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1. Introduction

One of the key results in a recent paper [DDM+22] by Deshouillers et al states that for
each m ∈ N and c > 1, the subword complexity of the sequence (⌊nc⌋ mod m)∞n=0 grows
at most polynomially, which in particular shows that this sequence is deterministic. The
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philosophy behind this result is the following: if we take a regularly growing function
((⌊nc⌋)∞n=0) and apply a very simple rule to it (taking the residue modulo m), then the
resulting sequence is still quite simple (in this case it has polynomial subword complexity).
In this paper we vastly generalize both main aspects of this result, that is, we replace
(⌊nc⌋)∞n=0 with Hardy sequences and we replace taking the residue modulo m by applying
a bracket word.

Sturmian words are among the simplest and most extensively studied classes of infinite
words over a finite alphabet. One of their defining properties is extremely low subword
complexity. Recall that the subword complexity of an infinite word a = (a(n))∞n=0 over a
finite alphabet 6 is the function pa which assigns to each integer N the number pa(N)

of words w ∈ 6N which appear in a. If there exists at least one value of N such that
pa(N) ≤ N then a must be eventually periodic, in which case pa is bounded. If a is a
Sturmian word then pa(N) = N + 1 for all N, which in light of the remark above is the
least subword complexity possible for a word that is not eventually periodic. In [AK23]
Adamczewski and the first-named author studied a generalization of Sturmian words
obtained by considering letter-to-letter codings of finite-valued generalized polynomials,
which they dubbed bracket words. A generalized polynomial is an expression built from
the usual polynomials using addition, multiplication and the integer part function. More
precisely, generalized polynomials from Z to R are the smallest class of sequences that
contain the usual polynomials, and such that if g, h : Z → R are generalized polynomials
then so are g + h, g · h and ⌊g⌋. A bracket word is an infinite word a = (a(n))∞n=0
over some finite alphabet 6 which takes the form a(n) = ϕ(g(n)) for some generalized
polynomial g such that g(Z) is finite and some map ϕ : Z → 6. For instance, Sturmian
words (up to letter-to-letter coding) take the form

a(n) = ⌊α(n+ 1)+ β⌋ − ⌊αn+ β⌋

with α ∈ (0, 1) \ Q and β ∈ (0, 1) (possibly with the integer part ⌊·⌋ replaced by the
ceiling ⌈·⌉), and hence are special cases of bracket words. One of the main results of
[AK23] is a polynomial bound on subword complexity of bracket words: pa(N) ≪ NC

for a constant C (dependent on a).
In [DDM+22], Deshouillers et al investigated synchronizing automatic sequences along

Piatetski-Shapiro sequences (⌊nc⌋)∞n=0, where c > 1. A special case which plays a crucial
role in the argument is when the synchronizing automatic sequence is periodic, in which
case they obtained a polynomial bound on the subword complexity.

As a joint extension of the two lines of investigation discussed above, we investigate
bracket words along Piatetski-Shapiro sequences. In fact, we can deal with a considerably
larger class of Hardy field functions with polynomial growth, which in addition to
nc (c > 1) include logarithmic-exponential expressions such as αnc + α′nc

′
and nc logc

′
n,

as well as some more complicated expressions such as log(n! ). Our first result is a bound
on the subword complexity.

THEOREM A. Let a = (a(n))n∈Z be a (two-sided) bracket word over the alphabet 6 and

let f : R+ → R be a Hardy field function with polynomial growth. Then the subword

complexity of (a(⌊f (n)⌋)∞n=0 is bounded by exp(O(N δ)) for some 0 < δ < 1.

https://doi.org/10.1017/etds.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.112


Bracket words along Hardy field sequences 2623

The study of (special) automatic sequences along Piatetski-Shapiro sequences ⌊nc⌋ has
a long history. We mention results by Mauduit and Rivat [MR95, MR05], Deshouillers,
Drmota and Morgenbesser [DDM12], Spiegelhofer [Spi15, Spi20], and Spiegelhofer
and the second-named author [MS17]. Interestingly, two very different situations can
appear. On the one hand, the Thue–Morse sequence along Piatetski-Shapiro sequences
(for 1 < c < 3/2) is normal; in particular it has maximal subword complexity. On the other
hand, synchronizing automatic sequences along Piatetski-Shapiro sequences are very far
from normal; they have subexponential subword complexity. One natural generalization
of automatic sequences are morphic sequences. These are letter-to-letter codings of fixed
points of substitutions. A prominent morphic sequence is the Fibonacci word which is the
fixed point of the substitution 0 7→ 01, 1 7→ 0. Moreover, this sequence is also a Sturmian
word and many interesting morphic sequences are also Sturmian words (see, for example,
[KMPS18]). Thus, we obtain as a very special case (one of) the first results for morphic
sequences along Piatetski-Shapiro sequences.

