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GEOMETRY OF THE POISSON BOOLEAN
MODEL ON A REGION OF LOGARITHMIC
WIDTH IN THE PLANE
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Abstract

Consider the region L = {(x, y) : 0 ≤ y ≤ C log(1 + x), x > 0} for a constant
C > 0. We study the percolation and coverage properties of this region. For the coverage
properties, we place a Poisson point process of intensity λ on the entire half space R+×R

and associated with each Poisson point we place a box of a random side length ρ.
Depending on the tail behaviour of the random variable ρ we exhibit a phase transition
in the intensity for the eventual coverage of the region L. For the percolation properties,
we place a Poisson point process of intensity λ on the region R

2. At each point of the
process we centre a box of a random side length ρ. In the case ρ ≤ R for some fixed
R > 0 we study the critical intensity λc of the percolation on L.
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1. Introduction

Let (X, λ, ρ) be a Poisson Boolean model on H = R+ × R, i.e. X = {x1, x2, . . . } is a
homogeneous Poisson point process on H with intensity λ, and, at each point xi we situate the
box xi+[0, ρi]2, where {ρi : i ≥ 1} being a collection of independent and identically distributed
(i.i.d.) random variables, with each ρi having the same distribution as the nonnegative random
variable ρ and being independent of the underlying Poisson process. The covered (or occupied)
region of this Boolean model is defined as C = ⋃

i≥1(xi + [0, ρi]2), while the vacant region
is V = H \ C. In general, the shapes situated at points of the Poisson process are usually balls
of random radius (see, e.g. Stoyan et al. (1987), Hall (1988), and Meester and Roy (1996));
however, for the convenience of writing, we consider boxes instead of balls. It may be easily
seen that all our results carry through for the standard case.

For an unbounded connected region L ⊆ H, we say that

• there is occupied percolation in L if C ∩ L admits an unbounded connected component
with positive probability,
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• there is vacant percolation in L if V ∩ L admits an unbounded connected component
with positive probability,

and, assuming that the unbounded connected region L is such that it is unbounded along the
x-axis, i.e. for any x > 0, there exists yx such that (x, yx) ∈ L,

• there is eventual coverage of L if, with positive probability, there exists t > 0 such that
L ∩ {(x, y) : x > t} ⊆ C.

It is easily seen that there is no equivalence of eventual coverage on the vacant region.
For a nondecreasing function f : [0, ∞) → [0, ∞), let

Lf = {(x, y) : 0 ≤ y ≤ f (x)},
and the critical parameters are defined as

λc(Lf ) = inf{λ : occupied percolation occurs in Lf },
λ�

c(Lf ) = sup{λ : vacant percolation occurs in Lf },
λe(Lf ) = inf{λ : there is eventual coverage of Lf }.

Although we have not specified it explicitly, in all the above three definitions there is an implicit
dependence on the random variable ρ and the underlying space H on which the Poisson point
process is defined.

In addition to these critical parameters for coverage and percolation properties of the region
Lf , we may also define the critical parameter associated with the eventual coverage of the
graph of a function. In particular, let g : [0, ∞) → [0, ∞) and lg = {(x, y) : y = g(x)}.
We say that lg is eventually covered if, with positive probability, there exists t > 0 such that
lg ∩ {(x, y) : x > t} ⊆ C. Accordingly, we define the critical parameter as

λe(lg) = inf{λ : there is eventual coverage of lg}.
In this paper our focus will be on the study of the coverage and percolation properties of the

region Lf and the graph lg , where f (x) is of the order of log x and g is an arbitrary, uniformly
continuous function. Our motivation in this work is to show that in a two-dimensional region
of width smaller than log x the percolation properties as well as the coverage properties are the
same as those respective properties for a one-dimensional line.

In particular, we show the following result.

Theorem 1.1. Let f (x) = a log(1 + x) for some a > 0, and let g : [0, ∞) → [0, ∞) be a
uniformly continuous function. Then the following statements hold.

(i) If ρ is such that, for all large x,

P(ρ > x) = Kρ + η(x)

x2 (1.1)

for some Kρ > 0 and η(x) → 0 as x → ∞, then

λe(Lf ) = λe(lg) = 1

2Kρ

.
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(ii) If ρ is such that
x2 P(ρ > x) → 0 as x → ∞ (1.2)

then
λe(Lf ) = λe(lg) = ∞.

(iii) If ρ is such that
x2 P(ρ > x) → ∞ as x → ∞ (1.3)

then
λe(Lf ) = λe(lg) = 0.

Theorem 1.2. Let ρ be such that 0 < ρ ≤ R for some fixed R > 0. For f : [0, ∞) → [0, ∞)

nondecreasing, the following statements hold.

(i) If f is such that f (x) = o(log x) as x → ∞ then λc(Lf ) = ∞ and λ�
c(Lf ) = 0.

(ii) Iff is such that log x = o(f (x))asx → ∞ thenλc(Lf ) = λ�
c(Lf ) = λc(R

2) = λ�
c(R

2).

(iii) If f is such that f (x)/ log x → a as x → ∞ for some a > 0 then λc(Lf ) is the
unique λ ∈ (λc(R

2), ∞) satisfying ξ�(λ) = a, and λ�
c(Lf ) is the unique λ ∈ (0, λc(R

2))

satisfying ξ(λ) = a, where the vacant and occupied correlation lengths ξ�(λ) and ξ(λ)

are as defined in Propositions 3.1 and 3.2, respectively.

Remark 1.1. In Theorem 1.2(ii) λc(R
2) and λ�

c(R
2) are the critical intensities for occupied

and vacant percolation when the Boolean model is defined by a Poisson point process on the
entire plane R

2. Although the equality of λc(R
2) and λ�

c(R
2) is known only when the shapes

are discs of bounded radius (see Meester and Roy (1996)), the result can be easily extended to
shapes which are squares of bounded side lengths. We also require versions of Lemmas 3.3,
4.1 and Theorems 3.5, 3.7, 4.3, 4.4 of Meester and Roy (1996) for shapes which are squares of
bounded side lengths. It may be seen that these results follow in a similar manner.

In our first result (Theorem 1.1) we examine λe(Lf ) for f (x) = a log(1 + x), a > 0,
and ρ having a heavy-tailed distribution as given by (1.1). Note that, for any ρ having a tail
either thicker or thinner than that given by (1.1), the critical intensity λe(Lf ) is trivial, i.e.
λe(Lf ) = 0 or ∞, respectively. In this sense the given tail behaviour (1.1) of ρ is critical for
the nontriviality of the model.

Our second result (Theorem 1.2) is similar to the result for the Bernoulli bond percolation
on the region Lf of Grimmett (1983). In the case of Bernoulli bond percolation on a region
L of the two-dimensional square lattice, the critical probability pc(Lf ) of percolation is well
studied. Grimmett (1983) showed that the critical probability pc(L) equals 1

2 , which is the
critical probability of percolation on the entire square lattice, whenever the function f grows
faster than log x, and pc(L) equals 1 whenever the function f grows slower than log x. While
if f is such that f (x) ∼ a log x for some constant a > 0 then pc(Lf ) is obtained as the
unique solution p of the equation ξ(1 −p) = a, where ξ(·) is the correlation length of the two-
dimensional Bernoulli bond percolation process. The method of proof is also similar, although
with the vacancy and the occupancy structures not being in a duality relation as in the case of
Bernoulli bond percolation, we need to do some extra work.

The analogy of eventual coverage in Lf with that of the percolation result is also exhibited
in Theorem 1.1, where we study the coverage of a one-dimensional line lg = {(x, y) : y =
g(x)} and show that λe(Lf ) = λe(lg) for g and f as given in the statement of the theorem.

https://doi.org/10.1239/aap/1316792662 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792662


Geometry of the Poisson Boolean model SGSA • 619

In particular, the percolation properties (vis-à-vis critical parameters) of a region with width
smaller than log x is the same as that of a one-dimensional line. This is also the case vis-à-vis
the critical parameters for eventual coverage. For a region of width of the order of log x, the
percolation properties are different from the corresponding properties for the line, whereas the
coverage properties are similar for both the region and the line.

