
J. Aust. Math. Soc. 90 (2011), 183–195
doi:10.1017/S144678871100125X

TELESCOPIC LINKAGES AND A TOPOLOGICAL
APPROACH TO PHASE TRANSITIONS

MICHAEL FARBER ˛ and VIKTOR FROMM

(Received 5 July 2010; accepted 16 December 2010)

Communicated by S. Paycha

Dedicated to Alan Carey, on the occasion of his 60th birthday

Abstract

A topological approach to the theory of equilibrium phase transitions in statistical physics is based on
the topological hypothesis, which claims that phase transitions are due to changes of the topology of
suitable submanifolds in the configuration space. In this paper we examine in detail the antiferromagnetic
mean-field XY model and study the topology of the subenergy manifolds. The latter can be interpreted
mechanically as the configuration space of a linkage with one telescopic leg. We use methods of Morse
theory to describe explicitly the Betti numbers of this configuration space. We apply these results to
the antiferromagnetic mean-field XY model and compute the exponential growth rate of the total Betti
number. Previous authors studied the Euler characteristic rather than the total Betti number. We show
that in the presence of an external magnetic field the model undergoes a single ‘total Betti number phase
transition’.

2010 Mathematics subject classification: primary 55R80; secondary 82B26.
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1. Thermodynamical phase transitions and topological changes in configuration
spaces

Equilibrium phase transitions are nonanalytic points of thermodynamic observables.
Modern physics has accumulated experimental evidence that some new mathematical
mechanisms might be relevant to phase transitions in certain systems. A recent
mathematical approach to phase transitions is based on the topological hypothesis,
which claims that at their deepest level phase transitions are due to changes of the
topology of suitable submanifolds in the configuration space; see, for example, [4, 15]
and references therein.
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184 M. Farber and V. Fromm [2]

One knows that for a system with the Hamiltonian

H =
1
2

N∑
i=1

p2
i + V(q1, . . . , qN),

assuming that N is large, at any given value of the inverse temperature β, the
effective support of the canonical measure is very close to a single equipotential
hypersurface

Σv ≡ {q ∈ ΓN : V(q) = vN}.

Here ΓN is the configuration space and V : ΓN → R is the potential. The topological
hypothesis claims that changes of the topology of the hypersurfaces Σv or of the
manifolds with boundary

Mv = {q ∈ ΓN : V(q) ≤ vN} (1.1)

(as N→∞) are the reason for the singular behaviour of thermodynamic observables
in phase transitions. One such observable is the configurational canonical free energy

fN(β) = −
1

Nβ
log

∫
ΓN

e−βV(q) dq.

In [1, 13] the quantity

σ(v) = lim
N→∞

1
N

log |χ(Mv)|, (1.2)

involving the Euler characteristic χ(Mv), is studied as a function of v and its
nonsmoothness is related to the phase transitions. Recall that in the case where the
potential V is Morse, the Euler characteristic χ(Mv) is equal to the sum∑

i≥0

(−1)iµi(V)

where µi(V) denotes the number of critical points of V of Morse index i lying in Mv.
In the case where V is Morse–Bott there is a similar formula,∑

Z

(−1)ind(Z)χ(Z),

where Z runs over the critical submanifolds of V; see [6, Corollary 5.3].
In [10], a version of the topological hypothesis was proven for a class of short-range

models (the Franzosi–Pettini theorem) with potentials of the form

V(q) =

N∑
i=1

φ(qi) +

N∑
i, j=1

ci jψ(||qi − q j||),

where |ψ(x)| decreases faster than x−d, with d denoting the spatial dimension of the
system.
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[3] Telescopic linkages and phase transitions 185

For the mean-field k-trigonometric model [1], which is characterized by the
potential

Vk(q) =
1

Nk−1

N∑
i1,...,ik=1

[1 − cos(qi1 + · · · + qik )],

where qi ∈ [0, 2π] are the angular variables, it was shown that phase transitions occur
when k ≥ 2, and the function σ(v) in (1.2) is smooth if k = 1 and nonsmooth if k ≥ 2.
Moreover, when k ≥ 2, the function σ(v) is nonsmooth precisely at the values of the
energy at which the phase transitions occur. Thus, the purely topological quantity σ(v)
signals the absence or presence of a phase transition. This observation, as well as
similar findings for other models, motivate the further study of the relations between
thermodynamic phase transitions and the topology of the familyMv. In the literature
there are also results of a negative character concerning the topological hypothesis;
see [12, 16].

