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SEMIDIRECT PRODUCT COMPAGTIFICATIONS 

F. DANGELLO AND R. LINDAHL 

1. Introduction. K. Deleeuw and I. Glicksberg [4] proved that if 5 
and T are commutative topological semigroups with identity, then the 
Bochner almost periodic compactification of S X T is the direct product 
of the Bochner almost periodic compactifications of 5 and T. In Section 3 
we consider the semidirect product S® T of two semi topological semi­
groups with identity and two unital C*-subalgebras S# and SS of W(S) 
and W(T) respectively, where W(S) is the weakly almost periodic func­
tions on S. We obtain necessary and sufficient conditions onsrf and Se for 
a semidirect product compactification of S® T to exist such that this 
compactification is a semi topological semigroup and such that this 
compactification is a topological semigroup. Moreover, we obtain the 
largest such compactifications. The largest such semi topological semi­
group compactification is induced by W*(S) and W(T), where Wa(S) is 
a translation-invariant unital C*-subalgebra of W(S). The largest such 
topological semigroup compactification is induced by Aff(S) and A(T), 
where Aa(S) is a translation-invariant unital C*-subalgebra of A(S), and 
A(T) is the Bochner almost periodic functions on T. These results are 
achieved via an internal characterization of the tensor product of two 
algebras of bounded complex-valued functions on two sets, which we 
obtain in Section 2. 

In Section 4 we obtain sufficient conditions for A(S@ T) to be the 
tensor product of A*(S) and A(T) and for W(S@ T) to be the tensor 
product of W'{S) and W(T). In these cases it follows that the Bochner 
and weakly almost periodic compactifications of S® T are semidirect 
product compactifications. We give an example showing that this is not 
generally valid and in the previous section we give examples where 
A*{S) = A(S) and W(S) = W(S). 

2. Tensor products of function algebras. For a set Z, let B(Z) 
denote the bounded complex-valued functions on Z, and let ^ be a 
unital C*-subalgebra of B(Z). (We impose the uniform norm on B(Z); 
that is, ||/||M = sup2£z |/(^)|0 We assume that any such 3) contains the 
constant functions. Let A ( ^ ) denote the structure space of 2iï\ that is, 
A ( ^ ) consists of all non-zero multiplicative linear functionals on Sf^ 

Received September 23, 1980 and in revised form November 4, 1981, May 28, 1982 
and July 6, 1982. The authors wish to express their sincere appreciation and gratitude to 
Robert Burckel for his help and encouragement during the preparation of this paper. 

1 

https://doi.org/10.4153/CJM-1983-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-001-7


2 F. DANGELLO AND R. LINDAHL 

the topology being the Gelfand (or weak-*) topology. Then A(i^) is a 
compact Hausdorff space and by the Gelfand-Naimark theorem [18], the 
Gelfand transform / —>/ given by 

fa) = r ( 0 , r Ç A(i^), / G ^ 

is an isometric, conjugate-preserving algebra isomorphism from 2f onto 
C(A(^ ) ) . Moreover, I(Z) is dense in A ( ^ ) , where 7 : Z - > A ( ^ ) is 
given by 

/(*)(/) = /(*). ^ Z , / G ^ . 

We call A ( ^ ) the ( ^ , I)-compactification of Z. The inverse Gelfand 
transform will be denoted by J*, and following the terminology in [1] and 
[2], we will refer to /* as the adjoint map of I. 

Until further notice our setting will be as follows. Let X and F be sets. 
Let se [resp. S] be a unital C*-subalgebra of B{X) [resp. B{Y)]. Let X 
be the (s/', 7i)-compactification of X and F be the ( ^ , /2)-compactifica-
tion of F. Given / ^ in5 (X X Y), x in X, y m F, set 

**(/) = M*,/), y G F 

and 

**(*') = M*'.?)* *' Ç X. 

Let 

^ = ( K £ ( X X F): ^ Ç f . x U ; ^ ^ , ^ F; 

and {F : y Ç F} is totally bounded i n J ^ j . 

F o r / i n J / , g in ^?, set 

/ ® g(*, ^) = f(x)g(y), (x, y) G X X F. 

Le t J^ ® Se denote the unital C*-subalgebra of B(X X F) generated by 

We will prove that <é = s/ ® Se\ 

PROPOSITION 2.1. ^ is a C*-subalgebra of B(X X F) containing 
s/ ® 38. 

Proof. It follows directly that *$ is a Banach space and is self-adjoint. 
Moreover, given h\ and hi in ^ , x(h\h2) = xhixh2 is in ^ for all x in X 
and ( M i ) v = *itf*2v is in s/ for all y in F. Since { V : y £ F} and 
{h*v : y G F} are totally bounded, so is {(hihïY : y Ç F}. Hence /h^2 is m 

fé\ which proves that ^ is a subalgebra of 5 ( 1 X F). Finally, ^ con­
tains J ^ ® 38 since / ® g is in ^ for each / in s/, g in 38. 
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SEMIDIRECT PRODUCT COMPACTIFICATIONS 3 

Let X X F denote the (<€, /)-compact!fication of X X F. We will 
show how to identify X X Y with X X Y. 

The following lemma will be used several times throughout the paper. 

LEMMA 2.2. Let E be a compact Hausdorff topological space and let &~ 
and ^ ' be two Hausdorff topologies on a set Z such that ?T' is weaker than 
3T. Also suppose that D is a dense subset of E and that \p is a continuous map 
from E into (Z, $~'). Then \p is continuous from E into (Z, ^~) if and only 
if {\f/(x) : x G D) is conditionally compact in (Z, ^~). 

Proof. If \f/ is continuous from E into (Z, ^~), then \p(E) is compact 
and hence closed in (Z, $~) since E is compact and &~ is Hausdorff. 
Therefore, \p{D) has compact closure in (Z,^7"). 

Now assume that yp(D) is conditionally compact in (Z, $~). Let x be 
in E and let (xa)a be a net in D with xa —> x. We show that ^(xa) —» ^(x). 

Suppose (\(/(xa))a does not converge to \p(x) in ( Z , ^ ) . Then there exists 
a^~-open neighborhood F of ^(x) and a subnet (xp)p of (xa)a such that 
\p(x$) is in Z ~ V for all £ (~ denotes complement). Since {\p(x) : x G D\ 
is conditionally compact in (Z,J?~) and Z ~ V isJ^-closed, there exists 
a subnet {xy)y of ( x ^ and a s in Z ~ F such that ^(x7) —> z. Since i£ is 
continuous from E into (Z ,^ ' )» ^ 

^(xa) > i£(x), 

J-' 
and since J^~' is weaker t h a n j ^ , 

^(x7) >s. 

Since J^ ' is Hausdorff and (xy)y is a subnet of (xa)a, z = ^(x). Therefore, 
i^(x) is in Z ^ F, for a contradiction. 

The above argument proves that yp(E) is contained in the ̂ "-closure of 
yp{D), and hence, yp{E) is conditionally compact in ( Z , ^ ) . We can now 
repeat the above argument with D replaced by E to show that if x is in E 
and (xa) is a net in E with xa —> x, then 

yp(xa)->xP(x). 

Hence, \p is continuous from E into (Z, $~). 

Definition 2.3. For hintë, pin F, set /^(x) = M(Z^) for all x in X. 

Note that hl2(v) = hv for all y in F a n d / u n ^ . 

PROPOSITION 2.4. Gwe/z & in ^, n in F, one has that h" isin s/. Moreover, 
li—th^is continuous from Y into (se, |] ||tt). 
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4 F. DANGELLO AND R. LINDAHL 

Proof. Choose a net {ya\ in Y such that h(ya) —> M- For each x in X, 

i*«(*) = *(*,?„) = **(y«) = h(ya)(
xh) 

->/x(*A) = AM(*). a 

Hence /^a converges pointwise to &M. Since {hv : y £ F} is totally bounded, 
hv* > h». Thus, h» is in j / . 

Il ||, 
Define ^ from F into<$/ by ^(/x) = h* for ail M in F. Then ^ is continu­

ous in the topology of pointwise convergence onJ^/ and 

\Hh(y)) : y 6 Fj = [ i ' : y Ç 7} 

is totally bounded. By Lemma 2.2, ^ is continuous from Y into ( j ^ , || ||M). 

Definition 2.5. For r i n l , fi in F, set T ® n(h) = r(/*M), K ^ . 

Let </>(x, ;y) = (Ii(x), Iï(y)) for all x in X and 3/ in F, and let 71-(r, /x) = 
r 0 pi for all r in X and /x in Y. 

THEOREM 2.6. The map T describes a homeomorphism from X X Y onto 
X X F. Moreover, 

Ii(x) ® 72(y) = /(*, y). fej)^X F 

/row which the following diagram commutes: 

X X F • X X F 

Y 

X X F 

Proof. First note that given (x, y) G X X F and h in fê, one has that 

/ i ( * ) ® / 2 ( y ) W = Ii(x)(hz^) = /1 (*)(*") 

= /&(*,?) = I(x,y)(h). 
Hence, 

/ i(^) ® h(y) = I(x,y). 

Let r be in X, \x in F. Then r ® xx is a linear functional on ^. For 
fti, fe2 in fé\ 

r ® /i(iik2) = r((hih2y) = TQifhf) = rih^r^) 

= T ® /x(fei) • r ® M(*0-
Hence, r ® /x is multiplicative. Also, 

T ® M(l) = T ( 1 ) = 1. 

Thus, r ® M is in X X F. 
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For T in X, M in F, / in s/, g in Se, we have that 

r 0 M(f ® *) = r ( C f ® g)") = r(/*te)/) = r ( / ) / i fe) . 

