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1. Introduction

1.1. The last few years have seen interest grow in the representation theory of reduc-
tive Lie algebras in positive characteristic. Classical results of Kac and Weisfeiler
show that the nilpotent coadjoint orbits of the Lie algebra comprise a natural para-
meter set for the representation theory, [25]. It is thus a basic problem to understand
how the geometry of the nilpotent coadjoint orbits influences representation theory.
A milestone in this direction is Premet’s theorem which asserts that the dimension of
any simple module associated to the orbit Q has dimension divisible by p!/2dim®,
where p is the characteristic of the field, [21]. Building on Premet’s theorem, Jantzen
studied the subregular nilpotent coadjoint orbit in detail, obtaining a great deal of
information on not only the simple modules, but also baby Verma modules, [14].

1.2. More recent work of Lusztig suggests a relationship between the representation
theory associated to a nilpotent coadjoint orbit Q and the geometry of a transverse
slice to Q, together with its desingularisation in the Springer resolution, [18]. The
relationship would tie the simple and projective modules associated to Q to certain
elements in the K-theory of the transverse slice and its desingularisation. In the sub-
regular case, the transverse slice is a Kleinian singularity and the Springer resolution
provides its minimal resolution.

1.3. Quantisations of Kleinian singularities were introduced by Hodges [11] for type

A and later by Crawley-Boevey and Holland [7] for all types. Premet has suggested a
possible relationship between these quantisations and subregular representations of a
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simple Lie algebra. In [22] Premet examines this in characteristic zero. This paper is
concerned with exploring Premet’s suggestion in the modular type 4 case. In a sub-
sequent paper we consider Lusztig’s conjectures in the subregular case. It is the quan-
tisations which build a bridge between the representation theory and the geometry,
allowing us to connect the two sides.

1.4. Let us give some more detail. We refer the reader to later sections of the paper
for unexplained definitions and notation. Fix an integer n > 0. Let K (respectively IL.)
be an algebraically closed field of characteristic p (respectively arbitrary characteris-
tic). We will assume throughout that p and n are coprime. Let I be the prime subfield
of K. Given an integer m € 7, we denote its reduction modulo p by m € IF.

1.5. Let U be the enveloping algebra of 3[,(K) and for v € K[¢] let T(v) be Hodges’
non-commutative deformation of a Kleinian singularity of type 4 over K. Let U,
be the reduced enveloping algebra for a subregular nilpotent functional y and let
U, be the central reduction of U, determined by the weight 4. We show in Theorem 7.2
that, for p > n, there exists a polynomial v; € K[7] such that U, ; = Mat(t(v;)),
where #(v,) is a central reduction of 7(v;). Moreover, this isomorphism respects a
natural Z-grading on the algebras U, ; and #(v;) and so induces an equivalence
between the category of U, ;-To-modules and a category of suitably graded #(v;)-
modules.

1.6. A crucial step in the above theorem is the comparison of U, ; and #(v;) with a
basic algebra we call the no-cycle algebra. This algebra is defined over any field L,
depends on a positive integer k, and is denoted Ny (k). The no-cycle algebra is a
string algebra and hence its indecomposable modules can be described by a simple
combinatorial procedure. As an application of this comparison we give a sufficient
condition for the indecomposability of a baby Verma module belonging to the block
of U, determined by a regular weight /. This is formulated in terms of the geometry
of the Springer fibre B, .

1.7. There are several clear directions for future work arising from this paper.
Firstly, the hypothesis p > n should be weakened to p and n being coprime. It
would also be highly desirable to extend the results to other types. At the end
of Section 7 we sketch how to extend our results to type B. It seems likely, how-
ever, that the techniques used here are not sufficient for this in general. Further-
more, we expect Nc(n)-modules to correspond to a central reduction of the
subregular representations of a quantum group of type A at a root of unity. We
have not, however, checked this here.

1.8. The paper is organised as follows. In Section 2 we introduce the notation we will

require when we deal with categories having group actions. We define the no-cycle
algebra in Section 3 and describe some of its indecomposable representations. In
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Section 4 we study subregular representations of 3[,(K) and relate them to the no-
cycle algebra. Section 5 takes a brief look at Grobner—Shirshov bases for non-
commutative algebras and their representations. In Section 6 we study Hodges’” quan-
tisation using, in particular, the results of the previous section. In Section 7 we prove
Theorem 7.2, whilst in Section 8 we present the application to baby Verma modules.

2. Z-Categories

2.1. A Z-category is an Abelian L-category equipped with exact shift functors, [i] for
each i € Z, together with natural isomorphisms [i] o[ j] — [i +/j]. If Cand D are both
7~categories, we say that an [L-linear functor ®: C — D is a Z-functor if the functors
® o [i]and[i] o ® are naturally isomorphic forevery i € 7Z. A Z-functor® : C — Disa
7~equivalence if there exists a Z-functor ¥: D — Csuch that YO = 1, and @Y = 1p.
Wessay C and D are equivalent Z-categories. Note that an equivalence between C and D
need not be a Z-equivalence [10, Section 5].

22. Let R=@P,., R be a Z-graded (noetherian) algebra, that is R;R; C Ry
A 7Z-graded R-module is an R-module, M, together with a [.-space decomposi-
tion M =P, , M; satisfying R;- M; € M;,;. The category of Z-graded (finitely
generated) R-modules, denoted R-Grmod (R-grmod) is an example of a Z-category.
By definition, we have (M[i]); = M;_;. for all i,j € /.

2.3. Given X, Y e Cand i € 7, set Hom(X, Y); = Hom¢(X[i], Y). We define

Hom(X, Y) = @ Hom(X, Y),,
i€/
a Z-graded vector space. The identification Hom¢(Xi], Y) = Home(X[i + 7], Y j])
yields a composition law for X,Y,ZeC: Hom(Y,Z), x Hom(X, Y), —
Hom(X, Z),;;. Then, thanks to 2.2, the space End(X) = Hom(X, X) becomes a
7~graded IL-algebra and Hom(X, Y) a Z-graded End(X)-module. The functor
Hom(X, —) is a Z-functor from C to End(X)-Grmod.

3. The No-cycle Algebra

3.1. Let k € N be a fixed integer. Let Q be the directed graph with k vertices and 2k
edges labelled @; and b; for i € 7./k7, see Figure 1. Let [LQ be the path algebra of Q.
The no-cycle algebra, Ny (k), is the quotient of 1.Q by the two sided ideal generated
by all non-trivial paths in Q which start and end at the same vertex. By inspection,
Ny,(k) is a k(2k — 1)-dimensional algebra.