To complement the above two theorems, we study the behaviour at criticality. It is shown that
(i) the occurrence or otherwise of percolation in Lf at criticality for f (x) = O(log x) depends
on the higher-order terms of f , and (ii) the occurrence or otherwise of eventual coverage of Lf

depends on the higher-order terms of the tail distribution of ρ. These are discussed at the end
of the proofs of the theorems in the appropriate sections.

Eventual coverage has been studied for quadrants and octants by Athreya et al. (2004). It
is the natural analogue of complete coverage of space in Boolean models. Hall (1988) showed
that, for the Boolean model defined on R

d , complete coverage occurs, i.e. C = R
d almost

surely if and only if E ρd = ∞. Molchanov and Scherbakov (2003) studied the question of
complete coverage for an inhomogeneous Poisson Boolean model. Here we study eventual
coverage of the region under the log function. Our method of proof here differs from that of
Athreya et al. (2004), in that the events we study are not renewal events and as such we cannot
use those properties. Instead a more general Borel–Cantelli lemma is needed for our analysis.

The result on percolation complements the work of Tanemura (1993). Tanemura used a
Grimmett and Marstrand method to study continuum percolation on slabs, half-spaces, and
other regions of space. In particular, Tanemura showed that λc(R

d) = λc(R
d+) and λ�

c(R
d) =

λ�
c(R

d+). We extend these results to further subsets of R
2. To this end, we need to develop

correlation lengths for both occupied and vacant connectivity functions. Tanemura (1996) used
lace expansion techniques to study such connectivity functions in high dimensions.

The rest of the paper is organised as follows. In Section 2 we study the coverage properties
and in particular prove Theorem 1.2. In Section 3, for each of the cases of infinite occupied
and infinite vacant components, we first derive in Propositions 3.1 and 3.2 the properties of the
connectivity functions or correlation lengths by vacant or occupied paths, respectively. These
are then used to prove Theorem 1.2 for infinite occupied and infinite vacant components.

2. Proof of Theorem 1.1

In order to prove the results, we couple various Poisson Boolean models with the same
intensity but different random variables specifying the sizes of the boxes at the Poisson points.
It is easy to see that these models can be coupled together on one probability space. Let C(τ)

denote the covered region of the Poisson Boolean model (X, λ, τ ). For any (x, y) ∈ H, we
define

A(x,y)(τ ) = {(x, y) 
∈ C(τ)}.
We first show that λe(lg) = 1/2Kρ when ρ satisfies (1.1). Since g is uniformly continuous,

we can choose 0 < δ < 1
2 such that |g(x) − g(y)| < 1

2 whenever x, y > 0 and |x − y| < δ.
Let us set

ρmin = max{ρ − 1, 0}
and, for i ≥ 1,

Bi = A(iδ,g(iδ)−1/2)(ρmin), Di = A(i,g(i))(ρ), and Ei =
�a log(1+i)�⋃

j=0

A(i,j)(ρmin).
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We make the following claims.

(C1) The graph lg is eventually covered if Pλ(lim supi→∞ Bi) = 0.

(C2) The graph lg is not eventually covered if Pλ(lim supi→∞ Di) = 1.

(C3) The region Lf is eventually covered if Pλ(lim supi→∞ Ei) = 0.

Since {(i, g(i)) : i ≥ 1} ⊂ lg = {(x, g(x)) : x > 0}, claim (C2) follows trivially. For
claims (C1) and (C3), observe that if (x, y) ∈ C(ρmin), by the definition of ρmin, we must
have (x, y) + [0, 1]2 ⊆ C(ρ). Now, if (iδ, g(iδ) − 1

2 ) ∈ C(ρmin), by the above choice of δ,
we have {(x, g(x)) : iδ ≤ x ≤ (i + 1)δ} ⊆ (iδ, g(iδ) − 1

2 ) + [0, δ] × [0, 1] ⊆ C(ρ). Hence,
(C1) follows. Noting that a log(x + 1) − a log x ≤ 1 whenever a < x, a similar argument that
is used to prove (C1) will establish (C3).

Let Fτ be the distribution function of τ , i.e. Fτ (t) = P(τ ≤ t), and let Gτ (t) = 1−Fτ (t) =
P(τ > t).

Lemma 2.1. For any (x, y) ∈ H and any random variable τ , we have

Pλ(A(x,y)(τ )) = exp

(
−2λ

∫ x

0
sGτ (s) ds − λx

∫ ∞

x

Gτ (s) ds

)
.

Remark. The probability Pλ(A(x,y)(τ )) does not depend on y, which is not surprising given
the stationarity of the underlying process in the y-direction.

Proof of Lemma 2.1. Let Nx,y denote the set of Poisson points whose associated boxes cover
the point (x, y), i.e.

Nx,y = {(u, v) ∈ X : (x, y) ∈ (u, v) + [0, τu,v]2},
where τu,v denotes the (random) size of the box at the Poisson point (u, v). Clearly, Nx,y is an
inhomogeneous Poisson point process with intensity function given by

λx,y(u, v) = 1{0<u<x, v<y}λ P(τ > max(x − u, y − v)).

Hence, we have Pλ(A(x,y)(τ )) = Pλ(|Nx,y | = 0) = exp(− ∫
H

λx,y(u, v) du dv), where | · |
denotes the cardinality.

Now ∫
H

λx,y(u, v) du dv

= λ

∫ x

0

∫ y

−∞
Gτ (max(x − u, y − v)) du dv

= λ

∫ x

0

∫ ∞

0
Gτ (max(s, t)) ds dt

= λ

∫ x

0

∫ x

0
Gτ (max(s, t)) ds dt + λ

∫ x

0

∫ ∞

x

Gτ (max(s, t)) ds dt

= 2λ

∫ x

0
sGτ (s) ds + λx

∫ ∞

x

Gτ (s) ds.

This completes the proof.
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In the following lemma we examine the dependency between the events A(x1,y1)(τ ) and
A(x2,y2)(τ ).

Lemma 2.2. For (x1, y1), (x2, y2) ∈ H such that x1 < x2 and any random variable τ , we have

Pλ(A(x1,y1)(τ ) ∩ A(x2,y2)(τ )) ≤ Pλ(A(x1,0)(τ )) P(A(x2−x1,0)(τ )).

Proof. Using the notation of the previous lemma, we have

Pλ(A(x1,y1)(τ ) ∩ A(x2,y2)(τ )) = Pλ(|Nx1,y1 | = 0, |Nx2,y2 | = 0).

Let N
(x1,y1)
x2,y2 be the set of Poisson points which lie in the strip (x1, x2) × (−∞, y2) such that

each of their associated boxes covers the point (x2, y2), i.e.

N
(x1,y1)
x2,y2 = {(u, v) ∈ X : x1 < u < x2, v < y2, (x2, y2) ∈ (u, v) + [0, τu,v]2},

where, as in Lemma 2.1, τu,v denotes the size of the box at the Poisson point (u, v). Again,
N

(x1,y1)
x2,y2 is an inhomogeneous Poisson point process, and, by stationarity, it has the same

distribution as Nx2−x1,y2 . Furthermore, the processes Nx1,y1 and N
(x1,y1)
x2,y2 depend on the Poisson

points situated on the disjoints sets (0, x) × (−∞, y) and (x1, x2) × (−∞, y2), respectively;
thus, they are independent.

