study based on sound measurements can

Table 9. Model-3 MEP values for different neurons generated by the algorithm.

Max It 3 4 5 6 7 8 9 10 11 12 13

100 24.31 23.124 20.14 24.14 19.45 18.475 15.784 12.47 17.45 12.45 19.745

200 22.14 23.102 13.85 10.45 13.85 10.235 13.85 13.85 13.85 13.85 12.475

300 15.14 14.578 13.45 10.45 12.235 12.745 10.475 9.41 10.98 13.41 14.752

400 15.23 15.42 11.33 10.784 9.475 9.784 9.748 11.33 11.33 8.412 8.745

500 11.45 10.45 9.74 11.78 6.784 7.741 8.745 9.745 9.475 7.1452 6.784

600 10.74 8.457 8.974 8.456 4.56 5.142 6.784 4.56 7.415 6.478 5.452

700 10.457 8.745 7.456 5.124 4.412 5.174 4.789 3.781 4.134 4.785 7.478

800 9.78 9.451 8.472 7.415 7.546 4.125 5.147 4.287 3.925 3.885 6.415

900 7.46 10.462 8.841 8.142 5.475 6.784 4.123 4.189 5.147 4.189 8.41

1000 9.214 9.874 8.142 6.145 8.41 7.789 6.879 4.214 6.142 6.475 9.475

1100 8.451 8.457 10.475 9.745 7.457 8.7456 7.145 9.452 9.1 6.358 6.745

Table 8. Model-3 RMSE and R2values for different neurons generated by the
algorithm

Neuron RMSE R2

3 0.112 0.902

4 0.104 0.916

5 0.094 0.945

6 0.058 0.979

7 0.068 0.974

8 0.074 0.954

9 0.078 0.953

10 0.049 0.984

11 0.050 0.981

12 0.094 0.947

13 0.074 0.951

Figure 13. Comparison of developed models.
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detectminute fluctuations andmicro-level surface noise, and suggest
potential enhancements in roughness assessment prediction skills.

IoT interface/mobile interface

ANN–TLBO is used to develop a model for surface roughness
prediction. Each neuron’s weights and biases are collected, and
using those values, an equation for surface roughness is developed.
The mobile app described in the paper is not directly functioning
as a traditional IoT system in terms of machine-to-mobile data
transfer. However, the purpose of the mobile app is to serve as an
interface for open architectural machine tools. With the availabil-
ity of open-architecture machine tools, one can seamlessly inte-
grate this mobile interface into the systems, effectively serving as
an IoT bridge between the machine and the mobile app. By
interfacing with such machines, it becomes possible to establish
a direct channel for data transfer from the machine to the mobile
device. In this way, the mobile app facilitates the interaction
between the user and themachine, allowing real-time data sharing
and control. The mobile application is developed using FLUTTER
software, which acts as a creative maestro conducting a pixel
symphony. It expertly fuses the art of design with the science of
coding, enabling developers to build visually appealing and
engaging user experiences. Due to its adaptable performance
and cross-platform capabilities, Flutter bounces across platforms
like a digital chameleon, easily merging with smartphones, tablets,
web browsers, and more. It supports the spirit of flexibility and
provides developers with the ability to let their imaginations run
wild and gracefully and skilfully accomplish their software

objectives. The developedmobile interface has text fields for input
and output that can be filled out manually. The roughness is
calculated using the surface roughness equation based on the
user’s inputs, and the result values are displayed on the mobile
interface. One of the numerous advantages of this approach is that
it provides a user-friendly interface that can be used to rapidly and
easily predict surface roughness for a given set of input data. An
ANN–TLBO algorithm can effectively and accurately predict
surface roughness, and the mobile interface makes it simple to
access and utilize the model from a mobile device. Overall, in a
wide range of industries, including manufacturing and engineer-
ing, the ability to predict surface roughness is essential for achiev-
ing the highest possible product quality and performance. The
prediction model has become more accessible and simpler to use
because of the development of a mobile interface, making it a
useful tool for field engineers and technicians.