3.2. If I, admits a primitive nth root of unity { then the no-cycle algebra can be
described as a ‘skew coinvariant algebra’. Let I be a cyclic group of order n acting
on L[X, Y] by g":(X,Y)+ ({"X,{7"Y). There exists an isomorphism

LIX, Y]

k) 22—
Ni.(k) (X", XY, Y")

* [ =1LIX, Y]p*T
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which sends X to S}_, by, Yto S3}_; ax and g to Y}, {"Fe. This realization is of
fundamental importance since the ‘skew coinvariant algebra’ controls much of the
geometry surrounding the resolution of the Kleinian singularity of type 4x_;.

3.3. The algebra Ny (k) is Z-graded: a vertex idempotent e; has degree 0, ¢; has degree
—1 and b; has degree 1. Following 2.2 the category of Z-graded modules will be
denoted by Ny, (k)-grmod.

3.4. We need some notation before describing several Ny (k)-modules. For
i € Z/k7Z, introduce formal inverses of the arrows a; (respectively b;), written af
(respectively b7). The head (respectively tail) of an arrow, c, is denoted /(c) (respec-
tively #(c)), and we define A(c*) = t(c) (respectively #(c*) = h(c)). We form formal

paths of length t, ¢,..., ¢,, where each ¢; is of the form ¢ or ¢* for some arrow
¢ and #(c;) = h(cjr1). Given a formal path c,..., ¢, we define its inverse to be
¢, ..., ¢}, where (¢*)" equals c.

3.5. For t <k, let S, be the set of formal paths c; ... ¢, such that if ¢; = a; (respec-
tively b;) then c¢;;y is either a;_y or b} | (respectively bi1 or aj ), and similarly if
¢j = aj (respectively b7). Furthermore, if ¢ = k then exclude from S the formal paths
consisting entirely of a’s or entirely of »’s and also the inverses of such formal paths.
For ¢ < k (respectively ¢ = k) let p, be the equivalence relation on S, which identifies
a formal path with its inverse (respectively its cyclic permutations and their inverses).
Let W, be a set of equivalence class representatives in S; for p,.

3.6. Fort < k,anelement C = ¢, ...c, € W, defines a ¢ + 1-dimensional indecompo-
sable string Ny (k)-module S#(C). A basis is given by {zy, ..., z;} where, for 1 <j <1,
the element z; is concentrated at vertex /(c;), and zy is concentrated at vertex #(cy).
For 1 <j<tif ¢;=c, an arrow, define ¢(z;) = z;_1, whilst if ¢; = ¢*, define ¢(zj—1) =
z;. All other arrows in Q act as zero.

Figure 1.
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3.7. Fort=k,andelement C = ¢y, ..., ¢, € W} together with a scalar A € I.*, define
an indecomposable band Ny (k)-module Bd,(C). A basis is given by {zo, ..., zx_1}
where, for 0 <j <k —1, the element z; is concentrated at vertex A(c). If cx =c,
an arrow, define c¢(z9) = Azx_y, whilst if ¢, =c¢*, define c(zx_;) = 27 'zp. For
1<j<k-—1, if ¢g=¢, an arrow, then c(z;) =z, whilst if ¢;=c¢* define
c(zj—1) = z;. All other arrows of Q act as zero.

3.8. The algebra Ny (k) belongs to a family of tame algebras called string algebras.
Any non-zero indecomposable Np (k)-module of dimension no greater than k is
isomorphic to either St(C) or Bd,;(C) for some unique C and 4 [6, Section 3] (see also
[2]). Observe that the modules St(C) admit a Z-grading compatible with the Z-grading
on Ny, (k) introduced in 3.3.

4. The Reduced Enveloping Algebra

4.1. Let y € 3[,(I)* be the functional vanishing on upper triangular matrices and
defined as follows on the strictly lower triangular matrices

I fi=j+land I <j<n—2,
(E;j) = { 0 otherwise.
Let P (respectively PT) be the weight lattice (respectively dominant weights) of
SL,(I,) with respect to the standard choice of torus and Borel subgroup. Let
{w1, ..., @,—1} be the fundamental weights and let p = @ + - - - + @, _;. The Weyl
group W is the symmetric group &, acting on P. The W-orbit through A€ P
contains a unique representative in P*. We also need a dot action given by

wel=wll+p)—p, weW, ieP.
4.2. Let B be the flag variety. As a set this consists of all Borel subalgebras of 3(,(L),

that is those subalgebras which are conjugate under SL, (L) to the upper triangular
matrices. The cotangent bundle of B is naturally identified with the variety

N = {(x,0): x(b) = 0} C 8L,(L)* x B

where the first projection m; becomes the moment map. The Springer fibre B, is the
subvariety ny!(x) of B.
There is a simple way to parametrise 3,, [24, Section 6.3]. Given a basis u; of L”,

let F(uy,...,u,) be a flag with the span of uy, ..., u; as the k-dimensional space.
Let v; be an element of the standard basis of L" so that E; ;v; = v;. We introduce
the flag

Frow=F@1,02, ..., Uk—1, Uk + 0Wp, Upy Vk1s Ukg 25 -+ - » Up—1)
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for all (k, o) € ({1,...,n—1} x L) U{(0, 0)}. The irreducible components of B, are
projective lines I, 1 < k < n— 1 where

O = {Fpko o€ LYU{F,—k_10}.

For 2 < k <n—1 the components Il;_; and II; intersect transversally at a point
DPik—1,k = Fuk,0. Components Il; and II; with |i —j| > 1 do not intersect.

Consider the following one parameter subgroup of the diagonal matrices in
SL,(L)

To= (1) =tE11 +tEsp+ -+ tEy i o1 + 7 7" Eyy T € L)
Notice that Ty stabilises B,, since v(t) - Fiy = Fjrna.

4.3. Let us further assume that L = C. By the Jacobson-Morozov theorem there
exists an 3lp-triple e, &1, f € 3[,(C) such that Tr(ex) = y(x) for each x € 3[,(C). Let
N be the variety of nilpotent elements in 3[,(C). Let

Vy = {w e shy(O)" | Y € 80,(C) u(lx, /1) = x(x. /D}-

By [24, Theorem 6.4 and Section 7.4] V, is a Kleinian singularity of type 4,_; and
A, = n7'(V,) is its minimal desingularisation with the exceptional fibre B,.

4.4. For the rest of this section we will assume that p > n. We expect, however, all
results to hold under the weaker condition that p and n are coprime. The proof of
Proposition 4.13 is the crucial point where we require the restriction p > n and all
other results of this section, up to 4.17 inclusive, will continue to hold if this pro-
position can be proved under the weaker hypothesis.

4.5. We are going to work with the Lie algebra 3[,(K) now. For any element
X € 30,(K) let X! € 3[,(K) denote the pth power of X.