Since (x1, x2) × (−∞, y2) ⊆ (0, x2) × (−∞, y2), we have |N(x1,y1)
x2,y2 | = 0 whenever

|Nx2,y2 | = 0. Hence, we have

Pλ(|Nx1,y1 | = 0, |Nx2,y2 | = 0) ≤ Pλ(|Nx1,y1 | = 0, |N(x1,y1)
x2,y2 | = 0)

= Pλ(|Nx1,y1 | = 0) Pλ(|N(x1,y1)
x2,y2 | = 0)

= Pλ(|Nx1,y1 | = 0) Pλ(|Nx2−x1,y2 | = 0).

This completes the proof.

Proposition 2.1. For ρ satisfying (1.1), we have Pλ(lim supi→∞ Bi) = 0 whenever 2λKρ > 1.

Proof. The Borel–Cantelli lemma ensures that it suffices to show that
∑∞

i=1 Pλ(Bi) < ∞.
Since 2λKρ > 1, we can choose ε > 0 such that 2λ(Kρ − ε) > 1. Also, observe that
Gρmin(s) = P(ρmin > s) = P(ρ > s + 1) = G(s + 1). Thus, we have

Pλ(Bi) = Pλ(A(iδ,g(iδ))(ρmin))

= exp

(
−2λ

∫ iδ

0
sGρmin(s) ds − λiδ

∫ ∞

iδ

Gρmin(s) ds

)

≤ exp

(
−2λ

∫ iδ

0
sGρmin(s) ds

)

= exp

(
−2λ

∫ iδ+1

1
(s − 1)G(s) ds

)
.

For ρ satisfying (1.1), we can choose N so large that |η(s)| ≤ ε for all s > N . Therefore, for
any i such that iδ > N , we have∫ iδ+1

1
(s − 1)G(s) ds ≥

∫ iδ

N

sG(s) ds −
∫ ∞

0
G(s) ds

≥
∫ iδ

N

Kρ − ε

s
ds −

∫ ∞

0
G(s) ds

= (Kρ − ε) log(iδ) − C1,
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where C1 > 0 is a constant. Therefore, for all large enough i, we have

Pλ(Bi) ≤ C2(iδ)
−2λ(Kρ−ε)

for some positive constant C2. This completes the proof.

Let A1 = [0, 1] × [−1, 1], and recursively define An = [0, n] × [−n, n] \ An−1 for n ≥ 2.
The Boolean model on H may be constructed by superposing independent Poisson processes
on the regions An, n ≥ 1. Since lim sup Di does not depend upon the realisation of the Poisson
processes on any finitely many such Ans, lim sup Di is a tail event and so Pλ(lim supi→∞ Di) =
0 or 1.

Lemma 2.3. If
∑∞

i=1 Pλ(Di) = ∞ then

Pλ

(
lim sup

i→∞
Di

)
= 1.

Proof. In view of the discussion above we need to show that Pλ(lim supi→∞ Di) > 0.
For this, we use an extension due to Kochen and Stone (see Petrov (2004)) of the second
Borel–Cantelli lemma which says that if

∞∑
i=1

Pλ(Di) = ∞ and lim inf
n

∑
1≤i,j≤n Pλ(Di ∩ Dj)

(
∑

1≤i≤n Pλ(Di))2 = α,

then

Pλ

(
lim sup

i→∞
Di

)
≥ 1

α
.

Note first that

∑
1≤i,j≤n

Pλ(Di ∩ Dj) =
n∑

i=1

Pλ(Di) + 2
n−1∑
i=1

n∑
j=i+1

Pλ(Di ∩ Dj).

Now the double sum can be estimated as

n−1∑
i=1

n∑
j=i+1

Pλ(Di ∩ Dj) =
n−1∑
i=1

n∑
j=i+1

Pλ(A(i,g(i))(ρ) ∩ A(j,g(j))(ρ))

≤
n−1∑
i=1

n∑
j=i+1

Pλ(A(i,0)(ρ)) Pλ(A(j−i,0)(ρ))

=
n−1∑
i=1

Pλ(A(i,0)(ρ))

n−i∑
j−i=1

Pλ(A(j−i,0)(ρ))

≤
n−1∑
i=1

Pλ(A(i,0)(ρ))

n∑
k=1

Pλ(A(k,0)(ρ))

≤
( n∑

k=1

Pλ(Dk)

)2

.
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This gives
∑

1≤i,j≤n Pλ(Di ∩ Dj)

(
∑

1≤i≤n Pλ(Di))2 ≤ 1∑n
i=1 Pλ(Di)

+ 2 → 2 as n → ∞,

since, by assumption,
∑n

i=1 Pλ(Di) → ∞ as n → ∞.

Proposition 2.2. For ρ satisfying (1.1), we have Pλ(lim supi→∞ Di) = 1 whenever 2λKρ < 1.

Proof. In view of Lemma 2.3, we need to show that
∑∞

i=1 Pλ(Di) = ∞. Since 2λKρ < 1,
we can choose ε > 0 such that 2λ(Kρ + ε) < 1. Again, from the representation of G(s)(=
P(ρ > s)), choose N so large that |η(s)| < ε for all s > N . Then, we have, for i > N ,

∫ i

0
sG(s) ds ≤

∫ N

0
sG(s) ds +

∫ i

N

Kρ + ε

s
ds = (Kρ + ε) log i + C3,

where C3 is a suitably chosen constant, not depending on i. Also,

i

∫ ∞

i

G(s) ds ≤ i

∫ ∞

i

Kρ + ε

s2 ds = Kρ + ε = C4 (say).

Therefore, we have
Pλ(Di) = Pλ(A(i,g(i))(ρ))

= exp

(
−2λ

∫ i

0
sG(s) ds − λi

∫ ∞

i

G(s) ds

)

≥ exp(−2λ[(Kρ + ε) log i + C3] − λC4)

= C5i
−2λ(Kρ+ε),

where C5 = exp(−λ(2C3 + C4)). This completes the proof.

Propositions 2.1 and 2.2 together prove that, when ρ satisfies (1.1), λe(lg) = 1/2Kρ .
In order to show that λe(Lf ) = 1/2Kρ , since lg ⊂ Lf , take g = f , so that we have

λe(Lf ) ≥ λe(lg) = 1/2Kρ . Alternately, the inequality may also be obtained by a renewal
argument, as in Athreya et al. (2004), upon taking g to be a constant function, viz. g ≡ 0.
Therefore, it is enough to show that, for 2Kρλ > 1, Lf is eventually covered.

Proposition 2.3. For ρ satisfying (1.1), we have Pλ(lim supi→∞ Ei) = 0 whenever 2λKρ > 1.

Proof. We have

Pλ(Ei) ≤
�a log(1+i)�∑

j=0

Pλ(A(i,j)(ρmin)) ≤ a log(1 + i) Pλ(A(i,0)(ρmin)).

Using the same arguments as in Proposition 2.1, for ε > 0 such that 2λ(Kρ − ε) > 1, we have,
for all sufficiently large i,

Pλ(Ei) ≤ C2a log(i + 1)i−2λ(Kρ−ε),

where C2 is as in Proposition 2.1. Therefore, using the Borel–Cantelli lemma, we conclude the
result.
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This completes the proof of Theorem 1.1(i). Finally, we show how the above can be used to
prove Theorem 1.1(ii) when the tail of ρ is thinner and Theorem 1.1(iii) when the tail is fatter.

