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Abstract

Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier
(ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two
complex elliptic curves E1 and E2 along with even degree-2 maps πj : Ej → P1 having different branch
loci, the intersection of the image of the torsion points of E1 and E2 under their respective πj is finite.
They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded
independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies
a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the
Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-2 maps, one can use any rational
functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach
combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we
also prove a result on lower bounds for ranks of elliptic curves over number fields.
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1. Introduction

For an elliptic curve E over C, we let E[∞] be the set of all its torsion points.
A morphism f : E → P1 is said to be even if f (−P) = f (P) for all P in E. In
2007, Bogomolov and Tschinkel [3] used Raynaud’s theorem (the Manin–Mumford
conjecture) to prove the following result.

THEOREM 1.1 (Bogomolov–Tschinkel). Let E1 and E2 be complex elliptic curves. For
each i = 1, 2, let πj : Ej → P1 be a degree-2 morphism that is even, and suppose that
the branch loci of π1 and π2 in P1 are different. Then π1(E1[∞]) ∩ π2(E2[∞]) is finite.

We remark that if E is a complex elliptic curve and π : E → P1 is an even degree-2
map, then its branch locus is precisely π(E[2]) ⊆ P1. The previous theorem motivated
the following conjecture, which seems to have first appeared explicitly in joint works
of Bogomolov, Fu and Tschinkel [1–3].
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CONJECTURE 1.2 (Bogomolov–Fu–Tschinkel). There is a constant c with the follow-
ing property.

For any complex elliptic curves E1 and E2, and for even degree-2 maps πj : Ej → P1

whose branch loci in P1 are different, #(π1(E1[∞]) ∩ π2(E2[∞])) < c.

A first breakthrough was obtained in 2020 by DeMarco et al. [4] when they proved
the conjectured uniform bound in the case where E1 and E2 are given in Legendre form
y2 = x(x − 1)(x − λ) and πj are the corresponding projections onto the x-coordinate. As
noted in [7], the Bogomolov–Fu–Tschinkel conjecture is now completely solved thanks
to the recent proof of the uniform Manin–Mumford conjecture [6, 8, 10, 11, 14]. See
also [5, 12] for alternative proofs of the Bogomolov–Fu–Tschinkel conjecture. In this
work, we prove the following generalisation.

THEOREM 1.3 (Main Theorem for torsion). Let d be a positive integer. There is a
constant c0(d), depending only on d, which has the following property.

For any complex elliptic curves E1 and E2 and nonconstant morphisms gj : Ej → P1

of degree deg(gj) ≤ d whose branch loci in P1 are different,

#(g1(E1[∞]) ∩ g2(E2[∞])) < c0(d).

In a similar vein, if, instead of torsion points, we consider the Mordell–Weil group
of elliptic curves over number fields, we obtain the following result.

THEOREM 1.4 (Main Theorem for ranks). Let d be a positive integer. There is a
constant κ(d) > 0, depending only on d, with the following property.

Let k be a number field and let E1 and E2 be elliptic curves over k. Let gj : Ej → P1

be nonconstant morphisms defined over k of degree deg(gj) ≤ d with different branch
loci. Then

1 + rank E1(k) + rank E2(k) ≥ κ(d) · log max{1, #(g1(E1(k)) ∩ g2(E2(k)))}.

Thus, if two elliptic curves over a number field k have large intersection of the
image of their k-rational points under rational maps to P1 of fixed degree and different
branch loci, then at least one of the two elliptic curves has large rank over k. Thus,
Theorem 1.4 is connected to the question of boundedness of ranks of elliptic curves
over number fields.

To conclude this introduction, let us briefly describe our methods. The proof
of the Bogomolov–Fu–Tschinkel conjecture applies the uniform Manin–Mumford
conjecture to the curve X ⊆ E1 × E2, which is defined by the equation π1(P1) = π2(P2)
for (P1, P2) ∈ E1 × E2. For this, one checks that X is an irreducible curve of geometric
genus at least 2.