It follows that 7T is one to one. From the first part of the proof, w maps 
densely into X X F. Since ï X F i s compact Hausdorff, it suffices to 
show that 7T is continuous. Let 

and let h be in ^. From Proposition 2.4, 

&"« > A". 
II II* 

It follows that 

Therefore, -K is continuous and hence is a homeomorphism onto X X F. 

Recall that ^ = { K 5 ( X X Y): xh £ Se, x £ X; hv G J / , y Ç F;and 
{Av: y G F} is totally bounded i n j / } . 

THEOREM 2.7. J / 0 J> = ^ . 

Proof. Let A denote the Gelfand transform on *&. In showing that 
j / 0 éj? = fé7, it suffices to prove that ( j / 0 ^ ) A separates the points of 
X X F. Suppose 

r ® ji(ft) = / 0 ji'(ft) 

for all h ms/ 0 Sfl, where r, r' are in X and /x, ju' are in F. Then for / in s/, 

r(f) = r 0 M ( / 0 1) = / 0 ji'Cf ® D = r '(/) 

and so r = r'. Similarly, /* = //. Hence, r 0 /* = r' 0 //. 

THEOREM 2.8. 

j / ® ^ = { K £ ( X X F ) : ' * e f , * G X ; i ' e j / j e F; 

and {xh : x G X} is totally bounded in Se). 

Proof. The proof is identical to the proof of Theorem 2.7. 

A semitopological semigroup is a semigroup together with a Hausdorff 
topology such that the multiplication map is continuous in each variable 
separately. Let Z be a semitopological semigroup and let C(Z) be the 
C*-algebra of all bounded continuous complex-valued functions on Z. For 
/ in C(Z) and z in Z, the left translate off by z is defined by 

*/(*) =f(zx),x G Z. 

The right translate of / by z is defined similarly and is denoted by fz. 
A function/ in C(Z) is called Bochner almost periodic on Z if {zf : s G Z} 
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has compact closure in (C(Z), || ||M). Let A(Z) denote all Bochner 
almost periodic functions on Z. Equivalently, an / in C(Z) is in A (Z) if 
and only if {zf: z Ç Z) is totally bounded. Since A(Z) is a translation-
invariant unital C*-subalgebra of C{Z) (see [5]), we have the following 
corollary to Theorems 2.7 and 2.8. 

COROLLARY 2.9. Let S and T be semitopological semigroups and lets/ be 
a unital C*-subalgebra of A (S). Then 

s{ ® A(T) = [h € B(SX T): sh (E A(T),s G 5; 

h* G s/} t Ç T; and {h1 : t £ T} is totally bounded ins/} 

= {h 6 5 ( 5 X T): sh e A (J), s £ S; hl £ s/} t £ T\ and 

\sh \ s ^ S\ is totally bounded in A(T)}. 

Remark. Berglund and Milnes [2] have shown that A(S X T) = A(S) 
<g> A(T) whenever S and T are semitopological semigroups, where 5 has 
a right identity and T has a left identity. This result assuming S and T 
are commutative topological semigroups each with identity was obtained 
earlier by Deleeuw and Glicksberg [4]. We obtain Berglund and Milnes' 
result quite simply from the above theorems. 

First let 5 and T be semitopological semigroups. F o r / in A(S), g in 
A(T), one has that 

<*.«(/® 1) = sf ® 1 and (S )0(1 ® g) = 1 ® tg 

for all s in 5 and t in T. Thus, / ® 1 and 1 ® g are in A {S X 3H) and so 
f® g = (f® 1)(1 ® g) is in ^ ( 5 X T). 

Consequently, one has that 

A(S) ® A(T) CA(SX T). 

Now assume that 5 has a right identity e and T has a left identity e' 
and consider the continuous map I : C(5 X T) —•> C(S) given by 

/(&)(*) = fc(s, e'), he C(SX T), s G 5. 

For s in S, t in JH, and h in C(S X 7"), we have 

h*(s) = &(5, /) = &(«,i)(s, *0 = I(h(ett))(s). 

Thus, the I image of the set of right translates of any h in C(S X T) 
contains {h* : t 6 T). Therefore, if h is in A (S X T), then [h* : t Ç T) is 
totally bounded. By Corollary 2.9 and the above, 

A(SX T) = A(S) ®A(T). 

Note that one also obtains this result if he assumes that 5 has a left 
identity and T has a right identity. 

Let Z be a semitopological semigroup and lets/ be a unital C*-sub-
algebraof C{Z). Call stf left M-introverted[ 17] if s/ is translation-invariant 
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and given/ in s/, r in A(j / ) , one has that T o fis inJ^, where 

rof(z) = r(2 /) , z G Z. 

A left M-introverted subalgebra stf of C(Z) is contained in yl (Z) if and 
only if A(J^) is a compact Hausdorff topological semigroup (a topological 
semigroup is a semitopological semigroup with the additional property 
that the multiplication map is jointly continuous) and the embedding 
map of Z into A($/) is a continuous homomorphism mapping Z densely 
into A(s/) [1, Corollary 9.5]. Recall that C(A(j/)) is isometrically iso­
morphic t o J ^ via the adjoint of the embedding map. In fact, &(&/) is 
the unique compact Hausdorff topological semigroup with these properties. 

Let Z be a semitopological semigroup. An / in C(Z) is called weakly 
almost periodic if {zf : z £ Z} has compact closure in the weak topology of 
C(Z). Let W(Z) denote all weakly almost periodic functions on Z. Since 
W(Z) is a translation-invariant unital C*-subalgebra of C{Z) (see [5]), 
we have the following corollary to Theorems 2.7 and 2.8. 

COROLLARY 2.10. Let S and T be semitopological semigroups and let se 
be a unital C*-subalgebra of W(S). Then 

se 0 W(T) = {h £ B(S X T): sh £ W(T), s £ S; 

h1 £ s/, t G T; and {h1 : t £ T} is totally bounded in s/} 

= {h G B(S X T):'he W(T), s G S; h1 £s/,t G T; and 
{sh : s £ S} is totally bounded in W(T)}. 

In general, W(S) 0 W(T) is not W(S X T). See [2] p. 171, [12] p. 590, 
and [13] p. 663, in this regard. However, one always has that W(S) 
®~W(T) C W(S X T) ; the proof is virtually the same as in showing that 
A(S) 0 A{T) C A(S X T). The following is an indication of just how 
seldom these two algebras are equal. 

THEOREM 2.11. Let S be an abelian topological semigroup with 1. Then 
W{S) 0 W(S) = W(S X S) if and only if W(S X S) = A(S X S). 

Proof, (i) Sufficiency. Let f be in W(S). We identify S with S X {1} 
and we let ITS denote the projection o( S X S onto S. Then / o ITS is in 
WXSXS) = A(SXS). Sincef OTS\S =f,f ism A(S). Hence W(S) = 
A(S). Thus, 

W(S X S) = A(S X S) = A(S) 0 A(S) = W(S) 0 W(S). 

(ii) Necessity. Le t /be in W(S). Define 0 : 5 X S -> 5 by 

0(5, 0 = 5/, (5,0 f 5 X 5 . 

Then 0 is a continuous topological semigroup homomorphism since S 
is abelian. Therefore, h = / o </> is in 1^(5 X 5). By Corollary 2.10, 
( s / i : 5 G 5 | is totally bounded. Since sh = sf for all 5 in 5, / is in A (S). 
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Therefore, W(5) = -4(5), and so 

W(S X 5) = W(S) ® W(S) = A (S) ® A(S) = A(S X 5) . 

Remark. It is not true in general that if A (5) = W(5), then A(S X S) 
= W(S X 5) where 5 is an abelian topological semigroup with 1. Hence 
the condition W(S X 5) =A(SXS) cannot be replaced by W(S) =A(S). 

As an example, let 5 be an infinite null semigroup with identity 
adjoined; that is, st = 0 for 5 9^ 1, t ^ 1 and 5 • 1 = 1 • s = s for all 5 in 
5. Equip 5 with the discrete topology. Given/ in B(S) and 5 ^ 1 in 5, 

j = / ( o ) r ^ ( i , + / ( 5 ) f { 1 ) 

where fx denotes the characteristic function of the set X. Thus, {sf: s £ 5} 
is totally bounded since {/(s) : 5 Ç 5} is bounded. Hence B(S) = -4(5) 
= W(5). By applying Grothendieck's criterion [8] for weak almost 
periodicity, one has that 

W(S X 5) 
= {h £ B(S X S): {sh: s £ S} is weakly conditionally compact}. 

Let D = {(s} s) : 5 G S] and let ft = f D- Then 

{»*:* G 5} = { f M : s Ç 5} 

is not totally bounded, since 5 is infinite, but is weakly conditionally 
compact, since its weak closure is {f{sj: s Ç 5} U {Oj. Therefore, ft is in 
W(S X 5) and ft is not in A (5 X 5). 

Let Z be a semitopological semigroup. A left if-introverted subalgebra 
s/ of C(Z) is contained in W(Z) if and only if A(&/) is a compact Haus-
dorff semitopological semigroup and the embedding map of Z into A(s/) 
is a continuous homomorphism mapping Z densely into A(s/) [1, 
Corollary 8.5]. Also, A(&/) is unique with respect to these properties and 
the fact that C(A(&/)) is isometrically isomorphic t o s / via the adjoint 
of the embedding map. 

LEMMA 2.12. Let 3/ be a translation-invariant unital C*-subalgebra of 
C(Z). Ifstf C W(Z), thenstf is left M-introverted. 

