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Abstract. We characterize the stabilized automorphism group for odometers and Toeplitz
subshifts, and then prove an invariance property of the stabilized automorphism group
of these dynamical systems. Namely, we prove the isomorphism invariance of the primes
for which the p-adic valuation of the period structure tends to infinity. A particular case
of interest is that for torsion-free odometers, the stabilized automorphism group is a full
isomorphism invariant.
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1. Introduction
Let (X, T ) be a dynamical system, that is, let X be a compact metric space and T
a homeomorphism of X to itself. An automorphism of (X, T ) is a homeomorphism
ϕ : X → X that commutes with T. The set of all automorphisms of (X, T ) is a group under
composition called the automorphism group of (X, T ), and we denote it by Aut(X, T ).

The automorphism groups of symbolic systems have been studied since the 1960s,
starting with the works of Hedlund in [9]. These groups continue to be studied extensively,
see, for example, [2–5, 11, 14]. In particular, the automorphism group of Toeplitz subshifts
has been studied by Donoso et al [6] and Salo [15]. In this work, we study a larger
group of symmetries called the stabilized automorphism group for odometers and Toeplitz
shifts.

The stabilized automorphism group was introduced in 2021 by Hartman, Kra, and
Schmieding [8]. Given (X, T ) a dynamical system, the stabilized automorphism group
is the subgroup of Homeo(X) given by

Aut(∞)(X, T ) =
∞⋃

n=1

Aut(X, T n).

Building on partial results from [8], Schmieding gave a full characterization of the
stabilized automorphism group for shifts of finite type [16]. Given natural numbers
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m, n ≥ 2, the stabilized groups of the full m-shift and the full n-shift are isomorphic if
and only if mk = nj for some k, j ∈ N.

We study the stabilized automorphism group of a class of dynamical systems with
contrasting behavior to that studied by Schmieding. While mixing shifts of finite type
have high complexity, we study odometer systems which have zero entropy. An important
technique introduced in [16] is the notion of local P-entropy, a quantity that captures
the exponential growth rate of certain classes of finite subgroups in the limit that
defines the stabilized automorphism group. These techniques however cannot be applied
directly to our case since all odometers exhibit the same growth rate of finite groups
in their stabilized automorphism group. Hence, local P-entropy alone is not enough to
distinguish two odometers by analyzing their stabilized automorphism group. However,
we draw inspiration from this method to develop a new approach to the study of
the growth of finite subgroups of the automorphism groups that define the stabilized
automorphism group. In a similar way as to how the complexity function is a sequence
that provides more information about a symbolic system than its limit, that is, the
topological entropy, by pinpointing the finite stages of the definition of the stabilized
automorphism group where we see growth, we can recover the primes for which the
p-adic valuation of the scale of the odometer tends to infinity. In particular, we show
that for torsion-free odometers, the stabilized automorphism group is a full isomorphism
invariant.

We use our results about odometers to study a class of subshifts called Toeplitz subshifts
that have odometers as their maximal equicontinuous factor. These subshifts were first
studied by Jacobs and Keane [10] and have no restrictions in terms of their complexity.
However, since they carry a lot of the same rigid structure of an odometer, we are able to
use the results on odometers to conclude similar results about Toeplitz subshifts.

We defer the precise definitions and notation to §2. In §3, we study the stabilized
automorphism group for odometers. The main result of this section is the following
theorem. We use the notation Sym(n) to represent the symmetric group on n symbols.

THEOREM 1.1. The stabilized automorphism group of an odometer Z(pn) with scale (pn)

is isomorphic to the direct limit of a sequence of monomorphisms of groups of the form
(Z(qn))

pk � Sym(pk), where Z(qn) is an odometer that is a factor of Z(pn) and pk is an
element of the scale (pn).

A more precise description of the stabilized automorphism group of odometers includ-
ing a characterization of the monomorphisms defining the limit is given in Theorem 3.5.
The main technical difficulty to overcome for proving this theorem is characterizing
Aut(Z(pn), +m) for all m ∈ Z. We do so in Proposition 3.1. This characterization is
different from characterizing Aut(Z(pn), +1) for any odometer Z(pn) as that proof relies
heavily on the fact that (Z(pn), +1) is minimal. However, when m divides an element
of the sequence (pn), the system (Z(pn), +1) fails to be minimal, as we show in
Proposition 3.1.

In §4, we study the stabilized automorphism group of Toeplitz subshifts and prove a
similar result.
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THEOREM 1.2. Let (X, σ) be a Toeplitz subshift with period structure (pn). Then, the
stabilized automorphism group of (X, σ) is isomorphic to the direct limit of a sequence of
monomorphisms of groups of the form Aut(T , τ)pk � Sym(pk), where (T , τ) is a Toeplitz
shift and pk is an element of the sequence (pn).

A more precise description of the stabilized automorphism group of Toeplitz sub-
shifts including a characterization of the monomorphisms defining the limit is given in
Theorem 4.4. Similarly to the theorem about odometers, the main technical difficulty is
characterizing Aut(X, σm) for all m ∈ Z. We do so in Proposition 4.1.

As an immediate corollary to the previous theorems, since amenable groups are
preserved under direct limits, we have the following corollary.

COROLLARY 1.3. Both the stabilized automorphism group of an odometer and the
stabilized automorphism of a Toeplitz subshift are amenable.

Odometers are completely classified by an equivalence relation on their scale (see [7]).
Let (pn) be the scale of an odometer. For each prime number p, denote by νp(n) the p-adic
valuation of the integer n, that is, νp(n) = max{k ≥ 0 : pk divides n}. For each prime, the
multiplicity function at p of the scale (pn) is given by vp(pn) = limn→∞ νp(pn). Two
scales (pn) and (sn) are equivalent if and only if vp(pn) = vp(sn) for all primes p. Two
odometers are isomorphic if and only if their scales are equivalent. In §5, we study the finite
subgroups at each level of the sequences in Theorems 1.1 and 1.2 to prove the isomorphism
invariance of the primes for which the multiplicity function at p is infinite. We use this to
derive our main invariance results.

THEOREM 1.4. Let (Z(pn), +1) and (Z(qn), +1) be torsion-free odometers with scales
(pn) and (qn), respectively. If Aut(∞)(Z(pn), +1) and Aut(∞)(Z(qn), +1) are isomorphic
as groups, then Z(pn) and Z(qn) are isomorphic as groups.

THEOREM 1.5. Let (X, σ) and (T , τ) be torsion-free Toeplitz subshifts with scales (pn)

and (qn), respectively. If Aut(∞)(X, σ) and Aut(∞)(T , τ) are isomorphic as groups, then
(pn) is equivalent to (qn).

