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SEMIDIRECT PRODUCT COMPACTIFICATIONS
F. DANGELLO AND R. LINDAHL

1. Introduction. K. Deleeuw and 1. Glicksberg [4] proved that if S
and T are commutative topological semigroups with identity, then the
Bochner almost periodic compactification of S X T is the direct product
of the Bochner almost periodic compactifications of S and T. In Section 3
we consider the semidirect product S@ T of two semitopological semi-
groups with identity and two unital C*-subalgebras.%/ and & of W(S)
and W(T) respectively, where W(S) is the weakly almost periodic func-
tions on .S. We obtain necessary and sufficient conditions on.% and & for
a semidirect product compactification of S@ 7" to exist such that this
compactification is a semitopological semigroup and such that this
compactification is a topological semigroup. Moreover, we obtain the
largest such compactifications. The largest such semitopological semi-
group compactification is induced by W<(S) and W(T'), where W?(S) is
a translation-invariant unital C*-subalgebra of W(S). The largest such
topological semigroup compactification is induced by A°(S) and 4 (7T),
where 47(S) is a translation-invariant unital C*-subalgebra of A4(S), and
A(T) is the Bochner almost periodic functions on 7. These results are
achieved via an internal characterization of the tensor product of two
algebras of bounded complex-valued functions on two sets, which we
obtain in Section 2.

In Section 4 we obtain sufficient conditions for 4(S©@ T') to be the
tensor product of 4°(S) and A(T) and for W(S@ T) to be the tensor
product of W7(S) and W(T'). In these cases it follows that the Bochner
and weakly almost periodic compactifications of S©@ 7" are semidirect
product compactifications. We give an example showing that this is not
generally valid and in the previous section we give examples where
A°(S) = A(S) and W(S) = W(S).

2. Tensor products of function algebras. For a set Z, let B(Z)
denote the bounded complex-valued functions on Z, and let &£ be a
unital C*-subalgebra of B(Z). (We impose the uniform norm on B(Z);
that is, ||f]l = sup.cz |f(2)|.) We assume that any such & contains the
constant functions. Let A(Z) denote the structure space of &; that is,
A(Z) consists of all non-zero multiplicative linear functionals on &,
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the topology being the Gelfand (or weak-*) topology. Then A(Z) is a
compact Hausdorff space and by the Gelfand-Naimark theorem [18], the
Gelfand transform f — f given by

Fr) =+(f), 1€ AD), feD

is an isometric, conjugate-preserving algebra isomorphism from & onto
C(A(Z)). Moreover, I(Z) is dense in A(Z), where I:Z — A(D) is
given by

Iz)(f) = f(z), z€2Z, f€Z.

We call A(D) the (2, I)-compactification of Z. The inverse Gelfand
transform will be denoted by I*, and following the terminology in [1] and
(2], we will refer to I* as the adjoint map of I.

Until further notice our setting will be as follows. Let X and Y be sets.
Let %/ [resp. #] be a unital C*-subalgebra of B(X) [resp. B(Y)]. Let X
be the (&7, I,)-compactification of X and ¥ be the (%, I,)-compactifica-
tion of ¥. Given kin B(X X Y),xin X, yin ¥, set

() = h(x,y), ¥y €Y
and
r(x') = h(x',y), « € X.
Let
C ={hc BXXY):"hecHB,xcX;Wecd,yclY,;
and {h? : y € Y} is totally bounded in.2/}.
For fin, gin &, set
f®glx,y) =fx)g@), (x,y) € X X V.
Let &/ ® % denote the unital C*-subalgebra of B(X X Y) generated by
feg:fed, ge B
We will prove that ¥ = &/ @ %.

PrOPOSITION 2.1. € is a C*-subalgebra of B(X X Y) containing
A QR X.

Proof. 1t follows directly that % is a Banach space and is self-adjoint.
Moreover, given hy and k, in €, ?(luhs) = *hi®hs is in & for all x in X
and (hiha)? = hhe¥ is in & for all y in Y. Since {h¥:y € ¥} and
{hs* : y € Y} are totally bounded, so is {(hikh2)? : y € Y}. Hence hih, is in
%, which proves that % is a subalgebra of B(X X V). Finally, € con-
tains &/ ® & since f ® gisin % foreach fin ./, gin Z.
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Let X X Y denote the (%, I)-compactification of X X Y. We will
show how to identify X X Y with X X V.
The following lemma will be used several times throughout the paper.

LemMA 2.2. Let E be a compact Hausdorff topological space and let
and ' be two Hausdorff topologies on a set Z such that I ' is weaker than
I Also suppose that D is a dense subset of E and thaty is a continuous map
from E into (Z, T"). Then ¥ is continuous from E into (Z, T ) if and only
if {$(x) : x € D} is conditionally compact in (Z, T").

Proof. If ¢ is continuous from E into (Z,9 ), then y(E) is compact
and hence closed in (Z,.9") since E is compact and . is Hausdorff.
Therefore, ¢(D) has compact closure in (Z,.9).

Now assume that (D) is conditionally compact in (Z,.7). Let x be
in E and let (x,), be a net in D with x, — x. We show that ¥ (x,) pd Y(x).

J

Suppose (¥ (x.))« does not converge to ¢(x) in (Z,.7 ). Then there exists
a.7 -open neighborhood V of ¢(x) and a subnet (x3)s of (x.)a such that
¥(xs) isin Z ~ V for all 8 (~ denotes complement). Since {¢/(x) : x € D}
is conditionally compact in (Z,.7 ) and Z ~ V isZ -closed, there exists
a subnet (x,), of (x3)s and a z in Z ~ V such that ¢(x,) — 2. Since ¢ is
continuous from E into (Z,7), 2

¥ (%) — ¥(x),
fl

and since. ' is weaker than. 7,

Y(xy,) —> 2.
f’

Since .7’ is Hausdorff and (x,), is a subnet of (%4)a, 2 = ¥(x). Therefore,
¥(x) isin Z ~ V, for a contradiction.

The above argument proves that ¢ (E) is contained in the.7 -closure of
¥(D), and hence, ¢ (E) is conditionally compact in (Z,7 ). We can now
repeat the above argument with D replaced by E to show that if x isin E
and (x,.) is a net in E with x, — x, then

¥ (%) 7 Y (x).
Hence, ¢ is continuous from E into (Z, 9 ).
Definition 2.3. For hin €, uin ¥, set h*(x) = wp(*h) for all x in X.

Note that 2 /2@ = ¥ forall yin Yand hin %

PROPOSITION 2.4. Given hin €, nin ¥, one has that h* isin . Moreover,
u— h* is continuous from ¥ into (Z, || |.)-
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Proof. Choose a net {y.} in ¥ such that I,(y,) — . For each x in X,
w*

ha(x) = h(x, ya) = "h(¥a) = I2(¥a) Ch)

= u(h) = 1 (x).

(03
Hence h¥= converges pointwise to k*. Since {h¥ : y € Y} is totally bounded,
k¥« — h#. Thus, k* is in.%7.

I 1l
Define y from ¥ into./ by ¢(u) = h* for all uin ¥. Then ¢ is continu-

ous in the topology of pointwise convergence on.2/ and
W) :y € Y} ={h:y€ Y}
is totally bounded. By Lemma 2.2, ¢ is continuous from ¥into (&7, | |.).
Definition 2.5. For rin X, pin ¥, set 7 ® p(h) = 7(b*), h € €.

Let ¢(x,y) = (I1(x), Is(y)) forall xin X and yin ¥, and let w (7, u) =
r @ pforall7in X and pin 7.

THEOREM 2.6. The map w describes a homeomorphism from X X Y onto
X X Y. Moreover,

from which the following diagram commutes:

XXV ! > X XY

y
™
XxX7Y
Proof. First note that given (x,y) € X X Y and kin %, one has that
Ii(x) @ In(y) () = Ii(x) (R 2®) = Ii(x) (k")

= h(x,y) = I(x,y)(h).

Hence,
Ii(x) ® Io(y) = I(x, ).

Let r bein X, pin Y. Then r ® p is a linear functional on 4. For
hl, hz in %,

T® #(hlhz) = T((h1h2)") = T(hl"h2") = "'(hll")T(h&“)

=7 Q uh) -7 ® ulha).
Hence, 7 ® u is multiplicative. Also,

Tr®ul) =7(1) = 1.
Thus, 7 @ npisin X X Y.
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Forrin X, pin ¥, finZ, gin &, we have that
T@u(f® g =((f® g*) = 7(u(@)f) = r(HHu(g).

It follows that = is one to one. From the first part of the proof, = maps
densely into X X Y. Since X X Y is compact Hausdorff, it suffices to
show that = is continuous. Let

Ta_‘?T: /»‘a'—*)l‘y
w w

and let & be in %. From Proposition 2.4,

h'e —— ke,

I Il
It follows that
7o (Hta) — 7(h*).
Therefore, 7 is continuous and hence is a homeomorphism onto X X Y.