Proof. See Lemma 8.8 of [1]. 

LEMMA 2.13. Let Z be a semitopological semigroup and let Z be a compact 
semitopological [resp. topological] semigroup. Let I be a continuous homo­
morphism from Z onto a dense subset of Z. Let s^ = 7*(C(Z)), where 
I*(F) = F o I for each F in C(Z). Then s/ is a translation-invariant 
unital C*-subalgebra of W(Z) [resp. A (Z)]. 

Proof. We prove the semitopological case, the topological case being 
similar. For F in C(Z) and z in Z, I*(Iiz)F) = Z(I*(F)) and I*(F 1{g)) 
— (I*(F))Z. Since 7* is an isometric algebra isomorphism from C{Z) onto 

https://doi.org/10.4153/CJM-1983-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-001-7


SEMIDIRECT PRODUCT COMPACTIFICATIONS 9 

sé, it follows that s/ is a translation-invariant unital C*-subalgebra of 
C(Z). For Fin C(Z), {TF : r £ Z) is compact in the topology of pointwise 
convergence on C(Z) since Z is a compact semitopological semigroup. 
From Grothendieck's theorem ([8], which states that weak compactness 
and compactness in the topology of pointwise convergence are equivalent 
for norm bounded subsets of C(X)} where X is compact Hausdorff), 
\i(z)F : z G Z) is weakly conditionally compact in C(Z). Since J* is 
continuous from (C(Z), wk) onto (<*/, wk), \t(I*(F)) : z Ç Z) is weakly 
conditionally compact \ns/. Hence, A C W{Z). 

3. Semidirect product compactifications. Our setting for the first 
part of this section is as follows. Let T be a semitopological semigroup, 
X a Hausdorff topological space, a a semigroup homomorphism from T 
into the semigroup of (continuous) operators on X; that is, letting <rt = 

au>(x) = at(<rf (x)), x G X, ty t' G T. 

It will be further required of o- that it be separately continuous; that is, 
the map x —> <rf(x) from X into X is continuous for each t in T and the 
map t —> at(x) from T into X is continuous for each x in X. 

Also throughout the first part of this section, s/ will denote a unital 
C*-subalgebra of C(X)\ Se will denote a translation-invariant unital 
C*-subalgebra of W(T) ; X will denote the (&/, Ji)-compactification of X\ 
and Twill denote the ( ^ , /2)-compactification of T. By Lemma 2.12 and 
remarks preceding it, T is a compact semitopological semigroup. 

Definition 3.1. Let d be a semigroup homomorphism from T into the 
semigroup of continuous operators on X such that d is separately con­
tinuous. Call <T an extension of <r if 

€T/2(o(/i(x)) = Ii(crt(x)), x e X, t e T. 

Note that if such a à exists, then it is unique by the separate continuity 
of à. 

For x in X, t in T, set &x(t) = at(x). 

THEOREM 3.2. There exists an extension â of a if and only if the following 
are satisfied: 

(i) {foat: t Ç T\ is weakly conditionally compact (w.c.c.) in s/ for 
each fin s/, 

(ii) / o &x is in Se for each fin s/, x in X. 

Proof. Let â be an extension of a. L e t / be i n s / . For each /x in T, define 
F, in C(X) by 

Ur) =^(r)(/), r f l 
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For x in X and t in T, 

Ii*(FItit))(x) = FIlit>(Ix(x)) = â f t („(/i(*))Cf) 

= J, (*,(*))(/) = f o *«(*), 

where / i* is the adjoint map of 1^. Hence, 

\FItU){h(x))\ = \f(at(x))\ g H/H», * 6 X,< 6 T. 

By the separate continuity of â, it follows that 

\FIiit)(r)\ ^ \\f\\u, re X,t£ T, 

and, therefore, 

|F„(r)| ^ H/ll., r a . ^ f . 
Thus, {FM: /x G T} is norm bounded and compact in the topology of 
pointwise convergence on C(X)y and therefore, {F^: n G T} is weakly 
compact in C(X) by Grothendieck's theorem [8]. See the proof of Lemma 
2.13 for a statement of this theorem. In particular, {Fl2(t)

m- t G T] isw.c.c. 
in C{X). Since Ii*(F l2(t)) = / o ô  for each / in T and i\* is weakly con­
tinuous, {/o ov / G T} isw.c.c. in J^. 

For each r in X define GT in C(T) by 

GT(M) = ê»(r)(f) = F„(r), nt T. 

T h a t / o ax is in a? for each x in X now follows by noting that 

^2* (£/!(*)) =fO&x, 

where 12* is the adjoint map of I2. 
Now assume t h a t s / and «a? satisfy (i) and (ii). F o r / i n s / and /x in T, 

set 

/cr/ifr) = n(fo&x), x £ X 

and observe that/crAW = / o at for each / in T. Let (/a) be a net in T with 
12(ta) —> ju- For x in X, 

/(TM(*) = n(fo&x) = l i m a / 2 ( k ) ( / o o\T) = lima (foat(x)(x) 

and, therefore, /c/x is in the pointwise closure of {/o at: t £ T}. Since the 
topology of pointwise convergence coincides with the weak topology on 
the w.c.c. set {/ o at: t G T}} fan is in the weak closure of {/ o at: t G T\. 
Hence,/(7/z is in since J ^ is weakly closed ([6], p. 119). The above shows 
that n —>/<r/z is continuous from T into J ^ with the topology of pointwise 
convergence. From the coincidence of the pointwise and weak topologies 
on the range of the map n —^ fan, it follows that n —> fan is continuous 
from T into (s/, wk). 
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Define <r by 

It follows directly that (7M(r) is in X for each n in T and r in J? and that <x 
is separately continuous. For x in X and / in T, 

*/Ki>(/i(*))(0 = h(x){fcrh{t)) = /(*,(*)) = Ii(<rt(x))(f),f£j/. 

Hence, 

^ / 2 ( 0 ( / i (x ) ) = JiOfOO), x f i . i G r . 

That ^ ' ( r ) = ^/i(âM'(r)) for /*, M' in T and r in X now follows from the 
separate continuity of â and the denseness of I\{X) and ^ ( T ) in X and 
? respectively. 

Remark. Assuming that J^/ and â? satisfy (i) and (ii) above, one has 
that {/o o^: x £ X} is w.c.c. in £§?. This follows by interchanging the roles 
of F and G in the first paragraph of the above proof and noting thereby 
that {G7,(3)1 x f Z) is w.c.c. in C(T). Thus, for / in J^/, r in X, we can 
define 

f*r(t) = rtfon), /e r. 
Then/â/ i (x) = / o &x. It follows that /err is in 38 and the map r —* far is 
continuous from X into ( ^ , w&). Hence, ^ also satisfies 

Definition 3.3. Call a jointly continuous if the map (x, t) —> (T|(x) is 
continuous from X X T into X. 

COROLLARY 3.4. There exists a jointly continuous extension à of a if and 
only if the following are satisfied: 

(i') {/o at: t G JH} is totally bounded in stffor each fin se, 
(ii') / o &x is in 38for each fin stf, x in X. 

Proof. Assume that â is a jointly continuous extension of or. By Theorem 
3.2, (ii') is satisfied. Fix / ms/. For ^ in T, define F» as in the proof of 
Theorem 3.2. Since â is jointly continuous, it follows directly that 
{Fait)- I € T\ is totally bounded in C(X). SinceIi*(Fl2(t)) = f o at, (i') 
is satisfied. 

Next assume t h a t J ^ and <̂ ? satisfy (i') and (ii')- Then Theorem 3.2 
applies and there exists an extension â of a. For / in s/, since {/o <rt\ t £ T) 
is totally bounded, it follows that n —>/<r/x (see the proof of Theorem 3.2 
for the definition of this map and its weak continuity) is continuous from 
T into (<5</, || ||w) by Lemma 2.2. Hence, 

(r, At) -> T O M ) = ^ ( r ) ( / ) is in C(X X T) for each / in j / . 

Thus, â is jointly continuous. 
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Remark. If se and 38 satisfy the hypothesis of Corollary 3.4, then 
f/o &x: x 6 X\ is totally bounded in 38 for each / in se. This follows by 
defining GT as in the proof of Theorem 3.2 and noting, as in the first 
paragraph of the last proof, that { G / ^ : x £ X} is totally bounded in 
C(T). 

COROLLARY 3.5. Assume that T is a semitopological group and thats/ is 
a unital C*-subalgebra of C(X) such that given f instf', {/o at: t £ T\ is 
w.c.c. in se, f o&xis in A (T) for each x in X, and ai is the identity map on 
X, where 1 is the identity of T. Then {/o at: t Ç T) and {/o £x: x Ç XJ 
are totally bounded. 

Proof. Let ^ = 4̂ (T). By Theorem 3.2, there exists an extension <r of a. 
Since T is compact, contains a dense subgroup, and has jointly continuous 
multiplication by the remarks preceding Corollary 2.10, T is a topological 
group. Since à is separately continuous, d is jointly continuous by Ellis' 
Theorem [7]. By Corollary 3.4 and the above remark, {f o at: t G T) and 
{/ o &x: x G X} are totally bounded. 

For a more recent proof of Ellis' Theorem, see [20]. 

Remark. In Corollary 3.5, one need only assume that A(A(T)) is a 
topological group; for example, we could assume that T has a dense 
subgroup. 