2. Preliminaries
2.1. Background. A topological dynamical system (or simply a system) is a pair (X, T ),
where X is a compact metric space with metric d : X × X → R and T : X → X is a
homeomorphism. In the particular case when X is a compact topological group and T
acts by group translation by a fixed element in X, we call the dynamical system (X, T ) a
group rotation. The orbit of a point x ∈ X is denoted by OT (x) = {T n(x) : n ∈ Z}. Given
a subset U ⊆ X, we define OT (U) = ⋃

x∈U OT (x). A system is minimal if the orbit of
every point x ∈ X is dense in X. A subset U ⊆ X is called a minimal component of (X, T )

if U is closed, T-invariant, and the restriction of T to U makes (U , T |U) a minimal system.
Given two topological dynamical systems (X, T ), (Y , S), a continuous surjection

π : X → Y such that π ◦ T = S ◦ π is called a factor map. If such a map exists, we say
(Y , S) is a factor of (X, T ). If in addition π is a bijection, we say (X, T ) and (Y , S) are
conjugate systems.

https://doi.org/10.1017/etds.2023.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.109


2292 Jennifer N. Jones-Baro

Let G and H be two topological groups. We say that G and H are isomorphic
as topological groups if there exists a group isomorphism φ : G → H that is also a
homeomorphism. Not all group isomorphisms are necessarily topological isomorphisms
and to avoid confusion, we refer to a usual group isomorphism as an algebraic isomorphism
and denote it with the symbol ∼=. Moreover, two group rotations (G, g) and (H , h) are
conjugate if and only if there exists a topological isomorphism φ : G → H such that
φ(g) = φ(h).

We say the system (X, T ) is equicontinuous if for any ε > 0, there exists δ > 0 such
that if d(x, y) ≤ δ for x, y ∈ X, then for any n ∈ Z, we have d(T n(x), T n(y)) ≤ ε. Every
minimal equicontinuous system is conjugate to a group rotation (see, for example, [12]).

2.2. Automorphism group and stabilized automorphism group. An automorphism of
a system (X, T ) is a homeomorphism ϕ of X such that ϕ ◦ T = T ◦ ϕ. The set of all
automorphisms of X forms a group under composition which we denote by Aut(X, T ) and
call the automorphism group of (X, T ). A commonly used result in the literature is the
following lemma. We include the proof for completeness.

LEMMA 2.1. Let (X, T ) be a dynamical system and ϕ ∈ Aut(X, T ). Then, U ⊆ X is a
minimal component of (X, T ) if and only if ϕ(U) is a minimal component.

Proof. Let U ⊆ X be a minimal component of (X, T ) and let ϕ ∈ Aut(X, T ). Since
ϕ is a homeomorphism of X, ϕ(U) is closed. Additionally, since U is T-invariant, we
have that T (ϕ(U)) = ϕ(T (U)) ⊆ ϕ(U). Hence, ϕ(U) is T-invariant. Take y ∈ ϕ(U).
Since ϕ is a bijection, there exists x ∈ U with ϕ(x) = y and since U is a minimal
component, OT (x) = U . Because ϕ is an automorphism of (X, T ), we have that OT (y) =
OT (ϕ(x)) = ϕ(U). We conclude ϕ(U) is a minimal component. To show that ϕ−1(U) is
a minimal component, we repeat the proof with ϕ−1 instead of ϕ.

As introduced by Hartman, Kra, and Shmieding in [8], for (X, T ) a dynamical system,
we define the stabilized automorphism group of (X, T ) to be the subgroup of Homeo(X)

given by

Aut(∞)(X, T ) =
∞⋃

n=1

Aut(X, T n).

Remark 2.2. It is obvious that if i divides j, then Aut(X, T i) ⊆ Aut(X, T j ). The stabilized
automorphism group is equivalently defined as the direct limit (colimit in the categorical
sense) of the following diagram in Figure 1 where the arrows represent inclusions.

PROPOSITION 2.3. Let (X, T ) be a minimal dynamical system. Assume that for k > 1,
we have that (X, T k) has n > 1 minimal components U1, U2, . . . , Un such that
X = ⋃n

i=1 Ui . If the dynamical systems (Ui , T k|Ui
) are conjugate for i = 1, 2, . . . , n,

then there exists an algebraic group isomorphism

χ : Aut(X, T k) → [Aut(U1, T k|U1)]
n
� Sym(n),
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FIGURE 1. The stabilized automorphism group viewed as a direct limit.

U1 U2 · · · Un

U1 U2 · · · Un.

ϕ1,2

T k

ϕ2,3

T k

ϕn−1,n

T k

ϕn,1

ϕ1,2 ϕ2,3 ϕn−1,n

ϕn,1

FIGURE 2. Commutative diagram used in the proof of Proposition 2.3.

where Sym(n) is the symmetric group on n symbols, satisfying for all ϕ, φ ∈ Aut(X, T k)

with χ(ϕ) = ((a1, a2, . . . , an), π1) and χ(φ) = ((b1, b2, . . . , bn), π2),

χ(ϕ ◦ φ) = ((a1, a2, . . . , an), π1) · ((b1, b2, . . . , bn), π2)

= (π−1
2 (a1, a2, . . . , an)(b1, b2, . . . , bn), π1 ◦ π2),

(2.1)

where π−1
2 (a1, a2, . . . , an) = (a

π−1
2 (1)

, a
π−1

2 (2)
, . . . , a

π−1
2 (n)

) and π1 ◦ π2 denotes the
composition of the composition of functions (as opposed to cycle concatenation).

We point out that the isomorphism χ is not canonical. It requires making a choice of
isomorphism between Aut(Ui , T k|Ui

) and Aut(U1, T k|U1) for all i = 1, . . . , n.

Proof. The minimal components of (X, T k) form a partition of X into closed sets. Since
(Ui , T k|Ui

) are conjugate for i = 1, 2, . . . , n, define ϕi,i+1 for i = 1, 2, . . . , n − 1 to be a
conjugacy between (Ui , T k|Ui

) and (Ui+1, T k|Ui+1), and define ϕn,1 = ϕ−1
1,2 ◦ ϕ−1

2,3 ◦ · · · ◦
ϕ−1

n−2,n−1 ◦ ϕ−1
n−1,n. Hence, we have the following commutative diagram in Figure 2:

Additionally, for i, j ∈ {1, 2, . . . , n} with i ≤ j , define ϕi,j = ϕj−1,j ◦ ϕj−2,j−1 ◦
· · · ◦ ϕi+1,i+2 ◦ ϕi,i+1 and ϕj ,i = ϕ−1

ij .
By Lemma 2.1, an automorphism of (X, T k) defines a permutation on the set of

minimal components of (X, T k). So we can define a map ρ : Aut(X, T k) → Sym(n)

by sending each automorphism to its corresponding permutation on the set of minimal
components.