Recall that € = {h € B(X X V):*h € Z,x € X; ¥ € &,y € YV;and
{h':y € Y} is totally bounded in &7}.

THEOREM 2.7.%/ @ ¥ = ¥.

Proof. Let A denote the Gelfand transform on %. In showing that
A @ X =¥, it suffices to prove that (& ® H)A separates the points of
X X Y. Suppose

T Q@ uh) =7 @ (h)
forallhine ® &, wherer, 7’ arein X and y, u’ arein ¥. Then for f in &,
=70 u(f®1) =7 @{F®1) =7()

and so r = 7'. Similarly, u = u'. Hence, 7 @ p = 7' ® .

THEOREM 2.8.
A LB =hc BXXY):*hecB,xcX;wWel,ycV;
and {*h : x € X} is totally bounded in B ).
Proof. The proof is identical to the proof of Theorem 2.7.

A semitopological semigroup is a semigroup together with a Hausdorff
topology such that the multiplication map is continuous in each variable
separately. Let Z be a semitopological semigroup and let C(Z) be the
C*-algebra of all bounded continuous complex-valued functions on Z. For
fin C(Z) and zin Z, the left translate of f by z is defined by

S&x) = f(zx), x € Z.

The right translate of f by z is defined similarly and is denoted by f,.
A function f in C(Z) is called Bochner almost periodic on Z if {,f: z € Z}
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has compact closure in (C(Z), | |u.). Let A(Z) denote all Bochner
almost periodic functions on Z. Equivalently, an f in C(Z) is in A(Z) if
and only if {,f: 2z € Z} is totally bounded. Since 4(Z) is a translation-
invariant unital C*-subalgebra of C(Z) (see [5]), we have the following
corollary to Theorems 2.7 and 2.8.

COROLLARY 2.9. Let S and T be semitopological semigroups and let o/ be
a unital C*-subalgebra of A(S). Then

A Q@ A(T) = {h€ B(SXT):*h€ A(T),s €S;

hte A, t € Tyand {h':t € T 1s totally bounded in .7
={h € BSXT):hec A(T),s€ S;ht ¢, t € T;and
{sh : s € S} us totally bounded in A(T)}.
Remark. Berglund and Milnes [2] have shown that 4(S X T) = 4(S)
® A(T) whenever S and 7" are semitopological semigroups, where .S has
a right identity and 7" has a left identity. This result assuming S and T
are commutative topological semigroups each with identity was obtained
earlier by Deleeuw and Glicksberg [4]. We obtain Berglund and Milnes’

result quite simply from the above theorems.

First let S and 7" be semitopological semigroups. For f in 4(S), g in
A(T), one has that

sn(f®1)=f®1 and (. ,1®g =1Q ;¢

forall sin Sand ¢tin 7. Thus, f ® 1and 1 ® garein A(S X T) and so
fReg=0®1)1A®¢g isin AS X T).
Consequently, one has that

AWS) @ A(T) CAS X T).

Now assume that S has a right identity ¢ and 7" has a left identity ¢’
and consider the continuousmap I : C(S X T) — C(S) given by

I(R)(s) = h(s,€¢), he C(SXT), s€S
Forsin S, tin T, and hin C(S X T), we have
hi(s) = h(s, t) = he,n(s,€) = I(he,n) ().

Thus, the I image of the set of right translates of any & in C(S X T)
contains {h': t € T}. Therefore, if hisin A(S X T), then {h':t € T} is
totally bounded. By Corollary 2.9 and the above,

AE X T) = A(S) @ A(T).

Note that one also obtains this result if he assumes that S has a left
identity and T has a right identity.

Let Z be a semitopological semigroup and let .2/ be a unital C*-sub-
algebra of C(Z). Call &7 left M-introverted[ 17]if .« is translation-invariant
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~I

and given fin.%Z, 7 in A(&), one has that 7 o f is in.%/, where
rof(z) = 7(;f), z¢€Z

A left M-introverted subalgebra &7 of C(Z) is contained in 4 (Z) if and
only if A=) is a compact Hausdorff topological semigroup (a topological
semigroup is a semitopological semigroup with the additional property
that the multiplication map is jointly continuous) and the embedding
map of Z into A(%) is a continuous homomorphism mapping Z densely
into A(&/) [1, Corollary 9.5]. Recall that C(A(%/)) is isometrically iso-
morphic to % via the adjoint of the embedding map. In fact, A() is
the unique compact Hausdorff topological semigroup with these properties.

Let Z be a semitopological semigroup. An f in C(Z) is called weakly
almost periodic if {,f : 2 € Z} has compact closure in the weak topology of
C(Z). Let W(Z) denote all weakly almost periodic functions on Z. Since
W(Z) is a translation-invariant unital C*-subalgebra of C(Z) (see (5]),
we have the following corollary to Theorems 2.7 and 2.8.

COROLLARY 2.10. Let S and T be semitopological semigroups and let o/
be a unital C*-subalgebra of W(S). Then

o @ W(T) = {h€ BSXT):*h€ W(T),s€S;
htel, t € T;and {h':t € T} is totally bounded in ./}
—(h€ B(SX T):*h€ W(T),s € S;h* €., t € T;and
{3h : s € S} is totally bounded in W(T)}.
In general, W(S) @ W(T) isnot W(S X T'). See (2] p. 171, [12] p. 590,
and [13] p. 663, in this regard. However, one always has that W(S)
Q-W(T) C W(S X T); the proof is virtually the same as in showing that

A(S) ® A(T) C A(S X T). The following is an indication of just how
seldom these two algebras are equal.

THEOREM 2.11. Let S be an abelian topological semigroup with 1. Then
W) @ W(S) = W(S X S) of and only if W(S X S) = A(S X §).

Proof. (i) Sufficiency. Let f be in W(S). We identify S with S X {1}
and we let 75 denote the projection of .S X S onto.S. Then fowrgisin
W(ES X S) =A4(S X S).Sinceforns|s =f,fisin A(S). Hence W(S) =
A(S). Thus,

WS XS) =4S XS) =A4(S) @ A(S) = W(S) @ W(S).
(i1) Necessity. Let fbein W(S). Define¢ : S X S — Sby
é(s,t) =st, (s,8) € SXS

Then ¢ is a continuous topological semigroup homomorphism since .S
is abelian. Therefore, 2 = fo ¢ is in W(S X S). By Corollary 2.10,
{*h : s € S} is totally bounded. Since *k = f for all s in .S, fis in 4(S).
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Therefore, W(S) = 4(S), and so
WS XS) =W(ES) @ W) = 4(S) @ A4(S) = A(S X S).

Remark. 1t is not true in general that if 4(S) = W(S), then 4(S X S)
= W(S X S) where S is an abelian topological semigroup with 1. Hence
the condition W (S X S) = A(S X S) cannotbereplaced by W(S) = 4(S).

As an example, let S be an infinite null semigroup with identity
adjoined; thatis, st = 0fors # 1,t # lands-1 =1-s5s = sforall sin
S. Equip S with the discrete topology. Given fin B(S) and s # 1 in S,

J = FO0)¢ s + ()¢

where {x denotes the characteristic function of the set X. Thus, {f: s € S}
is totally bounded since {f(s) : s € S} is bounded. Hence B(S) = A(S)
= W(S). By applying Grothendieck’s criterion (8] for weak almost
periodicity, one has that

W(S X S)
= {h € B(S X .S): {*h: s € S} is weakly conditionally compact}.

Let D = {(s,s): s € S} and let h = {p. Then
{*h:s € S} = {¢: s € 5}

is not totally bounded, since S is infinite, but is weakly conditionally
compact, since its weak closure is {{(;: s € S} U {0}. Therefore, & is in
W(S X S) and k is not in 4(S X S).

Let Z be a semitopological semigroup. A left M-introverted subalgebra
& of C(Z) is contained in W(Z) if and only if A(%/) is a compact Haus-
dorff semitopological semigroup and the embedding map of Z into A(.%/)
is a continuous homomorphism mapping Z densely into A(2/) (1,
Corollary 8.5]. Also, A(%/) is unique with respect to these properties and
the fact that C(A(&/)) is isometrically isomorphic to.2/ via the adjoint
of the embedding map.

LEMMA 2.12. Let &/ be a translation-invariant unital C*-subalgebra of
C(Z). If &/ C W(Z), then is left M-introverted.

Proof. See Lemma 8.8 of [1].

LEMMA 2.13. Let Z be a semitopological semigroup and let Z be a compact
semitopological [resp. topological] semigroup. Let I be a continuous homo-
morphism from Z onto a dense subset of Z. Let &/ = I*(C(Z)), where
I*(F) = F o I for each F in C(Z). Then & is a translation-invariant
unital C*-subalgebra of W(Z) [resp. A(Z)].