It follows from Theorem A that the sequence (a(⌊f (n)⌋)∞n=0 is deterministic, meaning
that it has subexponential subword complexity. A conjecture of Sarnak [Sar11] asserts that
each deterministic sequence should be orthogonal to the Möbius function, given by

µ(n) =
{
(−1)k if n is the product of k distinct primes;

0 if n is divisible by a square.

This conjecture is wide open in general. However, it has been resolved in a number of
special cases [Bou13, BSZ13, DDM15, DK15, eAKL16, eALdlR14, FKPLM16, GT12a,
Gre12, KPL15, LS15, MR10, MR15, Mül17, Pec18, Vee16]; see also the recent survey
articles [DLMR, FKPL18]. Of particular importance to the current paper is Möbius
orthogonality for nilsequences [GT12a], which was recently strengthened to short intervals
[MSTT22]. As we discuss later in this paper, this is closely connected to bracket words
thanks to the work of Bergelson and Leibman [BL07]. Our second result is the Möbius
orthogonality for bracket words along Hardy field functions.

THEOREM B. Let a = (a(n))n∈Z be a (two-sided) R-valued bracket word and let

f : R+ → R be a Hardy field function with polynomial growth. Then

1

N

N∑

n=1

µ(n)a(n) → 0 as N → ∞. (1)

Remark 1.1. We point out that using similar techniques, it is possible to obtain a slightly
stronger result. Firstly, instead of the bracket word, we could work with a bounded gener-
alized polynomial; in fact, each bounded generalized polynomial can be approximated in
the supremum norm by finite-valued ones, which allows for a straightforward reduction.
Secondly, since all of the key ingredients in the proof of Theorem B are quantitative, one
can obtain an explicit rate of convergence to 0 in (1). We leave the details to the interested
reader.

Theorem B is closely related to Möbius orthogonality for nilsequences, that is,
sequences that can be obtained by evaluating a continuous function along an orbit of a
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point in a nilsystem. The connection between generalized polynomials and nilsequences
was established by Bergelson and Leibman [BL07], who showed that bounded generalized
polynomials can be represented by evaluating a piecewise polynomial function along an
orbit in a nilsystem (see Theorem 4.2 for details).

The fact that nilsequences are orthogonal to the Möbius function was established by
Green and Tao [GT12a] as a part of their programme of understanding additive patterns
in the primes. In fact, [GT12a] already contains an outline of the proof of Möbius
orthogonality for bounded generalized polynomials, although some technical details are
left out.

In order to obtain a result for a bracket word along a Hardy field function, we split the
range of summation into intervals where the Hardy field function under consideration can
be efficiently approximated by polynomials. We are then left with the task of establishing
cancellation in each of these intervals. A key ingredient is Möbius orthogonality for
nilsequences in short intervals, Theorem 5.3, recently established in [MSTT22]. The main
technical difficulty of our argument lies in extending Theorem 5.3 to piecewise constant
(and hence necessarily not continuous) functions with semialgebraic pieces, which we
accomplish in §5.2.

1.1. Plan of the paper. In §2 we recall some basic definitions and results about Hardy
fields. Moreover, we study Taylor polynomials of functions from a Hardy field generalizing
the corresponding part in [DDM+22]. This allows us to locally replace functions from a
Hardy field with polynomials. Thus, we need to be able to work with polynomials with
varying coefficients. To do so, we study in §3 parametric generalized polynomials, building
on and refining results obtained in [AK23]. These tools allow us to prove Theorem A.
In §4 we present some basics on nilmanifolds and discuss the connection to generalized
polynomials. Then in §5 we recall a result on Möbius orthogonality for nilsequences in
short intervals. This is the final result that we need to prove Theorem B. One naturally
arising difficulty is to translate the result on Möbius orthogonality for smooth functions to
piecewise polynomial functions.

1.2. Notation. We use N = {1, 2, . . . } to denote the set of positive integers and
N0 = N ∪ {0}. For N ∈ N, we let [N] = {0, 1, . . . , N − 1}. For a non-empty finite set
X and a map f : X → R, we use the symbol E borrowed from probability theory to denote
the average Ex∈Xf (x) = (1/|X|)

∑
x∈X f (x).