Let π ∈ Sym(n). Define �π such that Ui is mapped to Uπ(i) via ϕi,π(i). Since minimal
components are closed and disjoint, �π is continuous and since it commutes with T k on
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each minimal component, we can conclude that �π is an automorphism of (X, T ). Notice
ρ(�π) = π . Thus, ρ is surjective.

We can construct an automorphism 
 of (X, T ) by choosing a particular auto-
morphism fi of each minimal component (Ui , T k|Ui) and defining 
 ≡ fi on Ui .
That is, 
 does not permute the minimal components and only acts on each one
by their specified automorphism. Since minimal components are closed and disjoint,

 is continuous and since it commutes with T k on each minimal component, we
can conclude that 
 is an automorphism of (X, T k). Hence, we can define a group
monomorphism ι : Aut(U1, T k|U1)

n → Aut(X, T k), since Aut(Ui , T k|Ui
) is isomorphic

to Aut(U1, T k|U1) for i = 1, . . . , n. Notice 
 ∈ Aut(U1, T k|U1)
n and ρ(ι(
)) = e, where

e is the identity in Sym(n). Therefore, we have the following short exact sequence:

1 Aut(U1, T k|U1)
n Aut(X, T k) Sym(n) 1ι ρ

Using the fact that the diagram in Figure 2 commutes, we can define a splitting of
this sequence as the map from Sym(n) to Aut(X, T k) by sending each permutation
π ∈ Sym(n) to �π as defined above. Hence,

Aut(X, T k) ∼= [Aut(U1, T k|U1)]
n
� Sym(n).

The formula for the multiplication in equation (2.1) follows immediately.

2.3. Odometers. We give a brief review of odometers. For a more complete exposition,
see [7].

Let (pn) be a sequence of natural numbers such that pn divides pn+1. We call any such
sequence a scale. We define the odometer with scale (pn) as the subgroup of

∏∞
n=1

Z/pnZ

given by

Z(pn) =
{
(xn) ∈

∞∏
n=1

Z/pnZ : xn ≡ xn+1 mod pn for all n ∈ N

}
.

The odometer Z(pn) can also be defined as the inverse limit lim←−n
Z/pnZ of the

canonical homomorphisms Z /pn+1Z → Z/pnZ. The natural dynamics on an odometer
Z(pn) is given by the addition of 1 = (1, 1, 1, . . .). It is not difficult to see that it is a
minimal equicontinuous topological dynamical system called an odometer and denote by
(Z(pn), + 1). We call both the group Z(pn) and the system (Z(pm), +1) an odometer, and
to which one we are referring is clear from the context. In particular, the subgroup 〈1〉 is
dense in Z(pn) and is isomorphic to Z. We denote the multiples of 1 by m = m 1 = (m

mod p1, m mod p2, m mod p3, . . .) for all m ∈ N.
For each prime number p, denote by νp(n) the p-adic valuation of the integer n, that is,

νp(n) = max{k ≥ 0 : pk divides n}.
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Given an odometer Z(pn), the sequence (νp(pn))n≥1 is non-decreasing and we can define
for each prime the multiplicity function at p as

vp(pn) = lim
n→∞ νp(pn).

We can endow an odometer Z(pn) with the metric

d(x, y) = 2− inf{i∈N : xi−yi �=0}

for any x = (xn) and y = (yn) ∈ Z(pn). With this metric, Z(pn) is a compact topological
group.

The question of when two odometers are isomorphic (as topological groups or simply
algebraically) is completely understood by the following theorem.

THEOREM 2.4. (See, for example, [7]) Two odometers Z(pn) and Z(sn) are isomorphic
both algebraically and as topological groups if and only if vq(pn) = vq(sn) for all primes
q. Moreover, for an odometer Z(pn), we have the following group isomorphism:

Z(pn)
∼=

( ∏
p∈I

Z(pn)

)
×

( ∏
p∈F

Z/pvp(pn)
Z

)
, (2.2)

where I = {p prime : vp(pn) = ∞} and F = {p prime : 1 < vp(pn) < ∞}. The image
of 1 under this isomorphism is ((1, 1, . . .), (1, 1, 1, . . .)).

An immediate consequence of the previous theorem is that the torsion subgroup of an
odometer can be written explicitly as

T (Z(pn)) =
∏
p∈F

Z/pvp(pn)
Z,

where F = {p prime : 1 < vp(pn) < ∞}.
This theorem leads us to define the following equivalence relation on scales.

Two scales (pn) and (sn) are equivalent, denoted by (pn) ∼ (sn), if and only if
vp(pn) = vp(sn) for all primes p. It is easy to check that this is an equivalence relation.
Two odometers Z(pn) and Z(sn) are isomorphic if and only if (pn) ∼ (sn).

As stated in [7], an odometer Z(pn) is a factor of another odometer Z(qn) if and only if
for all k ∈ N, pk divides q� for some � ∈ N. This allows us to define the partial ordering
(pn) � (sn) if and only if all the following hold.
(1) For all primes p, vp(pn) = ∞ if and only if vp(sn) = ∞.
(2) For all primes p such that vp(sn) < ∞, we have that vp(pn) ≤ vp(sn).

Remark 2.5. By Theorem 2.4, two scales (pn) and (sn) define isomorphic odometers if
and only if (pn) ∼ (sn). That is, an odometer is completely determined by the sequence
(vq(pn))q a prime ∈ (N ∪ {∞})∞. Additionally, if (pn) � (qn), then the odometer Z(pn) is a
factor of the odometer Zqn .

We say a scale (pn) is a prime scale if pn+1/pn is prime for all n ∈ N. Notice that for
any scale (pn), there exists a prime scale (p̃n) such that (pn) ∼ (p̃n).
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We say an odometer Z(pn) or equivalently a scale (pn) is:
(i) finite if there exits N ∈ N such that pm = pN for all m ≥ N ;

(ii) torsion free if vp(pn) ∈ {0, ∞} for all primes p.
For a more detailed classification of odometers, see [7].

Remark 2.6. From now on, we assume any scale (pn) is not finite as otherwise, the group
Z(pn) is finite and the dynamical system (Z(pn), +1) is periodic.

Odometers classify all equicontinuous dynamical systems on a totally disconnected
infinite space.

THEOREM 2.7. (See, for example, [12]) Let (X, T ) be a minimal equicontinuous dynam-
ical system on a totally disconnected infinite space X. Then (X, F) is conjugate to an
odometer.

The automorphism groups of odometers are completely classified.