Proof. We prove the semitopological case, the topological case being
similar. For Fin C(Z) and z in Z, I*( ;(,F) = ,(I*(F)) and I*_(FI(.))
= (I*(F)),. Since I* is an isometric algebra isomorphism from C(Z) onto
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&, it follows that 2/ is a translation-invariant unital C*-subalgebra of
C(Z).For Fin C(Z), {,F : r € Z} is compact in the topology of pointwise
convergence on C(Z) since Z is a compact semitopological semigroup.
From Grothendieck’s theorem ([8], which states that weak compactness
and compactness in the topology of pointwise convergence are equivalent
for norm bounded subsets of C(X), where X is compact Hausdorff),
{ioF : 2 € Z} is weakly conditionally compact in C(Z). Since I* is
continuous from (C(Z), wk) onto (&, wk), {,(I*(F)) : 5 € Z} is weakly
conditionally compact in.2/. Hence, 4 C W(Z).

3. Semidirect product compactifications. Our setting for the first
part of this section is as follows. Let T be a semitopological semigroup,
X a Hausdorff topological space, ¢ a semigroup homomorphism from 7T°
into the semigroup of (continuous) operators on X; that is, letting o, =

a(t),
Ugg'(x) = U;(O’g’(x)), X E X, t, t, E ]‘.

It will be further required of ¢ that it be separately continuous; that is,
the map x — o,(x) from X into X is continuous for each ¢ in T and the
map ¢ — o,(x) from T into X is continuous for each x in X.

Also throughout the first part of this section, %/ will denote a unital
C*-subalgebra of C(X); # will denote a translation-invariant unital
C*-subalgebra of W(T); X will denote the (=7, I;)-compactification of X;
and T will denote the (Z, I;)-compactification of 7. By Lemma 2.12 and
remarks preceding it, T is a compact semitopological semigroup.

Definition 3.1. Let & be a semigroup homomorphism from T into the
semigroup of continuous operators on X such that & is separately con-
tinuous. Call ¢ an extension of ¢ if

7 nnpy(l1(x)) = Li(o:(x)), x€ X,t€T.
Note that if such a ¢ exists, then it is unique by the separate continuity
of 4.
Forxin X, tin T, set 6,(t) = o,(x).
THEOREM 3.2. There exists an extension & of o if and only if the following
are satisfied:
(i) {foou:t € T} is weakly conditionally compact (w.c.c.) in & for

eachfin &,
(ii) fo 6,15 in D for eachfin A, xin X.

Proof. Let ¢ be an extension of ¢. Let f be in.%/. For each uin T, define
F.in C(X) by

Fu(r) = au(n)(f), 7€ X.
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ForxinX and tin T,

I*(Fr,0) (%) = F oo (In(x)) = 6 150 (11(%)) ()
= Il(ﬂz(x))(f) = foa,(x),

where 1,* is the adjoint map of 7,. Hence,
IF o (Ii@)] = [f(e.e))] £ Ifll € X, 0 € T.
By the separate continuity of &, it follows that
IFno@| s fle 7€ X,t€T,
and, therefore,
|Fu() < flly 7€ X, neT.

Thus, {F,: u € T} is norm bounded and compact in the topology of
pointwise convergence on C(X), and therefore, {F,: u € T} is weakly
compactin C(X) by Grothendieck’s theorem [8]. See the proof of Lemma
2.13 for astatement of this theorem. In particular, { F ;,¢y: t € T}isw.c.c.
in C(X). Since I,*(F ,(y) = foo,foreachtin T and I,* is weakly con-
tinuous, {foe,;: t € T}isw.c.c.in &.

For each 7 in X define G, in C(T) by

G () = 5u(r)(f) = Fu(r), weT.
That f 0 4, is in & for each x in X now follows by noting that
IZ*(G n@) = foéy

where I,* is the adjoint map of I,.
Now assume that.%/ and & satisfy (i) and (ii). For fin.%/ and pin T,
set

fou(x) = u(fods), x€X

and observe that fol.(t) = fo o,foreachtin 7" Let (¢,) be a netin 7" with
I2(ty) = u. For x in X,

fou(x) = u(fo é;) = limg Io(ta)(fo 6,) = lim, (fO 0,,) (%)

and, therefore, fou is in the pointwise closure of {f o ¢,: t € 77}. Since the
topology of pointwise convergence coincides with the weak topology on
the w.c.c. set {f o o,: £ € T}, fouis in the weak closure of {fo a,: ¢ € T}.
Hence, fou is in &7 since .27 is weakly closed ([6], p. 119). The above shows
that u — fou is continuous from 7 into .27 with the topology of pointwise
convergence. From the coincidence of the pointwise and weak topologies
on the range of the map u — foyp, it follows that u — fou is continuous
from T into (&, wk).
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Define ¢ by
Gu(r)(f) = 7(fon), r€ X, ne T, feA.

It follows directly that &,(7) is in X for each pin T and 7 in X and that ¢
is separately continuous. For x in X and ¢ in T,

70 (@)) () = Lix) (fola(t)) = flo:(x) = Ii(o:(x)) (f), f€ .

Hence,
7 nw(li(x)) = Li(o(x)), x€ X, teT.

That G, (1) = 34(6, (7)) for u, &' in T and 7 in X now follows from the
separate continuity of ¢ and the denseness of I;(X) and I(7") in X and
T respectively.

Remark. Assuming that .o/ and & satisfy (i) and (ii) above, one has
that {f 0 é,: x € X} is w.c.c. in Z. This follows by interchanging the roles
of F and G in the first paragraph of the above proof and noting thereby
that {G ;,»: ¥ € X} is w.c.c. in C(T). Thus, for fin.%/, r in X, we can
define

fer(t) = r(foae,), tET.

Then f61,(x) = f o é,. It follows that f¢7 is in & and the map = — fér is
continuous from X into (#, wk). Hence, ¢ also satisfies

au(r)(f) = w(fér), neT,re X, fed.

Definition 3.3. Call ¢ jointly continuous if the map (x, t) — o,(x) is
continuous from X X T into X.

COROLLARY 3.4. There exists a jointly continuous extension & of o if and
only if the following are satisfied:
(i") {fo ot € T} istotally bounded in S for each fin <,
(ii") fo 6,1sin L for eachfin L, xin X.

Proof. Assume that ¢ is a jointly continuous extension of ¢. By Theorem
3.2, (ii’) is satisfied. Fix f in &Z. For u in T, define F, as in the proof of
Theorem 3.2. Since & is jointly continuous, it follows directly that
{F 150p: t € T} is totally bounded in C(X). Since I,*(Fy,y) = f 0oy, (i)
is satisfied.

Next assume that.%/ and & satisfy (i’) and (ii’). Then Theorem 3.2
applies and there exists an extension & of . For fin &7, since {fo o,: t € T}
is totally bounded, it follows that u — fou (see the proof of Theorem 3.2
for the definition of this map and its weak continuity) is continuous from
Tinto (¢,] |[.) by Lemma 2.2. Hence,

(r, w) = 7(fou) = ,(r)(f) isin C(X X T) for each fin .

Thus, ¢ is jointly continuous.
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Remark. If &/ and & satisfy the hypothesis of Corollary 3.4, then
{foé,: x € X} is totally bounded in & for each f in.o7. This follows by
defining G, as in the proof of Theorem 3.2 and noting, as in the first
paragraph of the last proof, that {G,: ¥ € X} is totally bounded in
c(T).

COROLLARY 3.5. Assume that T is a semitopological group and that S/ is
a unital C*-subalgebra of C(X) such that given f in S, {foopn t € T} is
w.c.c. in A, foé,1sin A(T) for each x in X, and oy is the identity map on
X, where 1 is the identity of T. Then {foo,:t € T} and {fo é,: x € X}
are totally bounded.

Proof. Let Z = A(T). By Theorem 3.2, there exists an extension ¢ of .
Since T is compact, contains a dense subgroup, and has jointly continuous
multiplication by the remarks preceding Corollary 2.10, T is a topological
group. Since ¢ is separately continuous, ¢ is jointly continuous by Ellis’
Theorem [7). By Corollary 3.4 and the above remark, {fo ¢,: ¢ € T} and
{foé,: x € X} are totally bounded.

For a more recent proof of Ellis’ Theorem, see [20].

Remark. In Corollary 3.5, one need only assume that A(4(7)) is a
topological group; for example, we could assume that 7" has a dense
subgroup.