2. Hardy fields

In this section we discuss functions from a Hardy field which have polynomial growth.
In particular, we study how the Taylor polynomial of f can be used to describe ⌊f (n)⌋.
Therefore, we first gather some basic results on Hardy fields. Then we discus the uniform
distribution of polynomials modulo Z. Finally, we study properties of Taylor polynomials
and prove the main theorem of this section, namely Theorem 2.11.

2.1. Preliminaries. We start by gathering the basic facts and results on Hardy fields. For
further discussion we refer, for example, to [Bos94, Fra09].
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Let B be the collection of equivalence classes of real-valued functions defined on
some half-line (c, ∞), where we identify two functions if they agree eventually. (The
equivalence classes just defined are often called germs of functions. We choose instead
to refer to elements of B as functions, with the understanding that all the operations
defined and statements made for elements of B are considered only for sufficiently large
values of t ∈ R.) A Hardy field H is a subfield of the ring (B, +, ·) that is closed under
differentiation, meaning that H is a subring of B such that for each 0 6= f ∈ H , the
inverse 1/f exists and belongs to H, f is differentiable and f ′ ∈ H . We let H denote
the union of all Hardy fields. If f ∈ H is defined on [0, ∞) (one can always choose such
a representative of f ) we call the sequence (f (n))∞n=0 a Hardy sequence.

We note that choosing different representatives of the same germ of a function f changes
the number of subwords of length N of a(⌊f (n)⌋) by at most an additive constant. As a
consequence, the asymptotic behaviour of the subword complexity of a(⌊f (n)⌋) depends
only on the germ of f.

A logarithmic-exponential function is any real-valued function on a half-line (c, ∞)

that can be constructed from the identity map t 7→ t using basic arithmetic operations
+, −, ×, ÷, the logarithmic and the exponential functions, and real constants. For

example, t2 + 5t , t
√

2+
√

3, e(log t)2 and e
√

log t/
√
t2 + 1 are all logarithmic-exponential

functions. Every logarithmic-exponential functions belongs to H, and so do some other
classical functions such as Ŵ, ζ and t 7→ sin(1/t).

For real-valued functions f and g on (c, ∞) such that g(t) is non-zero for sufficiently
large t, we write f (t) ≺ g(t) if limt→∞ f (t)/g(t) = 0, f (t) ∼ g(t) if limt→∞ f (t)/g(t)

is a non-zero real number, and f (t) ≪ g(t) if there existsC > 0 such that |f (t)| ≤ C|g(t)|
for all large t. For completeness, we let 0 ∼ 0 and 0 ≪ 0.

We state the following well-known facts as lemmas.

LEMMA 2.1. Let f ∈ H be a function that is not eventually zero. Then f is eventually

strictly positive or negative. If f is not eventually constant, then f is eventually strictly

monotone.

Proof. Since f is not eventually 0, there exists the inverse function 1/f ; in particular,
f (t) 6= 0 for t large enough. Now, the first part follows from continuity of f. The second
part follows directly from the first part by considering f ′.

LEMMA 2.2. Let H be a Hardy field and let f , g ∈ H . Then one of the following holds:

f ≺ g, f ∼ g or f ≻ g.

Proof. If g is eventually zero, the situation is trivial, so assume that this is not the case.
Since f/g is eventually monotone, the limit limt→∞ |f (t)|/|g(t)| ∈ R ∪ {∞} exists. If the
limit is infinite then f ≻ g. If the limit is zero then f ≺ g. If the limit is finite and non-zero
then f ∼ g.

Definition 2.3. We say that f has polynomial growth if there exists n ∈ N such that
f (t) ≺ tn.
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We will make use of the following estimates for the derivatives of functions with
polynomial growth.

LEMMA 2.4. [Fra09, Lemma 2.1] Let f ∈ H be a function with polynomial growth. Then

at least one of the following statements holds.

(i) f (t) ≺ t−n for all n ∈ N.

(ii) f (t) → c 6= 0 as t → ∞ for some constant c.

(iii) f (t)/(t (log t)2) ≺ f ′(t) ≪ f (t)/t .

LEMMA 2.5. Let f ∈ H be a function such that f (t) ≺ t−n for all n ∈ N. Then also

f (ℓ)(n) ≺ t−n for all ℓ, n ∈ N.