Let U(31,(K)) be the universal enveloping algebra of 3[,(K). For any X € 3[,(K)
the element X? — XV e U(3[,(K)) is central. We will study representations of the
following subregular reduced enveloping algebra

o UEL(0)
1 (Xr — Xl — X(X)p X e Q’In(K))

Let A = P/pP, an [F-vector space, and let y: P — A be the quotient map. Both the

usual and the dot actions of W on P pass to A. Let (1) be the stabiliser of 1 € A
under the dot action. Set

C():{ieP:/H—p:Zr,»wiwithri>Oandp>(r1+-~~+Vn—1)}~

A weight in the interior of Cj is called regular.
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4.6. BLOCKS

By [5, Theorem 3.18] we have a block decomposition
U= @BN’
7

where 4 runs over a set of representatives of the We-orbits on A.

Let §) be the diagonal Cartan subalgebra of 3[,(K). The Weyl group acts by alge-
bra automorphisms on the polynomial ring S(§). For 4 € A the partial coinvariants
give a local, graded algebra

S
s
Thanks to ([19], Theorem 10) and ([22], Theorem 8.2) there is an injective algebra

homomorphism C; — B, ;, whose image is central in B, ;. Henceforth, we will
identify C; with its image in B, ;.

)

4.7. We will be concerned with the category of finite-dimensional U,-modules, U, -
mod, or more specifically the subcategory of B, ;-modules. These categories have
graded analogues which we introduce now.

By construction y(tXt~') = y(X) for all X € 3[,(K) and ¢ € T,. As a result the
action of T on U(8[,(K)) passes to an action on the quotient U,.

Following Jantzen [12], a U,-To-module is a finite-dimensional vector space V" over
K that has a structure both as a U,-module and as a rational Ty-module such that
the following compatibility conditions hold:

(1) We have #(Xv) = (tXt ")t for all X € 3[,(K),t € Ty and v € V;
(2) The restriction of the 3[,(K)-action on V to Lie(Tp) is equal to the derivative of
the Ty-action on V.

We obtain the category U,-Ty-mod, whose objects are the U,-Ty-modules and whose
morphisms are the Ty-equivariant U,-module homomorphisms.

For i € 7, there are shift functors [] : U,-Ty-mod — U,-To-mod. These send a
given U,-Ty-module V' to the object having the same U,-module structure but with
Ty acting by v(t)v = t”v(t)v for v(r) € Ty and all v € V. This makes U,-Ty-mod a
7~category.

By [9, 9.3] the full Z-subcategory B, ;-To-mod of U,-To-mod is well-defined.
Its objects are B, ;-modules with a compatible rational Ty-action. The projection
functor pr;: U,-Ty-mod — B, ;-Tp-mod is a Z-functor.

48. Let F: U,-To-mod — U,-mod denote the functor which forgets the Ty-struc-
ture. The objects of U,-mod which are in the image of F are called gradable. 1t fol-
lows from ([10], Corollary 3.4) and ([15], Corollary 1.4.1) that the simple U,-modules
and their projective covers are gradable. Moreover, any lift of a simple U,-module is
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simple in U,-Tp-mod and any lift of a projective indecomposable U,-module is pro-
jective indecomposable in U,-Ty-mod. Suppose M is gradable, that is there exists a
U,-To-module V' such that F(V) =M. Then, by ([15], Remark 1.5), we have
F(soc V') =soc M and F(rad V) =rad M.

For any M,Ne U,-Tp-mod, using the notation of 2.3, we have
Homy, (F(M), F(N)) = & Homy,-7,(M[i], N), ([10], Section 2).

4.9. The category U,-To-mod admits a contravariant self-equivalence, D whose
square is canonically isomorphic to the identity functor, ([13], Sections 1.13 and
1.14). Moreover D fixes the simple modules in B, ;-Ty-mod, ([13], Proposition 2.16).

4.10 TRANSLATION FUNCTORS

Using the map y: P — A, we will abuse notation by writing B, ;-To-mod and pr, for
A € P (we should really take the image of 4 under /). Given A, u € Cy we define a
translation functor

T!: B, ;-Ty-mod — B, ,-To-mod

by TH(V)=Pr,(EQ® V), where E is the simple SL,(K)-module with the highest
weight w(u — A) € P+ for some w € W.

Note that we get (in general) more than one functor B, ;-Ty-mod — B, ,-Ty-mod
for fixed 4 and w: if u and y' are two distinct weights in Cy with y(u) and (i) in the
same W-orbit then T4 and T " will be two (in general) distinct functors from B, ;-
Ty-mod to B, ,-To-mod = B, ,,-Tp-mod.

4.11. BABY VERMA MODULES

Given b € B, and 4 € P we have a one dimensional representation of Upy(b), the sub-
algebra of U, generated by the elements of b, described as follows. Let g € SL,(K) be
such that g conjugates b to the upper triangular matrices in 3(,(K), say b.. Thereis a
one dimensional Uy(b,)-module which is annihilated by strictly upper triangular
matrices and on which diagonal matrices act via y(4). Conjugation by g provides
an isomorphism between Uy(b) and Uy(b,), and so gives a one dimensional Uy(D)-
module, say K. It can be checked that this module is independent of the choice
of g € SL,(K). Induction yields a baby Verma module

V(b, A) = UX Quy(b) K;

This is a B, ;-module on which C; acts by scalar multiplication.

4.12. The module V(b,, 1) can be given the structure of a B, ;-Ty-module where T
acts on 1 ® 1 through A. Set V(by, 1) = D(V(b,, 1)) (it follows from [12, 11.16(1)]
that this is a baby Verma module with respect to the Borel subalgebra obtained
by conjugating b, by the Coxeter element s;s7...5,_1).
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PROPOSITION [13, Theorem 2.6]. Suppose 1€ Cy with 2+ p =>  riw; and let
ro=p—(1+--+rp1).

(i) The category B, ;,-To-mod has simple modules Ly, Ly, ..., L,_; (up to isomor-
phism and shift) where the module L; has dimension p™ ==2/2p,_\_: (if ry_i_i = 0
then L; should be omitted from the list of simple modules).

(it) For each i between 0 and n — 1 there exists a uniserial module V; € B, ;-To-mod

whose Loewy layers are L;, Ly [—1], ..., Li_1[1 — n] (count the subscripts modulo
n, and omit V; and L; whenever r,_i_; = 0).

(i) For each i between 0 and n — 1 there exists a uniserial module V] € B, ;-To-mod
whose Loewy layers are L;, Li_[1], ..., Liyi[n — 1] (count the subscripts modulo
n, and omit V| and L; whenever r,_;_; = 0).

(iv) For any p € P such that y(u) and y(A) are in the same We-orbit there exists a
unique i and j € 7, (respectively i’,j'") such that V(by, p) = Vil jl (respectively
V(0w ) = VL))

4.13 ENDOMORPHISMS

Let 4 € P and let Z, be the centre of B, ;. Recall C; € Z;. Let M be in B, ;-Tp-mod.
There is a homomorphism

011 Z, —> Endy,(F(M)),

sending z € Z, to the endomorphism (m +—— z - m).

PROPOSITION. Let A€ Cy and Q be a projective indecomposable module in
B, ;-To-mod. The homomorphism

09: Z; — Endy,(F(Q))

is surjective.