The setting for the remainder of this section is as follows. S and T 
will denote semitopological semigroups with 1; (f (S) will denote the 
continuous endomorphisms of 5; a will denote a separately continuous 
semigroup homomorphism from T into S (S) such that the map 

(5, t) —> 5crt(>o) 

from S X T into 5 is continuous for each fixed So in 5, such that <j\ is the 
identity endomorphism of 5, and such that <rt(l) = 1 for all / in T. For 
(5,/) and (s',/ ') i n 5 X T, set 

( 5 , / ) ( 5 ' , / ' ) = (5 (7 , (5 ' ) , / / ' ) . 

Then S X T with this operation and the product topology is a semi­
topological semigroup with identity (1,1) which we designate by S@T. 
We call S@T the semidirect product of 5 with T induced by v. 

Remark. Notice t h a t / o at is in A (S) [resp. W(.S)] for all / in T when­
ever/ is in A (S) [resp. W(S) ]. This follows from the identity 

s(fO (Tt) = *«(«)/O (T,, 

which shows that the left orbit of / o at lies in the image of the left orbit 
of/ under the norm [hence weakly] continuous map F —> F o <r, of C(5) 
into C(5). 
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Definition 3.6. Let s/ and Se be translation-invariant unital C*-
subalgebras of W(S) and W(T) respectively. Let S and T be the (s/y Ii)-
and (Se\ J2)-compactifications of 5 and T respectively. Then 5 and T 
are both compact semi topological semigroups with identity by Lemma 
2.12 and remarks preceding it. Let à : T—><f (5) be such that 5 © T is a 
compact semi topological semidirect product semigroup with identity. 
Call S® T a semidirect product compactification (s.p.c.) of 5 ® T induced 
byJ3^ and Se if â is an extension of a. 

Landstad [15], Junghenn [10, 11], and Junghenn and Lerner [14] have 
also investigated s.p.c. of 5 ® T induced by subalgebras of A (S© T) and 
have considered when A (S® T) splits into a tensor product. 

For the last part of the proof of the next theorem, we need to know 
the semigroup operation on S. It is left Arens multiplication) that is, 

rr'(f) = r{r'oj), r, r' 6 Sj € S* 

where 

r'of(s) = r ' G / ) , seS 

as was defined in the comments preceding Corollary 2.10. Recall t h a t J ^ 
is left M-in trover ted by Lemma 2.12 and, therefore, T o / i s \xiS$. 

THEOREM 3.7. Lets/, 38, 5, and T be as in Definition 3.6. The following 
are equivalent: 

1) There exists a s.p.c. 5 © T of S© T induced by s/ and S8, 
2) s/ ® 2$ is a translation-invariant unital C*-subalgebra of W(S® T), 
3) s/ and Se satisfy the following for each fin se' : 
a) {sfo at: s G S, t G T) is w.c.c. in s/, 
b) \fat (S0) : / G T} is totally bounded in s/ for each s0 in S, 
c) / o &3 is in Se for each s in S. 

Proof. To show 1) implies 2), assume 1) and notice that since à is an 
extension of cr, the mapP defined by 

4>(s, t) = (Ix(s)f I2(t)) for s in S and / in T 

is a continuous semigroup homomorphism from 5 ® T onto a dense subset 
of 5 © T. Hence, letting *¥ be the image of C(5© T) under the adjoint map 
of </>, it follows by Lemma 2.13 that ^ is a translation-invariant unital 
C*-subalgebra of W(S® T). It remains to show that <€ = s/ ® Se. Since 

C(S® T) = C(S) ® C(T) 

by the Stone-Weierstrass theorem and 

<t>*(F® G) = h*(F) ®/2*(G) 

for all F in C(S) and G in C(T), it follows t h a t s / % SS C # . Let h be in 
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^ and let A denote the Gelfand transform on fê\ Then h is in C(S® T) 
= C{S) ® C(f ) , and so {(h)1*^: t g T} is totally bounded in C(S). 
Since 

/ i*(( /*) / , ( 0) = hl for a l l / i n T, 

\hl: t 6 T} is totally bounded in s/. Similarly, sh is in Se for all 5 in S. 
Therefore, ^ C ^ ® @ by Theorem 2.7. Hence, ^ = J / ® ^ . 

To show 2) implies 3), we again use Theorem 2.7. L e t / be in J^ . For 
s in 5 and / in T, 

Joat = [(..oCf ® l ) ] 1 

and so , / o <jt is in J / . Since {(,,o(/ ® 1) : s € 5, / G T} is w.c.c, so is 
{,/o at: s Ç S, t 6 T}. Hence, a) holds. For 50 in S and /in T, 

A(.0> = [ ( / ® l)u0.i)]r-

Hence, {/<r,(j0)î * £ ^! 1S totally bounded. For 5 in 5, 

fo&, = W ® D(..i)] 

and so / o ^ is in ^ . 
We now show that 3) implies 1). First note that conditions a) and c) 

imply by Theorem 3.2 that there exists an extension à of a. 
We first show that for fixed s0 in S, the map 

( r , /x) —> T < 7 M ( / i ( s 0 ) ) 

is continuous from S X T into 5, where T<TM(/I(5O)) is left Arens multipli­
cation of r and <7M(i*i(so)). F i x / in se and define 7 from T mtos/ by 

T(M) = ^CTi(so)) o/, M e f. 

Note that 7(/u) is \ns/ since J ^ is left M-introverted by Lemma 2.12. 
For 5 in S, 

7(/x)W = *,(Ii(so))(J). 

Since à is separately continuous, it follows that 7 is continuous with the 
topology of pointwise convergence on s/. For / in T, 

7 ( / 2 ( 0 ) = *I*U)(Il(So)) O / = fat(sQ) 

and so from b), {y(l2(t)): t G T) is totally bounded. By Lemma 2.2, 
7 is continuous from T into ( ^ , || ||M). Since 

r*„(Ji (*>))(/) = r ^ C / x ^ o ) ) o / ) , r ^ . ^ f 

and 7 is norm continuous, it follows that 

(r, M) - » T * M ( J I ( 5 O ) ) ( / ) 
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is continuous for each / i n s / , and hence 

(r, /u) —> Tàfi(I1(s0)) 

is continuous from S X T into 5. 
We now show that for fixed r0 in 5, the map (r, /i) —> T(JM(TO) is con­

tinuous from S X T into 5. F ix / in j / and define T from SX T into J ^ by 

T(r, M)(s') = r ^ ( / i ( / ) ) ( / ) , r e 5 ) M Ç r , ^ 5 . 

That T(r, M) is in J ^ follows by defining F in C(5) by 

W =/(r*,(r')), r ' € 5 

where A is the Gelfand transform on s/, and noting that Ii*(F) = T(r, /i). 
Since (r, /x) —* T<TM(/I(SO)) is continuous for fixed s0 in 5, it follows that 
T is continuous with the topology of pointwise convergence on s/. For s 
in S and / in T, 

T(Ii(s),I2(t)) = sfo*t. 

By a) and Lemma 2.2, F is continuous from S X T into (J^, wfe). From 
the continuity of (jM and the separate continuity of multiplication in 5, 
it follows that 

T0(r(r, /i)) = T<7M(ro)(/), r, r0 6 5, JU G 7\ 

Consequently, for fixed r0 in 5, since T is weakly continuous, the map 
(r, ju) —* ™-/x(ro) (/) is continuous for each/ in J^. Thus (r, ju) —* TO-^TO) is 
continuous from S X T into 5 for each fixed r0 in 5. 

Noting that à / 2(D is the identity endomorphism of 5 and that 

^(7 , (1)) = / , ( ! ) for all M in f, 

we have that S® T is a s.p.c. of S® T. 

Remark. If s/ is a translation-invariant subalgebra of 4̂ (S) and 
{/o crr: / G T} is totally bounded for each / i n s / , then 

{«/vocr,:*, / e S,t e T} 

is totally bounded for each/instf. To see this l e t / be ms/ and fix € > 0. 
Since/ is in A(S)} {sfs

f'> s, s' Ç 5} is totally bounded. Thus there exists 
si, . . . , sn, Si y . . . , sn

f in S such that {Skfsk''> k = 1, . . . , n) is an e-net 
for {afsf- s> s' (z S\. For each k, {Skfsk

r o <r*: / 6 T} is totally bounded 
and so there exists tkti, . . . , tktPkin T such that 

{sJsk'0(Ttkt.:j = 1,. . . ,pk] 

is an e-net for {Skfsk
f o at: t £ T). It follows that 

{sKfsk
f o o-̂  y: & = 1, . . . , n;./ = 1, . . . , pk] 

is a 2e-net for {sfs> o at: s, sf (z S, t £ T}. 
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COROLLARY 3.8. Let J / , Se, S} and T be as in Definition 3.6. There exists 
a s.p.c. S®T of S@T induced by s/ and Se which is a topological semigroup 
if and only if stf C A(S), Se C A(T), {/ o at: t £ T} is totally bounded 
in stf andf o &s is in 3$ for each f in s$ and s in S. 

Proof. If 5 © T is a s.p.c. of 5 ® T which is a topological semigroup, then 
à is jointly continuous. By Corollary 3.4, {/o at: t G T) is totally bounded 
in s/ and / o &s is in Se for each / in stf and 5 in S. Since S and T are 
topological semigroups, s/ C A(S) and Se C ^4(^0-

We now prove the converse. Since s/ C A (S), condition b) of Theorem 
3.7 is satisfied and by the preceding remark, condition a) of Theorem 3.7 
is satisfied. By Theorem 3.7 there exists a s.p.c. S®T of 5 ® T induced 
by s/ and SS. By Corollary 3.4, <x is jointly continuous. Since s/ C A (S) 
and SS C A(T), S and T are topological semigroups. It follows that 
5 ® T is a topological semigroup. 