Proof. Reasoning inductively, it is enough to consider the case where ℓ = 1. Suppose, for
the sake of contradiction, that |f ′(t)| ≫ t−n for some n ∈ N. Since f (t) → 0 as t → ∞
and since f is eventually monotone, for sufficiently large t we have

|f (t)| =
∫ ∞

t

|f ′(s)| ds ≫
∫ ∞

t

s−n ds ≫ t−n+1,

contradicting the assumption on f.

LEMMA 2.6. Let f ∈ H and assume that f (t) ≪ tk for some k ∈ Z. Then f (ℓ)(t) ≪ tk−ℓ

for each ℓ ∈ N.

Proof. Reasoning inductively, it is enough to consider the case where ℓ = 1. We consider
the three possibilities in Lemma 2.4. If f (t) ≺ t−n for all n ∈ N then the claim is
trivially true by Lemma 2.5. If f ′(t) ≪ f (t)/t then f ′(t) ≪ tk−1, as required. Finally,
suppose that f (t) → c 6= 0 as n → ∞. Clearly, in this case k ≥ 0. We may decompose
f (t) = f (t)+ c, where f (t) = f (t)− c and f (t) ≺ 1. Repeating the reasoning with f
in place of f, we conclude that f ′(t) = f

′
(t) ≪ t−1 ≪ tk−1.

Remark 2.7. For each f ∈ H and each logarithmic-exponential function g, there exists
a Hardy field H such that f , g ∈ H (see, for example, [Bos94]). Hence, it follows from
Lemma 2.2 that for each f ∈ H there exists k0(f ) ∈ Z ∪ {−∞, +∞} such that, for
k ∈ Z we have: f (t) ≺ tk if k > k0(f ), f (t) ≻ tk if k < k0(f ), and, if k0(f ) is finite,
f (t) ≪ tk0(f ). Lemma 2.6 implies that k0(f

(ℓ)) ≤ k0(f )− ℓ (with the convention that
±∞ − ℓ = ±∞).

2.2. Uniform distribution of polynomials. In this subsection we recall a result about the
uniform distribution of polynomials modulo Z which we need for the next subsection about
Taylor polynomials. It is well known that a polynomial distributes uniformly modulo Z if
and only if at least one (non-constant) coefficient is irrational. The following proposition
is a quantitative version of this statement.

First we need to specify the way we quantify how uniformly distributed a sequence
a(n) mod Z is. Let (x1, . . . , xN ) be a finite sequence of real numbers. Its discrepancy is
defined by
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DN (x1, . . . , xN ) = sup
0≤α≤β≤1

∣∣∣∣
#{n ≤ N : α ≤ {xn} < β}

N
− (β − α)

∣∣∣∣. (2)

Thus, we have the necessary prerequisites to state the following proposition.

PROPOSITION 2.8. [DDM+22, Proposition 5.2] Suppose that g : Z → R is a polynomial

of degree d, which we write as

g(n) = β0 + nβ1 + · · · + ndβd .

Furthermore, let δ ∈ (0, 1/2). Then either the discrepancy of (g(n) mod Z)n∈[N] is smaller

than δ, or else there is an integer 1 ≤ ℓ ≪ δ−Od (1) such that

max
1≤j≤d

N j‖ℓβj‖ ≪ δ−Od (1).

This proposition is a direct consequence of [GT12b, Proposition 4.3], who attribute this
result to
Weyl.

2.3. Taylor expansions. For any germ f ∈ H we consider a representative that is
defined on [1, ∞) and also call it f. Then, for any x ∈ (1, ∞) and ℓ ∈ N0, we can consider
the length-ℓ Taylor expansion of f at the point x,

f (x + y) = Px,ℓ(y)+ Rx,ℓ(y), (3)

Px,ℓ(y) := f (x)+ yf ′(x)+ · · · +
yℓ−1

(ℓ− 1)!
f (ℓ−1)(x), (4)

Rx,ℓ(y) :=
yℓ

ℓ!
f (ℓ)(x + ξℓ(N , h)) where ξℓ(x, y) ∈ [0, y]. (5)

PROPOSITION 2.9. Let k ∈ Z, ℓ ∈ N0, and let f ∈ H be a function with f (t) ≪ tk . Then

the error term Rx,ℓ(y) in the Taylor expansion (3)–(5) satisfies

Rx,ℓ(y) ≪ yℓxk−ℓ

uniformly for all x ≥ 1 and 0 ≤ y ≤ x, where the implied constant only depends on f

and ℓ.