Proof. To make the paper as self-contained as possible, we will give a direct proof
of this for regular weights A, since the general case relies on an unpublished result of
Jantzen and Sorgel, [16].

It is enough to prove this in the ungraded case. Let Py, ..., P, be all distinct (up to
isomorphism) projective indecomposable B, ;-modules. The algebra C; has a simple
socle [8, Corollary 3.9]. Therefore if Ann¢,(P;) is non-zero it must contain the socle
of C;. The equality 0 = Annc,(B,,;) = N; Annc,(P;), implies that C; acts faithfully
on at least one projective indecomposable, say Py. By Proposition 4.12 and a result
of Jantzen ([12], Proposition 10.11) the dimension of Endg, ,(Py) = dim C;, so Z;
generates Endp ,(Po).

Now assume 4 is regular. It follows from ([13], Section 2.3) that we can find a
translation functor 7 such that T(Py) = P; and, by ([12], Section 11.21), that T is
a self-equivalence of B, ;-mod. Since Z, can be identified with the endomorphism
ring of the identity functor on B, ;-mod, conjugation by 7 induces a ring auto-
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morphism of Z;, say T. It follows that Endp ,(P;) is generated by T (C)) € Z,, as
claimed.

If A is not regular the above argument fails since it need no longer be true that we
can find a translation functor 7 which is a self-equivalence and sends Py to P;. In this
situation we use the following fact, ([16], C.6 Claim 2): if the highest weight of P; (in
the graded category) belongs to Cy and does not lie on the affine wall, then the cano-
nical map C; — Endg,,(P)) is an isomorphism. Hence, it is enough to show that we
can find a representative of the isomorphism class of P; whose highest weight belongs
to Cy and does not lie on the affine wall. A straightforward calculation shows that
this follows from ([14], Section 2.3). O

4.14. It is possible to slightly weaken the hypothesis p > n when using the results of
[16], and hence the hypothesis of this whole section. The proof of Jantzen’s results,
however, do not apparently generalise to the best case where p and n are coprime.
We leave these details to the interested reader.

4.15. Let J be the unique maximal ideal of Z,.

LEMMA. Let P;bethe projective cover of L;in B, ;-To-mod. Then[P;/JP; : Li| j11= o).
Proof. It is enough to prove this for ungraded B, ;-modules. Suppose that
F(L;) is a composition factor of F(P;)/JF(P;). Thus F(L;) appears as a direct
summand of rad” F(P;)/rad” ! F(P;) for some m € N. Hence we have a commutative
diagram

Y 7725

Thanks to Lemma 4.13 there exists z € Z; such that the above endomorphism of
F(P;) is multiplication by z. Then z¢ J since, by hypothesis, the composition factor
F(L;) does not lie in JF(P;). Since Z; is local it follows that the endomorphism is an
isomorphism and so F(L;) lies in the head of F(P;) as required. O

4.16. TWO CENTRAL REDUCTIONS

Let J be the unique maximal ideal of C; and recall that J is the unique maximal
ideal of Z;. We introduce two central reductions
0 B, U — B,

A =

= jBX’i s LA — JBZ’/l .

Since J and J are homogeneous both (7%, 4 and U, ; inherit Z-gradings from B, ;. The
category of graded modules U, ;-To-mod is thus a full subcategory of B, ;-To-mod
and there is a Z-action on U, ;-Ty-mod, inherited from B, ;-To-mod.
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4.17. The main result of this section follows.

PROPOSITION. Suppose A € Cy with A+ p => riw;, and let ro =p— (r1 +---+
rn—1). Let k be the number of non-zero r;’s. Then U, is Morita equivalent to the
no-cycle algebra Nx (k). Moreover, if 1 is regular there is a Z~equivalence of categories

U, ;-To-mod — Nk (n)-grmod.

Proof. Let A be a finite dimensional algebra with simple modules Sy, ..., S,. The
Gabriel quiver of 4 is the directed graph with vertices labelled from 1 to r and
dim Exti, (Si, Sj) edges from i to j. By ([3], Proposition 4.17) 4 is Morita equivalent to
the the path algebra of its Gabriel quiver factored by some admissible ideal, that is
an ideal generated by linear combinations of paths of length at least two.

Recall the notation of Proposition 4.12. Let 0 < i} < i, < --- < iz < n— 1 be such
that L; # 0, or, equivalently, r,_j_; # 0. Set s, = i;y; —i; for 1 <t <k and set
sk =n+ i — i Since L; appears only once as a composition factor of Vi, Z(B, ;)
acts by scalars on V;, making V; a U, ;-module. By [13, Proposition 2.19], for
t # ¢ modulo k and j € 7

K, iff=t+1,j=s,0ort=1t—1,j=—s,_1,

Ext! Li[j. L) = :
Uz./z—To( L Liy) 0, otherwise.

Thus the Gabriel quiver of U, ; is of the form 3.1, possibly with loops added at the
vertices. Let B be the quotient of this quiver which is Morita equivalent to U, ;. We
will show B is isomorphic to Nk (k).

The projective covers of the simple B-modules are spanned by the paths ending in
a fixed vertex. Hence, Lemma 4.15 shows that there can be no loops at vertices and
further, that B is therefore a quotient of Nx (k). In particular, its dimension is at most

k(2k —1).
Let 7}, be the kernel of the sum of two projections V;, @ V| — L;. By Proposition
4.12

[A(T,) : F(L; )] = ﬁ fff ;l f ;l

Since F(T;,) is a quotient module of F(P;,), the dimension of B can be estimated by

k
dim B=End (@ F(P,,)) =Y [F(P,): F(Li)] > Y _[F(T;): F(L;,)]|=k(2k—1).
=1

Lt tt

We deduce that B = Ng(k), proving the first statement of the theorem. This also
proves that T, is the projective cover of L; in U, ;-Tp-mod.

Let /4 be regular, so that k = n, and let T'= @T;,. Thanks to 2.3 and 4.8 the algebra
E =Endy,,(F(T))** has a Z-grading. By ([10], Theorem 5.4) U, ;-To-mod and
NK(n)-mod are equivalent Z-categories if E = Ng(n) as a Z-graded algebra.
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But, up to a choice of scalars, b; corresponds to a U, ;-Ty-module homomorphism
sending T;[1] to T;11, and g; corresponds to the a U, ;-To-module homomorphism
sending T, [—1] to T;. This proves the second claim. O

4.18. TWO CENTRAL REDUCTIONS (II)

In general the inclusion C, € Z; is strict, ([8], Corollary 3.9). However, the natural
homomorphism U, ; — U, ; is an isomorphism. This follows from the fact in the
proof of Proposition 4.3 that the map

01 : C;, — Endg,,(F(P))

is an isomorphism for any projective indecomposable module P. The arguments
of 4.15 and 4.17 are then valid for 017;,, from which the isomorphism follows.
We expect this continues to hold under the weaker hypothesis that p and n are
coprime.