The setting for the remainder of this section is as follows. S and T
will denote semitopological semigroups with 1; & (S) will denote the
continuous endomorphisms of S; ¢ will denote a separately continuous
semigroup homomorphism from 7 into & (S) such that the map

(s, t) — sa,(s0)

from S X 7 into S is continuous for each fixed sy in .S, such that ¢, is the
identity endomorphism of .S, and such that o,(1) = 1 for all ¢ in T". For
(s,8)and (s',#)inS X T, set

(5, )(s", t') = (sa,(s'), t!').

Then S X T with this operation and the product topology is a semi-
topological semigroup with identity (1, 1) which we designate by S@T.
We call S@T the semidirect product of S with 7" induced by o.

Remark. Notice that f o ¢, is in 4(S) [resp. W(S)] for all ¢ in T° when-
ever f isin 4 (S) [resp. W(S)]. This follows from the identity

s(foas) = syof 00y,

which shows that the left orbit of f o0 ¢, lies in the image of the left orbit

of f under the norm [hence weakly] continuous map F — F o ¢, of C(S)
into C(S).
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Definition 3.6. Let &/ and & be translation-invariant unital C*-
subalgebras of W(S) and W(T) respectively. Let S and T be the (&, I,)-
and (&, I,)-compactifications of S and T respectively. Then S and T
are both compact semitopological semigroups with identity by Lemma
2.12 and remarks preceding it. Let ¢ : T— & (5) be such that S@ T'is a
compact semitopological semidirect product semigroup with identity.
Call S@ T a semidirect product compactification (s.p.c.) of S@ T induced
by &/ and & if ¢ is an extension of .

Landstad [15], Junghenn [10, 11], and Junghenn and Lerner [14] have
also investigated s.p.c. of S@ T induced by subalgebras of 4(S@ T') and
have considered when 4 (S@ T') splits into a tensor product.

For the last part of the proof of the next theorem, we need to know
the semigroup operation on S. It is left Arens multiplication; that is,

' (f) =1 of), 7S fed

where
T of(s) =7(f), s€S

as was defined in the comments preceding Corollary 2.10. Recall that .o/
is left M-introverted by Lemma 2.12 and, therefore, 7' o fis in.%/.

THEOREM 3.7. Let o/, #, S, and T be as in Definition 3.6. The following
are equivalent:

1) There exists a s.p.c. S@ T of S@ T induced by o/ and &,

2) o @ & is a translation-invariant unital C*-subalgebra of W(S@ T),

3) o and & satisfy the following for each f in A :

a) {Jfooi:s€S,t€ Thiswec in A,

b) {fe,s0: ¢ € T} is totally bounded in o for each syin S,

c) foé,isin foreach sin S.

Proof. To show 1) implies 2), assume 1) and notice that since ¢ is an
extension of ¢, the map P defined by

o(s, t) = (L1(s), I2(t)) forsinSandtin T

is a continuous semigroup homomorphism from S@ T onto a dense subset
of S@ T. Hence, letting € be theimage of C(S@ T') under the adjoint map
of ¢, it follows by Lemma 2.13 that % is a translation-invariant unital
C*-subalgebra of W(S®@ T). It remains to show that ¥ = ./ ® #. Since

CS@T) = CcS) ® ¢(T)
by the Stone-Weierstrass theorem and
d*(F @ G) = [*(F) ® I,*(G)
for all Fin C(S) and G in C(T), it follows that./ ® & C % . Let h be in
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% and let A denote the Gelfaknd transform on %. Then £ is in C S@7)
= C(S) ® C(T), and so {(h) 1s»: ¢t € T} is totally bounded in C(S).
Since

L*((R) ) = h* forall tin T,

{h*: t € T} is totally bounded in 7. Similarly, *k is in & for all s in S.
Therefore, ¥ C & @ % by Theorem 2.7. Hence, ¥ =% @ &.

To show 2) implies 3), we again use Theorem 2.7. Let f be in.27. For
sinSandtin T,

SJooi=[e.o(f@® D)

and so ,f 0 o, is in . Since {(,.n(f ® 1): s € S, t € T} is w.c.c., so is
{foai:s€S,t€ T} Hence,a) holds. For sgin Sand ¢tin T,

foiup = [(f ® 1)¢,.0]"
Hence, {fs,s0;t € T} is totally bounded. For s in S,
fodé, =1 ® 1wl

and so fo ¢, is in .

We now show that 3) implies 1). First note that conditions a) and c)
imply by Theorem 3.2 that there exists an extension ¢ of o.

We first show that for fixed so in S, the map

(7, w) = 13u(11(s0))

is continuous from S X T into S, where 76,(I;(s0)) is left Arens multipli-
cation of 7 and &,(I1(s0)). Fix f in./ and define v from T into.%/ by

v(u) = du(I1(s0)) of, me€ T.

Note that y(u) is in &/ since &/ is left M-introverted by Lemma 2.12.
For s in S,

v(u) (s) = Gu(I1(s0)) (of).

Since ¢ is separately continuous, it follows that v is continuous with the
topology of pointwise convergence on.%Z. For ¢ in T,

Y(L2(t)) = ¢ 1o (L1(50)) O f = fa, (59

and so from b), {y(l2(¢)): ¢t € T} is totally bounded. By Lemma 2.2,
v is continuous from 7 into (&7, || ||.). Since

16,(I11(50)) (f) = 7(@u(li(s0)) of), 7€ S, €T

and v is norm continuous, it follows that

(71 1) = 754(11(50)) (f)
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is continuous for each f in.%/, and hence

(Ty /"') - T&#(II(SO))

is continuous from S X T into S.
We now show that for fixed 7o in S, the map (r, p) — 76.(70) is con-
tinuous from S X T into S. Fix fin.%/ and define T from S X T into .2/ by

L(r, u)(s') = 16u(Ii(s"))(f), 7€ S, peT, s €S
That I'(r, u) is in.%7 follows by defining F in C(S) by
F(G') = J@a @), €8

where A is the Gelfand transform on .27, and noting that I,*(F) = I'(r, u).
Since (7, p) — 76.(11(sc)) is continuous for fixed sy in S, it follows that

T is continuous with the topology of pointwise convergence on.?. For s
inSand¢in T,

I‘(Il(s)rI2(t)) = sfoa'z—

By a) and Lemma 2.2, T is continuous from S X T into (&, wk). From
the continuity of &, and the separate continuity of multiplication in S,
it follows that

TO(F(TY ”’)) = T&H(TO)(f)v Ty To € S, M € T

Consequently, for fixed 7o in S, since T is weakly continuous, the map
(r, u) — 76.(70) (f) is continuous for each fin 7. Thus (7, u) — 764(70) is
continuous from S X T into S for each fixed 7, in S.

Noting that & ;,( is the identity endomorphism of S and that

5, (I (1)) = I,(1) forall win T,
we have that S@ T is a s.p.c. of S@T.

Remark. 1f &7 is a translation-invariant subalgebra of 4(S) and
{foa,; t € T} is totally bounded for each f in.%7, then

{fsr00a,:s,s €S te T}
is totally bounded for each fin.2Z. To see this let f be in.%/ and fixe > 0.
Since fis in A(S), {fs: s, s’ € S} is totally bounded. Thus there exists
S1y « v -1 S0y Sty ..., 8 in Ssuch that {,,f,,-: & = 1,..., n} is an enet
for {sfs:: s, s € S}. For each &, {,,f,,- 0 o,: t € T} is totally bounded
and so there exists #1, . . ., tx5, in T such that

{skfsk’ oo'lk.j:j = 1) e rpk}
is an e-net for {;, fy,» 0 o,: t € T}. It follows that

lsefr 0oy ik=1,...,m5=1,..., P
is a 2e-net for {;f;y 00,5, 5 € S,t € T}.
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COROLLARY 3.8. Let 7, &, S, and T be as in Definition 3.6. There exists
as.p.c. S@T of S@ T induced by.o/ and & whichisatopological semigroup
if and only if o C A(S), Z C A(T), {fo a.: t € T} is totally bounded
in o andfoé,isinZ foreachfin & and sin S.

Proof. fS@ T is a s.p.c. of S@ T which is a topological semigroup, then
¢ is jointly continuous. By Corollary 3.4, {fo ¢,: ¢t € T} is totally bounded
in2/ and f o 4, is in & for each f in.2/ and s in S. Since S and T are
topological semigroups, & C A(S) and & C A(T).

We now prove the converse. Since &/ C 4 (S), condition b) of Theorem
3.7 is satisfied and by the preceding remark, condition a) of Theorem 3.7
is satisfied. By Theorem 3.7 there existsa s.p.c. S@ 7T of S@T induced
by.«/ and #Z. By Corollary 3.4, ¢ is jointly continuous. Since %/ C A (S)
and & C A(T), S and T are topological semigroups. It follows that
S@T is a topological semigroup.