PROPOSITION 2.8. (See, for example, [6]) Let Z(pn) be an odometer, then Aut(Z(pn),
+ 1) ∼= Z(pn) as groups.

This theorem establishes the full isomorphism invariance of the automorphism group
for odometers.

COROLLARY 2.9. If Z(pn) and Z(sn) are two odometers, then Z(pn)
∼= Z(sn) if and only if

Aut(Z(pn), +1) ∼= Aut(Z(sn), +1).

2.4. Symbolic systems. Let A be a finite set. We define AZ to be the set of bi-infinite
sequences (xi)i∈Z with xi ∈ A for all i ∈ Z. When endowed with the metric

d((xi), (yi)) = 2− inf{|i|:xi �=yi },

AZ is a compact metric space. We define the left shift σ : AZ → AZ by (σx)i = xi+1 for
all i ∈ Z. If X ⊆ AZ is closed and σ -invariant, then the dynamical system (X, σ |X) is
called a subshift. We omit the notation σ |X and just denote a subshift by (X, σ).

For w = (w1, . . . , wn) ∈ An, we define the cylinder set as

[w] = {x ∈ AZ : xi = wi for all 0 ≤ i ≤ n}.
The collection of cylinder sets {σ i([w]) : w ∈ A∗, i ∈ Z} where A∗ = ⋃∞

j=1 Aj is a basis
for the topology of AZ.

The language of a subshift (X, σ) is

L(X) := {w ∈ A∗ : [w] ∩ X �= ∅}
and any w ∈ L(X) is called a word in the language. For all n ∈ N, define Ln(X) to be
set of words of length n in L(X). The complexity of a subshift is PX : N → N defined as
PX(n) = #Ln(X).
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2.5. Toeplitz subshifts. A sequence u = {ut }t∈Z is a Toeplitz sequence if for all n ∈ Z,
there exists m ∈ N such that for all k ∈ Z, we have un = un+km. For any p ∈ N, define

perp(u) = {k ∈ N | uk = uk+pm for all m ∈ Z}.
Then u is a Toeplitz sequence if there exists a sequence of integers (pn) such that pn

divides pn+1 for all n ∈ N and ⋃
n∈N

perpn
(u) = Z.

We call the sequence (pn) a scale of u. Similarly to odometers, we say a scale (pn) is a
prime scale if pn+1/pn is prime for all n ∈ N.

We say that pn is an essential period of u if for any 1 ≤ p < pn, the sets perp(u) and
perpn

(u) do not coincide. If the sequence pn is formed by essential periods, we call it a
period structure of u.

If u is a Toeplitz sequence, we define the Toeplitz subshift given by u to be (Xu, σu),
where Xu = Oσ (u) and σu = σ |Xu . We omit the sub-index to simplify the notation and
denote by (X, σ) the respective Toeplitz subshift. Toeplitz subshifts were defined by Jacobs
and Keane who also showed that every Toeplitz shift is minimal [10].

Let (X, σ) be a Toeplitz subshift given by the Toeplitz sequence u. From now on, we
assume u is not periodic as otherwise, the system (X, σ) is periodic. An element x ∈ X

is called a Toeplitz orbital. It is important to note that a Toeplitz orbital may not be a
Toeplitz sequence as some of its coordinates may not be periodic. Since u is not a periodic
sequence, points in X that are not Toeplitz sequences necessarily exist (compare to [1,
Corollary 4.2]). If x is a Toeplitz sequence in X, we call it a regular point. We denote by
R the set of all regular points in X. The singleton fibers of the map π : X → Z(pn) from X
to its maximal equicontinuous factor (Z(pn), +1) correspond to the regular points in X and
form a dense Gδ subset of X (see, for example, [7]). It is clear that any period that occurs
in x is also a period that occurs in u. We define the periodic part of x as

P(x) =
⋃
n∈N

perpn
(x),

and the aperiodic part of x as

A(x) = Z\ P(x).

We call the p-skeleton of x = (xi) ∈ X the part of x which is periodic with period p. To
make this precise, we define the p-skeleton to be the sequence obtained from x by replacing
xi by a new symbol ‘?’ for all i �∈perp(x).

Regarding the aperiodic part, we have the following useful properties.

LEMMA 2.10. (See, for example, [7]) Let (X, σ) be a Toeplitz subshift and x ∈ X.
(a) For any n ∈ A(x), there is no l > 0 such that xn+kl = xn for all k ∈ Z.
(b) Every finite pattern occurring along the aperiodic part of x also occurs along some

periodic part.

The following key lemma about Toeplitz subshifts was proved by Williams.
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LEMMA 2.11. (Williams [17]) Let (X, σ) be a Toeplitz subshift given by the Toeplitz word
u with period structure (pn). For each i ∈ N, n ∈ Z/piZ, define Ai

n = {σm(u) : m ≡ n

mod pi}. Then:
(i) {Ai

n : n ∈ Z/piZ} is a partition of X = Oσ (u) into relatively open (and closed)
sets;

(ii) A
j
m ⊆ Ai

n for i < j and m ≡ n mod pi;

(iii) σ(Ai
n) = Ai

n+1.

Toeplitz subshifts have been fully characterized up to topological conjugacy by the
following theorem.

THEOREM 2.12. (See, for example, [7]) A dynamical system (X, σ) is conjugate to a
Toeplitz subshift if and only if it satisfies the following three properties:

(i) (X, T ) is minimal;
(ii) (X, T ) is an almost one-to-one extension of an odometer;

(iii) (X, T ) is symbolic.

Remark 2.13. (See, for example, [17]) The map that gives rise to property (ii) of the
previous lemma is constructed as follows. Let (X, σ) be a Toeplitz subshift with period
structure (pn). For g = (xi) ∈ Z(pn), we set

Ag =
∞⋂
i=0

Ai
xi

.

We define the factor map π : (X, σ) → (Z(pn), +1) by π−1(g) = Ag . Then
π(y) = π(y′) for y, y′ ∈ X if and only if y and y′ have the same pi-skeleton for all
i ∈ N. In particular, π is one-to-one on the set of Toeplitz sequences in X.

As a consequence of property (ii) of the previous theorem, if (X, σ) is a the Toeplitz
subshift given by the Toeplitz sequence u with period structure (pn), then (Z(pn), + 1) is
its maximal equicontinuous factor (see, for example, [17]). Another consequence of this is
the following result.

LEMMA 2.14. (See, for example, [5]) The automorphism group of a Toeplitz subshift is
isomorphic to a subgroup of its corresponding odometer maximal equicontinuous factor.

Remark 2.15. As a consequence of the previous lemma, the automorphism group of a
Toeplitz subshift is abelian.