5. Grobner-Shirshov Bases

5.1. We are going to use Grobner-Shirshov bases for associative algebras (see [4]
for two-sided ideals and [17] for one-sided ideals). In this section we quickly
explain the technique to make our paper self-contained. Although the version
for one-sided ideals [17] is sufficient for our ends, we generalise to arbitrary mod-
ules to avoid repetitions.

5.2. Let R =1.{X}, X3, ..., X)) be a free associative algebra. Let F be a free R-mod-
ule with generators Y7, ..., Y. Although / and k are natural numbers here, one can
use, with certain care, the technique for transfinite ordinals.

Let R be the set of monomials in R, F the set of monomials in F. The set R U F
admits a partial multiplication with a two-sided unit 1 (one agrees that m1 = m for
m € F). We always make the assumption that a product is defined when we write the
product. We start with a linear order > on R U F such that

e VzeRUF z > 1g;
® Z| > Zp ==>WZIZIU > WI)t,
e Vz e RUF the set {w e RU F|z > w} is finite.

A degree lexicographical order is most practical but there are different orders. For
a nonzero element f of RU F we denote the highest term of f by f.

5.3. A pair of subsets S C R and 7 C F determine an algebra 4 = R/RSR and a
left A-module M = A Qg (F/RT)= F/(RT + RSF). The technique of Grébner—
Shirshov pairs allows to solve questions about M by producing an explicit basis of M.
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Each fe SUT gives a rewriting rule f—>f—f. We write a~~b if b can be
obtained from a by using rewriting rules. Note that one cannot rewrite a monomial
ftunlesst=1orfeS.

5.4. COMPOSITION

For certain f,ige RUF, we RUF, we can form a composition (f,g),. If
w=fV=Wg=WZV for some W, Z, Ve RUZF with Z # 1 then the composition
is

(/.8 =1V - Weg.
If w= WfV = g for some W, V € RUF then the composition is

(f, 8 =WfV—g

These two cases are mutually exclusive.

A pair (S, T) is a Grobner—Shirshov pair if (f; g),,~» 0 for all possible f,g € SUT
and we RUF.

The following version of Shirshov’s composition lemma can be proved by stan-
dard methods [4]. If Kk = 1 and T = @ then the statement is the standard version of
Shirshov’s composition lemma [4]. If Kk = 1 and T arbitrary then it is a version for
left ideals [17].

5.5. SHIRSHOV’S COMPOSITION LEMMA

For S and T as above, we consider the set of monomials
B={ZeF|Nfe SUTYW,V Z+ WfV}.

If (S, T) is a Grobner—Shirshov pair then the image of B is a basis of M as an
[Li-vector space.

Moreover, for every (S, T') there exits a Grobner—Shirshov pair (S’, 7”) such that
RSR = RS'R and RSF+ RT = RS'F+ RT'.

5.6. BUCHBERGER’S ALGORITHM

A proof of existence of a Grobner—Shirshov pair uses transfinite recursion, called
Buchberger’s algorithm. It proceeds as follows. One starts with (Sy, 7o) = (S, T').
Given (S,,, T,;,) we produce the next pair (S,,41, T;ur1) such that RS,,R = RS, 1 R
and RS,,F+ RT,, = RS,,-1F+ RT,,;,. Consider all possible compositions (f, g),,
with f, g € S, U T,,,. To each such composition, apply a sequence of rewriting rules
v— v—v with v e S,,UT, so that (f, g),,~ [/, g, and [f, g],, cannot be rewritten
any further. Note that the element [ £, g],, is not canonical since we choose a sequence
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of rewriting rules to use. Another sequence can give a different answer. Define the
following sets

Lo ={[f.&ly | f.& € Su T, [f. 8], # O},

Jn=1{g 1/, 8€SuUTn, (}.9,=WfV—g [} gl #0}

Now we can make the recursion step,

Sm-H = (Sm ) (Im N R)) \ Jnn Tm+l = (Tm ) (]m N ]:)) \ Jm'

5.7. TERMINATION OF BUCHBERGER’S ALGORITHM

If (S, T) is a Grobner-Shirshov pair then S} =Sy, 77 = Ty, and the procedure
terminates immediately. If S is a Grobner-Shirshov basis (equivalently (S, @) is a
Grobner—Shirshov pair), and R/RSR is noetherian then the procedure terminates
after finitely many steps.

6. Hodges’ Quantisation
6.1. KLEINIAN SINGULARITIES

Let { € K be a primitive root of unity of degree n. Set

e fee= (5 20))

a subgroup of SLy(K). The natural action of I' on K? induces an action on
K[X,Y]:g-X=(X,g-Y={"Y. The invariants of K[X, Y] under this action are
generated by X”, XY and Y". Thus, the orbit space K?/T" has co-ordinate ring

K[A, B, H]

2 o n n1 Ay
O(K?/T) = K[X", XY, Y"] T 0t

The variety K?/I" has an isolated singularity at 0, a Kleinian singularity of type A,_;.

6.2. Let v(z) € K|z] be a polynomial of degree n, whose roots lie in . Following
[11,1], we define an associative algebra, T(v), over K with generators a, b and £ satis-
fying the relations

ha = a(h + 1), hb = b(h — 1), ba = v(h), ab = v(h — 1). (1)

There exists a filtration on 7(v) such that gr(7(v)) = K[4, B, H]/(AB — H"). In other
words, T(v) is a deformation of a Kleinian singularity of type 4,_;.

Using the translation 4 + & — 1 we will assume without loss of generality that 0 is
a root of v(z).
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6.3. A 7Z-CATEGORY

There is also a Z-grading on T(v): we assign a degree n, b degree —n and / degree 0.
We want to study a category of graded T(v)-modules similar in spirit to the construc-
tion of B, ;-Ty-mod in Section 4.8.

Since p and n are coprime, we can find an inverse of 7 in I, say ¢. We will consider
the full subcategory of finitely generated Z-graded T(v)-modules consisting of
objects

V=@,
JjeZ

such that 4 acts on M, through scalar multiplication by j¢. Note that a - M; € My,

(respectively b - M; € M,_,) showing that this definition is compatible with the relation

ha = a(h + 1) (respectively hb = b(h — 1)). Denote this category by 7(v)-grmod.

For i€ 7, there is a shift functor [i]: T(v)-grmod — T(v)-grmod: given M €
T(v)-grmod, set (M[i]); = M;_; for all j € Z. This makes T(v)-grmod a Z-category.
We let F: T(v)-grmod — T(V')-mod denote the functor which forgets the
Z~structure.

6.4. We will be interested in a finite dimensional central quotient of T(v).

LEMMA 6.1. The centre of T(v) is generated by a”, b? and h? — h. It is isomorphic to
the algebra of functions on a type A, Kleinian singularity.

