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In this paper, we propose artificial-neural-network-based (ANN-based) nonlinear algebraic
models for the large-eddy simulation (LES) of compressible wall-bounded turbulence. An
innovative modification is applied to the invariants and the tensor bases of the nonlinear
algebraic models through using the local grid widths along each direction to normalise
the corresponding gradients of the flow variables. Furthermore, the dimensionless model
coefficients are determined by the ANN method. The modified ANN-based nonlinear
algebraic model (MANA model) has much higher correlation coefficients and much
lower relative errors than the dynamic Smagorinsky model (DSM), Vreman model and
wall-adapting local eddy-viscosity model in the a priori test. The significantly more
accurate estimations of the mean subgrid-scale (SGS) fluxes of the kinetic energy and
temperature variance are also obtained by the MANA models in the a priori test.
Furthermore, in the a posteriori test, the MANA model can give much more accurate
predictions of the flow statistics and the mean SGS fluxes of the kinetic energy and
the temperature variance than other traditional eddy-viscosity models in compressible
turbulent channel flows with untrained Reynolds numbers, Mach numbers and grid
resolutions. The MANA model has a better performance in predicting the flow statistics
in supersonic turbulent boundary layer. The MANA model can well predict both direct
and inverse transfer of the kinetic energy and temperature variance, which overcomes the
inherent shortcoming that the traditional eddy-viscosity models cannot predict the inverse
energy transfer. Moreover, the MANA model is computationally more efficient than
the DSM.
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1. Introduction

Turbulent flows have the intrinsic multi-scale characteristics across several orders of
magnitude, therefore direct numerical simulation (DNS) of turbulence at high Reynolds
numbers is extremely time consuming and not tractable to solve all flow scales ranging
from the dissipation range to the energy-containing range. Accordingly, the large-eddy
simulation (LES) is an effective approach in which only the large-scale motions are
resolved while the effect of the residual subgrid-scale (SGS) structures on the resolved
large-scale motions are modelled by an SGS model (Lesieur & Metais 1996; Meneveau
& Katz 2000; Sagaut 2006; Garnier, Adams & Sagaut 2009; Durbin 2018; Moser,
Haering & Yalla 2021). Extensive SGS models have been proposed to reconstruct the
unclosed SGS terms in previous works, and the eddy-viscosity SGS models (Smagorinsky
1963; Deardorff 1970; Nicoud & Ducros 1999; Vreman 2004) are often utilised due
to the dissipative nature of the SGS stress tensor. In eddy-viscosity SGS models, the
Smagorinsky model (Smagorinsky 1963; Deardorff 1970) is one of the most widely used
SGS models whose model coefficient is statically calibrated by the experimental and
numerical data. Germano et al. (1991) pioneered the famous dynamic procedure based
on the Germano identity, which makes the coefficients of the dynamic Smagorinsky
model (DSM) dynamically modified as the flow evolves. Subsequently, other improved
and generalised dynamical versions of the Smagorinsky model were introduced by Lilly
(1992), Piomelli (1993), Ghosal et al. (1995) and Meneveau, Lund & Cabot (1996).
Furthermore, Nicoud & Ducros (1999) proposed a wall-adapting local eddy-viscosity
model (WALE), which has a good performance in wall-bounded turbulence. Moreover,
Vreman (2004) introduced another eddy-viscosity model with quite satisfactory results in
turbulent shear flows.

The eddy-viscosity models assume that the SGS stress is linearly aligned with
the filtered strain-rate tensor based on the Boussinesq hypothesis. Therefore, these
eddy-viscosity models have a serious drawback that they correlate poorly with the
true SGS stress (Anderson & Meneveau 1999; Da Silva & Métais 2002) and cannot
predict the energy backscatter to the resolved scales (Zang, Street & Koseff 1993).
Furthermore, the linear alignment assumption in the eddy-viscosity models is unphysical
and cannot estimate the complicated nonlinear relation between the filtered strain-rate
tensor and the SGS stress (Anderson & Meneveau 1999; Da Silva & Métais 2002; Xie
et al. 2019a,c; Xie, Wang & Weinan 2020a; Xie, Yuan & Wang 2020b). In order to
alleviate these problems, Pope (1975) derived a general nonlinear algebraic expression
between the Reynolds stress and the averaged strain-rate and rotation-rate tensors with
ten integrity bases based on the theory of invariants. Furthermore, Lund & Novikov
(1992) reduced the ten integrity basis tensors to five, which significantly simplified the
computational complexity of the nonlinear algebraic SGS model. Similarly, Wang et al.
(2007) proposed a dynamic nonlinear tensorial diffusivity model to model the SGS scalar
flux in the incompressible turbulence. Then, how to determine the model coefficients
in the nonlinear algebraic models is a significant issue. In the early stages, the model
coefficients were mostly determined by the experimental and numerical data. Recently,
the dynamical versions of these nonlinear algebraic SGS models (Wang et al. 2007; Yuan
et al. 2022) were proposed and exhibited a reasonable agreement with the filtered DNS
(fDNS) data. Furthermore, Wang et al. (2021b) proposed a dynamic spatial gradient
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model, which has good performance in both a priori and a posteriori tests in LES of
incompressible isotropic turbulence. However, the dynamic approach requires some ad
hoc procedures, including the averaging of model coefficients in statistically homogeneous
directions and the clipping of the negative model coefficients to avoid numerical
instability.

Recently, the artificial neural network (ANN) has become a popular approach to develop
SGS models (Gamahara & Hattori 2017; Vollant, Balarac & Corre 2017; Beck, Flad
& Munz 2019; Maulik et al. 2019; Xie et al. 2019a,c; Yang et al. 2019; Zhou et al.
2019; Xie et al. 2020b; Yuan, Xie & Wang 2020; Frezat et al. 2021; Park & Choi
2021; Yu et al. 2022). The ANN method can construct a complex nonlinear mapping
between some resolved flow variables and the unresolved SGS terms. Therefore, the
SGS models based on the ANN method are expected to give more accurate prediction
than the traditional SGS models, and have a good performance in a posteriori tests
of compressible and incompressible isotropic turbulence (Xie et al. 2019a,c, 2020b)
and incompressible channel flow (Park & Choi 2021). It is worth noting that the
ANN-based SGS models can get rid of the averaging procedure of the model coefficients
in statistically homogeneous directions. Furthermore, the ANN-based SGS models in
compressible and incompressible isotropic turbulence (Xie et al. 2019a,c, 2020b) and the
single-point ANN-based SGS model in the incompressible channel flow (Park & Choi
2021) are free from backscatter clipping, while the multi-point ANN-based SGS model
in incompressible channel flow (Park & Choi 2021) requires the backscatter clipping
procedure.

The ANN method was also used to determine the model coefficients in the
nonlinear algebraic models. Ling, Kurzawski & Templeton (2016) firstly used the deep
neural networks to predict the model coefficients of the ten isotropic basis tensors
given by Pope (1975) to obtain an improved Reynolds-averaged Navier–Stokes model.
Similarly, Xie et al. (2020b) proposed ANN-based nonlinear algebraic SGS models
in LES of incompressible isotropic turbulence. They constructed a neural network
mapping between four dimensionless invariants and five model coefficients given by
Lund & Novikov (1992), and this new model exhibited a better performance in a
priori and a posteriori tests than traditional SGS models. Moreover, Vollant et al.
(2017) proposed a new ANN-based SGS model for the LES of a passive scalar
in the incompressible turbulence. Wang et al. (2021a) proposed an artificial neural
network-based spatial gradient models in LES of incompressible isotropic turbulence,
which used the ANN method to estimate the coefficients of the spatial gradient
models.

The above studies mainly concentrated on ANN-based LES of incompressible
turbulence; however, there are much fewer studies aiming to apply the ANN method to
develop the well-performing SGS models for the compressible wall-bounded flows. It
is worth noting that, due to the remarkable influence of compressibility, the underlying
mechanisms of the compressible wall-bounded turbulence are much more complex than
those in incompressible turbulence (Maeder, Adams & Kleiser 2001; Pirozzoli, Grasso
& Gatski 2004; Pirozzoli, Bernardini & Grasso 2008; Duan, Beekman & Martin 2010;
Pirozzoli, Bernardini & Grasso 2010; Lagha et al. 2011; Pirozzoli & Bernardini 2011;
Xu et al. 2021a,b, 2022b,c; Xu, Wang & Chen 2022a), and the study of improved
SGS models in compressible wall-bounded flows is of extraordinary importance in the
aerospace industry. Recently, Yu et al. (2022) proposed a new eddy-viscosity SGS
model constrained by the ANN-based modelling of the kinetic energy flux for LES of
compressible wall-bounded turbulence. The new kinetic-energy-flux-constrained model
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(KCM) showed a better performance in a priori and a posteriori tests than the traditional
SGS models. However, Yu et al. (2022) only constructed a good SGS model for the
unclosed SGS stress tensor, while advanced SGS models for the unclosed SGS heat flux
are much less investigated, which are significant in the LES of compressible wall-bounded
turbulence. Furthermore, the KCM developed by Yu et al. (2022) is essentially an
eddy-viscosity model. It is assumed by KCM that the SGS stress and SGS heat flux
are linearly correlated with the filtered strain-rate tensor and the gradient of the filtered
temperature respectively. These linear alignment assumptions are unphysical and it can
be speculated that the predicted SGS stress and SGS heat flux estimated by KCM would
not have high correlations with the true SGS stress and SGS heat flux. The KCM also
cannot estimate the complicated nonlinear relation between the filtered strain-rate tensor
and the SGS stress as well as the gradient of the filtered temperature and the SGS heat
flux.

It is worth noting that a critical issue for the ANN-based SGS model is the generalisation
ability to untrained flow conditions. Park & Choi (2021) showed that an ANN-based model
trained at a single grid resolution did not predict the flow statistics accurately at another
grid resolution, and this conclusion was also found in Zhou et al. (2019). However, many
studies have shown that an ANN-based SGS model trained at low Reynolds number
also has a good performance at high Reynolds number (Maulik et al. 2019; Park &
Choi 2021).

Another significant issue for the ANN-based model is the much larger computational
cost, as compared with those of the conventional dynamic eddy-viscosity models. It is
shown that the computational cost of the ANN-based models given in Park & Choi (2021),
Wang et al. (2018b), Yuan et al. (2020), Xie et al. (2019c) and Xie et al. (2020a) were
approximately 1.3, 1.8, 2.4, 15 and 256 times of that of DSM, respectively. Furthermore,
the ANN-based model in Yu et al. (2022) was also time consuming due to the large number
of the neurons of the hidden layer and the complex hyperbolic tangent (tanh) activation
function.

Accordingly, the main objective of this study is to propose a well-performing
ANN-based nonlinear algebraic model for the LES of compressible wall-bounded
turbulence for the first time. The nonlinear algebraic model of the SGS stress tensor
proposed by Lund & Novikov (1992) and that of the SGS passive scalar flux given by Wang
et al. (2007) in the incompressible turbulence are modified to utilise in the compressible
turbulent channel flow. The ANN method is used to estimate the dimensionless model
coefficients in order to get rid of some ad hoc procedures such as the averaging of model
coefficients in statistically homogeneous directions and the clipping of the negative model
coefficients to avoid numerical instability. Furthermore, the new model is trained with
compressible turbulent channel flow data at a single Reynolds number, Mach number
and grid resolution, and can have better performance in predicting the flow statistics in
compressible turbulent channel flows with untrained Reynolds numbers, Mach numbers
and grid resolutions. Moreover, the new model can also accurately predict the flow
statistics in the supersonic turbulent boundary layer. Finally, the proposed models are
more computationally efficient than the DSM, and make more accurate predictions than
the conventional SGS models.

The rest of the paper is organised as follows. The governing equations of the LES and
the a priori test of the traditional SGS models are described in § 2. The structure and the a
priori test of the ANN-based nonlinear algebraic model are shown in § 3. The a posteriori
test of the modified ANN-based nonlinear algebraic model is presented in § 4. Finally,
summary and conclusions are given in § 5.
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2. The governing equations of the LES and the a priori test of the traditional SGS
models

2.1. The governing equations of the LES
By applying the filtering method to Navier–Stokes equations, the following compressible
dimensionless LES governing equations are derived (Garnier et al. 2009):

∂ρ̄

∂t
+ ∂(ρ̄ũj)

∂xj
= 0, (2.1)

∂ (ρ̄ũi)

∂t
+ ∂[ρ̄ũiũj + p̄δij]

∂xj
= 1

Re
∂σ̃ij

∂xj
− ∂ρ̄τij

∂xj
+ 1

Re
∂

∂xj
(σij − σ̃ij), (2.2)

∂ρ̄Ẽ
∂t

+ ∂[(ρ̄Ẽ + p̄)ũj]
∂xj

= 1
Re

∂(σ̃ijũi)

∂xj
− 1

α

∂ q̃j

∂xj
− ∂(Cpρ̄Qj)

∂xj
− ∂Jj

∂xj

+ ∂

∂xj
[(σijui − σ̃ijũi) + (qj − q̃j)], (2.3)

p̄ = ρ̄T̃/(γ M2). (2.4)

Here, ρ̄, ũi, T̃ , p̄ represent the resolved density, velocity, temperature and pressure,
respectively, and ρ̄Ẽ is the Favre-averaged total energy defined later in (2.13). The filtered
field for a variable f can be defined as (Martin, Piomelli & Candler 2000; Xu et al. 2021b)

f̄ (x) =
∫

d3rGl (r) f (x + r) , (2.5)

where Gl(r) ≡ l−3G(r/l) is the filter function, and G(r) is a normalised window function.
Here, l is the filter width associated with the wavelength of the smallest scale retained by
the filtering operation. The symbol f̃ = ρf /ρ̄ represents the Favre filtered field.