Definition 3.9. Given / in A(S), call / a-Bochner almost periodic if for 
each Si and s2 in S, {SlfS2 o at: t £ T) is totally bounded. Let i4*(S) denote 
the set of all cr-Bochner almost periodic functions on 5. Given/ in W(S), 
ca l l / a-weakly almost periodic if \sfs2 o <rt'- s (z S, t £ T) is w.c.c. and 
{/rt(Sl)s2: t Ç Tj is totally bounded for each Si and s2 in 5. Let W*(S) 
denote the set of all c-weakly almost periodic functions on S. 

PROPOSITION 3.10. Aa(S) and W*(S) are translation-invariant unital 

C*-sub algebras of A (S) and W(S) respectively. Moreover, each of these 
algebras is closed under composition with the family {at: t £ T\. 

Proof. It follows directly that A*(S) is a unital C*-subalgebra of A(S). 
L e t / be in Aa(S) and 5 in S. Then for s\, s2 in 5 and t in T, 

S](J)s2 o <rt = ssjs2 o at 

and 

sl(fs)s2 O (7/ = S l JfS2s O (7/ 

from which it follows that s / a n d / 5 are in Aff(S). Hence, A*(S) is transla­
tion-invariant. From the remark preceding Definition 3.6, A(S) is closed 
under composition with the family {at: t £ 7"}. That this is true for 
Aa(S) follows from the following: f o r / in Aff(S), Si, s2 in S, t0l t in T, 

It follows directly that W*(S) is a linear subspace of W(S) containing 
the constant functions and is self-adjoint. To show that W'(S) is closed, 
l e t / be in the uniform closure of Wff(S). For fixed 52 in S, we must show 
that 

{sfs2o<rt: s e S,t£ T) 
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is w.c.c. By Grothendieck's criterion [8], it suffices to show that if (sn') 
and (sm) are sequences in S and (tm) is a sequence in T such that 

lim lim smfS2 o atm(sn) = Lx 
m n 

and 

lim lim Smfs2 o atm(sn
f) = L2 , 

n m 

then Li = L2. Assume L\ 9^ L2 and set e = \L\ — L2\/2. Choose g in 
W°{S) such that ||/ - g\\u < e. Set 

<^m,n ~ smfs2 O 0"*m(Sn ) 

and 

V n = smgs2 O atm(sn') 

for all m and w. Then {frm,w} is bounded in the complex plane. By using 
a diagonalization argument, there exist </>(l) < 0(2) < . . . and ^(1) 
< \f/(2) < . . . such that 

lim lim ^(W)^(w) = L\ 
m n 

and 

lim lim ^(m),^(n) = £2' 
re m 

for some complex numbers L\ and L2'. Since g is in W^ÇS), by Grothen-
dieck's criterion, L\ = Z,2'. Also, 

lim lim a (̂m)̂ (W) = L\ 
m n 

and 

lim lim a<Km),iK«) = ^2 . 

However, 

Wm,n - 6m.nl ^ 11/ ~ g||« 

for all w and n. Hence, 

\Lr - L / | ^ ||/ - g||, < e 

and 

\U~U\ S \\j-g\\u < 6 

and therefore 

|Li - L2| < 2e = |Li - U\ 

which is a contradiction. Thus, L\ = L2. 

https://doi.org/10.4153/CJM-1983-001-7 Published online by Cambridge University Press

6m.nl
https://doi.org/10.4153/CJM-1983-001-7
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For si and s2 in S, we must show that {/^h,: / £ T\ is totally bounded. 
Let e > 0 and choose h 6 W'{S) such that ||/ - h\\u < e. There exist 
/i, . . . , tn such that 

(k^C'i)*,: * = 1, . . . , »} 

is an e-net for {h„t(Sl)Si: t £ T}. It follows directly that 

tf*tki*0*i: k = 1, . . . , n] 

is a 3e-net for {/<r,(5l)s2: / G T\. Hence, / is in W*(S) and WV(S) is closed. 
To see that W*(S) is an algebra, le t / , g be in ^ ( 5 ) , s1} s2 in 5, and 

/ in T. Then 

from which it follows that {(fg)<rtul)s2- t € 2"! is totally bounded. Also, 
for 5 in 5, 

* ( / g ) . a O (T, = [</ , , O (J,] • [sgS2 O cr,]. 

Either by applying Grothendieck's criterion or by applying a corollary 
to Grothendieck's theorem [8] which states that for Z a set, stf a unital 
C*-subalgebra of B(Z), K a norm bounded subset of se, then K is w.c.c. 
if and only if K is conditionally compact in the topology induced by the 
multiplicative linear functionals o n s / , one obtains that 

{s(fg)s2oat:s e s , t e T ] 
is w.c.c. Thus, fg is in Wff (S). 

That WV(S) is translation-invariant follows from the following: fo r / 
in W*(S), s, su s2 in 5 and / in T one has that 

*(*,/)*, OcTi = SlSfs2 o atJ 

sifsjst o <Tt = &/,2Sl o <ru 

\sj)<rt (sx)s,2
 = s[j<rt ( s 1 ) s 2 J> 

and 

From the remark preceding Definition 3.6, W(S) is closed under composi­
tion with the family {at: t g T}. That this is true for Wa{S) follows from 
the following: for/ in Wff(S), s, si, s2 in S, to, t in T, 

s ( / ° at0)s2 O <Tt = at (s)fvt (s2) O O ^ j 

and 

Let aT denote the almost periodic compactincation of T (induced by 
A(T)) and wT denote the weakly almost periodic compactification of T 
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(induced by W(T)). Let aS° denote the compactification of S induced by 
Aa(S) and wS* denote the compactification of S induced by Wa(S). Then 
aS* is a compact topological semigroup and wS* is a compact semi topo­
logical semigroup by Lemma 2.12 and by remarks preceding it and 
Corollary 2.10. 

THEOREM 3.11. A'(S) andA(T) induce a s.p.c. aSa® aT of S® T which 
is a topological semigroup. Moreover, if S® Tis a s.p.c. of S® Tinduced by 
s/ and 38 such that S@T is a topological semigroup, then se C A°(S) and 
38 CA(T). 

Proof. Recall from Proposition 3.10 t h a t / o at is in Aa(S) for each/ in 
A'(S) and / in T. For s in S, t in T, f in A'(S), 

t(fo &s) = / o at Oas. 

Since {f o at: t £ T} is totally bounded and the map F —» F o &s from 
C(S) into C(T) is norm continuous,/ o &s is in A(T). By Corollary 3.8, 
there is a s.p.c. aSff®aT of S® T which is a topological semigroup. 

Next let 5 ® T be any s.p.c. of S® T induced by stf and 3% which is a 
topological semigroup. By Corollary 3.8, s/ C A(S), 38 C A(T), and 
{/o at: / G T] is totally bounded \ns/ for each/inJ^/. Since,^/ is transla­
tion-invariant, s/ C -4^(5). 

Remark. Theorem 3.11 states that aS<T@aT is, in terms of the algebras, 
the largest s.p.c. of S@T which is a topological semigroup. The next 
result states that wS<T®wT is the largest s.p.c. of S® T. 

THEOREM 3.12. Wa(S) and W{T) induce a s.p.c. wS<T®wT of S® T. 
Moreover, if S®T is any s.p.c. of S@T induced by s/ and 38, then s/ 
C W'(S)and@ C W(T). 

Proof. Recall from Proposition 3.10 t h a t / o at is in Wa(S) for each / 
in Wa(S) and / in T. Hence, conditions a) and b) of Theorem 3.7 are 
satisfied. To show condition c), l e t / be in W^ÇS), s in S, t in T. Then, 

t(fo &s) = / o at o &s. 

Since {/ o at: l G T) is w.c.c. and the map F —» F o as from C(5) into 
C(T) is weakly continuous, / o &s is in PF(r). By Theorem 3.7, there 
exists a s.p.c. wS<T@wT o(S@T. 

Next let 5 © T be a s.p.c. of S® T induced by J / and 38. L e t / be in J / , 
$i, 52 in 5. By Theorem 3.7 a), {s/o at: s G S, t G T} is w.c.c. i n J ^ and 
hence, \sfS2 o at: s G S, t G T} is w.c.c. in J^/ by the translation invariance 
of stf. By Theorem 3.7 b), {fatu^ t G T} is totally bounded m s/. Since 

J<rt(sx)s2
 = \Js2)<rt(s0 

Sinds/ is translation-invariant, {/^c*,)^: J G T} is totally bounded in se. 

https://doi.org/10.4153/CJM-1983-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-001-7


20 F. DANGELLO AND R. LINDAHL 

Thus/ is in W«(S)y and sos/ C W'(S). That & C W(T) follows from 
Definition 3.6. 

THEOREM 3.13. A"(S) and W(T) induce a s.p.c. aS*®wT of S® T for 
which â is jointly continuous. Moreover, if S® T is a s.p.c. of S® T induced 
by s/ and Se for which S is a topological semigroup and à is jointly con­
tinuous, then se C Aa(S). 

Proof. Clearly A°(S) and W(T) satisfy conditions a) and b) of Theorem 
3.7. Condition c) follows as in the previous two theorems. Hence, there 
is a s.p.c. aS"®wT of S® T induced by A*(S) and W(T). By Corollary 
3.4, <x is jointly continuous. 

Next suppose that S® T\s a s.p.c. of 5 ® T induced by s/ and SS such 
that à is jointly continuous and 5 is a topological semigroup. By remarks 
preceding Corollary 2.10,s/ C A(S). By Corollary 3.4, {/o <rt: t 6 T) is 
totally bounded for each / in se. Since s/ is translation-invariant, 
sf CA°(S). 