Proof. 1t is straightforward to check that a”, b? and h” — h are central elements.
By construction T(v) is a free K[A#]-module with basis {a’, b/ : i, j = 0}. It follows from
the relations in 7(v) that the degrees of the homogeneous components of any non-
zero central elements must be a multiple of pn. Since a” and b? are central we must
find which polynomials in 4 are central. Let g(k) be such a polynomial. Since
aq(h) = q(h + 1)a we deduce that the roots of ¢ are invariant under integer addition.
It follows that ¢(h) is a polynomial in #? — & as required.

Using the defining relations once more we have

a’b? = v(ho(h+1)...0(h+p —1).

Since v(h) has degree n in A, it follows that a?b? = (h”? — h)". Hence, the centre of
T(v) is a quotient of the ring of functions of a Kleinian singularity of type 4,_;.
Any proper quotient of the ring of functions on a Kleinian singularity has dimension
0 or 1. Thus since T(v) is finitely generated over its centre and has Gelfand—Kirillov
dimension 2, the centre must be the entire ring of functions. O

6.5. Now we can introduce the protagonist of this section:

_ T(v)
O = @b =iy
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Since the ideal (a?, b?, h? — h) is homogeneous, #(v) inherits a Z-grading from 7(v).
We denote the full subcategory of T(v)-grmod consisting of Z-graded #(v)-modules
by #(v)-grmod.

6.6. In order to study #(v) we introduce an intermediate algebra
T(v) = T(v)/(a”, b"). 2

Let us use a degree lexicographical order on non-commutative associative mono-
mials in « of degree 1, b of degree 2n — 1, and / of degree 1 with & > b > a.

The relations of (1) already form a Grobner—Shirshov basis. It follows that mono-
mials not containing ha, hb, ba, or ab as submonomials form a basis of T(v).

For any polynomial f{z) € K[z] and a positive integer i, we denote

i—1 _ i—1 _
fo@ =[]fe+b. fin@ =] [fiz k).
k=0 k=0

LEMMA 6.2. The following relations, together with those in (1) and (2), form a
Grobner-Shirshov basis of Z(v),

al~v_y(h—1) fori=1,...,p, 3)
b v (h) fori=1,...,p—1. 4)
Proof. Let us obtain all relations in (6.6) recursively. Fori=1, ..., p,

(ba — v(h), a”~ vy (h = 1)) pao-ipn = ba? " v_y(h — 1) — (ba — v(h))a? =~ h"
= ba" " (v_y(h — 1) = ") + v(h)a? = " o v(h)a? = oy (h — 1) — h™)+
+ v(h)a? " h" = v(h)a? " oy (h — 1)~ av(h + DaP = 2oy (h— 1)~ - -
o aP (b4 p—i— Dvyth—=1) = ap”"lv(_i_l)(h - 1.

Similarly, fori=1,...,p — 1, (6" v (h), ab — v(h — 1)) gpr-ipni ~> bP~ " o1y (h). Now
we need to show that all remaining compositions are trivial. The highest terms of
defining relations are ha, hb, ba, ab, a?~'h", and b?~'h™ . Let us make certain that all
compositions are trivial. Firstly,

(ba —v(h), ab — v(h — 1))y, = bv(h — 1) — v(h)b~»>bv(h — 1) — bv(h — 1) = 0.
Similarly, (ab — v(h — 1), ba — v(h)) .~ 0. Then

(hb — bh + b, BP0 (Wi = hBP~(H" — v () — bhBP= "B 4 P s
<> b (h — p 4 D" — v () — (h— p+ i+ DA™ 4 b = b ugy () 0.
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Analogously, the compositions (a”'v_y(h), ab —v(h —1)),,, and (b v (h),
ab— v(h — 1)), are trivial. Then
(ha—ah—a,ab—v(h—1)),.
= ho(h—1)— ahb — b ho(h — 1) — a(bh — b) — ab
= ho(h— 1) — abh-0.

Another possible composition to consider is

(ha — ah — a, a”~"v(_iy(h))par-ipni
= ha?~'(v_p(h) — h™) + aha?~" " + a?"Th" s
s aP~ i (h— D)(v—i(h) — Y+ (h—i— DA™ + 1"
= Clpiil)(_l')(h)(h —0)~0.
The remaining compositions (ha — ah — a, a?~"h™) ,p-ipuiz, (hb —bh~+b, a?~"h™) iy,

(ha — ah — a, bP~"h™)yp-ipuigs and  (hb, bP~'h"),, pm, are trivial by a similar
argument. J

COROLLARY 6.7. The dimension of T(v) is np*. Moreover, there is a direct sum
decomposition

)4 -1
KN#(li) = [@ aP*iK[h]/(l)(i)(/’l — 1)):| @ [@ ij[/’l]/(U(p_j)(h)):| . (5)
i=1 j=1

Proof. The direct sum decomposition (5) follows at once from the description of
the Grobner—Shirshov basis of T(v). Adding dimensions of summands, we arrive at
the dimension of T(v), that is 2(n +2n 4+ ---(p — D)n) + pn = np*. ]

6.8. If we write ged( f(Z), g(Z)) for the greatest common divisor of two polynomials
then decomposition (5) is inherited:

- a?~ K [h] 7 AN
=8B tgeaon— 1.~ © D et . —wy

J=1

(6)

This decomposition allows one to compute the dimension of #(v).
Letry,...,rp—1 € Zbesuch that; >0and p >r +---+r,_; and
n—1
w2 =l +-+7).

i=0

Setro=p—(r1+--+r,_1).

COROLLARY. The dimension of t(v) is 2p* — Z;’;OI 2.

1
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Proof. If f(z,i) =z — (fi + - - - +7;) then the roots of f((z, i) are r{ +--- + 74, ...,
ﬂ—l—---—kr_,'—f. If j = r; then ﬂ,...,ﬁ,...,ﬂ—i—n-—kﬂ—fare already roots of
Ji(z, i+ 1). Thus, the dimension of the first summand in (6) is

n—1
PP (424 (=Dt ritriter)
i=0

where the number of summands in the parenthesis is p. This sum equals
PP+ (p - 32, Similarly, the second summand has dimension p? — (p+
S 2)/2, so that the total dimension is 2p? — 3"/ 2. O

l

6.9. BABY VERMA MODULES (II)

Let u (respectively «') be the subalgebra of #(v) generated by a and & (respectively, b
and /). Similarly let U (respectively, U’) be the subalgebra of (v) generated by « and
h (respectively b and h).

We introduce two sets of baby Verma modules. For 1 € 7 let K (respectively, K))
be the one-dimensional U-module (respectively, U'-module) with basis |0) (respec-
tively |1)) and

110y = A|0), al0) = 0, hll) = A0, bl = 0.
The baby Verma module V(1) (respectively V(1)) is

V(A) = T(v) @y K, (respectively V(1) = T(v) @ K)).