The above compressible LES equations are non-dimensionalised by the following set of
reference scales, including the reference length L∞, free-stream density ρ∞, velocity U∞,
temperature T∞, pressure p∞ = ρ∞U2∞, energy per unit volume ρ∞U2∞, viscosity μ∞
and thermal conductivity κ∞. The ratio of specific heat at constant pressure Cp to that at
constant volume Cv is defined as γ = Cp/Cv and assumed to be equal to 1.4. Moreover,
Re = ρ∞U∞L∞/μ∞ is the Reynolds number, M = U∞/c∞ is the Mach number and α =
Pr Re(γ − 1)M2, where the Prandtl number Pr = μ∞Cp/κ∞ is equal to 0.7.

The resolved viscous stress tensor σ̃ij and the resolved heat flux q̃j are defined as

σ̃ij = 2μ̃(T̃)(S̃ij − 1
3δijS̃kk) (2.6)

and

q̃j = −κ(T̃)
∂T̃
∂xj

, (2.7)

where μ̃ = (T̃/T̃∞)3/2[(T̃∞ + Ts)/(T̃ + Ts)] is the molecular viscosity calculated by
Sutherland’s law with Ts = 110.4 K and T̃∞ = 288.15 K, and the thermal conductivity
κ̃ has the same expression as μ̃. Furthermore, S̃ij = (∂ ũi/∂xj + ∂ ũj/∂xi)/2 is the resolved
strain-rate tensor.
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As was done in many previous studies, including Ragab, Sheen & Sreedhar (1992),
Piomelli (1999), Dubois, Domaradzki & Honein (2002), Kawai & Larsson (2013) and Yu
et al. (2022), the unclosed terms (1/Re)(∂/∂xj)(σij − σ̃ij) in (2.2) and (∂/∂xj)[(σijui −
σ̃ijũi) + (qj − q̃j)] in (2.3) can be neglected, which is justified by the inviscid criterion
introduced in Aluie (2013) and Zhao & Aluie (2018). Therefore, (2.2) and (2.3) can be
simplified to

∂ (ρ̄ũi)

∂t
+ ∂[ρ̄ũiũj + p̄δij]

∂xj
= 1

Re
∂σ̃ij

∂xj
− ∂ρ̄τij

∂xj
, (2.8)

∂ρ̄Ẽ
∂t

+ ∂[(ρ̄Ẽ + p̄)ũj]
∂xj

= 1
Re

∂(σ̃ijũi)

∂xj
− 1

α

∂ q̃j

∂xj
− ∂(Cpρ̄Qj)

∂xj
− ∂Jj

∂xj
. (2.9)

It is found that there are three unclosed terms in the above compressible LES equations,
including the SGS stress tensor

τij = ũiuj − ũiũj, (2.10)

the SGS heat flux

Qj = ũjT − ũjT̃, (2.11)

and the SGS turbulent diffusion

Jj = 1
2
ρ̄
(
ũjuiui − ũjũiui

)
. (2.12)

Moreover, ρ̄Ẽ is the Favre-averaged total energy, and can be defined as

ρ̄Ẽ = p̄
γ − 1

+ 1
2
ρ̄ũiũi + 1

2
ρ̄τii. (2.13)

Therefore, the resolved temperature T̃ can be calculated by

T̃ = (γ − 1) γ M2
[

Ẽ − 1
2

ũiũi − τii

2

]
. (2.14)

Furthermore, it is suggested that the SGS turbulent diffusion can be approximated by
Jj ≈ ρ̄τijũi (Martin et al. 2000; Jiang et al. 2013; Yu et al. 2022). Therefore, only the
SGS stress tensor τij and the SGS heat flux Qj need to be modelled based on the resolved
variables.

It is noted that the subscripts i and j of τij and Qj satisfy i, j = 1, 2, 3, where the
numbers 1, 2, 3 represent the streamwise (x), wall-normal (y) and spanwise (z) directions,
respectively.

2.2. The a priori test of the traditional SGS models
It is worth noting that the eddy-viscosity models are the most famous SGS models for the
SGS stress tensor τij and the SGS heat flux Qj. The DSM (Moin et al. 1991; Lilly 1992),
the Vreman model (Vreman 2004; Sayadi & Moin 2012) and the WALE model (Nicoud
& Ducros 1999; Garnier et al. 2009) are the widely used SGS models, which are used to
compared with the new proposed models in the present study.
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The eddy-viscosity models of the SGS stress tensor τij and the SGS heat flux Qj can be
written as follows:

τij − 1
3δijτkk = −2μSGS(S̃ij − 1

3δijS̃kk), (2.15)

τkk = 2μI,SGS

∣∣∣S̃∣∣∣ , (2.16)

Qj = −μSGS

Prt

∂T̃
∂xj

. (2.17)

In the DSM, the SGS eddy-viscosity coefficients μSGS and μI,SGS are respectively
defined as (Moin et al. 1991; Lilly 1992)

μSGS = C2
smΔ2

∣∣∣S̃∣∣∣ (2.18)

and

μI,SGS = CIΔ
2
∣∣∣S̃∣∣∣ , (2.19)

with ∣∣∣S̃∣∣∣ = √2S̃ijS̃ij. (2.20)

Here, Δ = (ΔxΔyΔz)
1/3 is a characteristic length scale of local grid widths, and Δx,

Δy and Δz are the local grid widths along the streamwise, wall-normal and spanwise
directions, respectively. The model coefficients C2

sm, CI and μSGS/Prt in the DSM can be
solved dynamically based on the Germano identity (Germano et al. 1991; Moin et al. 1991;
Lilly 1992; Xie et al. 2019b).

In the Vreman model, the SGS eddy-viscosity coefficients μSGS and μI,SGS are
respectively defined as (Vreman 2004; Sayadi & Moin 2012)

μSGS = CvDv (2.21)

and
μI,SGS = CIDv, (2.22)

with

Dv =
√

Πβ

α̃ijα̃ij
, (2.23)

Πβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23, (2.24)

α̃ij = ∂ ũj

∂xi
, (2.25)

βij =
3∑

m=1

Δ2
mα̃miα̃mj, (2.26)

where Δm is the local grid width along the mth direction. The model coefficient Cv is
empirically defined as Cv = 2.5C2

sm, where Csm = 0.1 (Sayadi & Moin 2012; Yu et al.
2022).
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In the WALE model, the SGS eddy-viscosity coefficients μSGS and μI,SGS are
respectively defined as (Nicoud & Ducros 1999; Garnier et al. 2009)

μSGS = CwΔ2Dw (2.27)

and
μI,SGS = CIΔ

2Dw, (2.28)

with

Dw =
(
S̃d

ij S̃d
ij

)3/2

(
S̃ijS̃ij

)5/2 +
(
S̃d

ij S̃d
ij

)5/4 , (2.29)

S̃d
ij = 1

2

(
α̃2

ij + α̃2
ji

)
− 1

3
α̃2

kkδij, (2.30)

α̃2
ij = α̃ikα̃kj. (2.31)

The model coefficient Cw is empirically defined as Cw = 10.6C2
sm, where Csm = 0.1

(Garnier et al. 2009; Yu et al. 2022).
Furthermore, it is worth noting that, consistent with the assumption in Sayadi & Moin

(2012) and Yu et al. (2022), we also assume CI = 0 in the Vreman and WALE models, and
assume the SGS Prandtl number Prt = 0.9 empirically in the Vreman and WALE models
(Sayadi & Moin 2012; Yu et al. 2022).

In order to examine the performance of the three traditional SGS models listed above,
the a priori test is performed for DNS data of a temporally compressible isothermal-wall
turbulent channel flow (Coleman, Kim & Moser 1995). The governing parameters of
the DNS data are listed as follows: the Reynolds number is Re = 3000 and the Mach
number is M = 1.5. Therefore, we denote this DNS data as ‘R1M15’ for brevity. The
computational domain of R1M15 is a box with a size of 4π × 2 × 4

3π. The grid resolutions
are 384 × 193 × 128, and X+ × Y+

w × Z+ = 7.13 × 0.30 × 7.13, where X+ =
X/δν , Y+

w = Yw/δν and Z+ = Z/δν are the normalised spacing of the streamwise
direction, the first point off the wall and the spanwise direction in the DNS data of R1M15,
respectively. Here, δν = μw/(ρwuτ ) is the viscous length scale, where μw and ρw are the
viscosity and density on the wall, respectively. Moreover, uτ = √

τw/ρw is the friction
velocity and τw = (μ∂〈u〉xz/∂y)w is the wall shear stress, where 〈·〉xz represents the average
in the streamwise and spanwise directions. In the a priori test, the DNS data in R1M15
are filtered in the streamwise and spanwise directions with a top-hat filter (Martin et al.
2000; Xu et al. 2021b), which can be calculated in one dimension by (Martin et al. 2000;
Xu et al. 2021b)

f̄i = 1
4n

⎛⎝fi−n + 2
i+n−1∑

j=i−n+1

fj + fi+n

⎞⎠ , (2.32)

where the filter width is l = 2nΔ. In the following a priori test of the three traditional SGS
models, the filtered streamwise and spanwise widths are x = nxX and z = nzZ,
respectively, where the filtered streamwise and spanwise sizes are nx = 8 and nz = 4,
respectively. It is noted that the values of nx and nz need to be even numbers.

In a priori test, the correlation coefficient C and the relative error Er are calculated to
evaluate the difference between the true value (Hreal) of the unclosed SGS terms obtained
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from the fDNS data and the predicted value (Hmodel) calculated by the SGS models, and
they can be expressed respectively as

C (H) =

〈(
Hreal − 〈Hreal〉

xz

) (
Hmodel − 〈Hmodel〉

xz

)〉
xz〈(

Hreal − 〈Hreal
〉
xz

)2
〉1/2

xz

〈(
Hmodel − 〈Hmodel

〉
xz

)2
〉1/2

xz

, (2.33)

Er (H) =

〈(
Hreal − Hmodel)2〉1/2

xz〈(
Hreal

)2〉1/2

xz

. (2.34)

The SGS models with high correlation coefficients and low relative errors suggest a
well-performing modelling.

The correlation coefficients C and the relative errors Er of the DSM, Vreman model and
WALE model along wall-normal direction in a priori tests with filtered sizes nx = 8 and
nz = 4 in R1M15 are shown in figures 1, 2 and 3, respectively. The lighter sections of each
line in figures 1, 2 and 3(a,c) represent the 95 % confidence intervals for the correlation
coefficients calculated by using the Fisher transformation (Bonett & Wright 2000). The
eddy-viscosity models assume that the SGS stress is linearly aligned with the filtered
strain-rate tensor based on the Boussinesq hypothesis; similarly, the SGS heat flux is also
assumed to be linearly proportional to the gradient of the resolved temperature. However,
the linear alignment assumptions are unphysical and contradictory with the complicated
nonlinear relations between the SGS stress and the filtered strain-rate tensor as well as
between the SGS heat flux and the gradient of the filtered temperature. Therefore, it is
shown that the correlation coefficients C of the three traditional eddy-viscosity models
are almost lower than 0.6, indicating that the traditional eddy-viscosity models correlate
poorly with the true unclosed SGS terms (Anderson & Meneveau 1999; Da Silva &
Métais 2002; Xie et al. 2019a,c, 2020a,b). These low correlations of the three traditional
eddy-viscosity models can be ascribed to the unphysical linear alignment assumptions
in the eddy-viscosity models. To be specific, the correlation coefficients in DSM are
relatively small in the near-wall region, and slightly increase as y+ increases. However, in
the Vreman model and WALE model, the correlation coefficients in the near-wall region
are similar to those in the far-wall region. These observations can be attributed to the
reasons that the DSM cannot capture the correct behaviour in the vicinity of the wall,
resulting in an extremely high damping of fluctuations near the wall, while the Vreman
model and WALE model are constructed to guarantee that the dissipation is relatively
small in the near-wall region. Therefore, the correlation coefficients of Vreman model and
WALE model are slightly larger than those of DSM near the wall. Furthermore, it is found
that the correlation coefficients of the diagonal components of the SGS stress (i.e. τ11, τ22
and τ33) are slightly larger in DSM than those in Vreman model and WALE model. This
can be ascribed to the reason that the model coefficients CI of the SGS eddy viscosity
μI,SGS are zero in the Vreman model and WALE model, while CI is dynamically solved
based on the Germano identity (Moin et al. 1991; Lilly 1992; Xie et al. 2019b) in DSM.
Moreover, the relative errors Er of the three traditional eddy-viscosity models are almost
equal to 1.0, suggesting that the traditional eddy-viscosity models have very large errors
when predicting the true unclosed SGS terms. The above observations are consistent with
many previous studies (Anderson & Meneveau 1999; Da Silva & Métais 2002; Xie et al.
2019a, 2020a,b; Yuan et al. 2020).
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Figure 1. (a,c) The correlation coefficients C and (b,d) the relative errors Er of DSM along the wall-normal
direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The lighter sections of each line in
(a,c) represent the 95 % confidence intervals for the correlation coefficients.