In order to predict and display the surface roughness online used
the flutter platform. An equation derived to predict the surface
roughness from the ANN–TLBO hybrid model based on the
weights and bias is shown below in Eq. (15). Where S1 is mean,
S2 is standard deviation, S3 is Skewness, and S4 is Kurtosis values of
sound characteristic.

Ra = �0:5108H1ð Þþ 0:3146H2ð Þþ 0:003H3ð Þþ 0:5858H4ð Þ
þ 1:6860H5ð Þþ 0:8526H6ð Þ� 1:5632H7ð Þ� 0:5600H8ð Þ
þ 0:5189H9ð Þþ 0:3066H10ð Þþ0:8789

(15)

where H1 to H10 are calculated using the following Eqs. (16)–(26).

Table 10. Model comparison with recent literature.

S. no Process Model Description References

1. CNC milling process FFT–LSTM An FFT–LSTM model predicts surface roughness values
using vibration signals as input, achieving a MAPE of
23.5%.

Lin et al. (2019)

2. CNC turning process Firefly–LSTM A Firefly–LSTM model predicts surface roughness values
using machining process vibration signals, achieving an
RMSE of 0.248.

Andrews et al. (2023)

3. CNC milling process PSO–LSSVM The model predicts surface roughness with accuracy
(92.54%) using input data from noise, vibration, and
workpiece surface texture characteristics.

Li et al. (2022)

4. Grinding process PSO–LS–SVR The model predicts surface roughness with accuracy of
(92%) using input data from noise characteristics.

Nguyen et al. (2022)

5. End milling process Deep learning neural networks The model accurately predicts surface roughness with
accuracy of (90%) using noise characteristics data.

Bhandari et al. (2023)

6. Hard Turning process Fuzzy logic model This model predicts surface roughness with accuracy of
(86%) using input data from vibration and acoustic
emissions.

Asiltürk et al. (2023)

7. CNC milling process One dimensional
convolutional neural
network (1D–CNN)

This model predicts surface roughness with accuracy of
(94.56%) using input data solely from vibration.

Zeng et al. (2023)

8. End milling process One dimensional
convolutional neural
network (1D–CNN) with Mel-
Spectrogram

This model predicts surface roughness accurately with
accuracy of (90%) using input data from sound and
force datasets.

Bhandari (2021)

9. CNC milling process ANN–TLBO This model takes input data from sound data set, and
successfully predicts surface roughness, achieving a
high prediction accuracy of 96.218 % and having the
RMSE of 0.04998.

Present work

16 R. S. Umamaheswara Raju et al.

https://doi.org/10.1017/S0890060424000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000192


H1 =
1

1þⅇ� 0:9551∗S1�2:1782∗S2�0:3310S3�4:9999S4�0:5108ð Þ (16)

H2 =
1

1þⅇ� �5∗S1þ2:3421∗S2�4:9999S3�2:5533S4þ0:3146ð Þ (17)

H3 =
1

1þⅇ� 0:5577S1þ4:920∗S2�4:9209∗S3�3:0732∗S4þ0:0032ð Þ (18)

H4 =
1

1þⅇ� �5∗S1�0:1591∗S2þ2:7145∗S3�0:0160∗S4þ0:5858ð Þ (20)

H5 =
1

1þⅇ� �2:2334∗S1�0:4782∗S2�2:8161∗S3�4:980854∗S4þ1:6860ð Þ (21)

H6 =
1

1þⅇ� 4:9975∗S1�1:752052∗S2þ0:2447∗S3�2:6833S4þ0:8526ð Þ (22)

H7 =
1

1þⅇ� 1:25625∗S1�1:752052∗S2þ0:2447∗S3�2:683354∗S4þ0:8526ð Þ (23)

H8 =
1

1þⅇ� 2:5357∗S1�0:8974∗S2�0:1521∗S3þ0:7055S4�0:5600ð Þ (24)