Suppose that ρ satisfies (1.2). In this case, we may take s2G(s) = η(s), where η(s) → 0 as
s → ∞, i.e. Kρ = 0 in the representation (1.1) of ρ. It is enough to show that, for any λ > 0,
lg is not eventually covered, which, by Lemma 2.3, holds when

∑∞
i=1 Pλ(Di) = ∞. We first

choose ε > 0 such that 2λε < 1. Following the same estimates as in Proposition 2.2 we obtain,
for all sufficiently large i,

Pλ(Di) ≥ C5i
−2λε,

where C5 is as in Proposition 2.2. This completes the proof in this case.
Finally, we assume that ρ satisfies (1.3). In this case, we can take s2G(s) = K(s), where

K(s) → ∞ as s → ∞. Fix any ε > 0. It is enough to show that, for λ < ε, Lf is eventually
covered. To show that Lf is eventually covered, we need to show that

∑∞
i=1 Pλ(Ei) < ∞,

where Ei is as defined earlier. Choose K so large that λK > 1. Choose N so large that
K(s) > K for all s > N . Following Proposition 2.3 and the estimates in Proposition 2.1, we
have, for all sufficiently large i, Pλ(Ei) ≤ C6(log i + 1)(iδ)−λK for some constant C6 > 0.

This completes the proof of Theorem 1.1.

Remark. Whenρ satisfies (1.1), at criticality (λ = 1/(2Kρ)), both scenarios, eventual coverage
and no eventual coverage, are possible. For example, consider the following tail behaviour of ρ:

G(s) = Kρ

s2 + γ

s2 log s
for s > e,

where Kρ, γ > 0.

The graph lg , at criticality, i.e. when λ = λe(lg) = 1/(2Kρ), is eventually covered or not
depending on whether γ > Kρ or γ ≤ Kρ , respectively. To show this, we need to compute
exact orders of the probability of Pλ(A(x,y)(ρ)) under the above assumptions.

Note that

x

∫ ∞

x

G(s) ds = x

∫ ∞

x

(
Kρ

s2 + γ

s2 log s

)
ds → Kρ as x → ∞.

Also, we have, for x > e,
∫ x

0
sG(s) ds =

∫ e

0
sG(s) ds +

∫ x

e

sG(s) ds

=
∫ e

0
sG(s) ds +

∫ x

e

(
Kρ

s
+ γ

s log s

)
ds

= C7 + Kρ(log x − 1) + γ

∫ log x

1

1

s
ds

= C8 + Kρ log x + γ log log x,

where C7 = ∫ e

0 sG(s) ds and C8 = C7 − Kρ . Hence, we have

Pλ(A(x,y)(ρ)) = exp(−λ(2C8 + ξ(x)))
1

x2λKρ (log x)2λγ
,

where ξ(x) → Kρ as x → ∞.
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Using the fact that 2λKρ = 1 (at criticality), we obtain
∑∞

i=1 Pλ(Di) = ∞ if γ ≤ Kρ and,
hence, from Lemma 2.3 we conclude that Pλ(lim supi→∞ Di) = 1; thus, lg is not eventually
covered.

On the other hand, using the fact that Gρmin(s) = G(s + 1), we have
∫ x

0
sGρmin(s) ds ≥

∫ x−1

e−1
sG(s + 1) ds

=
∫ x

e

(s − 1)G(s) ds

≥
∫ x

e

sG(s) ds −
∫ ∞

0
G(s) ds

= C9 + Kρ log x + γ log log x,

where C9 is a suitably chosen constant. Therefore, we have,

Pλ(Bi) ≤ exp

(
−2λ

∫ iδ

0
sGρmin(s) ds

)
≤ exp(−2λC9)

1

(iδ)2λKρ (log(iδ))2λγ
.

Hence, at criticality, for γ > Kρ ,
∑∞

i=1 Pλ(Bi) < ∞ and the graph lg is eventually covered.
Similar calculations imply that Lf is eventually covered if γ > 2Kρ .

3. Proof of Theorem 1.2

3.1. The case of an infinite occupied component

We begin by noting that, since the region Lf ⊂ H and we are assuming that 0 < ρ ≤ R for
some fixed R > 0, it is only the Poisson point process on the half-space H which determines
the percolation properties in the region Lf .

We also note that, for a Poisson point process X of intensity λ on R
2 and an independent

collection of i.i.d. random variables {ρi : i ≥ 1}, the process

Y = {
xi + 1

2 (ρi, ρi) : xi ∈ X
}

is again a Poisson point process of intensity λ. Also, since ρi ≤ R for all i ≥ 1, the percolation
properties in the region Lf depend only on the Poisson points and their associated squares
placed in the half-space {(x, y) : y ≥ −R}. Thus, throughout this section, we assume that
{xi : i ≥ 1} is a Poisson point process on R

2 of intensity λ and at xi we place the square
[−ρi/2, ρi/2]2. We also assume without loss of generality that R = 1, i.e. ρ ≤ 1.

First we derive properties of the connectivity function for a Poisson Boolean model on R
2.

Let Bn denote the box of side length 2n centred at the origin. We are interested in the probability
of the event that there is a vacant path from the origin to ∂Bn, an event that we write as 0

�↔ ∂Bn.
Consider the box D(0) of side length 1 centred at the origin, and consider the event of a vacant
path from this box to ∂Bn, an event we write as D(0)

�↔ ∂Bn, whose probability we denote by
β�(n). We first prove the following result.

Proposition 3.1. We have

1
4 (2n + 5)−1e−(n+2)φ�(λ) ≤ Pλ(D(0)

�↔ ∂Bn) ≤ 64e9λne−nφ�(λ). (3.1)

Also, − limm→∞(1/m) log β�(m) = φ�(λ) exists and is a continuous function of λ. Moreover,
φ�(λ) = 0 for λ ≤ λc, φ�(λ) is increasing on (λc, ∞), and φ�(λ) ↑ ∞ as λ ↑ ∞. As is
customary, the vacant correlation length is defined by ξ�(λ) = 1/φ�(λ).
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Remark. A vacant path from the origin to ∂Bn implies that D(0)
�↔ ∂Bn. On the other hand,

a box of side length 3 around the origin which is devoid of Poisson points from X and a vacant
path from D(0) to ∂Bn implies that 0

�↔ ∂Bn. Using the FKG inequality for the lower bound,
we now have

e−9λ 1
4 (2n + 5)−1e−(n+2)φ�(λ) ≤ Pλ(0

�↔ ∂Bn) ≤ 64e9λne−nφ�(λ).

Proof of Proposition 3.1. We put boxes of side lengths 1 centred at the integer points of
∂Bm+2. We note that if there is a vacant path from D(0) to ∂Bm+n+2 then there is a vacant
path from D(0) to ∂Bm which lies completely in the box Bm and a vacant path from D(x),
where D(x) is a box of side length 1 around some x ∈ ∂Bm+2 with integer coordinates, to
the boundary of a box of side length 2n around this box D(x) which lies completely in the
annular region Bm+n+2 \Bm+2. Since these two events depend on the Poisson points of disjoint
regions (viz. int Bm+1 and Bm+n+3\Bm+1, respectively), by the independence properties of the
Poisson process we have, considering all such D(x) with x having integer coordinates situated
on ∂Bm+2,

β�(m + n + 2) ≤ β�(m)
∑

x∈∂Bm+2

β�(n),

β�(m + n + 2) ≤ β�(m)4(2(m + 2) + 1)β�(n),

i.e.
log β�(m + n + 2) ≤ log β�(m) + log β�(n) + log(2(m + 2) + 1) + log 4,

which we write for convenience as

log β�(m + n + 2) ≤ log β�(m) + log β�(n) + g1(m),

where g1(m) = log(2m + 5) + log 4. Thus, we have an inequality of the form

xm+n+2 ≤ xm + xn + hm with
hm

m
→ 0 as m → ∞,

which from the generalized subadditive inequality (see Appendix II of Grimmett (1999)) yields

lim
m

log β�(m)

m
exists and equals − φ�(λ) (say),

and
log β�(m) ≥ −(m + 2)φ�(λ) − g1(m). (3.2)

Conversely, we consider events which imply a vacant path from D(0) to ∂Bm+n. Writing
D(x) = [x1 − 1