3. The structure and a priori test of the ANN-based nonlinear algebraic model

3.1. The original ANN-based nonlinear algebraic model
In the SGS modelling, the constitutive relation of the unclosed SGS terms can be
considered as the function of the local filtered quantities, including the filtered strain-rate
tensor S̃ij, the filtered rotation-rate tensor Ω̃ij and the filtered temperature gradients ∂T̃/∂xj,
namely (Pope 1975; Lund & Novikov 1992; Wang et al. 2007; Vollant et al. 2017)

τij = f (S̃ij, Ω̃ij), (3.1)

Qj = f
(

S̃ij, Ω̃ij,
∂T̃
∂xj

)
, (3.2)

where the filtered rotation-rate tensor Ω̃ij is given by

Ω̃ij = 1
2

(
∂ ũi

∂xj
− ∂ ũj

∂xi

)
. (3.3)

The SGS stress tensor τij can be divided into anisotropic and isotropic parts,
respectively: τij = τA

ij + τ I
ij, where the anisotropic part is τA

ij = τij − 1
3δijτkk, and the

isotropic part is τ I
ij = 1

3δijτkk.
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Figure 2. (a,c) The correlation coefficients C and (b,d) the relative errors Er of the Vreman model along the
wall-normal direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The shaded areas under
each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

In order to get rid of the unphysical linear alignment assumption in the traditional
eddy-viscosity models, the nonlinear algebraic models of the SGS stress (Lund & Novikov
1992) and SGS heat flux (Vollant et al. 2017) were proposed to construct the nonlinear
relation between the unclosed SGS terms and the local filtered quantities.

Similar to the previous analysis of Lund & Novikov (1992), the anisotropic SGS stress
can be approximated as (Lund & Novikov 1992; Xie et al. 2020b)

τA
ij = Δ2

⎛⎝CA
1

∥∥∥S̃
∥∥∥T A

1 + CA
2 T A

2 + CA
3 T A

3 + CA
4 T A

4 + CA
5

1∥∥∥S̃
∥∥∥T A

5

⎞⎠ , (3.4)

where

T A
1 = S̃ − 1

3 I · Tr(S̃), (3.5)

T A
2 = S̃Ω̃ − Ω̃S̃, (3.6)

T A
3 = S̃2 − 1

3 I · Tr(S̃2), (3.7)
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Figure 3. (a,c) The correlation coefficients C and (b,d) the relative errors Er of the WALE model along the
wall-normal direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The shaded areas under
each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

T A
4 = Ω̃2 − 1

3 I · Tr(Ω̃2), (3.8)

T A
5 = Ω̃S̃2 − S̃2Ω̃. (3.9)

It is noted that, for brevity and simplicity of the tensorial polynomials, the matrix
multiplications for the tensor contractions are expressed as

S̃2 = S̃ikS̃kj, S̃Ω̃ = S̃ikΩ̃kj, Ω̃S̃2 = Ω̃ikS̃klS̃lj, Tr(S̃2) = S̃ikS̃ki. (3.10a–c)

Furthermore, the isotropic SGS stress can be approximated as

τkk = Δ2
(

CI
0

∥∥∥S̃
∥∥∥2 + CI

1

∥∥∥S̃
∥∥∥T I

1 + CI
2T I

2 + CI
3T I

3

)
, (3.11)

where

T I
1 = I · Tr(S̃), (3.12)

T I
2 = I · Tr(S̃2), (3.13)

T I
3 = I · Tr(Ω̃2). (3.14)
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Here, Δ = (ΔxΔyΔz)
1/3 is the characteristic length scale of the grid width and ‖S̃‖ =√

Tr(S̃2).
It has been shown that these dimensionless model coefficients CA

i and CI
i in (3.4) and

(3.11) are functions of the following five invariants (Pope 1975; Lund & Novikov 1992;
Xie et al. 2020b):

λ1 =Tr(S̃2), λ2 =Tr(Ω̃2), λ3 =Tr(S̃3), λ4 =Tr(Ω̃2S̃), λ5 = Tr(Ω̃2S̃2),
(3.15a–e)

where λ1 is the strain-rate magnitude, λ2 is the enstrophy magnitude, λ3 is associated with
the self-amplification of the strain rate, λ4 is the vortex stretching and λ5 is the magnitude
of the vortex stretching vector (Chamecki, Meneveau & Parlange 2007). Furthermore, we
can reduce the above five invariants to four dimensionless ones using one or several of
them appropriately in denominators (Lund & Novikov 1992; Chamecki et al. 2007; Xie
et al. 2020b), and the four dimensionless invariants can be expressed as

d1 = Tr(Ω̃2)

Tr(S̃2)
, d2 = Tr(S̃3)

Tr(S̃2)3/2
, d3 = Tr(Ω̃2S̃)

Tr(S̃2)1/2Tr(Ω̃2)
, d4 = Tr(Ω̃2S̃2)

Tr(S̃2)Tr(Ω̃2)
. (3.16a–d)

On the other hand, similar to the previous analysis of Vollant et al. (2017), the SGS heat
flux can be approximated as

Qj = Δ2

⎛⎝CQ
1

∣∣∣S̃∣∣∣ ∂T̃
∂xj

+ CQ
2 S̃jk

∂T̃
∂xk

+ CQ
3 Ω̃jk

∂T̃
∂xk

+ CQ
4

S̃jkS̃kl∣∣∣S̃∣∣∣ ∂T̃
∂xl

⎞⎠ , (3.17)

where |S̃| =
√

2S̃ijS̃ij. The model coefficients CQ
i in (3.17) depend on the principal

invariants of tensor S̃ij and vector ṽi = Δ2|S̃| ∂T̃
∂xi

, which are expressed as (Noll 1967;
Vollant et al. 2017)

q1 = S̃ii, q2 = S̃ijS̃ji, q3 = S̃ikS̃klS̃li, q4 = ṽiṽi, q5 = ṽiS̃ikṽk, q6 = ṽiS̃ikS̃kjṽj.
(3.18a–f )

Similar to the DSM, the dimensionless model coefficients CA
i , CI

i and CQ
i in (3.4), (3.11)

and (3.17) respectively can also be solved dynamically based on the Germano identity
(Germano et al. 1991; Lilly 1992; Yuan et al. 2022). Therefore, this original dynamic
nonlinear algebraic model is named the ‘ODNA model’ for brevity. The correlation
coefficients C and the relative errors Er of the ODNA model along wall-normal direction
in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15 are shown in figure 4.
It is found that, in the far-wall region (y+ > 50), the correlation coefficients of the
ODNA model are all larger than 0.4, and are significantly larger than those of the
aforementioned three eddy-viscosity SGS models (DSM, Vreman and WALE). This
observation indicates that the nonlinear algebraic model has a better performance than
the traditional eddy-viscosity SGS models. However, the correlation coefficients of the
ODNA model are pretty small near the wall, mainly due to the neglect of the anisotropy of
the grid widths in wall-bounded flows. Moreover, the relative errors of the ODNA model
are approximately equal to 0.98 in most components, which is only slightly smaller than
the traditional eddy-viscosity SGS models.
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Figure 4. (a,c) The correlation coefficients C and (b,d) the relative errors Er of the ODNA model along
wall-normal direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The lighter sections
of each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

It is shown in figure 4 that, when the dimensionless model coefficients CA
i , CI

i and CQ
i

are solved dynamically based on the Germano identity (Germano et al. 1991; Lilly 1992;
Yuan et al. 2022), the ODNA model cannot achieve a very good performance in a priori
tests. Therefore, the dimensionless model coefficients CA

i , CI
i and CQ

i in (3.4), (3.11) and
(3.17) respectively can also be determined by the ANN method (Xie et al. 2020b). The
schematic diagram of the ANN structure is shown in figure 5. It is shown that the ANN
is composed of multiple layers and each layer has many neurons. The neurons in the lth
layer receive the inputs Xl−1

j from the (l − 1)th layer and then transmit them to the outputs
Xl

i activated by the nonlinear activation function. The transfer function from the (l − 1)th
layer to the lth layer can be expressed as

X(l)
i = σ

⎡⎣b(l)
i +

∑
j

W(l)
ij X(l−1)

j

⎤⎦ , (3.19)

where σ [·] is the nonlinear activation function, W(l)
ij and b(l)

i are the weights and biases
in the lth layer, respectively. It is noted that the ANN method is only used to generate
the nonlinear relation between the input features and the model coefficients CA

i , CI
i

and CQ
i . Then the generated model coefficients CA

i , CI
i and CQ

i are multiplied with the
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Input layer
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Model coefficients

Tensor input layer
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terms 

Merge output

layer

τAij Qjτkk

Figure 5. The schematic diagram of the ANN structure.

corresponding tensor bases to get predicted values of the unclosed SGS terms τA
ij , τkk

and Qj, respectively. Then the discrepancy between the predicted values of the unclosed
SGS terms and the true values of the unclosed SGS terms are the loss function which
is minimised during the training process. This original ANN-based nonlinear algebraic
model is named the ‘OANA model’.

There are four layers of neurons (Ni : Nh : Nh : No) between the input features and the
coefficient output layer with a leaky-rectified linear unit (leaky-ReLU) activation function
(Ling et al. 2016; Xie et al. 2020b) σ(x) = max[−0.1x, x], where Ni, Nh and No are
the numbers of neurons of the input layer, hidden layers and coefficient output layer,
respectively. It is noted that the numbers of neurons of the hidden layers Nh can be
arbitrarily chosen, while the numbers of the neurons of the coefficient output layer No
is a fixed number which is equal to the number of model coefficients. It is worth noting
that the leaky-ReLU activation is known to perform better than the ReLU activation (Xu
et al. 2015), due to the fact that the leaky-ReLU activation is capable of resolving the
gradient vanishing problem of the ReLU activation. The input features, the variable of the
coefficient output layer, the variable of the merge output layer and the values of Ni and No
of the OANA model for the unclosed SGS terms τA

ij , τkk and Qj are respectively listed in
table 1. It is noted that, except for the invariants shown in (3.16a–d) and (3.18a–f ), another
feature Rel = ρ̄(ũ2 + ṽ2 + w̃2)1/2h/μ̃ is also included to represent the local Reynolds
number, and this feature Rel can introduce one of the key quantities of wall-bounded
flows, the wall-normal distance from the wall h, into the input features (Yu et al. 2022).
The coefficient output layer has No neurons and represents the model coefficients CA

i , CI
i

and CQ
i for the unclosed SGS terms τA

ij , τkk and Qj, respectively. The tensor input layer
also has No neurons for the No tensor bases shown in (3.4), (3.11) and (3.17), respectively,
where No = 5 for the τA

ij term, No = 4 for the τkk term, No = 4 for the Qj term. Each

model coefficient CA
i , CI

i and CQ
i in the coefficient output layer is multiplied with the

corresponding tensor bases in the tensor input layer to generate the predicted values of the
unclosed SGS term τA

ij , τkk and Qj as (3.4), (3.11) and (3.17) expressed, respectively. The
differences between the predicted values and the true values of the unclosed SGS terms

960 A4-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.179


D. Xu, J. Wang, C. Yu and S. Chen

Input features Coefficient output layer Merge output layer Ni No

{d1, d2, d3, d4, Rel} CA
i (i = 1, . . . , 5) τA

ij 5 5
{d1, d2, d3, d4, Rel} CI

i (i = 0, . . . , 3) τkk 5 4
{q1, q2, q3, q4, q5, q6, Rel} CQ

i (i = 1, . . . , 4) Qj 7 4

Table 1. The input features, the variable of the coefficient output layer, the variable of the merge output layer
and the values of Ni and No of the OANA model for the unclosed SGS terms τA

ij , τkk and Qj, respectively. Here,
the input features d1–d4 are the invariants shown in (3.16a–d), and the input features q1–q6 are the invariants
shown in (3.18a–f ). Furthermore, Rel = ρ̄(ũ2 + ṽ2 + w̃2)1/2h/μ̃ represents the local Reynolds number, where
h is the wall-normal distance from the wall.

are minimised by the optimisation algorithm during the training process. The unclosed
SGS terms τA

ij , τkk and Qj have six, one and three components, respectively, therefore we
should train ten ANNs in total.