Definition 3.9. Given f in A(S), call f o-Bochner almost periodic if for
each s;and s;in S, {,,f;, 0 0,2 t € T} is totally bounded. Let 47(S) denote
the set of all ¢-Bochner almost periodic functions on .S. Given f in W(S),
call f o-weakly almost periodic if {f,, 0 o2 s € S, ¢t € T} is w.c.c. and
fe,sps,: £ € T} is totally bounded for each s, and s, in S. Let W7(S)
denote the set of all ¢-weakly almost periodic functions on S.

ProposiTioN 3.10. A°(S) and W(S) are translation-invariant unital
C*-subalgebras of A(S) and W(S) respectively. Moreover, each of these
algebras is closed under composition with the family {o,: t € T}.

Proof. 1t follows directly that 4°(S) is a unital C*-subalgebra of 4 (S).
Let f be in A°(S) and s in S. Then for s;, s in Sand ¢t in T,

s,(&f)sg 00, = s,fc, 00,
and

s s)s g = 5 .ss (]

(fi)s, 0 Jsps ©

from which it follows that  f and f; are in 4°(S). Hence, 4°(S) is transla-
tion-invariant. From the remark preceding Definition 3.6, 4 (S) is closed
under composition with the family {s,: ¢+ € 7}. That this is true for
A°(S) follows from the following: for f in 47(S), si, s2 in S, to, ¢t in T,

-"1(]“0 010)32 Co, = ”to(sl)f"to(sz) Oyt

It follows directly that W<(S) is a linear subspace of W(S) containing
the constant functions and is self-adjoint. To show that W7(S) is closed,
let f be in the uniform closure of W?(S). For fixed s; in S, we must show
that

{fs, 0005 €S, tE T
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is w.c.c. By Grothendieck’s criterion [8], it suffices to show that if (s,’)
and (s,,) are sequences in S and (4,,) is a sequence in T such that

lim lim S,,.fsz (¢} U'tm(sn,) =L,
m n

and

lim lim ,,, f5, 0 01, (s") = Lo,
n m

then L; = L,. Assume L; % L, and set ¢ = |L; — L,|/2. Choose g in
W< (S) such that ||f — gll. < e Set

Am,n = s,,,f32 o a't,,,(sn,)

and
’
bmn = sm8sy O T4y, (sn )

for all m and n. Then {b, ,} is bounded in the complex plane. By using
a diagonalization argument, there exist ¢(1) < ¢(2) < ... and ¢(1)
< ¢¥(2) < ...such that

lim lim b¢(m) Yy = Lll

and

lim lim b¢(m) Yy — Lz’
n m

for some complex numbers L, and L'. Since g is in W?(S), by Grothen-
dieck’s criterion, L, = L. Also,

lim lim Ap(m) ¥m) = Ly
m n

and

lim lim @g(myyy = L.
n m

However,

lann = bmal = If = &l
for all m and ». Hence,

ILi — L S If — gl < e
and

|Le — Ly = |If — glls <e
and therefore

|Ly — Lo| < 2e = |L; — Lo

which is a contradiction. Thus, L; = L,.
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For s;and 5. in S, we must show that {f,,(,)5,: t € T} is totally bounded.
Let ¢ > 0 and choose & € W?(S) such that [|f — k||, < e There exist
ti, ..., t, such that

{hdlk(sl)szi k= 1, ey n}

is an e-net for { A, 5,0 ¢ € T}. It follows directly that
{fv,k(s,)x,i k=1,...,n}

is a 3e-net for {f,(,)s,: ¢ € T'}. Hence, fisin W7(S) and W(S) is closed.
To see that W7(S) is an algebra, let f, g be in W?(S), s;, s2 in S, and
tin 7. Then

(fg)v,(sl)s, = fvt(sl)sz * Eo,(s)) sy
from which it follows that {(fg)s,(s,)s,: ¢ € T} is totally bounded. Also,
for s in S,

a(fg)sz Co, = [sfsz o Ul] ) [sga2 o 0'1]-

Either by applying Grothendieck’s criterion or by applying a corollary
to Grothendieck’s theorem [8] which states that for Z a set, % a unital
C*-subalgebra of B(Z), K a norm bounded subset of .27, then K is w.c.c.
if and only if K is conditionally compact in the topology induced by the
multiplicative linear functionals on.27, one obtains that

{s(fg)52 oy S € S!t E T}

is w.c.c. Thus, fgisin W?(S).
That W°(S) is translation-invariant follows from the following: for f
in We(S), s, s1, s2in S and ¢ in T one has that

S(Jlf)sz Oo; = slsfsz Ooay
x(fsl)S, o0agy = fs,5 00y

(-Vf)frt(xl)s2 = s[fdl(sl)sz]y

and
(fs)ﬂt(sl)s2 = f”t(sl)“’QS'

From the remark preceding Definition 3.6, W(S) is closed under composi-
tion with the family {o,: ¢ € T}. That this is true for W?(S) follows from
the following: for fin W?(S), s, s1, s2in S, ¢y, tin T,

S(fo 0"0)52 Co, = "to(s)f"lg(sz) SRy
and
(f o Ulo)oz(sl)sz = fvloz(s,)vto(SQ) O 0y

Let aT denote the almost periodic compactification of 7" (induced by
A(T)) and wT denote the weakly almost periodic compactification of T’
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(induced by W(T)). Let aS? denote the compactification of .S induced by
A°(S) and wS° denote the compactification of S induced by W<(S). Then
a$’ is a compact topological semigroup and wS” is a compact semitopo-
logical semigroup by Lemma 2.12 and by remarks preceding it and
Corollary 2.10.

THEOREM 3.11. 4°(S) and A (T) induce as.p.c. aS* @ aT of S@ T which
is a topological semigroup. Moreover, if S@ T is a s.p.c. of S@ T induced by
L and B such that S@ T is a topological semigroup, then S/ C A°(S) and
B C AD).

Proof. Recall from Proposition 3.10 that f o ¢, is in 4°(S) for each f in
A°(S) and tin T. For sin S, tin 7', f in 4°(S),

(foés) =foa,06s

Since {f 0 o,: t € T} is totally bounded and the map F — F o &, from
C(S) into C(T) is norm continuous, f o ¢, is in A(7T"). By Corollary 3.8,
there is a s.p.c. aS*@aT of S@ T which is a topological semigroup.

Next let S@ T be any s.p.c. of S@ T induced by %/ and & which isa
topological semigroup. By Corollary 3.8, %7 C A(S), Z C A(T), and
{foo.: t € T}is totally bounded in. for each fin.%Z. Since.?/ is transla-
tion-invariant, &7 C A°(S).

Remark. Theorem 3.11 states that aS*@aT is, in terms of the algebras,
the largest s.p.c. of S@ T which is a topological semigroup. The next
result states that wS*@wT is the largest s.p.c. of S@ T.

TueorREM 3.12. W7(S) and W(T) induce a s.p.c. wS*@wT of S@ T.
Moreover, if S@ T is any s.p.c. of S@ T induced by ¥ and B, then
C W(S) and B C W(T).

Proof. Recall from Proposition 3.10 that f o o, is in W?(S) for each f
in W?(S) and ¢ in 7. Hence, conditions a) and b) of Theorem 3.7 are
satisfied. To show condition c), let f be in W?(S), s in S, ¢ in 7. Then,

(foés) =foa, 06,

Since {f 0 0,: ¢ € T} is w.c.c. and the map F — F o o, from C(S) into
C(T) is weakly continuous, f o &, is in W(T"). By Theorem 3.7, there
exists a s.p.c. wS*@wT of S@T.

Next let S@ T beas.p.c. of S@ T induced by 2 and Z. Let f be in &7,
s1, s2in S. By Theorem 3.7 a), {;fo o,: s € S, ¢t € T} is w.c.c. in.®/ and
hence, {,f;, 00, s € S, ¢ € T} isw.c.c. in & by the translation invariance
of /. By Theorem 3.7 b), {fs,s: t € T} is totally bounded in.%. Since

fq(sl)sz = (ng)V[(Sl)
and.®/ is translation-invariant, {f,,¢,)s,: ¢ € T} is totally bounded in.%/.
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Thus f is in W(S), and so.&/ C We(S). That Z C W(T) follows from
Definition 3.6.

THEOREM 3.13. 4°(S) and W(T) induce a s.p.c. aS* @ wT of S@ T for
which & 1s jointly continuous. Moreover, if S@ T is a s.p.c. of S@ T induced
by &/ and B for which S is a topological semigroup and & is jointly con-
tinuous, then &/ C A°(S).

Proof. Clearly A°(S) and W(T') satisfy conditions a) and b) of Theorem
3.7. Condition c) follows as in the previous two theorems. Hence, there
is a s.p.c. aS"@ wT of S@ T induced by 4°(S) and W(T). By Corollary
3.4, ¢ is jointly continuous.