2 , x1 + 1
2 ] × [x2 − 1

2 , x2 + 1
2 ], consider the collection Dm = {D(x) : x is such

that x has integer coordinates and xi = ±m for some i}. Let Ux = {D(0)
�↔ D(x)} for some

x with D(x) ∈ Dm. Without loss of generality, let x be such that x1 = m. Consider also the
event Vx of a vacant path from D(x) to ∂Bn(x) ∩ {x1 = m + n}. If in addition we consider
a box of side length 3 around x and require it to be empty, then these three decreasing events
imply a vacant path from D(0) to ∂Bm+n. By the FKG inequality,

β�(m + n) ≥ Pλ(Ux)e−9λ Pλ(Vx). (3.3)

Now a vacant path from D(0) to ∂Bn implies the union of vacant paths in fixed directions,
and these probabilities in fixed directions are the same by symmetry. Let us define γ �(n) =
Pλ(D(0)

�↔ ∂Bn in a given direction). So Pλ(Vx) = γ �(n) ≤ β�(n) ≤ 4γ �(n). On the other
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hand,

β�(m) ≤ Pλ

( ⋃
x∈∂Bm

Ux

)
≤

∑
x∈∂Bm

Pλ(Ux),

where the union and the sum are over the integer points on ∂Bm. Considering the maximum
over integer points x in fixed directions we see that there is an x so that Pλ(Ux) ≥ β�(m)/|∂Bm|,
where |∂Bm| counts integer points on ∂Bm. Using this and Pλ(Vx) = γ �(n) ≥ β�(n)/4, (3.3)
gives

β�(m + n) ≥ e−9λβ�(m)β�(n)

4|∂Bm| .

Now taking
xn = − log β�(n) + log(64) + log n + 9λ,

manipulations as in Theorem 6.10 of Grimmett (1999) yield

xm+n ≤ xm + xn.

The standard subadditive inequality limit result now implies that

lim
m→∞

xm

m
exists and equals inf

m≥1

xm

m
.

Since (log(64) + log m + 9λ)/m → 0, we have

lim
m→∞

xm

m
= lim

m→∞
− log β�(m)

m
= φ�(λ)

and
log β�(m) ≤ −mφ�(λ) + log(64) + log(m) + 9λ. (3.4)

Inequalities (3.2) and (3.4) establish the bounds in (3.1).
We now recall that β�(m) is also a function of λ, so if we can argue that β�(m) is a continuous

function of λ for fixed m then inequalities (3.2) and (3.4) give uniform convergence on compact
sets, and, hence, φ�(λ) will be continuous. As λ increases the probability Pλ(D(0)

�↔ ∂Bm)

decreases. Thus, considering the superposition of two independent Poisson processes with
intensities λ − ε and 2ε, a simple coupling argument gives

Pλ−ε(D(0)
�↔ ∂Bm)e−2εVol(Bm+1) ≤ Pλ+ε(D(0)

�↔ ∂Bm)

≤ Pλ−ε(D(0)
�↔ ∂Bm). (3.5)

Thus,

Pλ−ε(D(0)
�↔ ∂Bm) − Pλ−ε(D(0)

�↔ ∂Bm)e−2εVol(Bm+1)

≥ Pλ−ε(D(0)
�↔ ∂Bm) − Pλ+ε(D(0)

�↔ ∂Bm)

≥ 0, (3.6)

leading to the continuity of Pλ(D(0)
�↔ ∂Bm). Hence, φ�(λ) is a continuous function of λ.

Now
θ�(λ) = Pλ(there is an unbounded vacant component containing the origin)

= lim
n→∞ Pλ(0

�↔ ∂Bn),
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and here λ < λ�
c implies that θ�(λ) > 0. From this and the right-hand side of inequality (3.1),

we obtain φ�(λ) = 0 for λ < λ�
c. Continuity gives φ�(λc) = 0. On the other hand, if λ > λ�

c
then, by Theorem 4.3 and Lemma 4.1 of Meester and Roy (1996), Pλ(d(V ) ≥ a) ≤ C1e−aC2

for positive constants C1 and C2, where d(V ) denotes the diameter of the vacant component
of the origin. This along with the left-hand side of inequality (3.1) implies that φ�(λ) > 0 if
λ > λ�

c.
Finally, we want to show that, for λ > λc, φ�(λ) is increasing and goes to ∞ as λ → ∞.

For this, we approximate the Poisson process by independent Bernoulli random variables while
taking care of the random radius by discretization as follows. Consider the Bernoulli percolation
model on Z

2 × {1, . . . , k}. Let q = (q1, . . . , qk) for 0 ≤ q1, . . . , qk ≤ 1, and let Pq be the
product measure on {0, 1}Z

2×{1,...,k} with marginals given by

P(ω((u, v, j) = 0) = qj ) = 1 − P(ω((u, v), j) = 1) for (u, v) ∈ Z
2 and 1 ≤ j ≤ k.

Let A be a decreasing event which depends on the configuration of a finite subset of Z
2 ×

{1, . . . , k} in this model. For γ > 1, taking h(q) = Pq(A) and q(γ ) = (q
γ
1 , . . . , q

γ

k ), we claim
that

h(q(γ )) ≤ h(q)γ . (3.7)

Indeed, imitating the proof of Theorem 2.38 of Grimmett (1999), we note that, for A depending
on only one vertex (u, v, j) (say),

h(q) = qj or 1 depending on whether A = {0} or {0, 1}, respectively,

and inequality (3.7) holds trivially.
Suppose now that the result holds whenever A depends only on l vertices for l ≤ m − 1.

For A depending on m vertices (u1, v1, j1), . . . , (um, vm, jm), we have

Pq(γ )(A) = Pq(γ )(A | ω(um, vm, jm) = 0)q
γ

jm

+ Pq(γ )(A | ω(um, vm, jm) = 1)(1 − q
γ

jm
)

≤ Pq(A | ω(um, vm, jm) = 0)γ q
γ

jm

+ Pq(A | ω(um, vm, jm) = 1)γ (1 − q
γ

jm
)

≤ (Pq(A | ω(um, vm, jm) = 0)qjm

+ Pq(A | ω(um, vm, jm) = 1)(1 − qjm))γ

= Pq(A)γ ,

where the last inequality follows on noting that, A being a decreasing event,

Pq(A | ω(um, vm, jm) = 0) ≥ Pq(A | ω(um, vm, jm) = 1)

and from the inequality xγ qγ + yγ (1 − qγ ) ≤ (xq + y(1 − q))γ for x ≥ y ≥ 0.
Now let l1 ≤ l2 ≤ · · · be nonnegative integers, and consider positive-valued discrete

random variables ρk, k ≥ 1, defined on the same probability space such that ρk takes values
rk,1, . . . , rk,lk with probabilities αk,1, . . . , αk,lk , respectively. Also, assume that ρi ≥ ρi+1 and
ρk converges almost surely to ρ as k → ∞.

We approximate the Boolean model (X, λ, ρk) by a Bernoulli model on (δZ)2 × {1, . . . , lk}
by declaring the vertex (u, v, j) to be open if and only if there is at least one Poisson point
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situated in (u, v)+[−δ/2, δ/2)2 with the associated box being of length rk,j . Since the Boolean
model (X, λ, ρk) may be written as a superposition of independent models (Xk,i , λαk,i , ri), i =
1, . . . , lk , we obtain a Bernoulli percolation model on (δZ)2 × {1, . . . , lk} with associated
probability measure Pq for q = (e−δ2λαk,1 , . . . , e−δ2λαk,lk ).