We use some similar terminology for Toeplitz subshifts as for odometers. We say a
Toeplitz subshift given by the Toeplitz word u with period structure (pn) is torsion free if
its corresponding odometer maximal equicontinuous factor is torsion free.

3. The stabilized automorphism group of an odometer
This section is dedicated to characterizing the stabilized automorphism group of
odometers. To study the stabilized automorphism group of odometers, we first analyze
Aut(Z(pn), +m) for all m ∈ N. We start by proving the following proposition.
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PROPOSITION 3.1. Let Z(pn) be an odometer with scale (pn) and set m ∈ N. Let d ≥ 0
be such that for some k0 ∈ N, we have that (pk , m) = d for k ≥ k0 and k0 is the
smallest integer with this property. Then (Z(pn), +m) has d minimal components each of
them conjugate to the odometer with scale (pn/d)n≥k0 . Furthermore, Aut(Z(pn), +m) ∼=
Z

d
(pn/d)n≥k0

� Sym(d) and is isomorphic to a subgroup of Aut(Z(pn), +pk0
).

Proof. We will first assume d = 1. We know (Z(pn), +m) is minimal by [6, Lemma 2.1].
Since (Z(pn), +m) is a minimal equicontinuous dynamical system on a totally discon-
nected space by Proposition 2.8 and Theorem 2.7, (Z(pn), +m) is conjugate to the
odometer (Z(pn), +1) and Aut(Z(pn), +m) ∼= Z(pn). However, since many groups have
subgroups isomorphic to themselves, including some odometers, this is not enough to
conclude Aut(Z(pn), +m) = (Z(pn), +1). We show this next.

It is obvious that Aut(Z(pn), +1) ⊆ Aut(Z(pn), +m). We are left with proving the other
inclusion. Take ϕ ∈ Aut(Z(pn), +m) and ε > 0. Since ϕ is continuous, by our definition
of the metric in Z(pn), there exists N ∈ N such that for all (xi), (yi) ∈ Z(pn), if xj = yj

for all j ≤ N , then d(ϕ(xi), ϕ(yi)) < ε/2. Pick M ∈ N such that for all (xi), (yi) ∈ Z(pn),
if xj = yj for all j ≤ M , then d((xi), (yi)) < ε/2. Define K = max{N , M}. By Bézout’s
identity, since (pK , m) = 1, there exist a, b ∈ N such that

am = bpK + 1.

Because +m commutes with φ and by our choice of K we have that for all x = (xi) ∈
Z(pn),

d(ϕ(x + 1), ϕ(x) + 1) ≤ d(ϕ(x + 1), ϕ(x + am)) + d(ϕ(x + am), ϕ(x) + 1)

= d(ϕ(x + 1), ϕ(x + am)) + d(ϕ(x) + am, ϕ(x) + 1)

≤ ε/2 + ε/2 = ε,

where the last inequality follows from the fact that x + am and x + a1 agree on the first K
coordinates. We conclude ϕ(x + 1) = ϕx + 1, and hence ϕ ∈ Aut(Z(pn), +1). This proves
Aut(Z(pn), +m) = Aut(Z(pn), +1) ∼= Z(pn).

Assume now that d > 1. By Theorem 2.4, (Z(pn), +1) is conjugate to an odometer
(Z(p′

n), +1) with period structure (p′
n) such that p′

1 = d and vq(pn) = vq(p′
n). Without

loss of generality, we assume p1 = d . Since the first coordinate of elements in Z(pn)

belongs to Z/dZ, the addition +m fixes the first coordinate. For j = 0, 1, . . . , d − 1,
we define the subsets of Z(pn)

Uj = {(xi) ∈ Z(pn) : x1 = j}.

Notice that these are clopen sets invariant under the action +m. Define the map ϕ : Uj →
Z(pn+1/d)n∈N by

ϕ((xi)i∈N) =
(

xi+1 − j

d

)
i∈N

.

https://doi.org/10.1017/etds.2023.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.109


2300 Jennifer N. Jones-Baro

Then ϕ is a homeomorphism and the following diagram commutes:

Uj Uj

Z(pn+1/d) Z(pn+1/d)

ϕ

+m

ϕ

+m/d

This implies the action of +m restricted to Uj is conjugate to (Z(pn+1/d), +s), where
s = m/d . By the case d = 1, Uj is a minimal component. Hence, the number of minimal
components of (Z(pn), +m) is d. Moreover, we have that each minimal component is
conjugate to (Z(pn+1/d), +1) and we have the identity Aut(Uj , +m) = Aut(Uj , +s).

By the case d = 1, we have that the automorphism group of each minimal compo-
nent under the action +s is isomorphic to Z(pn+1)/d . Moreover, as a consequence of
Proposition 2.3, we have

Aut(Z(pn), +m) = Aut(Z(pn), +d) ∼= Z
d
(pn+1/d) � Sym(d).

Given (qn) any equivalent period structure, we have shown the inclusion

Aut(Z(qn), +m) = Aut(Z(qn), +d) ⊆ Aut(Z(qn), +q′
k0

),

where k0 ∈ N is such that (qk , m) = d for k ≥ k0.

Remark 3.2. One can translate the previous proof to one relying on the Bratelli–Vershik
representation of odometers. To do this, for k ∈ N and 0 ≤ i < pk , consider the sets

Uk,i = {(xn) ∈ Z(pn) : xk = i}.
The sets {Uk,0, Uk,1, . . . , Uk,pk−1} correspond to the floors of the kth Kakutani–Rokhlin
partition of the odometer. The action +m on the collection of sets {Uk,0, Uk,1, . . . , Uk,pk−1}
works like addition by m in Z/pkZ by identifying Uk,i with i ∈ Z/pkZ. Thus, Uk,i + m =
Uk,i+m mod pk

and Uk,i + rm = Uk,i if and only if rm ∈ pkZ. Take rk the smallest number
such that Uk,i + rm = Uk,i . For a large enough k, a minimal component of (Zpn , +m) is
a union of elements in {Uk,0, Uk,1, . . . , Uk,pk−1} that form a single orbit under the action
+m. In the language of Bratelli–Vershik diagrams, a minimal component of (Zpn , +m)

is the induced system given by the r-paths that correspond to the sets Uk,i of the level k
which are in the same orbit under the action +m. This becomes more apparent after the
proof of Proposition 4.1 using the map π in Remark 2.13.

COROLLARY 3.3. The stabilized automorphism group of an odometer is

Aut(∞)(Z(pn), +1) =
∞⋃

n=1

Aut(Z(pn), +pn),

where the union is taken inside Homeo(Z(pn)). Additionally, this statement is true for all
scales equivalent to (pn).