Next suppose that S@ Tisas.p.c. of S@ 7" induced by.%/ and Z such
that ¢ is jointly continuous and S is a topological semigroup. By remarks
preceding Corollary 2.10,.%7 C A(S). By Corollary 3.4, {fo o, t € T} is
totally bounded for each f in 7. Since ./ is translation-invariant,

o C A°(S).
CoOROLLARY 3.14. If S is a semitopological group, then
A°(S) = W(S) N A(S).
Proof. From the remark preceding Corollary 3.8, it is clear that
A7(S) C We(S) N A(S).

Let &7 = W*(S) N A(S) and & = W(T). Then .7 is a translation-
invariant unital C*-subalgebra of 4 (S) and .27 and & satisfy conditions
a),b),and c) of Theorem 3.7 [c) follows as in the previous three theorems].

Hence %7 and & induce a s.p.c. S@ w7 of S@ T where S = A().
Since &/ C A(S), Sis a topological group (as 7 is in the proof of Corollary
3.5). Consider the (right) action ¢ of Son S@wT given by

(' u ) = (', ) (7, (1)) = (7'Gu(7), '),

where I, is the embedding map of 7T into w7. Since ¥ is separately
continuous, ¥ is jointly continuous by Ellis' Theorem [7]. Hence, ¢ is
jointly continuous. By Theorem 3.13, &/ C A°(S). Consequently,
A°(S) = W(S) N A(S).

Remark. If {s,: t € T} is finite, then clearly 47(S) = A(S) and W*(S)
= W(S). The following shows that 47(S) can equal 4 (S) when {o,: t € T}
is infinite. Let .S be an infinite commutative idempotent discrete semi-
group with 1. Define 6: S — & (S) by ¢,(s) = tsif s # 1 and ¢,(1) = 1.
Let f be in 4(S). For 51, s2 in S, ¢t in S,

s,fs, 00'1(3) = slszlf<s) if s # 1
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and

sif sg 0‘7!(1) = s sz(l)'
It follows that f is in 4°(S).

The following is a more interesting example.

Example 3.15. Let S be an infinite set and let 0 and 1 be two elements of
S. Define an operation on .S by

sifs’" =1lors =s
s’ = (difs=1
0 otherwise.

Equip S with the discrete topology and observe that S is a commutative
idempotent semigroup with identity, 1. Define o: S — & (S) by o,(s)
=tsifs# land o,(1) = 1.

From the previous remark, one has that 4°(S) = 4 (S). However, it is
interesting to note that

A(S) = {f¢ B(S):limitf(S) = f},

where limit,_,, f(s) = L means thatgiven ¢ > 0, there exists a finite subset
F of S such that |f(s) — L| < e for all s not in F. Also, aS = (S, %),
where % is the topology in which neighborhoods of I(0) [I being the
embedding map] are complements of finite sets and every other point is
open. Also, W?(S) = W(S) due to the collapsing of the sets which need
to be w.c.c. or totally bounded. Finally, wS = BS = the Stone-Cech
compactification of S [that is, W(S) = B(S)], since 8S can be made into
a compact semitopological semigroup such that the embedding map
I,: S — BSisahomomorphism by defining

rif 7 =7"in I,(S) or 7 = I,(1)
=7 if r=1,Q1)
I,(0) otherwise.

4. Almost periodic functions on semidirect products of semi-
groups. In this section we obtain sufficient conditions for

ASO@T) = 4°(S) ® A(T) and W(SO@T) = W(S) @ W(T).

To do this we first develop some results on tensor products.

Let X and Y be sets and let € be a unital C*-subalgebra of B(X X Y)
such that {#*: y € Y} is w.c.c. for all & in €. By Grothendieck’s criterion
(8], {*h: x € X} is w.c.c. for each & in €. Let &/ be the unital C*-sub-
algebra of B(X) generated by {h?: h € €,y € Y} and let &Z be the unital
C*-subalgebra of B(Y) generated by {*h: h € &, x € X}. Let X be the
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(&, I,)-compactification of X; ¥ the (Z, I.)-compactification of ¥; and
X X Ythe (¢, I)-compactification of X X V.

Definition 4.1. Given hin €, rin X, uin ¥, set "h(y’) = 7(h*’) and
B (x') = uw(*'h) for all ¥’ in X and 9" in Y.

Note that 11®h = *h and h7*® = ¥ for all hin €, xin X, y in V.
Fix hin % and r in X. Let (x,) be a net in X such that I;(x,) — 7. Then
(*«h) converges pointwise to 7h. Since {*h: x € X} is w.c.c., (*h) con-

verges weakly to "h. Since & is weakly closed, "k is in Z. Define ¢ from
X into Z by

y(r) = h, 7€ X.

Then ¢ is continuous in the topology of pointwise convergence on &% and

(Wli(x)):x € X} = {*h: x € X} is w.c.c. By Lemma 2.2, the map

7 — 7h is continuous from X into (%, wk). Similarly for each k in € and

win ¥, k*isin.o/ and the map u — k* is continuous from ¥ into (&7, wk).
For 7 in X, pin ¥, define

TQ u(h) = r(h*), heE.

The following properties follow directly:

1) 7@ pisin X X Yforall 7in X, pin ¥;

2) the map (r, u) — 7 ® u is separately continuous from X X ¥ into
X XY,

3) I(x,y) = Ii(x) ® I.(y) forall xin X, yin V;

4) 7 @ u(h) = u("h) forall 7in X, pin ¥, hin ¥.

Let

X@V={r@urcX,uc ¥}

Note that I(X X ¥) C X @ Y C X X Y and hence X ® ¥ is dense in
X X Y. Let w be the map from X X Y into X X Y such that =: (r, u)
7T Q u.

THEOREM 4.2. The following are equivalent:
i) w15 jointly continuous,

i) {h': v € Y} istotally bounded for all hin €,

i) ¥ C&¥/ @ Z.

Proof. To show i) implies ii), assume = is jointly continuous and let k
be in . Let (y.) be a net in ¥ and assume that {I;(y,)} converges to
some u in Y. Since u — h* is continuous from ¥ into (&7, wk), {h'a)
= {h 7202} converges weakly to k*. If the convergence is not uniform, by
passing to subnets, we may assume that there exists a net (x.) in X such
that {h¥a(x,) — h*(x.)} does not converge to 0 and {I;(x,)} converges
to some 7in X. Since = is jointly continuous,

limg h¥a(x,) = lim, [1(x,) ® La(va)(h) = 7 @ u(h)
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and
limg 24 (xe) = limg I () (B*) = 7(B*) = 7 @ u(h),

which is a contradiction. Therefore, {h*s} converges uniformly to h*.
To show ii) implies iii), assume ii) and recall from Theorem 2.7 that

A QX ={hc BXXY):*hc@B,xcX,WcAd,yc Y, and

{h': y € Y} is totally bounded}.
Hence, ¢ C & ® X.

To show iii) implies i), assume that ¥ C &/ ® #. By Theorem 2.7,
{h': y € Y} is totally bounded for each & in %. By Lemma 2.2, it follows
that the map u — h* is continuous from Yinto (&7, || |,) foreach hin €.
That = is jointly continuous now follows as in the proof of Theorem 2.6.

Remark. f € C o/ @ &,then X X ¥ = X X Y. To see this, note
that by Theorem 4.2 iii), = is jointly continuous. Hence, #(X X ¥) isa
compact dense subset of X X Y and, therefore, X ® ¥ = (X X ¥)
=X X VY.

COROLLARY 4.3.7 @ & = € if and only if w is a homeomorphism from
XX VontoX X VY.

Proof. Assume that/ @ & = €. Letry, 72 bein X and p1, p2 bein ¥
such that 7; ® u; = 72 ® ue. By evaluationatf ® 1in % for each fin .o/,
one obtains 7, = 7,. Similarly, u1 = uw.. Hence, = is one-to-one. By
Theorem 4.2 and the above remark, 7 is a homeomorphism onto X X Y.

Now assume that 7 is a homeomorphism. Then 7* is an isometry from
CXXY)ontoCEXX V)=CX) Q@ C(¥).Let¢p: X X Y>X X T
be given by

d’(xr y) = (I](:)C), IQ(y))

Then ¢* is an isometry from C(X X ¥) onto &/ ® %. Also, I* is an
isometry from C(X X Y) onto ¥ . Setting

® = ¢*orx*o (I*),

& is an isometry from % onto./ ® Z. It follows directly that ®!is the
identity map on functions of the form f ® g for fin and g in &Z. Hence,
® is the identity map and 4 =&/ @ %.

Our setting for the remainder of the paper is as follows. S© 7" will
denote a semitopological semidirect product semigroup as in the previous
section; % will denote a translation-invariant unital C*-subalgebra of
W(S@T); and.2/ and & will be defined as earlier in this section.