2. The antiferromagnetic mean-field XY model and the robot arm

Christian Mazza pointed out a similarity between the study of the robot arm in
[7, Sections 1.5 and 3.7] and the antiferromagnetic mean-field XY model [5, 14]. This
observation was our point of departure; it motivated us to study a new class of linkages
having one telescopic leg (that is, a leg with length variable in an interval) [8]; more
details are given below.

The antiferromagnetic mean-field XY-model has a potential of the form

V =
1

2N

∑
i, j

cos(θi − θ j) − h
∑

i

sin θi,

where θi ∈ [0, 2π] are angular parameters (classical rotators) when i = 1, . . . , N.
Here h denotes an external magnetic field.

If m denotes the complex magnetization vector

m =
1
N

N∑
j=1

exp iθ j (2.1)

and
m0 = −ih ∈ C,

then

|m +m0|
2 =

2
N

V + h2. (2.2)

We see that the sublevel setMv given by (1.1) coincides with the set

Mv = {q : |m +m0|
2 ≤ 2v + h2}.
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186 M. Farber and V. Fromm [4]

F 1. A robot arm.

In this case, ΓN is the N-dimensional torus S 1 × · · · × S 1 = T N ; the symbol q denotes
a point q = (eiθ1 , . . . , eiθN ) ∈ ΓN . When h ∈ (0, 1), the parameter v may vary in the
interval

− 1
2 h2 ≤ v ≤ h + 1

2 .

However, when h ≥ 1 (that is, there is a strong magnetic field), the interval of variation
of v is actually smaller,

−h + 1
2 ≤ v ≤ h + 1

2 .

Differentiating (2.2) with respect to the angular variable θ j, we obtain〈
∂m

∂θ j
,m +m0

〉
=

1
N
∂V
∂θ j

,

where the brackets 〈·, ·〉 denote the Euclidean planar scalar product. Since clearly

∂m

∂θ j
=

1
N

ei(θ j+π/2),

it follows that at a critical point of V either m +m0 = 0 or the vector eiθ j is parallel to
m +m0 for all j = 1, . . . , N. This implies that, when h , 0, at any critical point of V
lying outside the submanifold m +m0 = 0 (the ground state), one has

θ j = ±π/2,

that is, a critical configuration is collinear; it lies in the direction of the imaginary
axis.

Consider now a robot arm with N + 1 bars (as shown in Figure 1) where the
length `1 of first bar is h, and it points from the origin to the point m0, while the
remaining N bars are of length ` j = 1/N, where j = 1, . . . , N, as described in [7,
Section 1.5]. We assume that the initial point of the arm is fixed at the origin and
the bars of the arm are connected to each other via revolving joints. If θ j is the angle
between the jth bar and the horizontal x-axis, then m +m0 in (2.1) is exactly the final
position (the grip) of the arm.
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[5] Telescopic linkages and phase transitions 187

Clearly the length |m +m0| of the dotted line in Figure 1 is closely related to the
value of the robot arm distance map studied in [7, Lemma 1.4]; the robot arm distance
map is also described at the start of Section 4 below.

Lemma 1.4 from [7] deals with the shapes of the arm, that is, with the quotient of
the configuration space with respect to the action of SO(2). The critical points of the
robot arm distance map are the following: there is a critical submanifold m +m0 = 0
(the ground state) that corresponds to the minimum of V . This submanifold has
dimension N − 2 and is diffeomorphic to the configuration space of a closed linkage
with N + 1 bars (h, 1/N, . . . , 1/N). The other critical points are of Morse type,
and they correspond to collinear configurations of the arm, that is, θi = ±π/2 when
i = 2, . . . , N + 1.