The OANA model is trained with fDNS data of the turbulent channel flow case R1M15,
with the filtered streamwise and spanwise sizes nx = 8 and nz = 4, respectively. The input
variables are rescaled by the mean and standard deviation of the input filtered variables,
which can be given by

m� = m − 〈m〉xz√〈(
m − 〈m〉xz

)2〉
xz

, (3.20)

where m� represents the normalisation of the input variable m. Due to the strong anisotropy
in the wall-normal direction of the wall-bounded flows, the input variables are normalised
by the mean and standard deviation in the streamwise–spanwise wall-parallel plane at each
wall-normal location. Furthermore, the true unclosed SGS terms τA

ij , τkk and Qj and their
corresponding tensor bases are normalised by the r.m.s. (root mean square) values of the
gradient models for τA

ij , τkk and Qj at each wall-normal location, which can be expressed
as

τA
ij

� =
τA

ij√〈(
τA

ij
GM
)2
〉

xz

, τ �
kk = τkk√〈(

τkkGM
)2〉

xz

, Q�
j = Qj√〈(

Qj
GM)2〉

xz

; (3.21a–c)

T �

τA
ij

=
T τA

ij√〈(
τA

ij
GM
)2
〉

xz

, T �
τkk

= T τkk√〈(
τkkGM

)2〉
xz

, T �
Qj

= T Qj√〈(
Qj

GM)2〉
xz

, (3.22a–c)

where T �

τA
ij

, T �
τkk

and T �
Qj

are the tensor bases of the unclosed terms τA
ij , τkk and Qj in (3.4),

(3.11) and (3.17), respectively. Moreover, the gradient models τA
ij

GM , τkk
GM and Qj

GM for
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τA
ij , τkk and Qj respectively can be expressed as (Clark 1979)

τA
ij

GM = 1
12

Δ2
l
∂ ũi

∂xl

∂ ũj

∂xl
− 1

3
δij

1
12

Δ2
l
∂ ũk

∂xl

∂ ũk

∂xl
, (3.23)

τkk
GM = 1

12
Δ2

l
∂ ũk

∂xl

∂ ũk

∂xl
, (3.24)

Qj
GM = 1

12
Δ2

l
∂ ũj

∂xl

∂T̃
∂xl

. (3.25)

During the training process, the weights W(l)
ij and biases b(l)

i are optimised to minimise the
mean-squared error loss function defined as

L = 1
Nbatch

Nbatch∑
n=1

(
ftrue − fpredict

)2
, (3.26)

where f represents τA
ij , τkk and Qj in their corresponding ANN training process.

Furthermore, ftrue is the true unclosed SGS term (i.e. τA
ij , τkk and Qj) obtained from the

fDNS data, and fpredict is the predicted unclosed SGS term by the ANN. The size of the
mini-batch Nbatch is set to be 1000.

A total of almost 1.8 × 107 samples of the fDNS are used for the ANN training
procedure. The dataset is divided into the training, validating and testing sets to suppress
parameter overfitting of the ANN: 60 % of the samples are used as the training set, 15 %
of the samples are used as the validating set and 25 % of the samples are used as the
testing set. Furthermore, the samples at each wall-normal location are randomly extracted
to be the training, validating and testing sets. The weights of the ANN are initialised by
the Glorot-uniform algorithm (Glorot & Bengio 2010), and the biases are initialised to be
zero. Finally, the ANN is trained by the Adam algorithm (Kingma & Ba 2014) to update
W(l)

ij and b(l)
i for 2000 epochs with an initial learning rate of 0.001. The learning rate will

further decrease by 90 % once the validated loss stops decreasing in each 10 epochs. The
influences of the size of the mini-batch Nbatch, different optimisers and activation functions
on the performance of the OANA model in a priori tests are checked in the Appendix.

We train two sets of the OANA model with different numbers of neurons of the hidden
layers Nh, and name them ‘OANA-1’ for Nh = 10 and ‘OANA-2’ for Nh = 20. The
learning curves of the training and validation losses of the OANA-1 and OANA-2 models
for τA

ij , τkk and Qj are shown in figure 6. It is shown that the training and validation
losses of most components decrease drastically in the initial several epochs, and then
converge quickly and gradually reach stationarity. Furthermore, the learning curves of
the training and validation losses are close to each other, indicating that the ANN models
are well trained and remove overfitting phenomena. However, the training and validation
losses of the wall-normal components (i.e. τA

23, τA
12, Q2) oscillate drastically, although

they decrease quickly in the initial several epochs. This indicates that the wall-normal
components τA

23, τA
12 and Q2 are relatively hard to train. Moreover, the weights and biases

of the OANA model used in the following a priori test are obtained from the epoch where
the validation losses reach the minimum values. It is also found that the training and
validation losses are all pretty large, suggesting the relatively large errors of the OANA
model.
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Figure 6. The learning curves of the training and validation loss of the OANA-1 and OANA-2 models for
(a) τA

11, (b) τA
22, (c) τA

33, (d) τA
23, (e) τA

13, ( f ) τA
12, (g) τkk, (h) Q1, (i) Q2 and (j) Q3.

In order to evaluate the performance of the OANA model in an a priori test, the
correlation coefficients C and the relative errors Er of the OANA-2 model in the testing
set along wall-normal direction are shown in figure 7. It is noted that the correlation
coefficients C and the relative errors Er of the OANA-2 model in the training set and
validating set are similar to those in the testing set, therefore we only exhibit the results
of the testing set to evaluate the performance of the OANA-2 model in the untrained data.
It is shown that the correlation coefficients C of most components are larger than 0.6,
except for those of the components τA

11 and τA
33, which are approximately larger than 0.4.
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Figure 7. (a,c) The correlation coefficients C and (b,d) the relative errors Er of the OANA-2 model in the
testing set along wall-normal direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The
lighter sections of each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

Even though the correlation coefficients C of OANA-2 model are not very high, they
are still significantly larger than those of the aforementioned three eddy-viscosity SGS
models (DSM, Vreman and WALE), which are mostly smaller than 0.4. Furthermore, the
relative errors Er are approximately equal to 0.8 in most components, which is relatively
high but still much smaller than those of the aforementioned three eddy-viscosity SGS
models (DSM, Vreman and WALE). On the other hand, it is also found that the OANA-2
model has significantly larger correlation coefficients than the ODNA model near the wall
(y+ < 50), while the correlation coefficients of OANA-2 model are similar to those of
ODNA model far from the wall (y+ > 50), which indicates that the ANN method can
significantly enhance the correlation coefficients near the wall, while it makes a relatively
small enhancement in the far-wall region compared with the dynamic method when
predicting the model coefficients. Moreover, the relative errors of OANA-2 model are
much smaller than those of the ODNA model, which suggests that the ANN method can
significantly decrease the relative errors compared with the dynamics method. It is noted
that increasing the numbers of hidden layers and neurons only gives a slight improvement
of the model performance. Therefore, it is concluded that, although the OANA model has
larger correlation coefficients, smaller relative errors and better performance than those of
the aforementioned three eddy-viscosity SGS models (DSM, Vreman and WALE) and the
ODNA model, it is still not a well-performing model.
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3.2. The modified ANN-based nonlinear algebraic model
The main reason for the poor performance of the OANA model and ODNA model is
that they ignore the anisotropy of the grid widths in the wall-bounded flows, especially
in the wall-normal direction. In the near-wall region, the wall-normal grid width Δy is
much smaller than the streamwise grid width Δx and the spanwise grid width Δz, which
further leads to the observation that the wall-normal components τA

23, τA
12 and Q2 have

strongly oscillating training and validation losses in the OANA model. Therefore, we
propose a modified version of the nonlinear algebraic model. The core idea of the modified
nonlinear algebraic model can be explained as follows: the local grid widths along the
streamwise, wall-normal and spanwise directions Δx, Δy and Δz are used to normalise the
corresponding gradients of the flow variables (including ui and T), which can be expressed
as

∂ui

∂x∗
.= ∂ui

∂ (x/Δx)
,

∂ui

∂y∗
.= ∂ui

∂( y/Δy)
,

∂ui

∂z∗
.= ∂ui

∂ (z/Δz)
; (3.27a–c)

and
∂T
∂x∗

.= ∂T
∂ (x/Δx)

,
∂T
∂y∗

.= ∂T
∂( y/Δy)

,
∂T
∂z∗

.= ∂T
∂ (z/Δz)

; (3.28a–c)

where x∗, y∗ and z∗ are the normalised variables, which are normalised by the
corresponding local grid widths Δx, Δy and Δz, respectively. To be specific, the original
gradients of the flow variables (including ui and T) are first calculated by the sixth-order
central-difference scheme, and then multiplied by the corresponding local grid widths
to generate the modified gradients in (3.27a–c) and (3.28a–c). Therefore, the modified
filtered strain-rate tensor S̃∗ij and modified filtered rotation-rate tensor Ω̃∗ij become

S̃∗ij = 1
2

(
∂ ũi

∂x∗
j

+ ∂ ũj

∂x∗
i

)
, (3.29)

Ω̃∗ij = 1
2

(
∂ ũi

∂x∗
j

− ∂ ũj

∂x∗
i

)
. (3.30)

Then, the original nonlinear algebraic model can be modified as follows. The anisotropic
SGS stress can be approximated as

τA
ij = Δ∗2

⎛⎝C∗
1

A
∥∥∥S̃∗
∥∥∥T ∗

1
A + C∗

2
AT ∗

2
A + C∗

3
AT ∗

3
A + C∗

4
AT ∗

4
A + C∗

5
A 1∥∥∥S̃∗

∥∥∥T ∗
5

A

⎞⎠ ,

(3.31)
where

T ∗
1

A = S̃∗ − 1
3

I · Tr
(

S̃∗
)

, (3.32)

T ∗
2

A = S̃∗Ω̃∗ − Ω̃∗S̃∗, (3.33)

T ∗
3

A = S̃∗2 − 1
3

I · Tr
(

S̃∗2
)

, (3.34)

T ∗
4

A = Ω̃∗2 − 1
3

I · Tr
(
Ω̃∗2)

, (3.35)

T ∗
5

A = Ω̃∗S̃∗2 − S̃∗2
Ω̃∗. (3.36)
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The isotropic SGS stress can be approximated as

τkk = Δ∗2
(

C∗
0

I
∥∥∥S̃∗
∥∥∥2 + C∗

1
I
∥∥∥S̃∗
∥∥∥T ∗

1
I + C∗

2
IT ∗

2
I + C∗

3
IT ∗

3
I
)

, (3.37)

where

T ∗
1

I = I · Tr
(

S̃∗
)

, (3.38)

T ∗
2

I = I · Tr
(

S̃∗2
)

, (3.39)

T ∗
3

I = I · Tr
(
Ω̃∗2)

. (3.40)

Here, Δ∗ = 1 is the normalised characteristic length scale and ‖S̃∗‖ =
√

Tr(S̃∗2
).

Moreover, the modified model coefficients C∗
i

A and C∗
i

I in (3.31) and (3.37) are
functions of the modified four dimensionless invariants, which can be expressed as

d∗
1 =

Tr
(
Ω̃∗2)

Tr
(

S̃∗2
) , d∗

2 =
Tr
(

S̃∗3
)

Tr
(

S̃∗2
)3/2 ,

d∗
3 =

Tr
(
Ω̃∗2

S̃∗
)

Tr
(

S̃∗2
)1/2

Tr
(
Ω̃∗2) , d∗

4 =
Tr
(
Ω̃∗2

S̃∗2
)

Tr
(

S̃∗2
)

Tr
(
Ω̃∗2) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.41)

Similarly, the SGS heat flux can be approximated as

Qj = Δ∗2

⎛⎝C∗
1

Q
∣∣∣S̃∗
∣∣∣ ∂T̃
∂x∗

j
+ C∗

2
QS̃∗jk

∂T̃
∂x∗

k
+ C∗

3
Q
Ω̃∗jk

∂T̃
∂x∗

k
+ C∗

4
Q S̃∗jkS̃∗kl∣∣∣S̃∗

∣∣∣ ∂T̃
∂x∗

l

⎞⎠ , (3.42)

where |S̃∗| =
√

2S̃∗ijS̃∗ij. The model coefficients C∗
i

Q in (3.42) depend on the principal

invariants of tensor S̃∗ij and vector ṽ∗i = Δ∗2|S̃∗|(∂T̃/∂x∗
i ), which are written as

q∗
1 = S̃∗ii, q∗

2 = S̃∗ijS̃∗ji, q∗
3 = S̃∗ikS̃∗klS̃∗li,

q∗
4 = ṽ∗iṽ∗i, q∗

5 = ṽ∗iS̃∗ikṽ∗k, q∗
6 = ṽ∗iS̃∗ikS̃∗kjṽ∗j.

}
(3.43)

Similar to the ODNA model, the modified dimensionless model coefficients C∗
i

A, C∗
i

I

and C∗
i

Q in (3.31), (3.37) and (3.42), respectively, can also be solved dynamically based on
the Germano identity (Germano et al. 1991; Lilly 1992; Yuan et al. 2022). Therefore,
this modified dynamic nonlinear algebraic model is named the ‘MDNA model’. The
correlation coefficients C and the relative errors Er of the MDNA model along the
wall-normal direction in a priori tests with filtered sizes nx = 8 and nz = 4 in R1M15 are
shown in figure 8. It is found that, compared with the correlation coefficients of the ODNA
model in figure 4(a,c), the correlation coefficients of the MDNA model have significantly
larger values than those of the ODNA model. The enhancement is large in the near-wall
region (y+ < 50) where the anisotropy of the grid widths is significantly strong. As y+
further increases, the enhancement of the MDNA model becomes weaker, mainly due to
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Figure 8. (a,c) The correlation coefficients C and (b,d) the relative errors Er of MDNA model along the
wall-normal direction in a priori tests with filtered sizes nx = 8 and nz = 4 in R1M15. The lighter sections of
each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

the fact that the anisotropy of the grid widths also becomes weaker. These observations
indicate that the above modification of using the local grid widths along each direction
to normalise the corresponding gradients of the flow variables can significantly enhance
the correlation coefficients of the dynamic nonlinear algebraic model, especially in the
near-wall region. Moreover, the relative errors of the MDNA model are close to 0.95,
which are slightly smaller than those of the ODNA model. This observation suggests that
the above modification can slightly decrease the relative errors of the dynamic nonlinear
algebraic model.