LEMMA 6.10. (i) If/_l is not a root of v(z) then V(1) =0, whilst z'f;l is a root of
v(2) then V(J) has a basis of p elements |0), b|0), ..., bP~1|0). We have

ab®10y = v(A — k)b*10),  hb*10) = (4 — k)bK|0).

(i1) If/_l — 1 is not a root of v(z) then V(1) =0, whilst ifi — 1 is a root of v(z) then
V(2) has a basis of p elements |1),a|l), ..., a’~'|1). We have

bd"|1y = v(A +k — Dd 1), hd"|1) = A+ k)d|1).
Proof. (1) For the generator |0) € V(A) one observes that
0 = bal0) — (ba — v(1))|0) = v(h)]0) = v(A)|0).

Thus if 4 is not a root of v(z) then |0) = 0 and V(1) = 0.

Let 4 be a root of v(z). Let S be the Grobner—Shirshov basis of T(v) constructed in
Lemma 6.6. The module V(1) is determined by the pair (S, {(h — 2)|0), @|0)}) and
this turns out to be a Grobner—Shirshov pair. Indeed, there are three elements in
S whose leading monomials end with a:

(a]0), ha— ah— a), = ha|0) — (ha — ah — a)|0) = (ah + a)|0) ~»(La+ a)|0) ~»0,
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(al0), ba — v(h)), = bal0) — (ba — v(h))|0) = v(h)|0)~»¥(2)|0) = 0,
(a”, al0)), = a’|0) — a’~'al0) = 0.

Elements of S whose leading monomials end with /£ fall into two types:
(@” o (h = DI0), (h = 2)[0), = Ga”"h"=" + @’ (v (h = 1) = h"))[0) ~»
V(oA — Da’=10) 0,
(B vy (). (h— 2)10)), = (B~ W=+ b2~ (15 (h) — "))|0) ~>b" "' 13(4)|0) =0.

Direct computation now yields the formulas for the action.
(i1) The proof is analogous. ]

Thanks to the lemma we can consider V(1) and V(A) as objects in T(v)-grmod.
Indeed if V(2) (respectively V(1)) is nonzero we let h¥|0) (respectively ¢*|1)) span
the (4 — k)n (respectively (A + k)n) homogeneous component.

6.11. Under our assumptions, we have (A—k)’ =i—k. It follows that
(h? — h)V(A) = 0 (respectively (h? — h)V(L) =0), and so V(A) and V() are objects
in #(v) — grmod.

PROPOSITION. Let v(z) = H;;_Ol(z —(F1+---+7) be as in 6.8 and let rg =
p—(r1+- -+ 1)

(1) The category t(v)-grmod has simple modules Ly, . .., L, (up to isomorphism and
shift) where the dimension of L; is rn__; (if ru—1—; = 0 then L; should be omitted
from the list of simple modules).

(ii) For each i lying between 0 and n—1 there exists a uniserial module
Vi € t(v)-grmod whose Loewy layers are L;, Liy1[—1], ..., Li—1[1 — n] (count sub-
scripts modulo n, and omit V; and L; whenever r,_j_; = 0).

(iii) For each i lying between 0 and n—1 there exists a uniserial module
V! e t(v)-grmod whose Loewy layers are L;, L;i_1[1], ..., Liyi[n — 1] (count sub-
scripts modulo n, and omit V| and L; whenever r,_i_; = 0).

(iv) For any A € 7. such that ) is a root of u(z) there exists a unique i and j € 7.
(respectively i',j") such that V(%) = Vi[ j] (respectively V(A + 1) = V[ j'].

Proof. Set Vo =V(0)and V; = V(r; +--- 4+ rn_1-i)|i]. Note that if r,_;_; = 0 then
Vi= Viy[—1]. Since every t(v)-module has a u-fixed point we see that any simple
t(v)-module is a quotient of F(V;) for some i (where F is the forgetful functor to
ungraded modules). By Lemma 6.10(1) F(V;) is isomorphic to K[b]/(b?) as a
K[b]/(b?)-module. Since K[b]/(b?) is a local algebra it follows that V; has a simple
head.
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In V; the element b™'-|0) is annihilated by a and belongs to the
n(ry + - - - + rp—1—i+1)) + pi component, so there is a graded #(v) homomorphism

9,’ : Vi+1[—1] —> Vl‘.

The cokernel of 0;, say L;, has dimension r,_;_; and is simple if r,_;_; # 0 since it is
generated by any basis vector 5|0) it contains. If r,_;_; # 0 it follows from Lemma
6.10 that L; has a unique u-fixed point, namely |0). Hence, if r,_;—; and r,_1_; are
non-zero L; and L; are isomorphic if and only if 7 = j. This proves (i).

Since V; is simple-headed, dim V; = p and 21":_01 r; = p the chain of homomor-
phisms

0i2 0;_3 0; 0;
Viall =n) = Vial2—n) = - =5 Vig[-1] — V;

proves (ii). The proof of (iii) is similar. Part (iv) is clear. O

PROPOSITION 6.12. Let v(z) = Hi”:_ol (z=0G1+---+T7)) be as in 6.8 and set
ro=p—1+--+r—1). Let k be the number of nonzero r;’s. Then t(v) is Morita
equivalent to Nx(k). Moreover, if k = n, there is a 7~equivalence of categories

t(v)-grmod —> Nx(n)-grmod.

Proof. Let 0<i) < --- <ip<n—1 be such that r,_;_; #0. Let Q; be the
projective cover of L; in #(v)-grmod. Recall the general formula, [3, Section 1.7]

k
dim /(v) = ) " dim Q; dim L;.

t=1

Let T;, be the kernel of the sum of two projections V;, & V| — L;,. Then T, has head
isomorphic to L; so is a quotient of Q;. By Lemma 6.9 and Proposition 6.11

dim T;, = 2p —ry—1—;,. Using Lemma 6.8 we find

k k k
Zdim Q, dim L; > Zdim T, dim L; = Z(Zp — i 1,
=1 =1 =1

k
=20 =Y ra,, =dim (v),
=1
proving that T;, = Q;.

Let T'= @T;,. The basic algebra of 7(v) is End,,,(F(T))°". Let b, (respectively a;) be
the homomorphism F(T;) — F(T;,,) (respectively F(T;,,) — F(T})) associated to
the composition factor F(L;) of F(T;,,) (respectively F(7j)) lying in the second
Loewy layer of F(V;.,) (respectively F(V})). It is straightforward to check that «,
and b;, together with the idempotents arising from the projections in
End,)(F(T)), generate the basic algebra and satisfy the relations of the no-cycle
algebra. Since

dim End,,(F(T)) = k(2k — 1)
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the first statement of the proposition follows. The second statement is proved in the
same manner as Proposition 4.17. O

7. Proof of Premet’s Conjecture

7.1. We require p > n for the following theorem. Thanks to 4.18 we can replace U, ;
with U, ; throughout, if we wish.

THEOREM 7.2. Let p > n. Suppose i€ Cy with .+ p=> riw; and let v(z) =
]_[f;ol (z—= @1+ ---+7)). There is an isomorphism

U,,, = Mat o212 L (1(V)).