Translating this result into the language of thermodynamics, we obtain the
biclustering phenomenon observed numerically in [2, 5]. It consists of the statement
that, under low temperature, some of the rotators are likely to point in a fixed direction
ψ0 with the remaining rotators pointing in the opposite direction ψ0 + π. This follows
from the following three facts: first, that the canonical measure is concentrated near
critical points of the energy V as T → 0; second, the critical points of the energy V are
the ground state m +m0 = 0 and the Morse critical points corresponding to collinear
configurations; and third, the ground state m +m0 = 0 is highly degenerate.

Using (2.2), the manifold Mv = {q : V(q) ≤ Nv} can be interpreted mechanically
as the configuration space of a linkage with N + 1 legs of fixed lengths h, 1/N, . . . ,
1/N and one telescopic leg whose length varies between 0 and (2v + h2)1/2. Recently,
we studied linkages with telescopic legs whose length varies between two positive
numbers [8]. In the next section, we give a modification of the arguments of [8]
that allows for a computation of the Betti numbers in the important case where the
telescopic leg is allowed to contract to zero.

3. Telescopic linkages

Motivated by the discussion of the previous section, we now study the topology of
configuration spaces of telescopic linkages and calculate their Betti numbers.

Let ` = (`1, `2, . . . , `n) be a fixed vector with positive real entries, that is, `i > 0.
Consider the variety of shapes K` of closed planar polygonal chains consisting of n − 1
bars of fixed length (equal to `1, . . . , `n−1) and a telescopic leg whose length may vary
between 0 and `n. Formally, K` is defined as follows. Consider the map F : Cn→ Rn

given by
F(z1, . . . , zn) = (|z2 − z1|, |z3 − z2|, . . . , |z1 − zn|).

Then K` can be defined as
K` = F−1(A)/E(2),

where A ⊂ Rn is the closed interval connecting the points

`− = (`1, . . . , `n−1, 0) and ` = (`1, . . . , `n−1, `n),
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188 M. Farber and V. Fromm [6]

F 2. A configuration of the robot arm with the grip.

and E(2) denotes the group of orientation preserving isometries of the plane C, acting
diagonally on Cn. Recall that

M` = F−1(`)/E(2) ⊂ K`

is the well-studied variety of shapes of closed polygonal chains with n bars of lengths
`1, . . . , `n; see [7, 9].

The manifold K` can also be understood as the variety of all configurations of a
robot arm with n − 1 bars of length `1, . . . , `n−1 such that the initial point O is fixed,
the first bar of length `1 points in the direction of the x-axis, and the end point G of the
arm (‘the grip’) lies within a circle of radius `n with center at O (see Figure 2).

Our goal in this paper is to compute the homology groups of K` explicitly as
functions of the vector ` of metric data. In our previous paper [8], we considered
configuration spaces of linkages having a telescopic leg not contractible to zero, that is,
whose length may vary between two positive numbers. The results of the present paper
complement those obtained in [8].

Recall that a vector ` = (`1, . . . , `n) is said to be generic if
∑n

i=1 εi`i , 0 for all
εi = ±1.

P 3.1. If the length vector ` = (`1, . . . , `n) is generic, then K` is a compact
smooth (n − 2)-dimensional manifold with boundary ∂K` = M`.

A proof is given in the following section.
It is clear that K` is diffeomorphic to K`′ if the vector `′ = (`′1, . . . , `

′
n) is obtained

from from ` by permuting the coordinates `′i = `σ(i) provided that the permutation
σ : {1, . . . , n} → {1, . . . , n} satisfies σ(n) = n. The nth coordinate, corresponding to
the telescopic leg, plays a special role. It follows that, without loss of generality, one
may always assume that `1 ≤ `2 ≤ · · · ≤ `n−1.