Proof. Combining (5) and Lemma 2.6. we have

y−ℓRx,ℓ(y) ≪ sup
ξ∈[0,y]

f (ℓ)(x + ξ) ≪ sup
ξ∈[0,y]

(x + ξ)k−ℓ =
{
xk−ℓ if k < ℓ,

(x + y)k−ℓ if k ≥ ℓ.

Assuming that x ≥ y, the two estimates are equivalent.

LEMMA 2.10. Let k ∈ N and let f be a k times continuously differentiable function defined

on an open interval I ⊆ R. Suppose that f (k)(t) has constant sign on I. Then f changes

monotonicity on I at most k − 1 times.
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Proof. If f (k)(t) is constant zero for all t ∈ I , then f is a polynomial of degree at most
k − 1 and the statement is trivially true. Thus, we assume without loss of generality
that f (k)(t) > 0 for all t ∈ I . Let us assume for the sake of contradiction that f changes
monotonicity at least k times. Thus, f ′ has at least k zeros in I. It follows from the mean
value theorem that f ′′ has at least k − 1 zeros in I. Inductively applying this reasoning
shows that f (k) has at least one zero in I, giving the desired contradiction.

THEOREM 2.11. Let k, ℓ ∈ N be integers with k < ℓ, and let f ∈ H be a function

satisfying f (t) ≪ tk , and let PN ,ℓ and RN ,ℓ be given by (3)–(5). Then there exists some

0 < η < 1 (only depending on ℓ) such that for any H ∈ N, the formula

eN (h) := ⌊f (N + h)⌋ − ⌊PN ,ℓ(h)⌋, 0 ≤ h < H , (6)

defines at most exp(O(H η)) different functions eN : [H ] → Z for N ∈ N. Moreover, for

each N, at least one of the following statements holds.

(i) N is small: N = O(H (ℓ+η)/(ℓ−k)).
(ii) eN is sparse: there are at most O(H η) values of h ∈ [H ] such that eN (h) 6= 0.

(iii) eN is structured: there exists a partition of [H ] intoO(H η) arithmetic progressions

with step O(H η) on which eN is constant.

(In the theorem above, the constants implicit in theO(·) notation are allowed to depend
on k, ℓ and f.)

Proof. We define ε = H−η0 for some η0 > 0 which only depends on ℓ and will be
specified later. Let N ∈ N. Recall that by Proposition 2.9, we have

|RN ,ℓ(h)| ≤ ε for all 0 ≤ h < H (7)

unless N ≪ ε−1/(ℓ−k)H ℓ/(ℓ−k) = H (ℓ+η0)/(ℓ−k). Thus, the values of N such that (7) is
false contribute only O(HO(1)) different sequences eN , and we may freely assume that N

is large enough that (7) holds. In this case we have eN : [H ] → {−1, 0, 1}. Additionally,
by Lemma 2.1 we may also assume that f (ℓ)(x) 6= 0 for all x ≥ N . As a consequence of
(7), for each 0 ≤ h < H , if

ε < {PN ,ℓ(h)} < 1 − ε (8)

then ⌊f (N + h)⌋ = ⌊PN, ℓ(h)⌋ and hence eN (h) = 0.
Let α0, . . . , αℓ−1 denote the coefficients of PN ,ℓ:

PN ,ℓ(h) = α0 + α1h+ · · · + αℓ−1h
ℓ−1.

By Proposition 2.8, we distinguish two cases.

(I) (PN ,ℓ(h))h∈[H ] has discrepancy at most ε.
(II) There exists 1 ≤ q ≪ ε−O(1) such that max0≤j<ℓ H j‖qαj‖ ≪ ε−O(1).

In the first case, it follows that the number of h ∈ [H ] such that (8) does not hold is at
most 3εH . Thus, eN is sparse, that is, it has at most 3εH ≪ H 1−η0 non-zero entries.
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It remains to estimate the number of the sequences eN of this type. Using a standard
estimate

(
n
k

)
≤ nk/k! < (en)k/kk , we find

log


 ∑

0≤j≤3εH

(
H

j

)
2j


 ≪ log(3εH)+ log

(
H

3εH

)
+ 3εH

≪ log(3H 1−η0)+ 3εH log(e3H 1−η0)+ 3H 1−η0

≪η0 H
1−η0/2.

Thus the number of distinct sequences eN is bounded by exp(O(H 1−η0/2)), which gives
the desired result as long as 1 − η0/2 ≤ η.