Let

V k
δ = {

(x, y) ∈ R
2 : (x, y) /∈ (u, v) + [− 1

2 rk,j ,
1
2 rk,j

]2 for (u, v, j) with (u, v) ∈ (δZ)2

and ω(u, v, j) = 1 for any j = 1, . . . , lk
}
,

i.e. the complement of the projection on R
2 of the occupied region in each of the hyperplanes

of (δZ)2 × {1, . . . , lk}. Let

Ak
δ = {V k

δ has a connected component W such that D(0) ∩ W is nonempty

and W ∩ ∂Bn is nonempty}.
Then, as δ → 0, V k

δ ∩ Bn → V k ∩ Bn, where V k is the vacant region under (X, λ, ρk) on
R

2 and Ak
δ → Ak , where Ak is the required event D(0)

�↔ ∂Bn under the Boolean model
(X, λ, ρk) and whose probability now satisfies Pγ λ(A

k) ≤ Pλ(A
k)γ . By standard arguments

we can make k → ∞ to obtain Pγ λ(D(0)
�↔ ∂Bn) ≤ Pλ(D(0)

�↔ ∂Bn)
γ , which after taking

logarithms gives

−γ
1

n
log Pλ(D(0)

�↔ ∂Bn) ≤ −1

n
log Pγ λ(D(0)

�↔ ∂Bn).

As we make n → ∞, we obtain φ�(γ λ) ≥ γφ�(λ) > φ�(λ) since γ > 1. This shows that
φ�(λ) is increasing for λ above λ�

c and goes to ∞ as λ → ∞. This completes the proof of
Proposition 3.1.

Recall that φ�(λ) = 1/ξ�(λ), and note that the results in Theorem 1.2(iii) are stated in this
notation. Note also that, as stated in Remark 1.1, in two dimensions we have λc = λ�

c.

Proof of Theorem 1.2(iii) for an infinite occupied component. Suppose that λ > λc and a <

ξ�(λ). Then we want to show that Lf almost surely contains no unbounded occupied cluster.
Let λa be the solution of ξ�(λ) = a. Note that over (λ�

c, ∞), ξ�(λ) is decreasing; thus,
a < ξ�(λ) implies that λ < λa . Choosing δ > 0 such that (1 + δ)a < ξ�(λ), we define
wk = (k1+δ, 0). Let Bk be the smallest square with wk in the middle of the lower side with the
upper side just above the curve v = f (u). By our assumption, f (u)/ log u → a; hence, the
side length lk of Bk satisfies

lk = a(1 + o(1)) log k1+δ as k → ∞.

Now Bk has side length lk and centre wk + (0, lk/2). Let Ak be the event that there is a vacant
path from the top edge to the bottom edge of Bk . By the FKG inequality,

Pλ(Ak) ≥ { 1
4 Pλ

(
D(0)

�↔ ∂Bk

( 1
2 lk

))}2e−9λ.

However,
Pλ

(
D(0)

�↔ ∂Bk

( 1
2 lk

)) ≈ e−lk(2ξ�(λ))−1
as k → ∞,

by (3.1), where ‘≈’ denotes equality in the limit after taking the logarithm and dividing by lk .
Hence, Pλ(Ak) ≥ 1

16 e−9λk−(1+o(1))(1+δ)a/ξ�(λ) as k → ∞, i.e.
∑

Pλ(Ak) = ∞ since (1 +
δ)a < ξ�(λ). On the other hand, for large k, the squares Bk are separated by more than
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twice the maximum of the sides of the Boolean squares (assumed that R = 1 here); hence,
the configurations inside the Bks are independent for large k. Thus, Ak occurs infinitely often
almost surely.

Secondly, suppose that λ > λc and a > ξ�(λ). We want to show that Lf almost surely
contains an infinite occupied cluster. Choose α such that a > α > ξ�(λ), and let Dk be the
box with centre (k, 0) and side length 2α log k. For large values of k, Dk lies strictly beneath
the curve v = f (u). Let Ek be the event that (k, 0) is joined by a vacant path to ∂Dk . From
(3.1) we have

Pλ(Ek) = Pλ(0
�↔ ∂B(α log k)) ≤ Pλ(D(0)

�↔ ∂B(α log k)) ≈ k−α/ξ�(λ) (3.8)

as k → ∞. This gives
∑

Pλ(Ek) < ∞ from the assumption that α > ξ�(λ). Therefore, there
exists an M such that

Pλ

( ⋃
k≥M

Ek

)
<

1

2
. (3.9)

However, if none of the events {Ek, k ≥ M} occurs then a vacant path cannot join f (u) and
the x-axis, and Lf almost surely contains an infinite open cluster.

Combining the two steps, this proves that λc(Lf ) is the unique solution in (λc(R
2), ∞) of

ξ�(λ) = a.

Proof of Theorem 1.2(i) and (ii) for an infinite occupied component. In (i), λc(Lf ) = ∞
follows from the fact that the solution of ξ�(λ) = a goes to ∞ as a ↓ 0. Similarly, in (ii),
λc(Lf ) = λc(R

2) follows from the fact that the solution of ξ�(λ) = a goes to λc(R
2) as a ↑ ∞.

3.2. The case of an infinite vacant component

Again, we first derive properties of the connectivity function. When we consider the event
that there is an occupied path from the origin to ∂Bn, much of the argument remains the same,
except that now some of the events become increasing events.

First of all, there exists a t > 0 such that P(ρ > 2t) > 0 (as before ρ ≤ 1). We divide the
square of side three around 0 into [9/t2] many small squares of side t and consider the event
that in each smaller square there is at least one Poisson point with associated ρ > 2t . If an
occupied path from D(0) to ∂Bm also exists then these two events imply that 0 ↔ ∂Bm, which
is our notation for an occupied path from one to the other. Thus, using the FKG inequality, it
is enough to work with P(D(0) ↔ ∂Bm) = β(m), and parallel arguments lead to the existence
of the limit

φ(λ) = lim − 1

m
log Pλ(D(0) ↔ ∂Bm),

along with inequalities similar to (3.2) and (3.4). There is a small difference in the analogue
of (3.4). We are considering occupied paths here, so in the analogue of (3.3) we can fill a box
of side length 1 around x with probability (1 − e−λt2 P(ρ>2t))9/t2

, where t is as given above,
leading to the following result.

Proposition 3.2. We have

1
4 (2n + 5)−1e−(n+2)φ(λ) ≤ Pλ(D(0) ↔ ∂Bn) ≤ 64n(1 − e−λt2 P(ρ>2t))−9/t2

e−nφ(λ). (3.10)

The limit of −(1/m) log β(m) = φ(λ) is a continuous function of λ. Moreover, φ(λ) = 0 for
λ ≥ λc, φ(λ) is decreasing on (0, λc), and φ(λ) ↑ ∞ as λ ↓ 0. As is customary, the occupied
correlation length is defined by ξ(λ) = 1/φ(λ).
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Proof. Continuity of φ(λ) follows as before from the continuity of Pλ(D(0) ↔ ∂Bn) in λ for
each fixed n, which can be proved by noting that in inequalities (3.5) and (3.6) we can substitute
Pλ±ε{(D(0) ↔ ∂Bn)

c} for Pλ±ε(D(0)
�↔ ∂Bn), keeping the inequality signs unchanged, using

the previous argument on vacancy.
From Lemma 3.3 of Meester and Roy (1996), it is known that, for λ < λc, the diameter of

the occupied component of the origin has exponential decay. It then follows that φ(λ) > 0
for 0 < λ < λc. As φ(λ) = 0 for λ > λc and as φ is continuous, we have φ(λc) = 0.
Note that Pλ(0 ↔ ∂Bn) ≤ Pλ(|W | ≥ n), where |W | is the number of Poisson points in the
occupied component of the origin. Now Pλ(|W | ≥ n) ≤ Pλ(|W{ρ=1}| ≥ n), where the second
probability is that of a Poisson Boolean model with constant radius 1. From Theorem 10.1 of
Penrose (2003), it follows that limn→∞ −(1/n) log Pλ(|W{ρ=1}| ≥ n) = ζ(λ) ↑ ∞ as λ ↓ 0
and, since φ(λ) ≥ ζ(λ), we have φ(λ) ↑ ∞ as λ ↓ 0.