COROLLARY 3.14. If S is a semitopological group, then 

A°(S) = W°{S) C\A{S). 

Proof. From the remark preceding Corollary 3.8, it is clear that 

A'(S) C W'(S)r\A(S). 

Lets/ = W(S) r\ A(S) and 38 = W(T). Then s/ is a translation-
invariant unital C*-subalgebra of A(S) and s/ and £§ satisfy conditions 
a), b), and c) of Theorem 3.7 [c) follows as in the previous three theorems]. 

Hencesf and 38_ induce a s.p.c. 5®wTof_S@T where 5 = A ( J / ) . 

Since s/ C A (5), S is a topological group (as T is in the proof of Corollary 
3.5). Consider the (right) action \f/ of S on S®wT given by 

( T ' , / ) ^ T = (r'^')(r,h{\)) = ( r ' v ( r ) , / ) , 

where I2 is the embedding map of T into Î^JT. Since \p is separately 
continuous, \p is jointly continuous by Ellis' Theorem [7]. Hence, à is 
jointly continuous. By Theorem 3.13, se C Aa{S). Consequently, 
A°(S) = W*(S) H 4 ( 5 ) . 

Remark. If {en: * G T} is finite, then clearly A°(S) = A(S) and JT'(S) 
= W(S). The following shows that Aa(S) can equal A (S) when {<r<: £ Ç T} 
is infinite. Let 5 be an infinite commutative idempotent discrete semi­
group with 1. Define a: S —» $ (S) by 0^(5) = ts if 5 7̂  1 and at(l) = 1. 
L e t / be in 4̂ (5). For Si, s2 in 5, / in Sy 

«,/», ocr,(5) = Sls2tf(s) if s ^ 1 

https://doi.org/10.4153/CJM-1983-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-001-7


SEMIDIRECT PRODUCT COMPACTIFICATIONS 21 

and 

Slfs2 Oat(l) = 5 l /S 2(l) . 

It follows t h a t / is in A^S). 

The following is a more interesting example. 

Example 3.15. Let S be an infinite set and let 0 and 1 be two elements of 
S. Define an operation on 5 by 

lsifs' = lors' = s 
ss' = \ s' if s = 1 

( 0 otherwise. 

Equip 5 with the discrete topology and observe that S is a commutative 
idempotent semigroup with identity, 1. Define a: S —> S*(S) by vt(s) 
= ts if s y£ l a n d c,(l) = 1. 

From the previous remark, one has that Aa(S) — A(S). However, it is 
interesting to note that 

A(S) = | / € i J (5 ) : l imi t / (* ) = / ( 0 ) } , 
S-ïoo 

where limit^œ f(s) = L means that given e > 0, there exists a finite subset 
F of S such that \f(s) - L\ < e for all s not in F. Also, aS = (S, <%), 
where °ll is the topology in which neighborhoods of 1(0) [I being the 
embedding map] are complements of finite sets and every other point is 
open. Also, W<T(S) = W(S) due to the collapsing of the sets which need 
to be w.c.c. or totally bounded. Finally, wS = fiS = the Stone-Cech 
compactification of S [that is, W(S) = B(S)], since fiS can be made into 
a compact semitopological semigroup such that the embedding map 
Ii: S —> /SS is a homomorphism by defining 

( r i f r = T' in J I ( S ) o r / = J i ( l ) 
r r ' = r ' if T = 1,(1) 

\ / i (0) otherwise. 

4. Almost periodic functions on semidirect products of semi­
groups. In this section we obtain sufficient conditions for 

A(S@T) = A°(S) ® A(T) and W(S®T) = W°(S) ® W(T). 

To do this we first develop some results on tensor products. 
Let X and Y be sets and let <é> be a unital C*-subalgebra o( B(X X Y) 

such that {hy: y Q. Y\ is w.c.c. for all h in %f. By^Grothendieck's criterion 
[8], {xh: x É I ) is w.c.c. for each h in ^ . Let J ^ be the unital C*-sub-
algebra olB(X) generated by {hv: h Ç ^ j Ç FJ and let «^ be the unital 
C*-subalgebra of B(Y) generated by {xh: H ? , ^ I j . L e t ï b e the 
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( j / , 7i)-compactification of X; Y the {38, /2)-compactification of F; and 
X X F the (X, 7)-compactification of X X F. 

Definition 4.1. Given h in 'if, T in X, ^ in F, set T/^(y) = r{hy') and 
&"(*') = M(*'/0 for ail x' in X and / in F. 

Note that 7i<*>A = xh and /* /2W = A* for ail h in V, x in X, y in F. 
Fix hintë and r in X. Let (xa) be a net in X such that Ii(xa) —» r. Then 
(Xa/0 converges pointwise to Th. Since {̂ A: x G X} is w.c.c., (Xah) con­
verges weakly to Th. Since ^ is weakly closed, Th is in «â?. Define \f/ from 
X into 38 by 

* ( T ) = *fe, r G X. 

Then ^ is continuous in the topology of pointwise convergence on 38 and 
\\fr(Ii(x)): x G X] = {xh: x G X] is w.c.c. By Lemma 2.2, the map 
r —> r/z is continuous from X into ( ^ , w&). Similarly for each h in & and 
H in F, /zM is instf and the map ^ —> ^M is continuous from F into (&/, wk). 

For T in X, n in F, define 

r ® /i(ft) = T(ft"), ftG^. 

The following properties follow directly: 
1) r ® /x is in X X F for all r in X, M in F; 
2) the map (r, /u) —> r ® /z is separately continuous from X X F into 

X X F; 
3) / (* , ;y) = Ii{x) ® 72(y) for all x in I , 3; in F; 
4) r ® n(h) = id(Th) for all r in X, M in F, fc in <€. 
Let 

X ® Y = {r ® M: r G X, M G F}. 

Note that I(X X F) C X ® F C X X F and hence X ® F is dense in 
X X F. Let 7T be the map from X X F into X X F such that TT: (r, M) 
—> T ® AX-

THEOREM 4.2. The following are equivalent: 
i) TT is jointly continuous, 

ii) {hv: y G F} is totally bounded for all h in *%, 
iii) ^ C ^ ® ^ . 

Proof. To show i) implies ii), assume ir is jointly continuous and let h 
be in ^ . Let (ya) be a net in F and assume that {h(ya)} converges to 
some M in F. Since /x —> /Î^ is continuous from F into {s$, î^fe), {feVa} 
= \hl2{Va)] converges weakly to frM. If the convergence is not uniform, by 
passing to subnets, we may assume that there exists a net (xa) in X such 
that {hVa(xa) — ^(Xa)} does not converge to 0 and \Ii(xa)} converges 
to some r in X. Since -K is jointly continuous, 

X\ma}iVa(xa) = l im a / i(x a) ® I2(ya)(h) = r ® p(h) 
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and 

lim« &"(*«) = lim«/i (*«)(*") = r ( > ) = r 0 /A (ft), 

which is a contradiction. Therefore, {ft2'"} converges uniformly to ftM. 
To show ii) implies iii), assume ii) and recall from Theorem 2.7 that 

se 0 SB = {ft G 5 ( X X F ) : r K ^ x Ç l , F Ç j / j Ç F, and 

{ft2': y G F} is totally bounded}. 
Hence, <é C^ 0 J*. 

To show iii) implies i), assume that *$ C ^ 0 ^ . By Theorem 2.7, 
{hv: y 6 F} is totally bounded for each ft in 'if. By Lemma 2.2, it follows 
that the map /x —> ftM is continuous from F into ( j ^ , || ||M) for each ft in fé7. 
That 7T is jointly continuous now follows as in the proof of Theorem 2.6. 

Remark. If <% C^/ 0 38, then X X F = X X F. To see this, note 
that by Theorem 4.2 iii), 7r is jointly continuous. Hence, i ( J X F) is a 
compact dense subset of X X F and, therefore, X 0 Y = ir(X X F) 
= X~Y7Y. 

COROLLARY 4.3. se 0 38 = *$ if and only if T is a homeomorphism from 
X X Y onto X X F. 

Proof. Assume tha t J^ 0 ^ = ^ . Let n , r2 be in X and JUI, /z2 be in F 
such that ri 0 MI = 2̂ 0 M2- By evaluation a t / 0 1 in ^ for each/ in J^, 
one obtains ri = r2. Similarly, /xi = JU2. Hence, IT is one-to-one. By 
Theorem 4.2 and the above remark, -K is a homeomorphism onto X X F. 

Now assume that 7r is a homeomorphism. Then 7r* is an isometry from 
C(X X F) onto C(X X F) = C(X) 0 C(F). Let 0: X X F - > X X F 
be given by 

0(*f3O = (/,(*), J2(y)). 

Then </>* is an isometry from C(X X F) onto s/ 0 ^ . Also, /* is an 
isometry from C(X X F) onto fé\ Setting 

$ = 0 * O 7T* O ( J * ) " 1 , 

$ is an isometry from *$ ontoJ^ 0 38. It follows directly that $ _ 1 is the 
identity map on functions of the form/ 0 g îorfmszf and g in 38. Hence, 
$ is the identity map and ^ = s/ 0 ^ . 

Our setting for the remainder of the paper is as follows. S@ T will 
denote a semitopological semidirect product semigroup as in the previous 
section; ^f will denote a translation-invariant unital C*-subalgebra of 
W(S®T) ; andJ^/ and «â? will be defined as earlier in this section. 