It is shown in figure 8 that the MDNA model has a better performance than the
eddy-viscosity models (DSM, Vreman and WALE) and the ODNA model, while has a
similar performance to the OANA model. It is found in figures 4 and 7 that the ANN-based
model has a better performance than the dynamic model. Therefore, it can be speculated
that the ANN-based version of the modified nonlinear algebraic model will have a better
performance. Similar to the OANA model, the modified dimensionless model coefficients
C∗

i
A, C∗

i
I and C∗

i
Q in (3.31), (3.37) and (3.42), respectively, can be determined by the

ANN method, therefore the modified ANN-based nonlinear algebraic model is named the
‘MANA model’. The ANN schematic, parameter setting of the ANN and the training
process of the MANA model are all the same as those in OANA model shown in § 3.1,
except for that the input features are changed to the corresponding invariants, which are
shown in table 2. It is noted that the MANA model considers the anisotropy of the grid
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Input features Coefficient output layer Merge output layer Ni No

{d∗
1 , d∗

2 , d∗
3 , d∗

4 , Rel} CA
i (i = 1, . . . , 5) τA

ij 5 5
{d∗

1 , d∗
2 , d∗

3 , d∗
4 , Rel} CI

i (i = 0, . . . , 3) τkk 5 4
{q∗

1, q∗
2, q∗

3, q∗
4, q∗

5, q∗
6, Rel} CQ

i (i = 1, . . . , 4) Qj 7 4

Table 2. The input features, the variable of the coefficient output layer, the variable of the merge output layer
and the values of Ni and No of the MANA model for the unclosed SGS terms τA

ij , τkk and Qj, respectively.
Here, the input features d∗

1–d∗
4 are the invariants shown in (3.41), and the input features q∗

1–q∗
6 are the invariants

shown in (3.43).

widths in wall-bounded flows, and it is expected that the MANA model will have a
better performance in the a priori and a posteriori tests. The influences of the size of
the mini-batch Nbatch, different optimisers and activation functions on the performance of
the MANA model in a priori test are checked in the Appendix.

We train three sets of MANA model with different numbers of neurons of the
hidden layers Nh, and name them ‘MANA-1’ for Nh = 10, ‘MANA-2’ for Nh = 20 and
‘MANA-3’ for Nh = 40. The learning curves of the training and validation losses of the
MANA-1, MANA-2 and MANA-3 models for τA

ij , τkk and Qj are shown in figure 9. It is
found that the training and validation losses are close to each other, and converge well,
which indicates that the MANA models are well trained and avoid overfitting phenomena.
Furthermore, the strong oscillation phenomena observed in the training and validation
losses of the wall-normal components τA

23, τA
12 and Q2 of OANA model (figure 6) disappear

in the validation losses of the MANA model, which indicates that the above modification
in the MANA model can alleviate the effect of the anisotropy of the grid widths in
wall-bounded flows. The weights and biases of the MANA model used in the following a
priori test are acquired from the epoch where the validation losses reach the minimum
values. It is also found that the training and validation losses slightly decrease as the
number of neurons of the hidden layers increases, indicating a slightly better performance
of the MANA model with a larger number of hidden layer neurons.

In order to explicitly evaluate the performance of the MANA model in a priori tests,
the correlation coefficients C and the relative errors Er of the MANA-1 model in the
testing set along the wall-normal direction are shown in figure 10. It is found that the
correlation coefficients of τA

ij , τkk and Qj in the MANA-1 model are all larger than 0.91,
which are much higher than the ODNA model, OANA model, MDNA model and the
three traditional eddy-viscosity models. Furthermore, the relative errors in the MANA-1
model are all smaller than 0.4, which are much smaller than the ODNA model, OANA
model, MDNA model and the three traditional eddy-viscosity models. These observations
indicate that the MANA model has a much better performance than the ODNA model,
OANA model, MDNA model and the three traditional eddy-viscosity models in a priori
tests. Furthermore, in order to examine the influence of the numbers of hidden layer
neurons, the correlation coefficients C and the relative errors Er of τA

11 and Q1 are chosen
as representatives to compare the performances of the MANA-1, MANA-2 and MANA-3
models in figure 11. It is found the numbers of hidden layer neurons have little influence
on the performance of the MANA model in a priori tests. Therefore, considering the
computational cost of the MANA model in a posteriori tests, we use the MANA-1 model
with Nh = 10 as the final MANA model in a posteriori tests. The weights and biases of
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Figure 9. The learning curves of the training and validation losses of the MANA-1, MANA-2 and MANA-3
models for (a) τA

11, (b) τA
22, (c) τA

33, (d) τA
23, (e) τA

13, ( f ) τA
12, (g) τkk, (h) Q1, (i) Q2 and (j) Q3.

the MANA model used in the a posteriori tests are given in the supplementary material
available at https://doi.org/10.1017/jfm.2023.179.

The SGS flux of the kinetic energy can be defined as Πτ = −τij∂ ũi/∂xj, which
represents the energy transfer rate of the kinetic energy from the large scales to the small
scales (Eyink 2005; Aluie & Eyink 2009; Eyink & Aluie 2009; Wang et al. 2018a; Xu
et al. 2021b); similarly, the SGS flux of the temperature variance can be written as ΠQ =
−Qj∂T̃/∂xj, which indicates the energy transfer rate of the temperature variance from the
large scales to the small scales (Jiménez et al. 2001; Vollant et al. 2017). Furthermore,
the positive values of the SGS fluxes of the kinetic energy and the temperature variance
suggest the direct energy transfer from the large scales to the small scales, while the

960 A4-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.179
https://doi.org/10.1017/jfm.2023.179


Artificial-neural-network-based nonlinear algebraic models

500 100 150

y+
200 250 0 50 100 150

y+
200 250

500 100 150 200 250 0 50 100 150 200 250

1.00

0.95

0.90C

0.80

0.85

(a)
0.5

0.4

0.3

Er

0.1

0

0.2

(b)

0.5

0.4

0.3

Er

0.1

0

0.2

(d )
1.00

0.95

0.90C

0.80

0.85

(c)

Q1

Q2

Q3
Q1

Q2

Q3

τA11

τA22

τA33

τA23

τA13

τA12

τkk

τA11

τA22

τA33

τA23

τA13

τA12

τkk

Figure 10. (a,c) The correlation coefficients C and (b,d) the relative errors Er of the MANA-1 model in the
testing set along the wall-normal direction in a priori test with filtered sizes nx = 8 and nz = 4 in R1M15. The
shaded areas under each line in (a,c) represent the 95 % confidence intervals for the correlation coefficients.

negative values represent the inverse energy transfer from the small scales to the large
scales (Eyink 2005; Aluie & Eyink 2009; Eyink & Aluie 2009; Wang et al. 2018a; Xu et al.
2021b). The normalised SGS fluxes of the kinetic energy and the temperature variance
can be expressed as Π+

τ = (−τij∂ ũi/∂xj)/(u3
τ /δν) and Π+

Q = (−Qj∂T̃/∂xj)/(uτ T2
w/δν),

respectively. The streamwise–spanwise averages of the normalised SGS fluxes of the
kinetic energy and the temperature variance 〈Π+

τ 〉xz and 〈Π+
Q 〉xz along the wall-normal

direction for the fDNS, Vreman, DSM, WALE, MDNA and MANA models in the a priori
tests are shown in figure 12. It is shown that the traditional eddy-viscosity models (Vreman,
DSM and WALE) and the dynamic nonlinear algebraic model (MDNA) significantly
underestimate the mean normalised SGS fluxes of the kinetic energy and the temperature
variance 〈Π+

τ 〉xz and 〈Π+
Q 〉xz, while the 〈Π+

τ 〉xz and 〈Π+
Q 〉xz profiles of the MANA model

almost collapse to those of the fDNS result, which indicates that the MANA model has
a much better performance in predicting the mean normalised SGS fluxes of the kinetic
energy and the temperature variance compared with the traditional eddy-viscosity models
and the dynamic nonlinear algebraic model (MDNA) in a priori tests.

3.3. Discussion about the performance of different models
It is shown that the traditional eddy-viscosity models (DSM, Vreman and WALE) have
poor performances in a priori tests, which can be ascribed to the unphysical assumption
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Figure 11. (a,b) The correlation coefficients C and the relative errors Er of τA
11 in the MANA-1, MANA-2

and MANA-3 models in the testing set along the wall-normal direction. (c,d) The correlation coefficients C
and the relative errors Er of Q1 in the MANA-1, MANA-2 and MANA-3 models in the testing set along the
wall-normal direction.
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Figure 12. The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy and the
temperature variance (a) 〈Π+

τ 〉xz and (b) 〈Π+
Q 〉xz along the wall-normal direction for the fDNS, Vreman, DSM,

WALE, MDNA and MANA models in the a priori test.
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that the SGS stress and SGS heat flux are linearly aligned with the filtered strain-rate
tensor and the gradient of the filtered temperature, respectively (Anderson & Meneveau
1999; Da Silva & Métais 2002; Xie et al. 2019a,c, 2020a,b). These issues can be
addressed by the nonlinear algebraic models. It is found that the ODNA model has
larger correlations and smaller relative errors than the traditional eddy-viscosity models
(DSM, Vreman and WALE), indicating that the nonlinear algebraic model has a better
performance than the eddy-viscosity models (DSM, Vreman and WALE). However, the
ODNA model ignores the anisotropy of the grid widths in wall-bounded flows, especially
in the wall-normal direction. Therefore, an innovative modification is applied on the
invariants and the tensor bases of the nonlinear algebraic models through using the local
grid widths along each direction to normalise the corresponding gradients of the flow
variables. After applying this modification, the correlation coefficients of the MDNA
model are significantly enhanced compared with those of the ODNA model, especially in
the near-wall region. The relative errors of the MDNA model are also smaller than those
of the ODNA model. When the model coefficients are estimated by the ANN method
rather than the dynamic method, the model performance in a priori tests is significantly
enhanced. Therefore, it is concluded that the nonlinear algebraic expressions of the model,
the innovative modification of the expressions of the invariants and tensor bases and the
model coefficients estimated by the ANN method all make significant contributions to the
much better performance of the MANA model in a priori tests.

4. The a posteriori test of the MANA model

4.1. Application in the compressible turbulent channel flow with untrained grid
resolution

Initially, the performance of the proposed MANA model is tested in the compressible
turbulent channel flow case R1M15 with an untrained grid resolution. The filtered
Navier–Stokes equations (2.1), (2.8), (2.9), (2.4) are solved by a high-order
finite-difference solver in Cartesian coordinates: a sixth-order central-difference scheme
is applied for the discretisation of both the convective and viscous terms, and the LES
equations are temporally integrated by the third-order Runge–Kutta scheme (Shu &
Osher 1988). Similar to the grid setting in Jiang et al. (2013), the grid resolution of
64 × 65 × 64 and streamwise and spanwise filtered sizes nx = 6 and nz = 2 are used for
LES of compressible turbulent channel flow using the MANA model, implicit large-eddy
simulation (ILES) method, DSM, Vreman model and WALE model. It is noted that,
when the grid numbers in statistically homogeneous directions are small, it is found that
the MDNA model is sometimes unstable in a posteriori tests. Moreover, the MDNA
model is much computationally expensive, almost 2.54 times the cost of DSM when
simulating the same 1000 steps. Therefore, the performance of the MDNA model is
not exhibited in a posteriori tests. The streamwise and spanwise filtered sizes in the a
posteriori tests are different from those in the training process, where nx = 8 and nz = 4
are used, respectively. The details of the grid settings of the DNS and LES are listed in
table 3. Furthermore, the computational cost of the MANA model is compared with the
traditional eddy-viscosity models and ILES. The computational times for simulating the
same 1000 steps are compared and listed in table 4, where the ratios of computational
time in all five LES models are shown and the computational time is normalised by that
of DSM. It is found that the dynamic model (DSM) is much more time consuming than
the constant coefficient models (Vreman, WALE). However, the proposed MANA model
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Nx × Ny × Nz x+ y+
w z+

DNS 384 × 193 × 128 7.13 0.30 7.13
ILES 64 × 65 × 64 43.4 0.90 14.5
Vreman 64 × 65 × 64 41.7 0.86 13.9
DSM 64 × 65 × 64 40.9 0.85 13.6
WALE 64 × 65 × 64 42.4 0.88 14.1
MANA 64 × 65 × 64 43.2 0.90 14.4

Table 3. The details of the grid settings of the DNS, ILES, Vreman model, DSM, WALE model and MANA
model in the compressible channel flow case R1M15 with Re = 3000 and M = 1.5. Here, Nx, Ny and Nz are
the grid resolutions in the streamwise, wall-normal and spanwise directions, respectively.