In the more general setting of Theorem 1.3, there is no reason for g1(P1) = g2(P2) to
define an irreducible curve in E1 × E2 and one needs to ensure that all the irreducible
components of the resulting algebraic set are curves of geometric genus at least 2.
This is achieved in an indirect way using Nevanlinna theory, for which we review the
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necessary background in Section 2. This approach originates in the authors’ proof
of Bremner’s conjecture [9]. In this way, we first obtain a purely geometric result in
Section 3 (Theorem 3.3) from which Theorem 1.3 is deduced in Section 5 using the
uniform Manin–Mumford conjecture (now a theorem). Finally, Theorem 1.4 is also
proved in Section 5 by combining our geometric result with the uniform Mordell–Lang
conjecture [6, 8, 10, 14] (see Section 4) instead of the uniform Manin–Mumford
conjecture.

2. Nevanlinna theory

We use Landau’s notation o. Thus, o(1) represents a function that tends to 0. In
addition, the subscript ‘exc’ in inequalities and equalities between functions of a
variable r ∈ R≥0 means that the claimed relationship holds for r outside a set of finite
measure in R≥0.

In the first half of the 1920s, Nevanlinna developed a very successful theory to study
value distribution of complex meromorphic functions. In this section, we recall some
basic results of this theory; we refer the reader to [13] for a general reference.

Let M be the field of (possibly transcendental) complex meromorphic functions on
C. Given a nonconstant h ∈M , a point α ∈ P1(C) = C ∪ {∞} and a real number r ≥ 0,
we define

n(1)
h (α, r) = #{z0 ∈ C : |z0| ≤ r and h(z0) = α},

where the case h(z0) = ∞ is understood as the condition that h has a pole at z0. The
truncated counting function N(1)

h (α, r) is then defined as the logarithmic average

N(1)
h (α, r) =

∫ r

0
(n(1)

h (α, t) − n(1)
h (α, 0))

dt
t
+ n(1)

h (α, 0) log r.

Associated to every h ∈M , there is the Nevanlinna height (or characteristic)
function

Th : R≥0 → R≥0,

which has the basic property that it is bounded if h is constant; otherwise T f (r) grows
to infinity as r → ∞. We recall that the function Th(r) is only defined up to adding
a bounded function. Intuitively, Th(r) measures the complexity of h restricted to the
disk {z ∈ C : |z| ≤ r} as r grows. For our purposes, we do not need to recall the precise
definition of Th(r) (which can be found, for example, in [13]), but instead we simply
need its relationship to the truncated counting function, which is provided by the
Second Main Theorem of Nevanlinna theory.

THEOREM 2.1 (Second Main Theorem). Let h ∈M be nonconstant and let α1, . . . ,αq
be different points in P1(C). Then

q∑
j=1

N(1)
h (αj, r) ≥exc (q − 2 + o(1))Th(r).
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In addition to the previous general result, we need another relationship between the
Nevanlinna height and the truncated counting function in a special case.

LEMMA 2.2 ([9, Lemma 3.3]). Let E be a complex elliptic curve and let g : E → P1

be a nonconstant morphism of degree d. Let φ : C→ E be a nonconstant holo-
morphic map and let α ∈ P1(C). Consider the nonconstant meromorphic function
h = g ◦ φ ∈M . Then

N(1)
h (α, r) =exc

(#g−1(α)
d

+ o(1)
)
Th(r).

We remark that our proof of the previous lemma in [9] uses the Second Main
Theorem for holomorphic maps to elliptic curves rather than the case of meromorphic
functions cited above.

3. Geometric preliminaries

Let us fix some notation and assumptions for this section. Let E1 and E2 be
complex elliptic curves. For j = 1, 2, let gj : Ej → P1 be a nonconstant morphism of
degree dj. Suppose that g1 and g2 have different branch loci in P1. Let X ⊆ E1 × E2
be the one-dimensional algebraic set defined by the equation g1(P1) = g2(P2) on
(P1, P2) ∈ E1 × E2: that is, X is the pre-image of the diagonal Δ ⊆ P1 × P1 via the map
G = (g1, g2) : E1 × E2 → P1 × P1.