PROPOSITION 4.4. For each ft in ^, {ft': t £ T] is w.c.c. Moreover,stf is 
translation-invariant in W{S) and 38 is translation-invariant in W{T). 
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Proof. Let ft be in &. For / in T and 5 in 5, 

hl(s) = ft(i,<)(s, 1). 

Since {/*u,o- / G T} is w.c.c, so is {h1: t G ^!- Also, 

.(ft1) = lu^hY 

is in s/ and 

is in J / . Since J / is generated by {ftl: ft G fé\ / G r } , it follows that J / 
is translation-invariant. Also, given ft in ^ , / in 7\ since {(5,i)ft: 5 G 5} is 
w.c.c, so is 

{[(. . i)*] ' :*€5J = {,(*'): s € 5 j . 

Thus, ft' is in 117(5) and soJ^ C W(S). That «â? is translation-invariant 
in W(T) follows similarly. 

Let 5, f, and 5 X T denote the ( J / , A)-, ( ^ , 72)-, and (^f, 7)-com-
pactifications of S, T, and 5 © T, respectively. By Lemma 2.12 and 
remarks preceding it, 5, T, and S X T are compact semitopological semi­
groups and the embedding maps are homomorphisms. 

LEMMA 4.5. Given r, r in S and /x, M' in T, one has that 

a) (TT;) ® M = (r ® / 2 ( 1 ) ) ( T ' ® M), 

b) r ® (MM') = (T ® M ) ( 7 I ( 1 ) ® /*')• 

In particular, 

T ® /* = (r ® J a Q J K J ^ l ) ® M), ( r / ) ® /2(1) 

= (T ® I 2 ( l ) ) ( r ' ® J 2 ( l ) ) , and 

I i (D ® 0*/*') = (I i ( l ) ® M)(/i(l) »/* ')• 

Proof. Since J: 5 © T —> S X T is a homomorphism, one obtains that 

(/1(5)/i(<r,(5'))) ® (h(t)h{t')) 

= (h(s) ® /,(/))(/i^) ® /*(/')), s. *' e 5, *, /' € r. 
Since ?r is separately continuous, it follows that 

(1) ( T / I M S O ) ) ® ( / * (0M' ) = (T ® 7î(*))(71(s') ® M'), 

s'e s, t e T,Tes,v'e T. 
Letting t = 1 in (1), one has that 

(r/i(5')) ® n' = (r ® 7,(1)) (his') ® „'). 
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By separate continuity, a) follows. Let t ing s' = 1 in (1), one has tha t 

( r / , ( l ) ) ® ( / « W M O = (r ® / 2 ( 0 ) ( / i ( l ) ® <*')• 

By separate continuity, b) follows. 

T H E O R E M 4.6. Assume that one of the following conditions is satisfied: 
P) T is a topological group and 1 ® gis in ^for each g in 3ë ; 
Q) S is a topological group and f ® 1 is in ^ for each f ins/. 

Then <€ = s/ ® Se. 

Proof. Assume tha t condition P) is satisfied. By Corollary 4.3 it 
suffices to show tha t w is a surjective homeomorphism. Define a (right) 
action of f on 5 X T by 

By Lemma 4.5, OO^W = (") W v f ° r all M, M' in f, n n 5 X 7\ Since i£ is 
separately continuous, it is jointly continuous by Ellis' Theorem [7]. 
For r in 5 , xx in T, 

(r ® / 2 (1 ) )&. = r ® M 

by Lemma 4.5 and therefore 7r is jointly continuous. T o show tha t IT is 
one-to-one, assume tha t rj. ® /xi = r2 ® /x2 where r i , r2 are in S and 
/ii, M2 are in T. By evaluation a t 1 ® g in ^ for each g in 5^, one obtains 
tha t MI = M2- Choose any /x in T and note tha t 

Oi ® Mi)(-fi(l) ® Mi~V) = r i ® M 

and 

(r2 ® ]Lii)(/i(l) ® Mi"V) = T2 ® M 

by b) of Lemma 4.5. Thus , r i ® /x = r2 ® /x for all /x in T and so TIQI») 

= r2(/*
M) for all hintë and /x in 7\ Therefore, TI = r2 and w is one-to-one. 

From the remark preceding Corollary 4.3, it follows t ha t -K is surjective. 
Hence <£ = s/ ® &. 

If condition Q) is assumed instead of condition P ) , a similar proof 
using a) of Lemma 4.5 will show tha t *£ — s/ ® 38. 

PROPOSITION 4.7. A(S@T) C A(S X T). In particular, if A°{S) 

= A(S), then A (S® T) = A(S X T). 

Proof. Let h be in A{S® T). Since A(S X T) = A(S) ® A (T) (this 
was proved after Corollary 2.9), we apply Corollary 2.9 in showing tha t 
h is in A (S X T). For s in S, t in T, 

**(0 = <..i)A(l,0. 

T h u s ( s i : 5 f S} is totally bounded. Also, 

t(sh)(t') = ( , i 0 A ( l , O , ^ 5 , U ' E r . 
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Consequently, {t(
8h): / G T] is totally bounded and so sh is in A(T). 

Finally, 

,(/*<)(*') = {s,i)W,t), s,s' 6 5 , / 6 T. 

Hence, {5(fe'): s £ ^î is totally bounded and so hl is in ^4(5). Thus, 

A(S@T) CA(SX T). 

By the remark preceding Corollary 3.8 or by Theorem 3.11, it follows 
that 

A°{S) ® A(T) CA(S@T). 

Thus, if A'(S) = A(S), then A(S® T) = A{S X T). 

In [11] Junghenn shows that there is a s.p.c. of S@T induced by 
A (S® T) when T contains a dense subgroup and in such a case obtains 
A (S ® T) as a tensor product. The following theorem together with 
Theorem 3.11 contain his result. 

THEOREM 4.8. Assume that aT is a topological group. Then 

A{S®T) = A'(S) ® A(T). 

Proof. Let ^ = A(S@T). L e t j / and 38 be as defined earlier in this 
section (before Définition 4.1). Since A(S® T) C A(S X T), it follows 
t h a t j / C 4(S) and ^ C 4 ( r ) . Given g in A(T), s in 5, t in T, then 

(*.o(l ® g) = 1 ® ig 

and thus {(S,o(l ® g) : s ê -S, / £ 7"} is totally bounded. Consequently, 
1 ® g is in ^ for each g in A(T). Since *(1 ® g) = g for all g in ^4(T), 
^ = A(T). Since condition P) of Theorem 4.6 is satisfied, *% = stf 
® 4 ( r ) . To see that J / C ^ffCS), l e t / be in s/. T h e n / ® 1 is in ^ 
= A {S® T) and therefore 

{ ( S ) 0(/® l ) : s G S, /G T} 

is totally bounded in ^f. Since 

(s,t)(J ® 1) = (s/o 0-̂ ) ® 1 for each 5 in 5 and £ in T, 

it follows that {«/ o at: s Ç 5, t £ T} is totally bounded. Moreover, 

k o ( / ® I)] 1 = . /ocr , 

and so J o o-* is in se for each s in 5 and £ in T by the definition of se. 
Thus , / is in A*(S) a n d j / C 4*(S). F o r / in A*(S), 

(s,t)(f ® 1) = J"0(7< ® 1 

from which it follows t h a t / ® 1 is in &. But ( / ® l ) 1 = / is then i n j / . 
Therefore, J / = ^ ( S ) . 
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In [2] it is shown that w(S X T) = wS X T where S is a semi topological 
semigroup with right identity and T is a compact topological group. The 
following theorem generalizes this result to semidirect products. A similar 
theorem, obtained independently, appears in [16]. 

THEOREM 4.9. Assume that wT is a topological group. Then 

W(S@T) = W°(S) ® W(T). 

Proof. Let <% = W(S® T) and J / and 38 be as defined earlier in this 
section. By Proposition 4.4, 38 C W{T). For g in W(T), it follows that 
1 ® g is in <g and hence x(l ® g) = g is in 38. Therefore, 38 = W ( r ) . 
By Theorem 4.6, <% = J / ® W^r) . To see t h a t J / C W"(S), first note 
thatstf is a translation-invariant subalgebra of W(S) by Proposition 4.4. 
Since J / ® W(T) = W(S@T), 2) of Theorem 3.7 holds. Therefore, a) 
and b) of Theorem 3.7 hold, namely, [Jo <rt: s G S, / G T} is w.c.c. i n J^ 
and {/̂ («„>: t G T} is totally bounded in J# for e ach / i n J^/ and s0 in 5. 
SinceJ^ is translation-invariant and 

J < r / ( 5 1 ) s 2
 = \Js2)<rt(s1)f 

stf C W ( 5 ) . F o r / i n W*(S), 

c.otf ® 1) = (sfoat) ®1 

from which it follows t h a t / ® 1 is in &. But (/ ® l ) 1 = / is then i n j / . 
Therefore, se = W*(S). 

THEOREM 4.10. Let & = [h £ W(S@T): h1 G 4*(S) /or a// * in T). 
IfaS* is a topological group, then <£ = A*(S) ® W(T). 