Model ILES Vreman DSM WALE MANA

Ratio of computational time 0.26 0.28 1.0 0.29 0.79

Table 4. Ratios of computational time for simulating the same 1000 steps for all five LES models. The
computational time is normalised by that of DSM. The simulations are testing on 80 2.40 GHz Intel Xeon
Gold 6148 CPUs. The computational time of DSM is approximately 15.4 s.

is computationally much cheaper than DSM, which is also much cheaper than the other
ANN-based models proposed previously in Park & Choi (2021), Wang et al. (2018b), Yuan
et al. (2020), Xie et al. (2019c) and Xie et al. (2020a).

The van Driest transformed velocity, U+
vd, is defined as

U+
vd =

∫ U+

0

(〈ρ̄〉xz / 〈ρ̄w〉xz
)1/2 dU+, (4.1)

where U+ = 〈ũ〉xz/uτ . The van Driest transformed velocity U+
vd and the normalised mean

temperature profile 〈T̃〉xz/Tw along the wall-normal direction for fDNS and LES with
different SGS models in R1M15 are plotted in figure 13. It is noted that the fDNS results
in the R1M15 case are calculated by applying the top-hat filter with the streamwise and
spanwise filtered sizes nx = 6 and nz = 2 to the DNS flow fields. It is shown in figure 13(a)
that, in the viscous sublayer (y+ < 5), the van Driest transformed velocity U+

vd increases
linearly with y+. Furthermore, the results of all SGS models collapse to the fDNS result in
the viscous sublayer and the lower part of the buffer layer where y+ < 10. In the log-law
region, the U+

vd profile of the MANA model is fully consistent with that of the fDNS result.
However, the U+

vd profiles of the traditional eddy-viscosity models (Vreman, DSM and
WALE) are significantly larger than that of the fDNS result, and the U+

vd profile of ILES
is slightly lower than that of the fDNS result. The above observations indicate that the
MANA model provides the proper SGS dissipation, while the traditional eddy-viscosity
models give excessive SGS dissipation, and the ILES lacks SGS dissipation, consistent
with previous studies on LES of isotropic turbulence and turbulent channel flow (Xie et al.
2019a,c; Yu et al. 2022).

It is shown in figure 13(b) that all LES results collapse to the mean temperature profile
of the fDNS result in most regions of the channel, except for some regions in the centre of
the channel. It is found that the mean temperature profiles of the traditional eddy-viscosity
models in the centre of the channel are slightly larger than that of the fDNS result, while

960 A4-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.179


Artificial-neural-network-based nonlinear algebraic models

20

15

10U +
vd

5

0
10–1 100 101 102

(a)
1.4

1.3

1.2

〈T∼ 〉 xz
/T
w

1.1

1.0

(b)

y+

y+

10–1 100 101 102

y+

f DNS

ILES

Vreman

DSM

WALE

MANA

(1
/0.41)log

(y
+ ) +

 5.5

Figure 13. (a) The van Driest transformed velocity U+
vd and (b) the normalised mean temperature profile

〈T̃〉xz/Tw along the wall-normal direction for fDNS and LES with different SGS models in R1M15. It is noted
that the fDNS results in the R1M15 case are calculated by applying the top-hat filter with the streamwise and
spanwise filtered sizes nx = 6 and nz = 2 to the DNS flow fields.

the mean temperature profile of the MANA model is fully consistent with that of the fDNS
result.

The normalised r.m.s. values of the resolved fluctuating velocities are defined as ũ+
i,rms =

〈(ũi − 〈ũi〉xz)
2〉1/2

xz /uτ , which represent the resolved turbulence intensities. Furthermore,
R̃+

uv = 〈(ũ − 〈ũ〉xz)(ṽ − 〈ṽ〉xz)〉xz/u2
τ represents the normalised resolved Reynolds shear

stress. The normalised r.m.s. values of the resolved fluctuating velocities ũ+
i,rms and the

normalised resolved Reynolds shear stress R̃+
uv along the wall-normal direction for fDNS

and LES with different SGS models in R1M15 are shown in figure 14. In figure 14(a), it
is found that the ILES and the traditional eddy-viscosity models including Vreman, DSM
and WALE, exhibit larger turbulence intensities than that of the fDNS result, while the ũ+

rms
profile of the proposed MANA model fully collapses to that of the fDNS result. Similarly,
the ṽ+

rms, w̃+
rms and R̃+

uv profiles of ILES, Vreman, DSM and WALE in figure 14(b–d)
exhibit significant deviations from those of the fDNS result, where the peak values and
the wall-normal locations of the peak values are much larger in ILES and the traditional
eddy-viscosity models. However, the ṽ+

rms, w̃+
rms and R̃+

uv profiles of the MANA model
are fully consistent with those of the fDNS result. To sum up, The MANA model can
predict the resolved turbulent intensities and resolved Reynolds shear stress accurately
and exhibits a much better performance than the ILES and the traditional eddy-viscosity
models. In particular, the peak values and the locations of the peak values of the resolved
turbulent intensities and resolved Reynolds shear stress are well predicted in the MANA
model, while larger peak values and peak value locations further away from the wall for the
resolved turbulent intensities are observed in the ILES and the traditional eddy-viscosity
models.

The visualisations of the instantaneous vortical structures based on the Q-criterion
(Hunt et al. 1988) for fDNS and LES with different SGS models in R1M15 are shown in
figure 15. The structures are coloured by the wall-normal distance h, and the isosurfaces
of the instantaneous vortical structures represent Q = 0.4. It is shown in figure 15(a) that
the vortical structures exhibit abundant long tube-like structures in the fDNS result, and
the vortical structures near the wall are much thinner and longer than those far from
the wall, mainly due to the strong mean shear near the wall. Furthermore, the vortical
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Figure 14. The normalised r.m.s. values of the resolved fluctuating velocities and the normalised resolved
Reynolds shear stress along the wall-normal direction for fDNS and LES with different SGS models in R1M15.
(a) The streamwise resolved fluctuating velocities ũ+

rms, (b) the wall-normal resolved fluctuating velocities ṽ+
rms,

(c) the spanwise resolved fluctuating velocities w̃+
rms and (d) the resolved Reynolds shear stress R̃+

uv .

structures predicted by all SGS models are much sparser than those in the fDNS result,
which arises from the sparser grid resolutions in the LES with different SGS models.
Among the LES models, the MANA model exhibits more small-scale structures, while
other LES models show fatter and longer tube-like structures, which indicates that the
MANA model predicts more small-scale turbulent fluctuations. Accordingly, the above
observations indicate that the MANA model is better than the other LES models in
accurately predicting the small-scale turbulent structures.

The normalised r.m.s. value of the resolved fluctuating temperature is defined as T̃+
rms =

〈(T̃ − 〈T̃〉xz)
2〉1/2

xz /Tw, and the normalised resolved streamwise Reynolds heat flux is
defined as R̃+

uT = 〈(ũ − 〈ũ〉xz)(T̃ − 〈T̃〉xz)〉xz/(uτ Tw). The normalised r.m.s. values of the
resolved fluctuating temperature T̃+

rms and the normalised resolved streamwise Reynolds
heat flux R̃+

uT along the wall-normal direction from fDNS and LES with different SGS
models in R1M15 are shown in figure 16. It is shown that T̃+

rms and R̃+
uT in the ILES and

the traditional eddy-viscosity models are quite close to the fDNS results, except for much
larger peak values of T̃+

rms and R̃+
uT . However, the T̃+

rms and R̃+
uT profiles in the MANA

model perfectly collapse to those in the fDNS fields, indicating the accurate predictions of
the MANA model for the thermodynamic statistics.
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Figure 15. Visualisation of the instantaneous vortical structures based on the Q-criterion (Hunt, Wray & Moin
1988) in the (a) fDNS, (b) ILES, (c) Vreman, (d) DSM, (e) WALE and ( f ) MANA models. The structures are
coloured by the wall-normal distance h, and the isosurfaces of the instantaneous vortical structures represent
Q = 0.4. It is noted that the fDNS result is generated by applying streamwise and spanwise filtering with filter
sizes nx = 6 and nz = 2 to the DNS flow fields; however, the grid resolution remains as 384 × 193 × 128.

The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy
and the temperature variance 〈Π+

τ 〉xz and 〈Π+
Q 〉xz along the wall-normal direction for

the fDNS, ILES, Vreman, DSM, WALE and MANA models in a posteriori tests in
R1M15 are depicted in figure 17. The ILES is the LES with no SGS model, therefore
the normalised SGS fluxes of the kinetic energy and the temperature variance 〈Π+

τ 〉xz
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Figure 16. (a) The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and (b) the normalised

resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction from fDNS and LES with different

SGS models in R1M15.
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Figure 17. The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy and the
temperature variance (a) 〈Π+

τ 〉xz and (b) 〈Π+
Q 〉xz along the wall-normal direction for fDNS, ILES, Vreman,

DSM, WALE and MANA models in a posteriori tests in R1M15.

and 〈Π+
Q 〉xz are zero along the wall-normal direction. The Vreman and WALE models

significantly underestimate the mean SGS fluxes of the kinetic energy and the temperature
variance, while the DSM strongly overestimates the mean kinetic energy flux and
underestimates the mean flux of the temperature variance. On the contrary, the MANA
model accurately predicts the kinetic energy and the temperature variance transfer rate
along the wall-normal direction, except for slightly larger values in the buffer layer.
Furthermore, the instantaneous wall-parallel contour of the normalised SGS fluxes of the
kinetic energy and the temperature variance Π+

τ and Π+
Q for fDNS and LES with different

SGS models at y+ = 15 in a posteriori tests in R1M15 are shown in figures 18 and 19,
respectively. It is found in figures 18 and 19 that most regions exhibit positive values of
Π+

τ and Π+
Q , indicating that the compressible turbulent channel flow is dominated by

the direct transfer of the kinetic energy and the temperature variance from large scales to
small scales. However, the negative values of Π+

τ and Π+
Q also appear in some regions,

suggesting that the inverse transfer of the kinetic energy and the temperature variance
from small scales to large scales also exist in the compressible turbulent channel flow.
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Figure 18. The instantaneous wall-parallel contour of the normalised flux of the kinetic energy Π+
τ for

(a) fDNS, (b) Vreman, (c) DSM, (d) WALE and (e) MANA models at y+ = 15 in a posteriori tests in R1M15.

The above observations are consistent with those in compressible isotropic turbulence and
hypersonic turbulent boundary layers (Eyink 2005; Aluie & Eyink 2009; Eyink & Aluie
2009; Wang et al. 2018a; Xu et al. 2021b). It is also found that only the positive values
of Π+

τ and Π+
Q appear in the contours of the Vreman, DSM and WALE models, which

indicates that the eddy-viscosity models cannot predict the inverse transfer of the kinetic
energy and the temperature variance (Xie et al. 2019a,c). On the contrary, both positive
and negative values of Π+

τ and Π+
Q appear in the contour of the MANA model, suggesting

that the MANA model can well predict both the direct and inverse transfer of the kinetic
energy and the temperature variance.

The probability density functions (p.d.f.s) of the normalised SGS fluxes of the kinetic
energy and the temperature variance at y+ = 15 for fDNS, Vreman, DSM, WALE and
MANA models in a posteriori tests in R1M15 are plotted in figure 20. It is found that
the values of Π+

τ and Π+
Q for Vreman, DSM and WALE models are all larger than

zero, and the right tails of the p.d.f.s are significantly shorter than those of the fDNS
fields, indicating that the Vreman, DSM and WALE models remarkably underestimate the
normalised SGS fluxes of the kinetic energy and the temperature variance Π+

τ and Π+
Q .

However, the p.d.f.s of Π+
τ and Π+

Q for the MANA model collapse well to those of the
fDNS result, indicating that the MANA model can accurately estimate the normalised SGS
fluxes of the kinetic energy and the temperature variance.

In a nutshell, according to the observations in this subsection, it is shown that the
newly proposed MANA model can accurately predict the second-order statistics of both
velocity and thermodynamic variables and the SGS fluxes of the kinetic energy and the
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Figure 19. The instantaneous wall-parallel contour of the normalised flux of the temperature variance Π+
Q for

(a) fDNS, (b) Vreman, (c) DSM, (d) WALE and (e) MANA models at y+ = 15 in a posteriori tests in R1M15.
It is noted that the colour bar value should be multiplied by ×10−4.
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Figure 20. The probability density functions (p.d.f.s) of the normalised SGS fluxes of the kinetic energy and
the temperature variance (a) Π+

τ and (b) Π+
Q at y+ = 15 for the fDNS, Vreman, DSM, WALE and MANA

models in a posteriori tests in R1M15.

temperature variance, and has remarkably better performances than the ILES and the
traditional eddy-viscosity models. Furthermore, the MANA model is also much more
computationally efficient than the DSM. More importantly, the proposed MANA model
can accurately predict the second-order flow statistics for grid resolutions totally different
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Nx × Ny × Nz x+ y+
w z+

DNS 400 × 210 × 320 14.5 0.66 6.05
ILES 100 × 101 × 80 55.5 1.14 23.1
Vreman 100 × 101 × 80 55.8 1.15 23.2
DSM 100 × 101 × 80 55.5 1.14 23.1
WALE 100 × 101 × 80 55.2 1.14 23.0
MANA 100 × 101 × 80 58.1 1.20 24.2

Table 5. The details of the grid settings of the DNS, ILES, Vreman model, DSM, WALE model and MANA
model in the compressible channel flow case R2M30 with Re = 4880 and M = 3.0.

from the grid resolution used in the training process, and this merit is a great advantage
over many other ANN-based SGS models proposed previously. The good performance of
the MANA model in R1M15 with the untrained grid resolution is mainly owing to the
elaborately designed structures of the input and tensor bases of the MANA model. The
local grid widths in three directions are used to normalise the corresponding gradients
of the flow variables, and the information of the grid resolutions is inherently embedded
in the input and tensor bases of the MANA model, which is expected to have a good
performance for untrained grid resolutions.