Proof. By Proposition 3.1, we have that Aut(Z(pn), +m) ⊆ ⋃∞
n=1 Aut(Z(pn), +pn) for all

m ∈ N. Moreover, by Theorem 2.4, this is true for all scales equivalent to (pn).
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The last ingredient we need before proving our characterization of the stabilized
automorphism group of odometers is the following algebraic lemma. This is a basic fact
about direct limits; for a proof see, for example, [13, Proposition 10.3].

LEMMA 3.4. Let {Gi}i∈N and {Hi}i∈N be groups and fi : Gi → Gi+1, ki : Hi → Hi+1

group homomorphisms for all i ∈ N. Define Ĝ to be the direct limit lim→ Gi and Ĥ to
be the direct limit lim→ Hi . If there exist group isomorphisms ϕi : Gi → Hi , for all i ∈ N

such that the following diagram commutes:

Gi Gi+1

Hi Hi+1

fi

ϕi ϕi+1

ki

then Ĝ and Ĥ are isomorphic as groups.

THEOREM 3.5. The stabilized automorphism group of an odometer Z(pn) with scale (pn)

is isomorphic to the direct limit of the following sequence:

Z(pn) Z
p1
(pn+1)/p1

� Sym(p1) Z
p2
(pn+2)/p2

� Sym(p2) Z
p3
(pn+3)/p3

� Sym(p3) · · ·j0 j1 j2 j3

where jk are injective maps.

The injective maps jk from the previous theorem are constructed explicitly as follows.
Let ϕ : Aut(Z(pn), +pk) → Z

pk

(pn+k)
� Sym(pk) for all k ∈ N ∪ {0} be the isomorphisms

described in Proposition 3.1, define jk = ϕk+1 ◦ ik ◦ ϕ−1
k , where ik : Aut(X, σk) �→

Aut(X, σk+1) is the natural inclusion.

Proof. By Corollary 3.3, the stabilized automorphism group ofZpn is Aut(∞)(Z(pn), +1) =⋃∞
n=1 Aut(Z(pn), +pn), where the union is taken inside Homeo(Z(pn)). This is equivalent

to taking the direct limit of the following diagram:

Aut(Z(pn), +1) Aut(Zpn , +p1) Aut(Zpn , +p2) Aut(Zpn , +p3) · · ·i0 i1 i2 i3

So, we have the following commutative diagram:

Aut(Z(pn), +1) Aut(Zpn , +p1) Aut(Zpn , +p2) Aut(Zpn , +p3) · · ·

Z(pn) Z
p1
(pn+1) � Sym(p1) Z

p2
(pn+2) � Sym(p2) Z

p3
(pn+3) � Sym(p3) · · ·

i0

ϕ0

i1

ϕ1

i2

ϕ2

i3

ϕ3

j0 j1 j2 j3

where the direct limit of the top row defines the stabilized automorphism group of Z(pn).
By Lemma 3.4, we conclude that this direct limit is equal to the direct limit of the bottom
row which is what we wanted to prove.

As a direct corollary of Theorem 3.5, since amenability is preserved under direct limits,
we conclude Corollary 1.3 for the case of odometers.
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4. The stabilized automorphism group of a Toeplitz subshift
This section is devoted to the proof of Theorem 1.2. We begin our study of the stabilized
automorphism group of Toeplitz subshifts by proving the following proposition.

PROPOSITION 4.1. Let (X, σ) be a Toeplitz subshift with period structure (pn) and set
m ∈ N. Let d > 0 be such that for some k0 ∈ N, we have that (pk , m) = d for k ≥ k0

and k0 is the smallest integer with this property. Then, there exists a Toeplitz subshift
(T , τ) with period structure (pn/d)n≥k0 such that (X, σm) has d minimal components,
each of them conjugate to (T , τ). Furthermore, Aut(X, σm) ∼= Aut(T , τ)d � Sym(d) and
is isomorphic to a subgroup of Aut(Z(pn/d)n≥k0

, +d).

Proof. Define Ai
j as in Lemma 2.11. By property (iii) of this lemma, we have that σm

permutes the elements in {Ai
0, Ai

1, . . . , Ai
pi−1

} as σm(Ai
j ) = Ai

j+m mod pi
. Hence, for each

i ∈ N, the smallest integer ri such that σ rim(Ai
j ) = Ai

j is ri such that

rim = lcm{m, pi} = mpi

(m, pi)
.

Since k0 is the smallest integer such that we have that (pk , m) = d for k ≥ k0, by
property (ii) in Lemma 2.11, we have that for any i, j , the orbit of Ai

j under σm can be

expressed as the union of rk0 elements in {Ak0
0 , A

k0
1 , . . . , A

k0
pk0−1}.

Define Ui = Oσm(A
k0
i ) for i = 1, . . . , d . (Notice that d = (pk0 , m) = pk0/rk0 .) Since

(X, σ) is minimal, using property (ii) of Lemma 2.11, we can show that every orbit in
(Ui , σ |Ui

) is dense for i = 1, . . . , d , i.e. (Ui , σ |Ui
) is minimal. Hence, (X, σ) has d

minimal components. In particular, if (m, pn) = 1 for all n ∈ N, then (X, σm) is minimal.
By Proposition 3.1, since (X, σ) is an almost one-to-one extension of (Z(pn), +1)

and since (Z(pn), +1) has exactly d minimal components, we conclude that every Ui

is the inverse image under the almost one-to-one extension map from X to Z(pn) of a
minimal component of (Z(pn), +m). Since every minimal component on (Z(pn), +m) is
conjugate to the odometer with scale (pn/d)n≥k0 , we have that (Ui , σ |Ui

) is an almost
one-to-one extension of the odometer Zpn/d)n≥k0

. Since (X, σ) is a symbolic system, so
is (X, σm). Hence, since σ is a conjugacy between the minimal components of (X, σm),
by Theorem 2.12, we conclude that there exists a Toeplitz subshift (T , τ) with period
structure (pn/d)n≥k0 such that (Ui , σ |Ui

) is conjugate to (T , τ) for i = 1, . . . , d . By
Proposition 2.3, we conclude

Aut(X, σm) ∼= Aut(T , τ)d � Sym(d).

Remark 4.2. As stated in Remark 3.2, one can use the map π in Remark 2.13 to construct
an explicit representation of the minimal components of (Zpn , +m) without modifying the
period structure by taking π−1(Ui) for i = 1, . . . , d .

So far, we have shown that if (X, σ) be a Toeplitz subshift with period structure (pn)

and (m, pn) = 1 for all n ∈ N, then Aut(X, σ) ∼= Aut(X, σm). We will turn this statement
into an equality in the following proposition.
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PROPOSITION 4.3. Let (X, σ) be a Toeplitz subshift with period structure (pn). If
(m, pn) = 1 for all n ∈ N, then

Aut(X, σ) = Aut(X, σm).