Moreover, there is a 7~-equivalence of categories
U, ,-To-mod —> #(v)-grmod.

Proof. Setro =p—(r; +---+r,—1) and let k be the number of nonzero r;’s. Let
0<i <. <ikg<n—1 be such that r,__; #0. Let L;,...,L; (respectively
M, ..., M) be the simple U, ;-Tyo-modules (respectively graded #(v)-modules)
appearing in Proposition 4.12 (respectively Proposition 6.11) and let Py, ..., Py
(respectively O, ..., Q) be their projective covers. We have

12 —n—2 Zr ) P
U, = EndUZ,,-,(EB bal P;)p( )/ i) e Matp(”z,n,z)/z(Endyz)z(EBF(Pt) 1))
and
1(v) = End,)(®F(Q))" ).

Thanks to our construction of P, in Proposition 4.17 and Q, in Proposition 6.12 we
have a graded isomorphism

Endy, ,(@F(P)" ') 2 End ) (®F(Q)" '),

proving the first statement of the theorem, together with an equivalence. The equiva-
lence is a Z-equivalence by ([10], Theorem 5.4). O

7.3. EXTENSION TO TYPE B

For subregular representations of Lie algebras of type B, Jantzen has proved
an analogue of Proposition 4.12 and calculated several extension groups, ([13],
Section 3). Then, if we can prove an analogue of Proposition 4.13, it follows formally
from the arguments of Sections 4, and 6 and the above that the central reduction of
a block of a subregular reduced enveloping algebra of type B is a matrix ring over
a central reduction of Hodges’ deformation of a Kleinian singularity of type A.
Unfortunately, the proof of Proposition 4.13 does not immediately generalise to
type B since it is no longer true that we can find all highest weights in the funda-
mental alcove, Cy. For regular weights, however, this can be remedied as follows.
Let B, ; denote a block of a subregular reduced enveloping algebra of type B,
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associated to a regular weight A. Rickard’s results in ([23], Section 3) remain valid
in this situation. To check this requires the specific information on the wall-cross-
ing functors, denoted y; for 1 < i< n, provided by Jantzen in ([14], Section H).
Thus, for 1 < i< n, there are derived self-equivalences F; on the bounded derived
categories of B, ;-modules. In particular, given any B, ;-module M, F;(M) is the
complex y;(M) — M, the map being given by the counit of y,, Combining the
known behaviour of baby Verma modules under wall-crossing, [12, 11.20], with
existing results on filtrations of the projective indecomposable modules by baby
Verma modules, ([12], Proposition 10.11), it can be shown that, given two projective
indecomposable B, ;-modules Q and (', there are integers 1 <ij,...,i; <n such
that F;, ..., F;(Q) is quasi-isomorphic to Q’. Since it is known that the centre
of B, , is a derived-invariant, the proof of Proposition 4.13 can be generalised,
using the derived category, to deal with B, ;. As a result we find the central reduc-
tion of B, ; is a matrix ring over the central reduction of Hodges” deformation of a
Kleinian singularity of type A43,-;.

8. More on Baby Verma Modules

8.1. We want to study baby Verma modules in ‘general position’. To do so, we need a
general lemma.

LEMMA 8.1. Let A be a finite dimensional 1.-algebra and Y a connected algebraic
variety over L.. Suppose M,, o € Y, is a flat family of finite-dimensional A-modules
over Y. Then the Grothendieck group element [M,] € Ky(A) is independent of o.

Proof. Let B be the basic algebra of 4. There exists a (B, A)-bimodule N, flat over
A, such that the functor N ® 4 —induces an equivalence between the categories of
finite-dimensional 4-modules and finite-dimensional B-modules. Let K, = N ® 4 M,
a flat family of B-modules over Y. Given a primitive idempotent e € B, it suffices to
show that the dimension of eK, is independent of o € U, a Zariski open neigh-
bourhood of a point. Without loss of generality we can trivialise the family locally on
U, giving K x U. Then e defines an algebraic family of projection operators on the
finite dimensional vector space K,

ey k + pri(e- (k, a)).

Since the dimension of eK, is equal to the rank of ¢,, and the latter is constant since
Y is connected. O

8.2. Given A € X, it is an interesting problem to describe the isomorphism classes of
all baby Verma modules V(b, 1) as b runs over B,. If 4 is regular then the description
of B,, Proposition 4.12 and Lemma 8.1 show that, for every be B,

n—1

[V(0, ] =) [Li] € Ko(Uy.).

i=0
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Therefore, on passing to the no-cycle algebra, we see that such V(b, 1) corresponds
to a Ng(n)-module M(D), such that e;M(b) is one-dimensional for all i. Thanks to
Section 2, all modules of this dimension are known.

Let (k,) € ({1,...,n—1} x K}) U (0, 0) and let by, be the stabiliser of Fy . Sup-
pose first that o = 0. Since the torus T stabilises by o for any k, twists by elements of
T, provide a grading of V(0y. o, A). Therefore M(by ) is gradable and, by Section 3,
must be a direct sum of string modules if # is odd (note that some band modules are
gradable for even n). When 4 is regular, we expect that gradable band modules are
not baby Verma modules, and that baby Verma modules are indecomposable.

The generic case is dealt with in the following proposition.

PROPOSITION 8.3. Keep the above notation and let . € X be a regular weight,
Il <k<n-—1and o #0. Then the baby Verma module V(by ,, A) is indecomposable.

Proof. Tt follows from Section 3 that if M(by ;) is not gradable it is necessarily a
band module and, hence, indecomposable. Thus, by Proposition 4.17, it suffices to
show that V(by ,, A) does not admit a Ty-grading.

Suppose for a contradiction that V(b ,, A) admits a Ty-grading. Let L; be the
3[,(K)-subalgebra generated by E,_x.., En—k.n—k — Enn and E, ,_x. Any Borel sub-
algebra belonging to Il; is uniquely determined by its intersection with L;. Let
Ak = MEu—kn—k — Enn). A straightforward calculation shows that the restriction of
V(bg.y» A) to Ly has a direct summand isomorphic to the baby Verma module for
Ly induced from by, N Ly with highest weight A.

For t € T} the element #(1 ® 1) € V(by,, A) is a highest weight vector for the Borel
subalgebra ¢ - by ,, yielding an isomorphism V(by 5, 4) = V(¢ - bi 4, A). Since A is regular
A # —1,and so, by ([20], Main Theorem), the baby Verma modules for L induced from
different Borel subalgebras of L; with highest weight /; are not isomorphic. Hence, by
the last paragraph, the isomorphism V(by ,, 2) = V(¢ - Dy o, 1) forces V(by 4, 4) to have
infinitely many nonisomorphic direct summands, a contradiction. O
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