Let ` = (`1, . . . , `n) ∈ Rn be a vector with positive coordinates. A subset J ⊂
{1, . . . , n} is said to be short with respect to ` if and only if∑

i∈J

`i <
∑
i<J

`i. (3.1)
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[7] Telescopic linkages and phase transitions 189

If the opposite inequality holds in (3.1) then J is said to be long with respect to `.
A subset J ⊂ {1, . . . , n} is called median if∑

i∈J

`i =
∑
i<J

`i.

D 3.2. Fix an index i such that `i = max{` j : j = 1, . . . , n − 1}. We denote
by ck(`) the number of (k + 1)-element subsets J ⊂ {1, . . . , n} that contain i but not n
and are short or median with respect to `; here k = 0, 1, . . . , n − 2. Further, for k =

1, . . . , n − 2, we denote by dk(`) the number of (k + 1)-element subsets J ⊂ {1, . . . , n}
that contain both i and n and that are short with respect to `.

It will be convenient to extend this definition by setting dk(`) = 0 for k ≤ 0.
In [8] we introduced a symbol αk(`) that is equal to the number of subsets of

cardinality k + 1 containing n that are short with respect to `. One may express
the numbers ck(`) and dk(`) introduced above through the quantities αk as follows.
Assume for simplicity that `1 ≤ `2 ≤ · · · ≤ `n−1 (this can always be achieved by a
permutation preserving the index of the telescopic leg). Then dk(`) is equal to
αk−1(L), where L = (`1, . . . , `n−2, `n−1 + `n) is obtained by integrating the (n − 1)th
and the nth legs. Further, if we assume that ` is generic, then ck(`) = αk(L′) where
L′ = (`1, . . . , `n−2, `n−1 − `n).

T 3.3. For a telescopic linkage described above with a generic vector `, the
homology group Hk(K`) of the configuration space K` is free abelian, and its rank is
equal to

ck(`) + dn−3−k(`), (3.2)

when k = 0, 1, . . . , n − 2.

A proof is given in the following section.

E 3.4. Consider the zero-dimensional Betti number b0(K`) = c0(`) + dn−3(`).
As above, we assume that `1 ≤ · · · ≤ `n−1. Clearly, c0(`) is equal to 1 if and only if
the singleton n − 1 is short or median with respect to `; otherwise c0(`) = 0. Moreover,
when n > 3, the number dn−3(`) is equal to 1 if and only if the set {n − 2, n − 3} is
long with respect to `; otherwise dn−3(`) = 0. We deduce that the manifold K` is
disconnected if and only if

`n−3 + `n−2 >
1
2

n∑
i=1

`i.

C 3.5. For n > 3 the following conditions are equivalent.

(1) K` is disconnected.
(2) K` consists of two connected components.
(3) The set {n − 3, n − 2} is long with respect to `.
(4) K` is diffeomorphic to the disjoint union (T n−4 × D2) t (T n−4 × D2).
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190 M. Farber and V. Fromm [8]

C 3.6. Suppose that `n > 0 is small in the following sense: for any choice of
ε j = ±1 where j = 1, . . . , n − 1, such that

∑n−1
j=1 ε j` j > 0, one has

∑n−1
j=1 ε j` j > `n. Then

K` is homotopy equivalent to M`′ where `′ = (`1, . . . , `n−1).

We will skip the proofs of Corollaries 3.5 and 3.6 since they are analogous to the
corresponding statements in [8, 11].

It is easy to see that under the assumptions of Corollary 3.6 the Betti numbers bk(K`)
coincide with those given by [9].

4. Proofs of Proposition 3.1 and Theorem 3.3

Consider the torus T n−1 = S 1 × · · · × S 1, and the quotient W = T n−1/SO(2) with
respect to the diagonal action of the rotation group SO(2). Clearly, W can be identified
with the torus of dimension n − 2. Consider the function f : W → R given by

f (u1, . . . , un−1) = −

∣∣∣∣∣n−1∑
i=1

`iui

∣∣∣∣∣2.
Then K` can be identified with the preimage K` ' f −1[a′, 0], where a′ = −(`n)2.