4.2. Application in the compressible turbulent channel flow with untrained Reynolds
numbers and Mach numbers

The MANA model is also tested in compressible turbulent channel flows with untrained
Reynolds numbers and Mach numbers. Two sets of compressible channel flow with
different Reynolds numbers and the Mach numbers are tested as representatives: one is
with the Reynolds number Re = 4880 and the Mach number M = 3.0 named ‘R2M30’,
and another is with the Reynolds number Re = 7000 and the Mach number M = 1.0
named ‘R3M10’.

The details of the grid settings of the DNS and LES with different SGS models in case
R2M30 are listed in table 5. It is noted that the LES grid resolutions have the streamwise
and spanwise filtered sizes nx = 4 and nz = 4 compared with the DNS grid resolution.
Accordingly, the fDNS result is obtained by utilising the top-hat filter on the DNS data
with the streamwise and spanwise filtered sizes nx = 4 and nz = 4, which are also different
from the filtered sizes in the training process.

The normalised r.m.s. values of the resolved fluctuating velocities ũ+
i,rms and the

normalised resolved Reynolds shear stress R̃+
uv along the wall-normal direction for the

fDNS and different LES models in R2M30 are shown in figure 21. The ILES and the
traditional eddy-viscosity models exhibit remarkably larger peak values of ũ+

rms, ṽ+
rms and

R̃+
uv than those of the fDNS result, while the MANA model gives accurate predictions of

ũ+
rms, ṽ

+
rms and R̃+

uv , except for slightly larger peak values of ṽ+
rms and R̃+

uv in the buffer layer.
For the w̃+

rms profiles, the ILES and the traditional eddy-viscosity models significantly
underestimate the peak values, while the MANA model gives a much more accurate
prediction, except for the slight underestimation of the peak values. To sum up, the MANA
model has a remarkably better performance in predicting the resolved fluctuating velocities
and the resolved Reynolds shear stress than the ILES and the traditional eddy-viscosity
models.
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Figure 21. The normalised r.m.s. values of the resolved fluctuating velocities and the normalised resolved
Reynolds shear stress along the wall-normal direction in the fDNS and different LES models in R2M30.
(a) The streamwise resolved fluctuating velocities ũ+

rms, (b) the wall-normal resolved fluctuating velocities ṽ+
rms,

(c) the spanwise resolved fluctuating velocities w̃+
rms and (d) the resolved Reynolds shear stress R̃+

uv .

The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and the

normalised resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction

for the fDNS and different LES models in R2M30 are depicted in figure 22. It is found that
the ILES and the traditional eddy-viscosity models have a good performance in predicting
T̃+

rms and R̃+
uT . However, the MANA model has a slightly better performance than the ILES

and the traditional eddy-viscosity models, and the T̃+
rms and R̃+

uT profiles of the MANA
model almost collapse to those of the fDNS result.

The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy
and the temperature variance 〈Π+

τ 〉xz and 〈Π+
Q 〉xz along the wall-normal direction for

the fDNS, ILES, Vreman, DSM, WALE and MANA models in R2M30 are depicted
in figure 23. It is found that the Vreman and WALE models strongly underestimate the
mean SGS fluxes of the kinetic energy and the temperature variance, while a remarkable
overestimation appears in DSM. The MANA model has a significantly better performance
in estimating the mean SGS fluxes of the kinetic energy and the temperature variance than
the traditional eddy-viscosity models.

The details of the grid settings of the DNS and LES in case R3M10 are listed in table 6.
The LES grid resolutions have the streamwise and spanwise filtered sizes nx = 12 and
nz = 4 compared with the DNS grid resolution; therefore, the fDNS result is obtained by
taking the top-hat filter on the DNS data with the streamwise and spanwise filtered sizes
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Figure 22. (a) The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and (b) the normalised

resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction for the fDNS and different LES

models in R2M30.
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Figure 23. The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy and the
temperature variance (a) 〈Π+

τ 〉xz and (b) 〈Π+
Q 〉xz along the wall-normal direction for the fDNS, ILES, Vreman,

DSM, WALE and MANA models in R2M30.

Nx × Ny × Nz x+ y+
w z+

DNS 768 × 385 × 256 7.02 0.21 7.02
ILES 64 × 65 × 64 78.4 1.62 26.1
Vreman 64 × 65 × 64 77.7 1.61 25.9
DSM 64 × 65 × 64 78.4 1.62 26.1
WALE 64 × 65 × 64 77.5 1.60 25.8
MANA 64 × 65 × 64 81.2 1.68 27.0

Table 6. The details of the grid settings of the DNS, ILES, Vreman model, DSM, WALE models and the
MANA model in the compressible channel flow case R3M10 with Re = 7000 and M = 1.0.

nx = 12 and nz = 4. Moreover, the streamwise and spanwise filtered sizes in R3M10 are
also different from those in the training process.

The normalised r.m.s. values of the resolved fluctuating velocities ũ+
i,rms and the

normalised resolved Reynolds shear stress R̃+
uv along the wall-normal direction for the
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Figure 24. The normalised r.m.s. values of the resolved fluctuating velocities and the normalised resolved
Reynolds shear stress along the wall-normal direction for the fDNS and different LES models in R3M10.
(a) The streamwise resolved fluctuating velocities ũ+

rms, (b) the wall-normal resolved fluctuating velocities ṽ+
rms,

(c) the spanwise resolved fluctuating velocities w̃+
rms and (d) the resolved Reynolds shear stress R̃+

uv .

fDNS and different LES models in R3M10 are shown in figure 24. It is found that the
ũ+

i,rms and R̃+
uv profiles of the ILES and the traditional eddy-viscosity models exhibit

significantly larger peak values than those of the fDNS result, while the MANA model
provides accurate estimations, except for slightly larger peak values in the buffer layer.
According to the above observations, it is concluded that the proposed MANA model
offers significant advantages over the ILES and the traditional eddy-viscosity models in
predicting the second-order statistics of velocity variables, especially under extremely
sparse grid resolution.

Apart from the performance in predicting the second-order statistics of the velocity
variables, the ability in estimating the second-order statistics of thermodynamic variables
is also tested for different LES models. The normalised r.m.s. values of the resolved
fluctuating temperature T̃+

rms and the normalised resolved streamwise Reynolds heat flux
R̃+

uT along the wall-normal direction for the fDNS and different LES models in R3M10
are shown in figure 25. It is found that the T̃+

rms and R̃+
uT profiles for the ILES and the

traditional eddy-viscosity models have much larger peak values than those of the fDNS
result. However, the MANA model has a better performance in predicting the T̃+

rms and
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Figure 25. (a) The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and (b) the normalised

resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction for the fDNS and different LES

models in R3M10.
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Figure 26. The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy and the
temperature variance (a) 〈Π+

τ 〉xz and (b) 〈Π+
Q 〉xz along the wall-normal direction for the fDNS, ILES, Vreman,

DSM, WALE and MANA models in R3M10.

R̃+
uT profiles, where the deviations of the peak values from the fDNS result are strongly

reduced in the MANA model.
The streamwise–spanwise averages of the normalised SGS fluxes of the kinetic energy

and the temperature variance 〈Π+
τ 〉xz and 〈Π+

Q 〉xz along the wall-normal direction for
the fDNS, ILES, Vreman, DSM, WALE and MANA models in R3M10 are depicted in
figure 26. Remarkable underestimations of the mean SGS fluxes of the kinetic energy and
the temperature variance appear in the LES with the traditional eddy-viscosity models,
while the MANA model has a much better performance in predicting 〈Π+

τ 〉xz and 〈Π+
Q 〉xz.

In a word, the newly proposed MANA model exhibits a much better performance in
predicting second-order flow statistics and the mean SGS fluxes of the kinetic energy
and the temperature variance than the ILES and the traditional eddy-viscosity models in
the compressible turbulent channel flow with two untrained Reynolds and Mach numbers
and at different grid resolutions than that in the training process. Therefore, the above
observations indicate that the MANA model offers significant advantages over the ILES
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Nx × Ny × Nz x+ y+
w z+

DNS 384 × 193 × 128 6.23 0.26 6.23
ILES 64 × 65 × 64 32.0 0.66 10.7
Vreman 64 × 65 × 64 32.7 0.68 10.9
DSM 64 × 65 × 64 31.9 0.66 10.6
WALE 64 × 65 × 64 32.8 0.68 10.9
MANA 64 × 65 × 64 37.3 0.77 12.4

Table 7. The details of the grid settings of the DNS, ILES, Vreman model, DSM, WALE models and MANA
model in the compressible channel flow case R1M02 with Re = 3000 and M = 0.2.

and the traditional eddy-viscosity models in compressible turbulent channel flows with
untrained Reynolds numbers, Mach numbers and grid resolutions.

4.3. Application to compressible turbulent channel flows with extremely low Mach
number

When the Mach number is extremely low, the statistics of the velocity fields of the
compressible turbulent channel flows are similar to those of incompressible turbulent
channel flows. Therefore, the low-Mach-number compressible turbulent channel flow with
the Reynolds number Re = 3000 and the Mach number M = 0.2, named ‘R1M02’ is also
tested to measure the performance of the MANA model in nearly incompressible turbulent
channel flows.

The details of the grid settings of the DNS and LES with different SGS models in case
R1M02 are listed in table 7. It is found that the LES grid resolutions have the streamwise
and spanwise filtered sizes nx = 6 and nz = 2 compared with the DNS grid resolution.
Therefore, the fDNS result is obtained by utilising the top-hat filter on the DNS data with
the streamwise and spanwise filtered sizes nx = 6 and nz = 2, and these filter sizes are
different from those in the training process.

The normalised r.m.s. values of the resolved fluctuating velocities and the normalised
resolved Reynolds shear stress along the wall-normal direction in the fDNS and different
LES models in R1M02 are shown in figure 27. It is found that the ILES and the traditional
eddy-viscosity models exhibit significantly larger peak values of ũ+

rms than that of the
fDNS result, while they underestimate the peak values of ṽ+

rms and w̃+
rms in the buffer

layer. However, the ũ+
rms, ṽ+

rms, w̃+
rms and R̃+

uv values predicted by the MANA model
collapse well onto those of the fDNS result. Therefore, it is shown that the MANA
model can give much more accurate predictions of the resolved fluctuating velocities
and the resolved Reynolds shear stress than the ILES and the traditional eddy-viscosity
models.

The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and the

normalised resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction

for the fDNS and different LES models in R1M02 are depicted in figure 28. It is found
that T̃+

rms of the fDNS result is very small, indicating that the temperature fluctuation
is very weak. The ILES and the traditional eddy-viscosity models overestimate T̃+

rms
and R̃+

uT , while the MANA model has a much better performance in predicting T̃+
rms

and R̃+
uT .
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Figure 27. The normalised r.m.s. values of the resolved fluctuating velocities and the normalised resolved
Reynolds shear stress along the wall-normal direction in the fDNS and different LES models in R1M02.
(a) The streamwise resolved fluctuating velocities ũ+

rms, (b) the wall-normal resolved fluctuating velocities ṽ+
rms,

(c) the spanwise resolved fluctuating velocities w̃+
rms and (d) the resolved Reynolds shear stress R̃+

uv .
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Figure 28. (a) The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and (b) the normalised

resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction for the fDNS and different LES

models in R1M02.

According to the above observations, it is found that the MANA model can also
have a significantly better performance in predicting second-order flow statistics than the
ILES and the traditional eddy-viscosity models in very low-Mach-number compressible
turbulent channel flows.
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Nx × Ny × Nz x+ y+
w z+

DNS 10 000 × 90 × 320 5.77 0.58 5.26
ILES 1000 × 90 × 80 54.4 0.54 19.8
Vreman 1000 × 90 × 80 54.6 0.55 19.9
DSM 1000 × 90 × 80 51.8 0.52 18.9
WALE 1000 × 90 × 80 53.5 0.54 19.5
MANA 1000 × 90 × 80 56.5 0.57 20.6

Table 8. The details of the grid settings of the DNS, ILES, Vreman model, DSM, WALE models and MANA
model in the supersonic adiabatic turbulent boundary layer.