PROPOSITION 4.4. For each hin €, {h*: t € T} is w.c.c. Moreover, S/ is
translation-invariant in W(S) and & is translation-invariant in W(T).
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Proof. Let h bein €. For tin T and s in S,
R'(s) = ha,n(s, 1).
Since {hqa,p:t € T} is w.c.c., sois {h': ¢t € T}. Also,
s(h*) = [G.h]’
is in &/ and
(B*)s = [hes,n]

is in %7, Since & is generated by {h*: h € €, t € T}, it follows that .o/
is translation-invariant. Also, given k in %, tin T, since {( nh: s € S} is
W.C.C., SO is

{[(s.oh): s € S} = {(hY):s € S}.

Thus, k' is in W(S) and so.&Z C W(S). That & is translation-invariant
in W(T') follows similarly.

Let S, 7, and S X T denote the (&, I))-, (%, I.)-, and (¥, I)-com-
pactifications of S, T, and S(@ 7, respectively. By Lemma 2.12 and
remarks preceding it, S, 7, and S X T are compact semitopological semi-
groups and the embedding maps are homomorphisms.

LemMA 4.5. Given 1, 7" in Sand u, p’ in T, one has that
a) () ®@u= (r ® (1)) (v @ u),
b) 7@ (w') = (r ® w)(L:i(1) ® u).
In particular,
@ u = (r® (1)) (1:(1) ® u), (7") @ I(1)
= (r ® In(1))(v' @ I:(1)), and
Ii(1) @ (ue') = (I:i(1) ® p)(11(1) ® ).
Proof. Since I: S@T — S X T is a homomorphism, one obtains that
(I()I1(a:(s))) ® (L2()1=(F))
= (Ii(s) @ L)) (11(s") ® I(¢)), s, 8 €S, 4t €T.
Since 7 is separately continuous, it follows that
1) (tLi(o(s))) ® (L)) = (r ® L(£)) (1n(s") @ &),
s eSteT,rcSuel.
Letting t = 1 in (1), one has that

(tIi(s")) ® ¥’ = (1 @ (1)) (11(s") ® u).
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By separate continuity, a) follows. Letting s’ = 1 in (1), one has that
(I (1)) ® (I(O)n') = (v ® I2(t)) (11(1) ® ).
By separate continuity, b) follows.

THEOREM 4.6. Assume that one of the following conditions is satisfied:
P) T isatopological group and1 @ gisin € for each gin B ;
Q) S is a topological group and f @ 1 is in € for each f in A .

Then € =4 @ #.

Proof. Assume that condition P) is satisfied. By Corollary 4.3 it
suffices to show that = is a surjective homeomorphism. Define a (right)
action of Ton S X T by

O =L Qu), n€T,veSXT.

By Lemma 4.5, ()Y = ()¢, forall w, o’ in T, »in S X T. Since ¢ is
separately continuous, it is jointly continuous by Ellis' Theorem [7].
Forrin S, pin T,

(r® L)W = 7@ &

by Lemma 4.5 and therefore = is jointly continuous. To show that = is
one-to-one, assume that 7; ® u; = 72 ® us where 71, 72 are in S and
1, pe are in 7. By evaluation at 1 ® gin % for each g in &, one obtains
that u; = us. Choose any win T and note that

(M @ p)(H(1) @ u'p) =71 @ u
and
(r2 @ p1) (I1(1) @ w'p) =72 @ n

by b) of Lemma 4.5. Thus, 71 ® u = 72 ® u for all xin T and so 7;(k*)
= 7o(h*) for all kin € and pin T. Therefore, 7, = 72 and = is one-to-one.
From the remark preceding Corollary 4.3, it follows that = is surjective.
Hence ¥ =&/ @ #.

If condition Q) is assumed instead of condition P), a similar proof
using a) of Lemma 4.5 will show that ¥ = .o/ @ Z.

ProrposiTiON 4.7. A(S@ T) C A(S X T). In particular, if A4°(S)
= A(S), then A(S@T) = AS X T).

Proof. Let h bein A(S®@ T). Since A(S X T) = A(S) ® A(T) (this
was proved after Corollary 2.9), we apply Corollary 2.9 in showing that
hisin A(SX T). Forsin S, tin T,

h(t) = .0h(1,8).
Thus {*h: s € S} is totally bounded. Also,
t(sh)(tl) = (s,l)h(ly t,)y N E Sy tv t, E T-
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Consequently, {,(°h): ¢t € T} is totally bounded and so *h is in A (7).
Finally,

s(B)(") = k(s 1), 5,5 €S teT.
Hence, {;(h"): s € S} is totally bounded and so k' is in A(S). Thus,
AS@OT) CAS X T).

By the remark preceding Corollary 3.8 or by Theorem 3.11, it follows
that

A°(S) @ A(T) CA(S@T).
Thus, if 47(S) = A(S), then A(S@ T) = A(S X 7).

In [11] Junghenn shows that there is a s.p.c. of S(@ 7" induced by
A(S©@ T) when T contains a dense subgroup and in such a case obtains
A(S @ T) as a tensor product. The following theorem together with
Theorem 3.11 contain his result.

THEOREM 4.8. Assume that aT is a topological group. Then
ASQ@T) = 4°(S) @ A(T).

Proof. Let € = A(S@ T). Let. and & be as defined earlier in this
section (before Definition 4.1). Since 4 (S@ 1) C A(S X T), it follows
that &/ C A(S) and & C A(T). Given gin A(T), sin S, t in T, then

o1 ®g) =1® g

and thus {,»n(1 ® g): s € S, t € T} is totally bounded. Consequently,
1 ® gisin € for each gin A(T). Since !(1 ® g) = gforall gin A(T),
# = A(T). Since condition P) of Theorem 4.6 is satisfied, ¥ = &/
® A(T). To see that &/ C A°(S), let f be in.%Z. Then f ® 1isin &
= A(S©@T) and therefore

{en(f®1):se S, te T

is totally bounded in %’. Since
c0(f®1) = (foae,) ® 1 foreachsinSand¢in 7,

it follows that {,f 0 a,: s € S, ¢t € T} is totally bounded. Moreover,
[6.0(f @ D]t = foo,

and so f 0 o, is in.&/ for each s in S and ¢ in T by the definition of 7.
Thus, fisin A°(S) and.&/ C A°(S). For f in 4°(S),

sn(f®1)=for, ®1

from which it follows that f ® 1isin % . But (f ® 1)! = fis then in.&/.
Therefore, &/ = A4°(S).
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In [2]itis shown that w(S X T) = wS X T where Sis a semitopological
semigroup with right identity and 7" is a compact topological group. The
following theorem generalizes this result to semidirect products. A similar
theorem, obtained independently, appears in [16].

THEOREM 4.9. Assume that w1 is a topological group. Then
WES@T) = W (S) @ W(T).

Proof. Let € = W(S® T) and ./ and & be as defined earlier in this
section. By Proposition 4.4, Z C W(T). For g in W(T), it follows that
1 ® gisin % and hence '(1 ® g) = gisin . Therefore, Z = W(T).
By Theorem 4.6, € = .o/ @ W(T). To see that.eZ C W<(S), first note
that.?/ is a translation-invariant subalgebra of W(S) by Proposition 4.4.
Since Z @ W(T) = W(S@T), 2) of Theorem 3.7 holds. Therefore, a)
and b) of Theorem 3.7 hold, namely, {;foe,:s € S,t € T} isw.c.c. in/
and {f,,s): ¢t € T} is totally bounded in.%/ for each f in.2Z and s, in S.
Since.#/ is translation-invariant and

fU:(SI)SQ = (fsz)n(s,)r
o C We(S). For fin W+(S),
co(f®1) = (foa) ®1

from which it follows that f ® 1isin . But (f ® 1)! = fis then in.%/.
Therefore, &/ = W(S).

THEOREM 4.10. Let € = {(h € W(S@T): h* € A°(S) for all t in T}.
If aS° is a topological group, then € = A°(S) @ W(T).

Proof. For hin €, syin S, t,tpin T,
[y iph) = 5, (B9 0 0,
is in A°(S) and
(Bisg,epl’ = (B")y 50

is in A4°(S), since 4°(S) is closed under composition with the family
{¢,: ¢t € T} by Proposition 3.10. Hence, € is translation-invariant. It
follows directly that % is a unital C*-subalgebra of W(S@T). Let.%/ and
% be as defined earlier in this section. From the definition of 4, &/
C A°(S). For fin A°(S), f = (f® 1)!foralltin Tandsof® 1 isin &
and hence fisin&/ and &/ = A4°(S). Hence, condition Q) of Theorem 4.6
is satisfied and so ¥ = A°(S) ® #. By Proposition 4.4, Z C W(T).
If gisin W(T), then 1 ® gisin % since (1 ® g)!is a constant function
onSforeachtin 7. Since!(1 ® g) = gisin%, % = W(I).
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The following example shows that in general
ASO@OT) # A°(S) @ A(T) and W(SO@T) = W'(S) @ W(TI).