We know that the critical points of f consist of the preimage f −1(0) = M`′ , where
`′ = (`1, . . . , `n−1), and finitely many Morse critical points corresponding to collinear
configurations [9]. It follows that if the vector ` is generic then a′ is a regular point
of f and therefore the preimage f −1[0, a′] is a smooth manifold with boundary. This
proves Proposition 3.1.

In the following arguments, we do not assume that ` is generic. In other words,
a′ is not necessarily a regular value of f . Let a < a′ be a regular value of f such that
the interval [a, a′) contains no critical values.

Denote Wa = f −1(−∞, a]. Consider the long exact sequence

· · · → Hk+1(W)→ Hk+1(W, Wa)→ Hk(Wa)
jk
−−→ Hk(W)→ · · · ,

where jk is induced by the inclusion j : Wa→W. Using excision and Poincaré duality,
we obtain

Hk+1(W, Wa) ' Hk+1( f −1[a, 0], ∂ f −1[a, 0]) ' Hn−3−k( f −1[a, 0]) ' Hn−k−3(K`).

Here we used the observation that K` ⊂ f −1[a, 0] is a deformation retract.
Thus we obtain the short exact sequence

0→ coker( jk+1)→ Hn−3−k(K`)→ ker( jk)→ 0. (4.1)

Therefore to compute the cohomology of K` it is enough to find the kernel and cokernel
of the homomorphism jk; note that H∗(Wa) and ker jk are torsion-free (see below) and
therefore the exact sequence (4.1) splits.

Next we describe the homology of the manifold Wa following [7–9]. For any subset
J ⊂ {1, . . . , n − 1}, consider the subset WJ ⊂W ' T n−2 consisting of all configurations
(u1, . . . , un−1) such that ui = u j for all i, j ∈ J. In other words, we ‘freeze’ all links
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[9] Telescopic linkages and phase transitions 191

labeled by indices in J to be parallel to each other. It is clear that WJ is diffeomorphic
to a torus of dimension n − 1 − |J|.

The torus WJ is contained in Wa, that is, WJ ⊂Wa, if and only if J, viewed as a
subset of {1, . . . , n}, is long with respect to `. Indeed, let pJ = (u1, . . . , un−1) be the
configuration where ui = 1 for all i ∈ J and ui = −1 for all i < J. Then the maximum
of the restriction f |WJ is either 0 or f (pJ); see [9, Lemma 8, Statement (4)]. The
inequality f (pJ) ≤ a is equivalent to∑

i∈J

`i >
1
2

n∑
i=1

`i,

which means that J is long with respect to ` = (`1, . . . , `n).
One may fix naturally orientations of W and all submanifolds WJ [8]. However,

in this paper we will not need to deal with specific orientations and will assume that
the manifolds WJ and W are somehow oriented. The class [WJ] ∈ Hk(W) is then well
defined where |J| = n − 1 − k.

If k + k′ = n − 2 and J and J′ are subsets of {1, . . . , n − 1} such that |J| = n − 1 − k
and |J′| = n − 1 − k′, then the intersection number [WJ] · [WJ′] is either zero (if and
only if |J ∩ J′| > 1) or ±1 (if and only if |J ∩ J′| = 1); see [9, Formula (33)]. Note
that k + k′ = n − 2 implies that |J| + |J′| = n, that is, the subsets J and J′ must have a
nontrivial intersection.

Without loss of generality, we may assume that `1 ≤ `2 ≤ · · · ≤ `n−1.
One observes that the homology classes realized by the tori WI ⊂W, where I runs

over all subsets I ⊂ {1, . . . , n − 1} of cardinality n − 1 − k containing n − 1, form a free
basis of the homology group Hk(W). We will write

Hk(W) = Ak ⊕ Bk,

where Ak is generated by the homology classes [WJ] ∈ Hk(W) where n − 1 ∈ J and
|J| = n − 1 − k, such that J is long with respect to `. The subgroup Bk is generated by
the classes [WJ] with J satisfying n − 1 ∈ J and |J| = n − 1 − k, such that J is short or
median with respect to `.