Proof. We know Aut(X, σ) ⊆ Aut(X, σm). We now prove the other inclusion. Let ϕ ∈
Aut(X, σm). We must show φ ◦ σ(x) = σ ◦ ϕ(x) for all x ∈ X. Let R be the set of regular
points in X defined as in §2.5. Since R is a dense Gδ subset of X and ϕ is a homeomorphism,
ϕ−1(R) ∩ R is a dense Gδ set by Baire’s category theorem. Hence, it is enough to prove
this statement for x ∈ ϕ−1(R) ∩ R by continuity of ϕ and σ .

Let x ∈ ϕ−1(R) ∩ R. Notice x and ϕ(x) are both Toeplitz sequences. We show
|ϕ ◦ σ(x) − σ ◦ ϕ(x)| = 0. Let εi be a decreasing sequence of positive numbers such that
εi → 0. For each εi , define Mi ∈ N to be an integer such that for any two elements
z, y ∈ X, if zi = yi for all |i| ≤ M , then |z − y| ≤ εi . Let ps be the largest period of
the coordinates xj with |j | ≤ Mi + 1 of x. Let p� be the largest period of the coordinates
ϕ(x)j with |j | ≤ Mi + 1 of ϕ(x). Notice that ps divides p� or p� divides ps , so fix p̂i

the larger of the two. Since (m, p̂i) = 1, there exist integers ai , bi such that ai = 1 + bp̂i .
Then we have that

σaim(x) → σ(x) as i → ∞, (4.1)

σaim(ϕ(x)) → σ(ϕ(x)) as i → ∞, (4.2)

by our construction of the ai terms. Notice we have the following inequality:

d(ϕ ◦ σ(x), σ ◦ ϕ(x)) ≤ d(σ ◦ ϕ(x), σaim(ϕ(x))) + d(σaim(ϕ(x)), ϕ ◦ σ(x))

= d(σ (ϕ(x)), σaim(ϕ(x))) + d(ϕ(σaim(x)), ϕ(σ(x))).

By equations (4.1) and (4.2) and since ϕ is continuous, the right-hand side goes to 0
as i → ∞. Thus, |ϕ ◦ σ(x) − σ ◦ ϕ(x)| = 0. Since ϕ−1(R) ∩ R is a Gδ subset of X
and ϕ is continuous, we can conclude that ϕ ◦ σ(x) = σ ◦ ϕ(x) for all x ∈ X. Hence,
ϕ ∈ Aut(X, σ).

THEOREM 4.4. Let (X, σ) be a Toeplitz subshift with period structure (pn). Then, the
stabilized automorphism group of (X, σ) is the direct limit of the sequence

Aut(X, σ) Aut(X, σp1) Aut(X, σp2) Aut(X, σp3) · · ·

where the maps are the natural inclusion of each automorphism group into the next.

Observe that in Proposition 4.1, we described Aut(X, σpn) for all n.

Proof. Let m ∈ N. If (m, pn) = 1 for all n ∈ N, by part (i) of Proposition 4.1,
Aut(X, σm) = Aut(X, σ). Hence, Aut(X, σm) ⊆ ⋃∞

n=1 Aut(X, σpn). If (m, pn) �= 1,
take M = limk→∞ lcm(m, pk). By Proposition 4.1, Aut(X, σm) = Aut(X, σM). By our
construction of M, there exists k ∈ N such that M divides pk . Hence, Aut(X, σm) =
Aut(X, σM) ⊆ Aut(X, σpk ). This implies Aut(X, σm) ⊆ ⋃∞

n=1 Aut(X, σpn).
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As a direct corollary of Theorem 4.4, since amenability is preserved under direct limits
and Toeplitz subshifts have abelian automorphism groups, we conclude Corollary 1.3 for
the case of Toeplitz subshifts.

5. Invariance of the stabilized automorphism group for odometers and Toeplitz subshifts
up to scale equivalence
This section is dedicated to proving Theorem 5.3.

5.1. Invariance

LEMMA 5.1. Let (Z(pn), +1) be an odometer with scale (pn) and q be a prime
such that vq(pn) = ∞. If x ∈ Z(pn) is an element of infinite order, then there exists
λ ∈ Aut∞(Z(pn), +1) such that for some k ∈ N, λ commutes with +qkx but not with +x.

Proof. Let x = (xi) ∈ Z(pn) be an element of infinite order and let N ∈ N be the first
integer such that q divides pN and xN �= 0. We can always find such an integer since x is
not a torsion element and vq(pn) = ∞. Set k = νq(xN) + 1.

Define p′
n = pn+N−1, then Z(pn)

∼= Z(p′
n) via the isomorphism (yi) �→ (yi+N−1). Take

x′ = (xi+N−1). By Proposition 3.1, (Zp′
n
, +qk) has qk minimal components, denote them

by V1, V2, . . . , Vqk , each a union of sets of the form Ui = {(yi) ∈ Z(p′
n) : x1 = j} for

j = 0, 1, . . . , pN − 1, and (Uj , +q|Uj
) is conjugate to an odometer. Let ϕ be a non-trivial

element in Aut(Uj , +q|Uj
). Let λ be the image under the map ι described in Proposition

2.3 of the map that acts via ϕ on V1 and the identity on all other minimal components.
Notice that Uj + x = Uj+x′

1 mod p′
1
. Since x′

1 �≡ 0 mod p′
1 and by our choice of k, +x

permutes the minimal components Vj in a non-trivial permutation corresponding to an
element of the subgroup isomorphic to Z/qk

Z of the group of permutations of the Vj

terms identified with Sym(qk). However, +qkx leaves all of the minimal components Vj

invariant. Since odometers are abelian, one can easily see that +qkx commutes with λ but
+x does not.

COROLLARY 5.2. Let (X, σ) be a Toeplitz subshift with scale (pn) and let q be a prime
such that vq(pn) = ∞. If x ∈ Aut(X, σ) is an element of infinite order, then there exists
λ ∈ Aut∞(X, σ) such that λ commutes with xq but not with x.

Proof. This proof is identical to the last proof since Aut(X, σ) is isomorphic to a subgroup
of an odometer and in the proof of Lemma 5.1, we only used the existence of a non-trivial
element in the automorphism group of the minimal components of (X, T k) for all
k ∈ N.

THEOREM 5.3. Let (Z(pn), +1) and (Z(qn), +1) be two odometers with scales (pn)

and (qn), respectively, and let s be a prime. If vs(pn) = ∞ and Aut(∞)(Z(pn), +1) ∼=
Aut(∞)(Zqn , +1), then vs(pn) = ∞.