Example 4.11. Let S = (R, +) where R denotes the real numbers with
the usual topology and let 7' = {2~ n = 0, 1, 2, .. .} under multiplica-
tion with the discrete topology. Define o,(s) = tsfor all tin 7, s in S.
We first show that 47(S) consists of just the constant functions. Choose
any net {¢,} in 7 such that

lim,t, = 0 and lim, I2(t,) = p,

where pis in ¢7. Fix s in S and let s, = s/f,. By passing to subnets, we
may assume that lim, I;(s,) = 7, where 7, is in aS°. Then

II(S) = lim, Il(”ta(sa)) = Hma&h(la)(Il(S&)) = 5';5('7'3)7

where ¢ is the extension of ¢ induced by 47(S) and 4 (7). By Theorem
3.11, such a ¢ exists and is jointly continuous. For s’ in S and f in 4°(S),

Fu (11 (")) (f) = lima & 1509 (11 (s")) (f) = limg I (tas") (f)
= lim, f(tas’) = f(0) = I,(0) ().

Therefore, 6,(7) = I,(0) for all 7 in aS° and so I,(s) = a.(7s) = I1:(0).
Hence, f(s) = f(0) for all fin 47(S).

We next show that 4(S) ® Co(T) C A(S@ T'), where Co(T') consists
of those functions in B(7") which vanish at infinity. Let f be in 4 (S) and
g in Co(T). Then

o ® () = f(s+ts)git), s, s €S8 tt eT.
Given € > 0, there exists a 6 > 0 such that if ¢ < §, then
ls.0(f® @) (', 1) < e foralls,s"inSand? in 7,

since g is in Co(7). Since {¢t € T: ¢t = 8} is finite, it suffices to show that
{10 (f ® g): s € S} is totally bounded for fixed ¢y in 7. Since

G ® g) = foa, ® .8
and fisin A(S), { ¢, (f ® g): s € S} is totally bounded. Hence,
A(S) ® Co(T) CA(S@T)

andso A(S@ T) = A°(S) ® A(T).

To see that W(S@ T) = W<(S) ® W(T), one can argue as follows.
Suppose that W(S@ T) = W*(S) ® W(T). Then from the previous
paragraph,

A(S) ® Co(T) C W (S) ® W(T).
Let f be any non-constant function in 4 (S), and let g be the identity
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function on T'. Then f @ gisin W?(S) ® W(T) and hence, (f ® g)! = f
is in W?(S). Thus, f is in A(S) N\ W*(S) = A°(S) by Corollary 3.14.
Since 4°(S) consists of just the constant functions, this is a contradiction.

It is possible to show more. We will show that W7(S) consists of just
the constant functions; from which it also follows that

WES@T) #= W (S) @ W(T),

since as before, A(S) @ Co(T) CAS@T) C W(S@T).

Since wS” is a compact commutative semitopological semigroup (the
commutativity follows from the fact that wS° has separately continuous
multiplication and contains a dense commutative subsemigroup), the
kernel, K, of wS’ is a compact topological group ([5], Corollary 2.5).
Let ¢ be the identity of K. We first show that ¢ o f is a constant function
for all fin W7 (S). Fix an f in W7(S) and set fo = f — (e o f). Recall that
eo fisin W7(S) since W?(S) is left M-introverted. Then,

eofy=(eof) —eo(eof) = (eof) — (eof) =0

since for s in .S,

(eo(eof))(s) = e(s(eof)) = e(eof) = ee(sf) = e(f) = (eof)(s).

Note that the third equality involves left Arens multiplication, as defined
before Theorem 3.7. Also, (e o /)N = (f‘)e, where A denotes the Gelfand
transform on W (S).

Let F = (f)e and note that K is an ideal in wS? [5]. Define p from wS®
into K by p(7') = 7'e for all 7/ in wS’, and note that p is a continuous

homomorphism. Since K is a compact topological group, by Lemma 5.2
of [5],

p*(C(K)) C A(wS")

where p*(G) = G o p for all G in C(K). Since f‘!K is in C(K), where f‘|x
denotes the restriction of | to K, p*(flx) = F is in A (wS’). Thus,
{F.: 7 € wS°} is norm compact and, therefore, { F,(y: s € S} is totally
bounded in C(wS"), where I, is the embedding map of S into wS’. Hence,
{(e 0 f)s: s € S} is totally bounded in W<(S), and so e o f is in 4(S)
N We(S) = A°(S) by Corollary 3.14. Hence, ¢ o f is a constant function
for all f in W7(S).

Let 7 be in wS°. We now show that 7¢ = e. Let f be in W?(S). Then
f = ¢ + fo where c is a constant and f, is as defined above. Since e 0 fo = 0,
e(fo) = 0 and so

re(f) = re(c) + re(fo) = ¢ = e(f).

Let I; be the embedding map of 7 into w1'; and let ¢ be the extension
of ¢ induced by W7(S) and W(T). By Theorem 3.12, such a ¢ exists and
is separately continuous. Note that w7 ~ I,(7) is non-empty for, since
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A(T) separates the points of 7', I, is one-to-one and hence I, cannot map
a discrete 7" onto a compact wT. Let u be in wT" ~ I,(T). We now show
that ¢,(r) = I,(0) for all 7 in wS°. Let (¢,) be a net in T with I5(t,) — u
and note that (¢,) converges to 0. For s in S,

G 1301 (11(5)) = I1(tas) — I:(0)

and, by the separate continuity of &,

G 1301 (11(5)) — 64 (11(5)).

Therefore, ¢,(I:(s)) = I;(0) for all s in S. By the separate continuity of
& again and the fact that I,(S) is dense in wS°,

du(r) = I,(0) for all 7 in wSe.
We next show that ¢ ;,(;)(¢) = eforall ¢in 7" Fix tin 7. Since
7 1o (In(s)) = Li(ts), s €S,

G 1o(y maps I,(S) onto I,(S) and, therefore, ¢ ;,(,, maps wS° onto wS°.
Hence, there exists a 7’ in wS? such that

G (') = e
Since 7e = e for all 7 in wS°,
G (@) = G nw(r'e) = 6w (') nwe) = e nwe) = e

We now show that wS’ consists of a single point, and hence W?(S)
consists of just the constant functions. Since ¢ ;,(»(e) = e for all tin T’
and ¢ is separately continuous, ¢,(¢) = e for all y in w7. Since a,(e)
= I,(0) for all pin wT ~ I:(T), e = I,(0). Then, for all 7 in wS°,

7 =10[;(0) = ¢ = e.
Therefore, wS” is a single point.

We complete this paper by obtaining certain conditions which force
a semidirect product to be a direct product.

A character of a topological group G is a continuous homomorphism
from G into the circle group (= the group of complex numbers of modulus
one). Let G denote all characters of G.

Given any xi, x» in G with x; # x», one has that

”Xl - X?”u = \/g-

THEOREM 4.12. Let S be a topological group such that S M A4°(S) separates
the points of S, and let T be connected. Then S@ T = S X T.

Proof. For each x in S M A°(S), {x oot € T} is totally bounded and
contained in S. Hence, {x 0 ¢,: t € T} is finite. Fix a x in S M 4°(S). Let

U={teT:xo00,=x}.
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Then U is both closed and open in T and 1 is in U. Thus, U = T and
x oo, = xforall tin T, for all x in.S M A47(S). Since SN A4°(S) separates
the points of S, ¢, = the identity endomorphism for all ¢ in 7. Hence,
S@OT =SXT.

COROLLARY 4.13. Let S be a locally compact, Hausdorff, abelian topological
group and let T be a connected semitopological group. If S© T is maximally
almost periodic, then S@Q T = S X T.

Proof. From [9], p. 345, S separates the points of S. As in Corollary 3.5,
aT and aS” are topological groups. Hence, by Theorem 4.8, 4°(S) ® A(T)
separates the points of S©@ T. Thus, A°(S) separates the points of S and
so the embedding map I;: S — aS° is one-to-one. Since a.5° is a compact
abelian topological group, (aS°)* separates the points of aS’. Since
(aS°)? is isometrically isomorphic to S M A47(S) via the adjoint map I*
restricted to (aS”)A, S M A7(S) separates the points of S.

COROLLARY 4.14. Let G be any semidirect product of (R*, +) with
R™, +) induced by some o such that ¢, is not the identity endomorphism
for some tin R™. Then A°(R") % 4 (R").

Proof. If A°(R") = A (R"), then R* N A7(R*) = R* separates the points
of R”. By Theorem 4.12, G = R" X R™, which is a contradiction.
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