If Z ⊆ E1 × E2 is a one-dimensional algebraic set, we define its degree deg(Z) as the
intersection number Z.(V1 + V2), where Z is seen as a reduced divisor, and we define
V1 = {0} × E2 and V2 = E1 × {0}, where 0 is the neutral point of the corresponding
elliptic curve. Here, we remark that the divisor V1 + V2 on E1 × E2 is ample.

LEMMA 3.1. We have deg(X) ≤ (d1 + d2)d1d2.

PROOF. Let Δ ⊆ P1 × P1 be the diagonal and let L1 = {p1} × P1 and L1 = P
1 × {p2} for

a fixed choice of points p1, p2 ∈ P1. Then Δ is linearly equivalent to L1 + L2.
Note that X = G−1Δ ≤ G∗Δ as divisors, and by the projection formula,

deg(X) ≤ deg(G∗Δ)
= (G∗(L1 + L2)) · (V1 + V2)
≤ G∗G∗(G∗(L1 + L2) · (V1 + V2))
= G∗((L1 + L2) · G∗(V1 + V2))

= d1d2(L1 + L2) · (d2 · {g1(0)} × P1 + d1 · P1 × {g2(0)})
= d1d2(d1 + d2). �

Before we give the main result of this section, we recall the Riemann–Hurwitz
formula, which is useful in our argument.
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60 N. Garcia-Fritz and H. Pasten [5]

LEMMA 3.2 (Riemann–Hurwitz formula). Let Y1 and Y2 be smooth projective (com-
plex) curves of genus g1 and g2, respectively, and let g : Y1 → Y2 be a nonconstant
morphism of degree d. Let α1, . . . ,αm ∈ Y2 be all the branch values of g. Then

2(g1 − 1) = 2d(g2 − 1) +
m∑

j=1

(d − #g−1(αj)).

With this at hand, we can prove our geometric result.

THEOREM 3.3. Every irreducible component of X is a curve of geometric genus at
least 2.

PROOF. Let C ⊆ X be an irreducible component and, for the sake of contradiction,
suppose that C has geometric genus 0 or 1. As C ⊆ E1 × E2, we see that, necessarily,
C has geometric genus 1, because the projection to at least one component Ei is
nonconstant. Since elliptic curves can be uniformised by holomorphic functions
from C, we obtain a nonconstant holomorphic map φ = (φ1, φ2) : C→ C ⊆ E1 × E2,
where at least one of φj : C→ Ej is nonconstant. By the definition of X, we see that
g1 ◦ φ1 = g2 ◦ φ2, and we conclude that both φj are nonconstant.

Let h = g1 ◦ φ1 = g2 ◦ φ2 ∈M . Since g1 and g2 have different branch loci, we may
assume, without loss of generality, that there is β ∈ P1 that is a branch value of g2 but
not of g1. Let α1, . . . ,αm ∈ P1 be the different branch values of g1.

By the Second Main Theorem 2.1 with q = m + 1,

N(1)
h (β, r) +

m∑
j=1

N(1)
h (αj, r) ≥exc (m − 1 + o(1))Th(r).

On the other hand, Lemma 2.2 gives

N(1)
h (β, r) =exc

(#g−1
2 (β)
d2

+ o(1)
)
Th(r)

and, for each 1 ≤ j ≤ m, we similarly obtain

N(1)
h (αj, r) =exc

(#g−1
1 (αj)
d1

+ o(1)
)
Th(r).

Putting all of this together, we find that
(#g−1

2 (β)
d2

+

m∑
j=1

#g−1
1 (αj)
d1

+ o(1)
)
Th(r) ≥exc (m − 1 + o(1))Th(r).

Letting r → ∞, since h is nonconstant, we deduce that

m − 1 ≤
#g−1

2 (β)
d2

+

m∑
j=1

#g−1
1 (αj)
d1

.
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[6] Intersecting the torsion of elliptic curves 61

Since β is a branch value of g2, we have #g−1
2 (β) < d2, and hence

m − 1 < 1 +
1
d1

m∑
j=1

#g−1
1 (αj). (3.1)

On the other hand, the Riemann–Hurwitz formula (in the form of Lemma 3.2) applied
to g1 : E1 → P1 gives

0 = −2d1 +

m∑
j=1

(d1 − #g−1
1 (αj))

from which

1
d1

m∑
j=1

#g−1
1 (αj) = m − 2.