By [9, Corollary 9], the homology classes [WJ] of the submanifolds WJ , where
J runs over all subsets J ⊂ {1, . . . , n − 1} of cardinality n − 1 − k that are long with
respect to `, form a basis of the free abelian group Hk(Wa). This conclusion is
based on the technique of Morse theory in the presence of an involution as developed
in [9].

We will write
Hk(Wa) = Ak ⊕Ck,

where Ak is defined above and Ck is generated by the classes [WJ] ∈ Hk(Wa) such that
J ⊂ {1, . . . , n − 2} is long with respect to ` and |J| = n − 1 − k.

Note that Ck = 0 if k = 0.
Next we may analyse the homomorphism jk : Hk(Wa)→ Hk(W) induced by the

inclusion Wa ⊂W. It is obvious that jk[WJ] = [WJ] assuming that [WJ] ∈ Ak.
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192 M. Farber and V. Fromm [10]

We claim that if [WJ] ∈Ck then jk[WJ] is a linear combination of the classes
[WK] ∈ Ak. Indeed, we may write

jk[WJ] =
∑

[WI ]∈Ak

aI · [WI] +
∑

[WK ]∈Bk

bK · [WK],

where aI , bK ∈ Z. If [WK] ∈ Bk, then the coefficient bK is equal to

bK = ±[WJ] · [WK′],

where K′ is obtained from the complement of K in {1, . . . , n − 1} by adding n − 1.
If bK , 0 then J ∩ K′ = { j} is a single element and hence K is obtained from J by
removing j ∈ J and adding n − 1. However, J is long with respect to ` and ` j ≤ `n−1,
which imply that K is long with respect to ` as well, and contradicts the assumption
that [WK] ∈ Bk.

From the exact sequence (4.1) we find that Hn−3−k(K`) is free abelian of rank

rank Hn−3−k(K`) = rank Hn−3−k(K`) = rank Ck + rank Bk+1. (4.2)

Now we may calculate the ranks of Ck and Bk+1. Examining the definition, we see
that the rank of Ck is equal to the number of (k + 1)-element subsets J ⊂ {1, . . . , n}
containing both n − 1 and n that are short with respect to `. In other words,
rank Ck = dk(`). The rank of Bk+1 is equal to the number of (n − 2 − k)-element subsets
J ⊂ {1, . . . , n − 1} that contain n − 1 and are short or median with respect to `, that is,
rank Bk+1 = cn−3−k(`). Substituting into (4.2), we obtain (3.2). �

5. The total Betti number phase transition in the antiferromagnetic mean-field
XY model

Consider again the antiferromagnetic mean-field XY model discussed in Section 2.
According to the discussion at the end of Section 2 and by Theorem 3.3, the Betti
numbers bk(Mv) are equal to ck(`) + dn−3−k(`), with the length vector ` being the
following

` = (εN , εN , . . . , εN , h, (2v + h2)1/2),

where εN = 1/N, n = N + 2 and h denotes the magnetic field. We assume that h is
positive and constant, that is, independent of N.

Our goal is to examine the total Betti numbers

b(Mv) =

n−2∑
k=0

bk(Mv) = c(`) + d(`) (5.1)

and their rate of exponential growth

τ(v) = lim
n→∞

log b(Mv)
n

. (5.2)

We want to investigate the possibility that singularities of this quantity, which might
be more sensitive than (1.2), will allow detection of the phase transition. Here c(`)
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[11] Telescopic linkages and phase transitions 193

denotes
∑

k ck(`); if N is large, that is, if N > 1/h, then c(`) is the number of all subsets
of {1, . . . , n} that contain n − 1 but not n and that are short or median with respect to `.
Similarly, d(`) denotes

∑
k dk(`); when N is large, d(`) is the number of all subsets of

{1, . . . , n} containing n − 1 and n that are short with respect to `.

D 5.1. We will say that the system undergoes a total Betti number phase
transition at v0 if the function τ given by the formula (5.2) is not analytic at v0.