H9 =
1

1þⅇ� �0:1140∗S1�2:880852∗S2�3:2729∗S3�2:719754∗S4þ0:5189ð (25)

H10 =
1

1þⅇ� �0:5461S1þ4:9912∗S2�0:2006∗S3þ3:0732∗S4þ0:3066ð Þ (26)

From the earlier discussion, it is clearly identified that the sound
characteristic data-based hybrid neural network (i.e., model 3)
shows better performance as compared to other developed models
1 and 2. So, the authors developed the mobile app interface for
model 3 as shown in Figure 14. The sound characteristic data of the
machined samples are given as input data for the developed mobile
app input interface (Figure 14a). The application performance
results after entering input data and model predicted values are
displayed in the output interface as shown in Figure 14b. Therefore,
the developedmobile app interface reduces the cost and labor effort
and is effectively used to predict the surface roughness of the
machined samples.

Conclusion

This study, developed and analyzed three hybrid models aimed at
forecasting surface roughness during themachining process. Lever-
aging ANN in combination with TLBO, these models consider
cutting parameters, vibration data, and sound characteristics as
crucial input elements.

• Key findings and optimization parameters:

Model-1: Cutting parameters-based model for surface roughness predic-
tion. the architecture is designed with six hidden neurons (Ho), a popula-
tion size (npop) of 125, and aMax It of 700. Model-2: vibration-based model
for surface roughness prediction. the architecture is designed with 10 hid-
den neurons (Ho), a population size (npop) of 200, and a Max It of 800.
Model-3: sound characteristics-based model for surface roughness predic-
tion. the architecture is designedwith 10 hidden neurons (Ho), a population
size (npop) of 125, and a maximum iteration (Max It) of 1100.

Figure 14. (a) Mobile app input interface and (b) Mobile app output Interface.
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• Model evaluation and comparison:

Training set of 26 points and a separate test set of one point created using
“Leave-One-Out Cross-Validation” (LOOCV). Model performance met-
rics reveal excellent accuracy: Model 1 (cutting parameters) with RMSE
0.068, R2 0.9931; Model 2 (vibrations) with RMSE 0.15492, R2 0.88536;
Model 3 (sound characteristics) excelling at RMSE 0.04998,R2 0.98417. The
model considered the best is the one with an R2 close to 1 and an RMSE
close to 0. In this instance, Model 3 demonstrated superior results com-
pared to the other two models.

• Models percentage error analysis and superiority:

Sound-based Model 3 demonstrated exceptional accuracy (average error
percentage: 3.77%), outperformingModel 2 (14.52%) andModel 1 (4.75%).
Comparative analysis with recent studies showcased an impressive 96%
accuracy for the sound-based hybrid model, establishing its superiority.

• IoT mobile interface development:

An IoT mobile interface using the flutter platform was developed for
practical usability. Users can input sound characteristics and receive real-
time predictions of surface roughness. Catering to field engineers and
technicians, the interface enhances accessibility and usability.

This study validates the effectiveness of hybridANN–TLBOmodels
for accurate surface roughness prediction in machining processes.
The sound-based model, in particular, emerges as a promising tool
for various industrial applications. The development of a user-
friendly mobile interface enhances the accessibility and usability
of these predictive models, making them valuable assets in the field
of manufacturing and engineering.

Future scope of work

In our upcoming work, we intend to broaden the model’s applic-
ability to include a larger range of cutting circumstances, including
various machining procedures and cutting instruments. We seek to
increase the model’s adaptability by performing in-depth research
and validation trials, making it suitable for a number of circum-
stances frequently seen inmachining operations. In order to provide
insightful analysis and precise surface roughness forecasts in a variety
of industrial scenarios, we are eager to investigate the possibilities of
our model in various cutting circumstances and processes.

Supplementary material.The supplementary material for this article
can be found at http://doi.org/10.1017/S0890060424000192.
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