Proof. For h in ^ , s0 in 5, /, /0 in 7\ 

[(...«,>*]' = ..(A'01) oa,0 

is in ^4"(5) and 

[*(.„. «„)]' = (*«'•).,(.„) 

is in Aa(S), since ^ ( S ) is closed under composition with the family 
[<rt: t (z T} by Proposition 3.10. Hence, ^f is translation-invariant. It 
follows directly that ^ is a unital C*-subalgebra of W(S@r) . Le t J^ and 
^ be as defined earlier in this section. From the definition of ^ , stf 
C A*(S). For fin A*(S),f = ( / ® 1) ' for all / in T and s o / ® 1 is in ^ 
and hence/is in J^ andJ^ = A"(S). Hence, condition Q) of Theorem 4.6 
is satisfied and so ^ = A'(S) ® 38. By Proposition 4.4, 38 C W(T). 
If g is in W(T), then 1 ® g is in since (1 ® g) ' is a constant function 
on S for each* in Z\ Since HI ® g) = gW\n38,38 = W(T). 
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The following example shows that in general 

A(S@T) 9* A«(S) 0 A{T) and W(S@T) * W(S) ® W(T). 

Example 4.11. Let S = (R, + ) where R denotes the real numbers with 
the usual topology and let T = {2-w: n = 0, 1, 2, . . .} under multiplica­
tion with the discrete topology. Define at(s) = ts for all t in T, s in S. 
We first show that Aa(S) consists of just the constant functions. Choose 
any net {ta} in T such that 

lima/a = 0 and lima l2(ta) = /x, 

where \x is in aT. Fix 5 in S and let sa = s/ta. By passing to subnets, we 
may assume that lima Ii(sa) = TS where rs is in aSa. Then 

h(s) = lima Ii(<rta(sa)) = limaff72(la)(/i(5a)) = o^(r5), 

where a- is the extension of a induced by Aa{S) and A(T). By Theorem 
3.11, such a <T exists and is jointly continuous. For s' in 5 a n d / i n ^4a(5), 

* M ( / I ( ^ ) ) ( / ) = limaâMta)(I1(s'))(f) = \ima h(tas')(f) 

= limtt/(/tts') = / ( 0 ) = / i (0) ( / ) . 

Therefore, Ô>(T) = i"i(0) for all r in aSff and so 7i(s) = ffM(r5) = i \ (0) . 
Hence, f(s) = /(0) for a l l / in 4 ' ( 5 ) . 

We next show that A (S) ® C0(r) C ^ ' ( S ® T), where C0(T) consists 
of those functions in B{T) which vanish at infinity. L e t / be in A (5) and 
g in Co(T). Then 

(5,o(/ ® *)(*', O = / (* + fc')g('0, 5, 5' G 5, /, t' G r . 

Given e > 0, there exists a 5 > 0 such that if t < ô, then 

Us,t)(f® g)(s',t')\ <e for all s, s' in 5 and /' in 7\ 

since g is in Co(T). Since {£ 6 T: / ^ 5} is finite, it suffices to show that 
\(s,t0)(f ® g): s G S} is totally bounded for fixed t0 in 7\ Since 

(*.«„)(/® g) = sfoatQ ® ,og 

a n d / i s in 4 (5), {(*,*„)(/'® g): s (E 5} is totally bounded. Hence, 

4 (5 ) ® Co(r) C i ( 5 @ r ) 

and so 4 ( 5 ® T) ?* A*(S) ® A{T). 
To see that ^ ( 5 ® T) ^ WC{S) ® W(T), one can argue as follows. 

Suppose that W(S® T) = W°(S) ® W ( r ) . Then from the previous 
paragraph, 

A(S) ® c0(r) c IT'(5) ® w(r). 
L e t / be any non-constant function in A(S), and let g be the identity 
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function on T. T h e n / ® g is in W*(S) ® W( r ) and hence, (/ ® g)1 = f 
is in W(S). Thus, / is in ACS) H W*(S) = 4 ' (5 ) by Corollary 3.14. 
Since Aa(S) consists of just the constant functions, this is a contradiction. 

It is possible to show more. We will show that Wff(S) consists of just 
the constant functions; from which it also follows that 

W(S®T) 9* W°(S) ® W(F), 

since as before, A (S) ® C0(T) C A (S® T) C W(S® T). 
Since wSa is a compact commutative semi topological semigroup (the 

commutativity follows from the fact that wSff has separately continuous 
multiplication and contains a dense commutative subsemigroup), the 
kernel, K, of wSa is a compact topological group ([5], Corollary 2.5). 
Let e be the identity of K. We first show that e of is a constant function 
for all fin W°(S). Fix an fin W°(S) and set/0 = / - (eof). Recall that 
e of is in Wff(S) since Wa(S) is left M-in trover ted. Then, 

e o/o = (eof) - eo (e of) = (e of) - (e of) = 0 

since for s in S, 

(eo (eof))(s) = e(s(eof)) = e(eosf) = ee(sf) = e(J) = (eof)(s). 

Note that the third equality involves left Arens multiplication, as defined 
before Theorem 3.7. Also, (e o f)A = (f)e, where A denotes the Gelfand 
transform on W°(S). 

Let F = (f)e and note that K is an ideal in wSff [5]. Define p from wSff 

into K by P(T) = T e for all r in wSa, and note that p is a continuous 
homomorphism. Since K is a compact topological group, by Lemma 5.2 
of [5], 

P*(C(K)) CA(wS°) 

where p*(G) = G o p for all G in C(K). Since f\K is in C(K), where f\K 

denotes the restriction of / to K, P*(J\K) — F is in A(wSa). Thus, 
{FT: T G wSa} is norm compact and, therefore, {Fn^: s £ S} is totally 
bounded in C(wSar)1 where Ii is the embedding map of S into wSa. Hence, 
{(e o f)s: s G S\ is totally bounded in ^ ( 5 ) , and so e o f is in ^4(5) 
Pi Wa(S) = AC(S) by Corollary 3.14. Hence, e of is a constant function 
for all fin W*(S). 

Let T be in wSa. We now show that re = e. L e t / be in W°(S). Then 
/ = c + /o where c is a constant and/0 is as defined above. Since eofo= 0, 
e(f0) = 0 and so 

re(f) = re(c) + re(f0) = c = e(f). 

Let I2 be the embedding map of T into wT\ and let <r be the extension 
of a induced by W(T(S) and W(T). By Theorem 3.12, such a <J exists and 
is separately continuous. Note that wT ~ 12(F) is non-empty for, since 
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A (T) separates the points of T, I2 is one-to-one and hence I2 cannot map 
a discrete T onto a compact wT. Let JU be in wT ~ Ii(T). We now show 
that <xM(r) = /i(0) for all r in wS*. Let (ta) be a net in T with J 2 ( 0 —» M 
and note that (ta) converges to 0. For 5 in S, 

*/.««) (A (*)) = / l ( U ) ~ > / l ( 0 ) 

and, by the separate continuity of or, 

Therefore, ^(JT^s)) = i\(0) for all 5 in 5. By the separate continuity of 
<T again and the fact that i \ (5) is dense in wSa, 

£M(T) = /i(0) for all r in wSc. 

We next show that <x l2(t) (e) = e for all / in T. Fix t in 2". Since 

<7/2«)(7i0)) = /i(/5), 5 e 5, 

^72(0 maps I\(S) onto Ii(5) and, therefore, à l2(t) maps w5ff onto wS°. 
Hence, there exists a r in wS0" such that 

& I%«)(T') = e. 

Since re = e for all r in wS*, 

We now show that mSff consists of a single point, and hence Wa(S) 
consists of just the constant functions. Since ë i2(t)(e) = e for all / in T 
and à is separately continuous, <xM(e) = e for all ix in ^7". Since <xM(e) 
= Ji(0) for all » in wT~ h(T), e = A(0). Then, for all r in wS% 

T = T / I ( 0 ) = re = e. 

Therefore, wSff is a single point. 

We complete this paper by obtaining certain conditions which force 
a semidirect product to be a direct product. 

A character of a topological group G is a continuous homomorphism 
from G into the circle group ( = the group of complex numbers of modulus 
one). Let G denote all characters of G. 

Given any xi> X2 in G with xi 7e X2, one has that 

||xi — X2II1* è V 3 . 

THEOREM 4.12. Let S be a topological group such that S C\ A*(S) separates 
the points of S, and let T be connected. Then S@T = SX T. 

Proof. For each x in S H A*(S), {x o <rt: t Ç T) is totally bounded and 
contained in S. Hence, | x O f f ( : K T] is finite. Fix a x in S C\ Aa(S). Let 

U = {te T: Xoat = x} . 
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Then U is both closed and open in T and 1 is in U. Thus, U = T and 
X o at = x for all / in T, for all x in S C\ Aa(S). Since SC\ Aff(S) separates 
the points of S, <rt = the identity endomorphism for all t in T. Hence, 
S® T = S X T. 

COROLLARY 4.13. Let S be a locally compact, Hausdorff, abelian topological 
group and let T be a connected semitopological group. If S@T is maximally 
almost periodic, then S@T = S X T. 

Proof. From [9], p. 345, S separates the points of 5. As in Corollary 3.5, 
aTand aS* are topological groups. Hence, by Theorem 4.8, A*(S) ® A (T) 
separates the points of S@T. Thus, A^ÇS) separates the points of S and 
so the embedding map Jr. 5 —> aSa is one-to-one. Since aSa is a compact 
abelian topological group, (aSa)A separates the points of aS*. Since 
(a5(7)A is isometrically isomorphic to S C\ Aa(S) via the adjoint map 7i* 
restricted to (a5<7)A, S C\ Aa(S) separates the points of S. 

COROLLARY 4.14. Let G be any semidirect product of (Rn, + ) with 
(Rw, + ) induced by some a such that at is not the identity endomorphism 

for some t in Rm. Then A°(Rn) ^ A (Rn). 

Proof. If A°(Rn) = A (Rn), then Rn Pi A°(Rn) = Rn separates the points 
of Rn. By Theorem 4.12, G = Rn X Rw, which is a contradiction. 
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