Proof. Proceeding by contradiction, assume ϕ : Aut(∞)(Z(pn), +1) → Aut(∞)(Z(qn), +1)

is a group isomorphism and � = vs(pn) < ∞. Take j = s� and γ = ϕ(+1). We can
assume there exists k > 0 such that γ j ∈ Aut(Z(qn), +qk)

∼= Z
qk

(qn+k/qk)
� Sym(qk). With
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some abuse of notation, we assume γ j ∈ Z
qk

(qn+k/qk)
� Sym(qk) as opposed to taking

the image of γ j under the appropriate isomorphism. We also use Aut(Z(qn), +qk) and
Z

qk

(qn+k/qk)
� Sym(qk) interchangeably (as they are isomorphic) according to the best

interpretation required for our reasoning. Define π : Zqk

(qn+k/qk)
� Sym(qk) → Sym(qk) to

be the canonical projection.
Let y ∈ N be such that π(γ j ·y) = e. Write γ j ·y = ((γ1, γ2, . . . , γqk

), e). Since +1
is an infinite order element and ϕ is an isomorphism, so is γ . Hence, there exists
γi ∈ Z(qn+k/qk) such that γi is an infinite order element in Z(qn+k/qk).

Let us restrict our attention to the action of γi on the ith minimal component of
+qk . Since vs(pn) = ∞, by Lemma 5.1, there exists an element in Aut∞(Z(qn), +1) that
commutes with γ

y·s
i but not with γ y . By Proposition 2.3 and equation (2.1), γ j ·y·s =

((γ s
1 , γ s

2 , . . . , γ s
qk

), e). We conclude, there exists λ that commutes with γ j ·y·s but not with
γ j ·y . This is a contradiction to Proposition 3.1 because it implies Aut(Z(pn), +j · y · s) �=
Aut(Z(pn), +j · y). We conclude vs(pn) = ∞.

COROLLARY 5.4. Let (X, σ) and (Y , τ) be two Toeplitz subshifts with scales (pn) and
(qn), respectively, and let s be a prime. If vs(pn) = ∞ and Aut(∞)(X, σ) ∼= Aut(∞)(Y , τ),
then vs(pn) = ∞.

Proof. Proceeding by contradiction, assume ϕ : Aut(∞)(X, σ) → Aut(∞)(Y , τ) is a
group isomorphism and j = vs(pn) < ∞. Take γ = ϕ(σ). We can assume there exists
k > 0 such that γ j ∈ Aut(Y , τqk ) ∼= Aut(Ŷ , τ̂ )qk � Sym(qk), where (Ŷ , Ŝ) is a Toeplitz
subshift with scale (qn+k/qk). The rest proceeds identically to that of Theorem 5.3, using
Corollary 5.2 to reach a contradiction to Theorem 1.2.

COROLLARY 5.5. Let (Z(pn), +1) and (Z(qn), +1) be torsion-free odometers with scales
(pn) and (qn), respectively. If Aut(∞)(Z(pn), +1) and Aut(∞)(Z(qn), +1) are isomorphic
as groups, then (pn) ∼ (qn) and Z(pn)

∼= Z(qn).

We have proved Theorems 1.4 and 1.5 by proving Corollaries 5.4 and 5.5.

5.2. Limitations. For the case of torsion-free odometers, we have established a full
automorphism invariance of the stabilized automorphism group. However, in the case of
Toeplitz subshifts, we do not get such a strong result. To illustrate this, we present the
following example of two Toeplitz sequences that admit (2n) as a scale (not an essential
period structure for the second example) that are not conjugate but our methods fail to
identify them as different systems. These examples can be found in [7].

Example 5.6. Consider the Toeplitz sequence u = (ui) with symbols 0 and 1 constructed
in the following iterative process. First consider the sequence x0 = (xi) where every entry
xi =?, where ? indicates a place-holder for the entries that have not yet been determined.
We define xj as follows: if j is odd, we fill every second available position in xj−1 with 0;
if j is even, we fill every second available position in xj−1 with 1. We define u to be the
limit of this process. The following chart depicts the construction of each xj :
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x0 = . . . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .

x1 = . . . ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? . . .

x2 = . . . 1 0 ? 0 1 0 ? 0 1 0 ? 0 1 0 ? 0 1 0 ? 0 1 0 ? 0 1 0 ? . . .

x3 = . . . 1 0 0 0 1 0 ? 0 1 0 0 0 1 0 ? 0 1 0 0 0 1 0 ? 0 1 0 0 . . .

x4 = . . . 1 0 0 0 1 0 1 0 1 0 0 0 1 0 ? 0 1 0 0 0 1 0 1 0 1 0 0 . . .
...

u = . . . 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 . . .

Example 5.7. For this example, consider the Toeplitz sequence w = (ui) with symbols
0 and 1 constructed in a similar iterative process. First consider the sequence y0 = (yi)

where every entry yi =?. Define yj as we fill every second available position in yj−1 by
alternating between 0 and 1. We define w to be the limit of this process. The following
chart depicts the construction of each yj :

y0 = . . . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . .

y1 = . . . ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? . . .

y2 = . . . 0 0 ? 1 1 0 ? 1 0 0 ? 1 1 0 ? 1 0 0 ? 1 1 0 ? 1 0 0 ? . . .

y2 = . . . 0 0 0 1 1 0 ? 1 0 0 1 1 1 0 ? 1 0 0 0 1 1 0 ? 1 0 0 1 . . .

y3 = . . . 0 0 0 1 1 0 0 1 0 0 1 1 1 0 ? 1 0 0 0 1 1 0 1 1 0 0 1 . . .
...

w = . . . 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 . . .

The Toeplitz subshift in Example 5.6 has (2n) as a period structure and the one in
Example 5.7 has period structure (4n). Hence, both examples have (2n) as a prime scale.
These two systems are not conjugate and neither is a factor of the other (see [7]). Our
methods consist on finding the highest order of finite subgroups and how this number
increases along different sequences of contentions of the form

Aut(X, σ) ⊆ Aut(X, σp) ⊆ Aut(X, σp2
) ⊆ Aut(X, σp3

) ⊆ · · ·
for all primes p. Because the Toeplitz subshift in Example 5.7 has period structure (4n),
when we consider Aut(Xw, σ 2j

) for j odd, since 2j divides a period, Aut(Xw, σ 2j
)

contains a subgroup of order 2j !. Notice Aut(Xu, σ 2j
) also contains a subgroup of order

2j ! and in this case, 2j is an essential period. The methods we have developed so far cannot
distinguish between these two scenarios.
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