4.4. Application to the compressible zero-pressure-gradient flat-plate boundary layer
In order to verify the performance of the MANA model in more complicated compressible
wall-bounded flows, the application to the compressible zero-pressure-gradient flat-plate
boundary layer is also demonstrated. The spatially evolving zero-pressure-gradient
flat-plate boundary layer consists of laminar, transitional and fully turbulent regions, which
flow is much more complex than the turbulent channel flows.

The spatially developing supersonic adiabatic flat-plate boundary layer with Re =
635 000 and M = 2.25 (Pirozzoli et al. 2004) is simulated to check the performance
of the MANA model in the compressible turbulent boundary layer. A schematic of the
supersonic adiabatic transitional and turbulent boundary layer is shown in figure 29.
The spatially evolving supersonic adiabatic transitional and turbulent boundary layer is
numerically simulated with the following boundary conditions: the inflow and outflow
boundary conditions, a wall boundary condition, an upper far-field boundary condition and
a periodic boundary condition in the spanwise direction. To be specific, a time-independent
laminar compressible boundary-layer similarity solution is applied at the inflow boundary.
A region of wall blowing and suction is implemented to induce the laminar-to-turbulent
transition. The form of blowing and suction is the same as that in Pirozzoli et al. (2004)
except for the magnitude of the amplitude. In order to simulate a natural transition, an
amplitude of 0.02 is applied in this case (Yu et al. 2022). For the outflow boundary
condition, all the flow fields are extrapolated from the interior points to the outflow
boundary points except the pressure in the subsonic region of the boundary layer.
Moreover, the pressure in the subsonic region is set equal to the value of the first grid
point where the flow is supersonic (Pirozzoli et al. 2004). Furthermore, the no-slip
condition is applied for the wall boundary, and the non-reflecting boundary condition is
imposed for the upper boundary (Pirozzoli et al. 2004). The computational domain size is
Lx × Ly × Lz = 6 × 0.3 × 0.175 in the streamwise, wall-normal and spanwise directions,
respectively, normalised by 1 inch (Pirozzoli et al. 2004; Yu et al. 2022). It is found in
Pirozzoli et al. (2004) that at the streamwise location x/Lx = 0.8 (i.e. x = 8.8 in Pirozzoli
et al. 2004), the flow reaches to the fully turbulent state. Therefore, the performance of the
newly proposed MANA model in predicting the flow statistics of the supersonic turbulent
boundary layer are tested at the streamwise location x/Lx = 0.8.

The details of the grid settings of the DNS and LES in the supersonic adiabatic turbulent
boundary layer are listed in table 8. The LES grid resolutions have the streamwise and
spanwise filtered sizes nx = 10 and nz = 4 compared with the DNS grid resolution.
Therefore, the fDNS result is calculated by taking the top-hat filter on the DNS data with
the streamwise and spanwise filtered sizes nx = 10 and nz = 4.
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Figure 29. A schematic of the supersonic adiabatic transitional and turbulent boundary layer.

The normalised r.m.s. values of the resolved fluctuating velocities and the normalised
resolved Reynolds shear stress along the wall-normal direction at streamwise location
x/Lx = 0.8 in the fDNS and different LES models in the supersonic adiabatic turbulent
boundary layer are shown in figure 30. It is found that the profiles of ũ+

rms, ṽ+
rms, w̃+

rms
and R̃+

uv predicted by the ILES and the traditional eddy-viscosity models show much
larger peak values than those of the fDNS result. However, the MANA model accurately
predicts the profiles of w̃+

rms and R̃+
uv , and slightly overestimates the values of ũ+

rms and
ṽ+

rms. According to the above observations, it is shown that the MANA model has a
better performance in predicting the velocity statistics than the ILES and the traditional
eddy-viscosity models in the supersonic adiabatic turbulent boundary layer.

The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and the

normalised resolved streamwise Reynolds heat flux R̃+
uT along the wall-normal direction at

streamwise location x/Lx = 0.8 for the fDNS and different LES models in the supersonic
adiabatic turbulent boundary layer are shown in figure 31. It is found that the magnitudes
of T̃+

rms and R̃+
uT predicted by the ILES and the traditional eddy-viscosity models are much

larger than those of the fDNS result, while the MANA model only slightly overestimates
the magnitudes of T̃+

rms and R̃+
uT . Therefore, the MANA model gives much more accurate

prediction of the thermodynamic statistics than the ILES and the traditional eddy-viscosity
models in the supersonic adiabatic turbulent boundary layer.

To sum up, it is found that the proposed MANA model can also exhibit a much better
performance in predicting the flow statistics in the supersonic adiabatic turbulent boundary
layer than the ILES and the traditional eddy-viscosity models.

5. Summary and conclusions

In this paper, ANN-based nonlinear algebraic models are proposed for both the
SGS stress and SGS heat flux in the LES of compressible wall-bounded turbulence.
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Figure 30. The normalised r.m.s. values of the resolved fluctuating velocities and the normalised resolved
Reynolds shear stress along the wall-normal direction at streamwise location x/Lx = 0.8 in the fDNS and
different LES models in the supersonic adiabatic turbulent boundary layer. (a) The streamwise resolved
fluctuating velocities ũ+

rms, (b) the wall-normal resolved fluctuating velocities ṽ+
rms, (c) the spanwise resolved

fluctuating velocities w̃+
rms and (d) the resolved Reynolds shear stress R̃+

uv .
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Figure 31. (a) The normalised r.m.s. values of the resolved fluctuating temperature T̃+
rms and (b) the normalised

resolved streamwise Reynolds heat flux R̃+
uT along wall-normal direction at streamwise location x/Lx = 0.8 for

the fDNS and different LES models in the supersonic adiabatic turbulent boundary layer.

The input quantities and the tensor bases of the proposed ANN-based nonlinear algebraic
models are significantly modified from the original nonlinear algebraic model proposed
by Lund & Novikov (1992) and Wang et al. (2007), which gives rise to the drastically
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improved performance compared with the ILES and the traditional eddy-viscosity models
(DSM, Vreman and WALE) in the LES of the compressible turbulent channel flow.
Furthermore, the modified ANN-based nonlinear algebraic models can be applied to
accurately predict the flow statistics in turbulent channel flows with untrained Reynolds
numbers, Mach numbers and grid resolutions as well as the supersonic turbulent
boundary layer. More importantly, the modified ANN-based nonlinear algebraic models
are more computationally efficient than the DSM.

With the increasing popularity of the ANN method, it is straightforward to use the
ANN method to generate proper dimensionless model coefficients of the original nonlinear
algebraic model proposed by Lund & Novikov (1992) and Wang et al. (2007). However,
it is found that the original ANN-based nonlinear algebraic model (OANA model) has
low correlation coefficients and large relative errors compared with the fDNS result in
the a priori tests, although it is slightly better than the traditional eddy-viscosity models
(DSM, Vreman and WALE). Therefore, we innovatively propose a modified ANN-based
nonlinear algebraic model (MANA model). The local grid widths along the streamwise,
wall-normal and spanwise directions are used to normalise the corresponding gradients
of the flow variables, and this MANA model exhibits a much better performance than
the OANA model and the traditional eddy-viscosity models (DSM, Vreman and WALE)
in the a priori tests, where the correlation coefficients are all larger than 0.91, and the
relative errors are smaller than 0.4. Furthermore, the MANA model can accurately predict
the mean SGS fluxes of the kinetic energy and the temperature variance, which is a
significant advantage over the traditional eddy-viscosity models. It is worth noting that the
information of the local grid resolution is inherently embedded in the input quantities and
the tensor bases of the MANA model, therefore it is expected that the proposed MANA
model can show good performance in compressible turbulent channel flows with untrained
grid resolutions.

Furthermore, the performance of the proposed MANA model in predicting the flow
statistics and the mean SGS fluxes of the kinetic energy and the temperature variance
is also examined in a posteriori tests. It is confirmed that the MANA model can give
more accurate prediction of the second-order flow statistics and the mean SGS fluxes
of the kinetic energy and the temperature variance than the ILES and the traditional
eddy-viscosity models (DSM, Vreman and WALE) in compressible turbulent channel
flows with untrained Reynolds numbers, Mach numbers and grid resolutions. Moreover,
the MANA model can give much more accurate predictions of the flow statistics in the
supersonic turbulent boundary layer. The inverse transfer of the kinetic energy and the
temperature variance cannot be estimated in the traditional eddy-viscosity models, while
the MANA model can well predict the direct and inverse transfer of the kinetic energy and
the temperature variance. Moreover, the MANA model is computationally cheaper than
the DSM.

In summary, the newly proposed modified ANN-based nonlinear algebraic model in this
paper has been verified to be an effective SGS model in LES of compressible wall-bounded
turbulence. It is noted that many ANN-based models proposed previously (including those
of Park & Choi (2021), Xie et al. (2019c) and so on) directly constructed the ANN
relations between the filtered quantities and the unclosed SGS terms. Such ‘black box’
models cannot have a good performance in untrained cases. On the contrary, the newly
proposed MANA model combines plenty of prior physical knowledge, and therefore can
give accurate predictions in a variety of untrained cases. However, it should also be
emphasised that the MANA model still needs to be further tested and improved in LES of
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Figure 32. The learning curves of the validation loss, the correlation coefficients C and the relative errors Er
in the testing set with different mini-batch sizes Nbatch (a–c), different optimisers (d–f ) and different activation
functions (g–i) in the OANA model. The number of neurons of the hidden layers is fixed to Nh = 20.

wall-bounded turbulent flows with higher Reynolds numbers, higher Mach numbers and
more complex geometries.
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Figure 33. The learning curves of the validation loss, the correlation coefficients C and the relative errors Er
in the testing set with different mini-batch sizes Nbatch (a–c), different optimisers (d–f ) and different activation
functions (g–i) in the MANA model. The number of neurons of the hidden layers is fixed to Nh = 20.

Appendix. The influence of the mini-batch size Nbatch, different optimisers and
activation functions in a priori test

In this appendix, the influences of the size of the mini-batch Nbatch, different optimisers
and activation functions on the performance of the OANA model and MAMA model in a
priori tests are examined to determine the best choices of Nbatch, optimiser and activation
function. It is noted that only the performance of the ANN of τA

11 is shown in this appendix;
the results in other SGS unclosed components are similar to that of τA

11 and are omitted for
brevity.

The learning curves of the validation loss, the correlation coefficients C and the relative
errors Er in the testing set with different mini-batch sizes Nbatch, different optimisers
and different activation functions in the OANA model and MANA model are shown in
figures 32 and 33 respectively. The number of neurons of the hidden layers is fixed to
Nh = 20.

It is shown in figures 32 and 33(a–c) that, when the mini-batch size Nbatch is changed
from 1000 to 500 or 2000, the learning curves of the validation loss, the correlation
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coefficients C and the relative errors Er in the testing set are almost the same as the
results of Nbatch = 1000, which indicates that the mini-batch size Nbatch has a negligible
influence on the performance of the OANA model and MANA model in the range
500 ≤ Nbatch ≤ 2000. Therefore, the mini-batch size Nbatch is fixed to Nbatch = 1000 in
all ANN training processes in this paper, which is consistent with the Nbatch setting in
many previous studies (Xie et al. 2019b, 2020b; Yu et al. 2022).

Then, the influence of different optimisers is also checked. The performances of the
Adam algorithm (Kingma & Ba 2014), Adadelta algorithm (Zeiler 2012) and Adagrad
algorithm (Duchi, Hazan & Singer 2011) in the OANA model and MANA model are
compared in figures 32 and 33(d–f ), respectively. It is found that the OANA model with
the Adam algorithm (Kingma & Ba 2014) has the smallest validation loss, the largest
correlation coefficient and the smallest relative error among the three optimisers. On the
other hand, in the MANA model, the performance of the Adam algorithm (Kingma &
Ba 2014) is slightly better than those of the Adadelta algorithm (Zeiler 2012) and Adagrad
algorithm (Duchi et al. 2011). Therefore, the Adam algorithm (Kingma & Ba 2014) is used
in all ANN training processes in this paper.

Finally, the influences of different activation functions in the OANA model and MANA
model are tested in figures 32 and 33(g–i), respectively. It is found that the Sigmoid
activation function has the worst performance, mainly due to the reason that the Sigmoid
can result in the ‘vanishing gradient problem’: when the inputs have very high or very low
values, there is almost no change to the prediction. This problem can lead to the network
refusing to learn further, or being too slow to reach an accurate prediction (Goodfellow,
Bengio & Courville 2016). Furthermore, the ReLU activation function also has poor
performance, which can be ascribed to the ‘dying ReLU problem’: when the input is
less than or equal to zero, the gradient of the function becomes zero and the network
cannot perform backpropagation (Lu et al. 2020). It is noted that the exponential linear
unit (ELU) (Clevert, Unterthiner & Hochreiter 2015) and leaky-ReLU activation function
can remove the ‘dying ReLU problem’ of ReLU activation (Clevert et al. 2015; Xu et al.
2015). However, the ELU activation function has a larger computational cost and worse
performance compared with those of the leaky-ReLU activation function. Therefore, the
leaky-ReLU activation function is applied in all ANN structures in this paper.
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