To show that φ(λ) is strictly decreasing on (0, λc), we adapt the argument in Grimmett (1983)
to our continuum setting. Let N(k) be the number of Poisson(λ) points in the component of the
origin which fall in the annulus Bk ∩ Bc

k−1 and N(n) = (N(1), N(2), . . . , N(n)). Consider
another intensity λ′, 0 < λ′ < λ < λc. The points with intensity λ are called ‘light’ and each
of them can be ‘white’ with conditional probability λ′/λ. Let An be the event that the origin is
joined to ∂Bn by a ‘white’path. If m(n) = (m(1), m(2), . . . , m(n)) then, writing ε = 1−λ′/λ,
we have

P(An | N(n) = m(n)) ≤
n∏

i=1

(1 − εm(i)) ≤ exp

(
−

n∑
i=1

εm(i)

)
,

since each ‘light’ point is not ‘white’ with probability ε. Now

βλ′(n) = P(An) =
∑

P(An | N(n)) P(N(n) = m(n)),

where the sum is over all vectors m(n) such that the conditional probability is nonzero.
Dividing the sum into two parts depending on whether

∑n
i=1 m(i) ≤ Mn or

∑n
i=1 m(i) >

Mn, where M will be specified later, we obtain

βλ′(n) ≤
∑

{m : ∑
i m(i)≤Mn}

exp

(
−

n∑
i=1

εm(i)

)
P(N(n) = m(n)) + P(|L| > Mn), (3.11)

where |L| denotes the number of Poisson points in the ‘light’ cluster containing the origin.
By the inequality between the arithmetic and geometric means we see that, the first term on

the right-hand side of inequality (3.11) is bounded above by

∑
{m : ∑

i m(i)≤Mn}
e−nεM

P(N(n) = m(n)) ≤ e−nεM

βλ(n − 1).

For the second term on the right-hand side of inequality (3.11), we need to do some work.

Lemma 3.1. Let (X, λ, ρ) be a Poisson Boolean model on R
d with 0 < ρ ≤ 1. Let C(0)

denote the occupied cluster of the origin 0, and let #C(0) denote the number of Poisson points
of X lying in C(0). For λ < λc and all n, we have

Pλ(#C(0) > n) ≤ C1e−C2n

for some positive constants C1 and C2 which do not depend on n.
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Assuming that Lemma 3.1 holds for the moment we complete the proof of Proposition 3.2.
Choose M such that C2M > φ(λ) + εM . Then, taking logarithms of both sides of (3.11) and
dividing by n, we have, for all sufficiently large n,

1

n
log βλ′(n) ≤ 1

n
log[C1e−C2Mn + e−nεM

βλ(n − 1)]

≤ 1

n
log[C1e−n[φ(λ)+εM ] + e−nεM

C3(λ, ρ)(n − 1)e−(n−1)φ(λ)]

≤ −φ(λ) − εM + 1

n
log[C1 + C3(λ, ρ)(n − 1)eφ(λ)],

where we have used the bound of βλ(n) in the second inequality with C3(λ, ρ) = 64(1 −
e−λt2 P(ρ>2t))−9/t2

. Now, letting n → ∞, we conclude that φ(λ′) ≥ φ(λ) + εM , thereby
proving the result.

Proof of Lemma 3.1. First observe that, for b > 0 and a random variable ρb defined on the
same probability space as that of ρ and whose distribution function is given by P(ρb ≤ t) =
P(ρ ≤ t | ρ ≥ b), we have ρb ↓ ρ almost surely. Thus, by Theorem 3.7 of Meester and Roy
(1996), we have λc(ρb) ↑ λc(ρ); so we can choose b > 0 such that λ < λc(ρb) ≤ λc(ρ).
Coupling the processes (X, λ, ρ) and (X, λ, ρb) we see that C(0) ⊆ Cb(0), where Cb(0)

denotes the occupied cluster of the origin 0 in (X, λ, ρb). Thus, we have

Pλ,ρ(#C(0) > n) ≤ Pλ,ρb
(#Cb(0) > n).

Hence, it suffices to prove the lemma for the Boolean model (X, λ, ρb), where 0 < b ≤ ρb ≤ 1.
Fix α > 0, to be chosen later. Taking �(S) to denote the Lebesgue measure of a Borel region

S ⊆ R
d , we note that

Pλ(#Cb(0) > n) = P(#Cb(0) > n, �(Cb(0)) > αn)

+ Pλ(#Cb(0) > n, �(Cb(0)) ≤ αn).

For the first term in the above sum, we have, from Lemma 3.3 and Theorem 3.5 of Meester
and Roy (1996), for λ < λc(ρb) and some positive constants C1 and C2,

Pλ(#Cb(0) > n, �(Cb(0)) > αn) ≤ Pλ(�(Cb(0)) > αn) ≤ C1 exp(−C2αn).

To handle the second term, we need a geometric observation. Let K be a finite set such that

[− 3
2 , 3

2

]d ⊂ K + [− 1
2b, 1

2b
]d

.

Claim 3.1. Let x, y ∈ R
d and r ∈ [b, 1]. If (x + [− 1

2 , 1
2 ]d) ∩ (y + [−r/2, r/2]d) is nonempty

then (x + [− 1
2 , 1

2 ]d) ⊂ K + y + [−r/2, r/2]d .

Proof. As r ≤ 1, if (x + [− 1
2 , 1

2 ]d) ∩ (y + [−r/2, r/2]d) is nonempty, then x − y belongs
to [−1, 1]d . Therefore, (x − y + [− 1

2 , 1
2 ]d) ⊂ [− 3

2 , 3
2 ]d . By the definition of K , we then get

(x − y + [− 1
2 , 1

2 ]d) ⊂ K + [−b/2, b/2]d ⊂ K + [−r/2, r/2]d . This implies the claim.

Now, we set D(z) = z + [− 1
2 , 1

2 ]d for z ∈ Z
d . Let V1 = {z ∈ Z

d : D(z) ∩ Cb(0) 
= ∅} and
R1 = ⋃

z∈V1
D(z). Clearly, Cb(0) ⊂ R1. By Claim 3.1, we have R1 ⊂ K + Cb(0). Hence,

�(R1) ≤ (#K)�(Cb(0)). Furthermore, since Cb(0) is connected, V1 (as a subset of Z
d ) is
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‖ · ‖∞-connected, i.e. for any z1, z2 ∈ V1 and some n ≥ 1, there exists z1 = u0, u1, . . . ,un =
z2 in V1 such that ‖ui − ui+1‖∞ = 1 for i = 0, 1, . . . , n − 1.

Next, we set V2 = V1 + {−1, 0, 1}d and R2 = ⋃
z∈V2

D(z). Clearly, R1 ⊂ R2. We have
�(R2) ≤ 3d�(R1) ≤ 3d(#K)�(Cb(0)). Furthermore, we claim that V2 (as a subset of Z

d ) is
‖·‖1-connected, i.e. for any z1, z2 ∈ V2 and some n ≥ 1, there exists z1 = u0, u1, . . . , un = z2
in V2 such that ‖ui − ui+1‖1 = 1 for i = 0, 1, . . . , n − 1. Indeed, for z1, z2 ∈ V1 +
{−1, 0, 1}d , we have z′

1 and z′
2 ∈ V1 such that z1 ∈ z′

1 + {−1, 0, 1}d and z2 ∈ z′
2 + {−1, 0, 1}d .