This contradicts the bound (3.1). �

4. Uniform Mordell–Lang and Manin–Mumford

The rank of an abelian group Γ, denoted by rankΓ, is defined as the dimension over
Q of the vector space Γ ⊗Z Q.

After the recent works [6, 8, 10, 14], the uniform Mordell–Lang conjecture is
proved. Here, we recall the version obtained in [8] in the case of (possibly singular)
curves contained in abelian varieties.

THEOREM 4.1 (Uniform Mordell–Lang for curves). Let n, D ≥ 1 be integers. There is
a constant c(n, D), depending only on n and D, with the following property.

Let A be an abelian variety over C of dimension n, let L be an ample line sheaf
on A and let X ⊆ A be a one-dimensional Zariski closed subset with degL (X) ≤ D. Let
Γ ≤ A(C) be a subgroup of finite rank and let r = rankΓ. If all irreducible components
of X have geometric genus at least 2, then

#(Γ ∩ X) ≤ c(n, D)1+r.

As usual, degL (X) is defined as the intersection number of L with X. Theorem 4.1
follows from Theorem 1.1 in [8]; note that here we do not require that X is irreducible,
but this case also follows from the same theorem because degL (X) is additive on X
and it is a strictly positive integer as L is ample.

In the special case where Γ is the full torsion subgroup of A, one has r = 0 and the
previous result specialises to the uniform Manin–Mumford conjecture.

THEOREM 4.2 (Uniform Manin–Mumford for curves). Let n, D ≥ 1 be integers. There
is a constant c(n, D), depending only on n and D, with the following property.

Let A be an abelian variety over C of dimension n, let L be an ample line sheaf
on A and let X ⊆ A be a one-dimensional Zariski closed subset with degL (X) ≤ D.
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Let A[∞] be the subgroup of all torsion points of A(C). If all irreducible components
of X have geometric genus at least 2, then

#(A[∞] ∩ X) ≤ c(n, D).

We point out that we use these results only when the abelian variety A is the product
of two elliptic curves, so one may refer to [11].

5. Torsion and ranks

In this section, we prove Theorems 1.3 and 1.4. For this, let us fix some common
notation. Let k beC in the case of Theorem 1.3 or a number field in the case of Theorem
1.4. Let E1 and E2 be elliptic curves and let gj : Ej → P1 be morphisms of degrees
dj ≤ d for j = 1, 2, all defined over k. We assume that the branch loci of g1 and g2 in P1

are different.
Let G = (g1, g2) : E1 × E2 → P1 × P1, let Δ ⊆ P1 × P1 be the diagonal and let

X = G−1Δ ⊆ E1 × E2. We note that X is the locus of geometric points (P1, P2) in
E1 × E2 satisfying g1(P1) = g2(P2).

By Lemma 3.1, deg(X) ≤ d1d2(d1 + d2) ≤ 2d3, where deg(X) is the degree with
respect to the ample divisor V1 + V2, as defined in Section 3. Furthermore, by
Theorem 3.3, the (geometric) irreducible components of X have geometric genus at
least 2.

PROOF OF THEOREM 1.3. Let Γ = E1[∞] × E2[∞]; this is the group of torsion points
of the abelian surface E1 × E2. By Theorem 4.2,

#(Γ ∩ X) ≤ c(2, 2d3)

with c(n, D) as in Theorem 4.2. We note that

g1(E1[∞]) ∩ g2(E2[∞]) = G(Γ) ∩ Δ = G(Γ ∩ X)

and we obtain the result with c0(d) = c(2, 2d3). �

PROOF OF THEOREM 1.4. The proof is very similar. Let Γ = E1(k) × E2(k);
by the Mordell–Weil theorem, this group is finitely generated and its rank is
r = rank E1(k) + rank E2(k). By Theorem 4.1,

#(Γ ∩ X) ≤ c(2, 2d3)1+r

with c(n, D) as in Theorem 4.1. We note that

g1(E1(k)) ∩ g2(E2(k)) = G(Γ) ∩ Δ = G(Γ ∩ X)

and we obtain the result with κ(d) = 1/ log c(2, 2d3). �
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