We motivate this definition by the topological hypothesis as presented in [12,
Section V.A]. Namely, it is known that in many cases nonanalyticity of the function σ
mentioned in the introduction detects phase transitions of the system. The quantity
τ is defined similarly to σ, but using the total Betti number rather than the Euler
characteristic.

To illustrate the behaviour of c(`) and d(`), consider first the case where the
magnetic field is strong, namely h > 1. Then every subset containing both the indices
n − 1 and n is long, and we obtain d(`) = 0. On the other hand, the value of c(`) in this
case still depends on v.

Recall that the parameter v varies in the interval [ah, bh] where

ah =

− 1
2 h2 if h ∈ (0, 1],

−h + 1
2 if h ∈ [1,∞),

and bh = h + 1/2; see Section 2. Let pv denote the quantity

pv = 1
2 ((2v + h2)1/2 − h + 1).

It is easy to check that 0 < pv < 1 when v ∈ (ah, bh). Besides, zero belongs to the
interval (ah, bh) and pv = 1/2 when v = 0.

T 5.2. When h > 0 and v ∈ (ah, bh), the rate of exponential growth of the total
Betti number (5.2) is equal to

τ(v) =

−pv log pv − (1 − pv) log(1 − pv) if v ≤ 0,

log 2 if v ≥ 0.
(5.3)

In particular, the function τ and its first derivative are continuous but the second
derivative of τ is discontinuous at 0. In other words, the system undergoes a total
Betti number phase transition at 0.

P. It will be convenient to use the notation

S n
k =

∑
0≤i≤k

(
n
i

)
and Rn

k =
∑

0≤i<k

(
n
i

)
.

Using formula (5.1), we may write

b(Mv) = S n−2
pv(n−2) + Rn−2

(1−pv−h)(n−2).
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If v ≤ 0, then 1 − pv − h ≤ pv ≤ 1/2, and therefore(
n − 2

[pv(n − 2)]

)
< b(Mv) < 2 · S n−2

pv(n−2) ≤ n ·

(
n − 2

[pv(n − 2)]

)
. (5.4)

We will use the following well-known asymptotic formula for the binomial
coefficients, (

n
m

)
∼ (2π)−1

( n
m

)m
·

( n
n − m

)n−m
·

[
m(n − m)

n

]−1/2

,

which is valid when n, m→∞ and n − m→∞ (see [3, p. 4]). The meaning of the
symbol f (n) ∼ g(n) is lim f (n)/g(n) = 1.

After some elementary calculations, the asymptotic formula above gives

lim
n→∞

1
n

log
(

n − 2
[pv(n − 2)]

)
= −pv log pv − (1 − pv) log(1 − pv).

Now, the inequalities (5.4) imply the first part of (5.3).
If v ≥ 0, then pv ≥ 1/2 and S n−2

pv(n−2) ≥ 1/2 · 2n−2 = 2n−3. In this case, therefore,

2n−3 ≤ b(Mv) ≤ 2n−1,

which implies that τ(v) = log 2. This gives the second part of formula (5.3). �

6. Conclusions

In this paper, we exploited an interpretation of the subenergy manifolds of the
antiferromagnetic mean-field XY model as configuration spaces of linkages with one
telescopic leg. Using Morse theory techniques, enriched with implications that stem
from the presence of an involution, we gave a complete computation of the Betti
numbers of the subenergy manifolds.

As an indicator of phase transitions, we studied the exponential growth rate of the
total Betti number as opposed to the exponential growth rate of the Euler characteristic,
as studied by the previous authors.

We showed by an explicit computation that, in the case of a nonvanishing magnetic
field, there is a unique total Betti number phase transition in the antiferromagnetic
mean-field XY model.

We hope that using the total Betti number instead of the Euler characteristic might
provide a more sensitive tool for the study of different versions of the topological
hypothesis. We suggest that the behaviour of the exponential growth rate of the total
Betti number of the subenergy manifolds and its relationship to the physical properties
of the system be examined in various models.
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