Furthermore, since V1 is ‖·‖∞-connected, we have, for some n ≥ 1, z′
1 = u0, u1, . . . ,un = z′

2
in V1 such that ‖ui − ui+1‖∞ = 1 for i = 0, 1, . . . , n − 1. Therefore, it is enough to show
that if z ∈ z0 + {−1, 0, 1}d then there exists a sequence z0 = v0, v1, v2, . . . , vm = z for some
m ≥ 1, where ‖vi − vi+1‖1 = 1 for i = 0, 1, 2, . . . , m − 1 and vi ∈ z0 + {−1, 0, 1}d for
i = 1, 2, . . . , m − 1. This is easily done by changing coordinates one by one, starting from z0
and ending at z, and ignoring repeated coordinates. More precisely, set v(0) = z0 and v(d) = z,
and, for 1 ≤ i ≤ d − 1, set

v(i) = (z(1), z(2), . . . , z(i), z0(i + 1), z0(i + 2), . . . , z0(d)),

where
z = (z(1), z(2), . . . , z(d)) and z0 = (z0(1), z0(2), . . . , z0(d)).

Clearly, ‖v(i) − v(i+1)‖1 ≤ 1 for i = 0, 1, . . . , d − 1. Set τ0 = 0 and, for i ≥ 1, τi+1 = {k >

τi : ‖v(τi ) − v(k)‖1 = 1}. Clearly, for some m ≤ d, we must have v(τm) = z and τm+k = ∞ for
k ≥ 1. Finally, choose vi = v(τi ) for i = 0, 1, . . . , m. Thus, if �(Cb(0)) ≤ αn, there exists a
connected region R2 containing Cb(0) and comprising of unit cells of the lattice Z

2 such that
�(R2) ≤ 3d(#K)αn. An upper bound of the number of ‖ · ‖1-connected sets Nn with at most
3d(#K)αn vertices is given by γ 3d (#K)αn for some constant γ > 1 (see, e.g. Grimmett (1999,
Equation (4.24))).

Noting that, for both {#Cb(0) > n} and {�(Cb(0)) ≤ αn} to occur, at least one of the Nn

connected sets must have n many Poisson points, we have, for a Poisson random variable Y

with mean 3d(#K)λαn,

Pλ(#C(0) > n, �(C(0)) ≤ αn) ≤ γ 3d (#K)αn P(Y ≥ n)

= γ 3d (#K)αn P(eY ≥ en)

≤ γ 3d (#K)αn exp (3d(#K)λαn(e − 1))

en
,

where the last inequality follows from Markov’s inequality. Thus, for α such that

3d(#K)α[λc(e − 1) + log γ ] < 1,

we have

Pλ(#C(0) > n, �(C(0)) ≤ αn) ≤ exp(−n[1 − 3d(#K)α(λ(e − 1) + log γ )])
≤ C5 exp (−C6n)

for some constants C5, C6 > 0. This completes the proof of Lemma 3.1.

Proof of Theorem 1.2(iii) for an infinite vacant component. Suppose that λ < λc, and recall
that φ(λ) = 1/ξ(λ). When a < ξ(λ), then we want to show that Lf almost surely contains no
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unbounded vacant cluster. Let λ�
a be the unique solution of ξ(λ) = a. Note that over (0, λc),

ξ(λ) is increasing; thus, a < ξ(λ) implies that λ > λ�
a . Fixing δ > 0 such that (1+δ)a < ξ(λ),

we define wk = (k1+δ, 0). Let Bk be the smallest square with wk in the middle of the lower
side with the upper side just above the curve v = f (u). We have f (u)/ log u → a; hence, the
side length lk of Bk satisfies

lk = a(1 + o(1)) log k1+δ as k → ∞.

Now Bk has side length lk and centre wk + (0, lk/2). Let Ak be the event that there is an
occupied path from the top edge to the bottom edge of Bk . By the FKG inequality,

Pλ(Ak) ≥ { 1
4 Pλ

(
D(0) ↔ ∂Bk

( 1
2 lk

))}2
(1 − e−λt2 P(ρ>2t))9/t2

,

where t was defined at the beginning of this subsection satisfying P(ρ > 2t) > 0. However,

Pλ

(
D(0) ↔ ∂Bk

( 1
2 lk

)) ≈ e−lk(2ξ(λ))−1
as k → ∞,

by (3.10). Hence,

Pλ(Ak) ≥ 1
16k−(1+o(1))(1+δ)a/ξ(λ)(1 − e−λt2 P(ρ>2t))9/t2

as k → ∞, i.e.
∑

Pλ(Ak) = ∞ since (1 + δ)a < ξ(λ). On the other hand, the squares Bk are
separated by more than twice the maximum of the sides of the Boolean squares (assumed that
R = 1 here); hence, the configurations inside the Bks are independent for large k. Thus, Ak

occurs infinitely often almost surely.
Secondly, suppose that λ < λc and a > ξ(λ). We want to show that Lf almost surely

contains an infinite vacant cluster. Choose α such that a > α > ξ(λ), and let Dk be the box
with centre (k, 0) and side length 2α log k. For large values of k, Dk lies strictly beneath the
curve v = f (u). Let Ek be the event that (k, 0) is joined by an occupied path to ∂Dk . From
(3.10) we have

Pλ(Ek) = Pλ(0 ↔ ∂B(α log k)) ≤ Pλ(D(0) ↔ ∂B(α log k)) ≈ k−α/ξ(λ)

as k → ∞. This gives
∑

Pλ(Ek) < ∞ from the assumption that α > ξ(λ). Therefore, there
exists an M such that

Pλ

( ⋃
k≥M

Ek

)
<

1

2
.

However, if none of the events {Ek, k ≥ M} occurs then an occupied path cannot join f (u)

and R
+, and Lf almost surely contains an infinite vacant cluster.

Combining the above proves that λ�
c(Lf ) is the unique solution in (0, λc(R

2)) of ξ(λ) = a.

Proof of Theorem 1.2(i) and (ii) for an infinite vacant component. In (i), λ�
c(Lf ) = 0 fol-

lows from the fact that the solution of ξ(λ) = a goes to 0 as a ↓ 0. Similarly, in (ii),
λ�

c(Lf ) = λc(R
2) follows from the fact that the solution of ξ(λ) = a goes to λc(R

2) as a ↑ ∞.

Remark. At criticality, i.e. when f (x) ∼ a log x for some a > 0 and λ = λc(Lf ) as obtained
in Theorem 1.2(iii), an infinite occupied component is possible and, similarly, at λ�

c(Lf ) an
infinite vacant component is possible. Let us consider the case of λc(Lf ) and show that there
exists a function f such that f (x)/ log x → a as a → ∞ with ξ�(λa) = a. We have

Pλa (Lf contains an infinite occupied cluster) = 1. (3.12)
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Consider the function f satisfying f (u) = a log u + b log log u for all large u where b > 2a.
Let Dk be the largest box having centre at (k, 0) and lying strictly beneath the curve v = f (u).
Then Dk has side length 2f (k) + O(1) as k → ∞. Let Ek be the event that (k, 0) is joined by
a vacant path to ∂Dk . Instead of (3.8), Pλ(Ek) can be bounded more precisely by the inequality
on the right-hand side of (3.1) as

Pλ(Ek) ≤ Pλ(D(0)
�↔ ∂B(f (k) + O(1)))

≤ 64e9λ[f (k) + O(1)] exp

(
−a log k + b log log k

ξ�(λ)

)

≤ 128ae9λ(log k) exp

(
−a log k + b log log k

ξ�(λ)

)

for all large k. At λa we have ξ�(λa) = a and then Pλa (Ek) ≤ Ck−1(log k)−α , where C =
128ae9λ and α = b/a − 1 > 1. Summability of Pλa (Ek) as before gives (3.12), following the
argument after (3.9). The calculations for λ�

a are similar.
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