In the second case we split [H ] into arithmetic progressions with common difference
q ≪ ε−Oℓ(1). This allows us to write (for 0 ≤ m < q)

PN ,ℓ(qh+m) = α0 + (qh+m)α1 + · · · + (qh+m)ℓ−1αℓ−1

= β0 + hβ1 + · · · + hℓ−1βℓ−1.

The defining property of q implies that

max
1≤j<ℓ

H j‖βj‖ ≪ ε−Oℓ(1).

In particular, we can write

βj = zj + sj ,

where zj ∈ Z and |sj | ≪ H−j · ε−Oℓ(1) for 0 ≤ j < ℓ. Putting everything together, we
find

f (N + qh+m) = Q(h)+ r(h)+ RN ,ℓ(qh+m),

where

Q(h) = z0 + hz1 + · · · + hℓ−1zℓ−1,

r(h) = s0 + hs1 + · · · + hℓ−1sℓ−1.

In particular, Q is a polynomial of degree at most ℓ− 1 with integer coefficients and
PN ,ℓ(qh+m) = Q(h)+ r(h). Moreover, |r(h)| ≪ ε−Oℓ(1) for all h ∈ [0, H/q]. Since
|RN ,ℓ(h)| ≤ ε, we see that

⌊f (N + qh+m)⌋ 6= ⌊PN ,ℓ(qh+m)⌋

holds exactly if either

{r(h)} ≤ ε and {r(h)+ RN ,ℓ(qh+m)} ≥ 1 − ε, or

{r(h)} ≥ 1 − ε and {r(h)+ RN ,ℓ(qh+m)} ≤ ε.
(9)

In the first case eN (qh+m) = 1 and in the second case eN (qh+m) = −1. Since r(h) is a
polynomial of degree at most ℓ− 1, it changes monotonicity at most ℓ− 2 times. Since the
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ℓth derivative of r(h)+ RN ,ℓ(qh+m) = f (N + qh+m)− PN ,ℓ(qh+m)+ r(h) has
constant sign, by Lemma 2.10 it changes monotonicity at most ℓ− 1 times on the interval
[0, H/q]. Hence, we can decompose [0, H/q] into at most 2ℓ− 2 intervals I1, . . . , Ip
on which r(h) and r(h)+ RN ,ℓ(qh+m) are both monotone. As |r(h)| ≪ ε−Oℓ(1), we
can further subdivide each of the intervals Ij into O(ε−Oℓ(1)) subintervals such that for
each subinterval, each of the inequalities is either true on the entire subinterval or false
on the entire subinterval. As a consequence, eN is structured, that is, eN is constant
on each subinterval. Thus, we have found a decomposition of [H ] into O(ε−Oℓ(1))
arithmetic progressions on which eN is constant. We can write O(ε−Oℓ(1)) = O(HCη0)

for some C = C(ℓ) > 0. Using the rough estimate H 3 for the number of arithmetic
sequences contained in [H ], we can bound the number of sequences eN which arise this
way by

(H 3)O(H
Cη0 ) = exp(O(HCη0 log H)) = exp(Oη0(H

(C+1)η0).

It remains to choose η0 = (C + 2)−1 and η = 1 − (2(C + 2))−1 to finish the proof.

3. Parametric generalized polynomials

In this section we discuss parametric generalized polynomials, building on and refining
results obtained in [AK23]. In particular, we show that for any parametrized general
polynomial that takes values in [M], we can assume that the parameters belong to [0, 1)J

for some finite set J (Proposition 3.5). This allows us to show a polynomial bound on the
number of subwords of bracket words along polynomials of a fixed degree (Corollary 3.7).
At the end of the section we give the proof of Theorem A.

Let d ∈ N. Generalized polynomial (GP) maps from Rd to R are the smallest family G
such that (1) all polynomial maps belong to G; (2) if g, h ∈ G then also g + h, g · h ∈ G
(with operations defined pointwise); (3) if g ∈ G then also ⌊g⌋ ∈ G, where ⌊g⌋ is defined
pointwise by ⌊g⌋(x) = ⌊g(x)⌋. We note that GP maps are also closed under the operation
of taking the fractional part, given by {g} = g − ⌊g⌋. For sets � ⊆ Rd and 6 ⊆ R (for
example, � = Zd , 6 = Z), by a GP map g : � → 6 we mean the restriction g̃|� to �
of a GP map g̃ : Rd → R such that g̃(�) ⊆ 6. We point out that, unlike in the case of
polynomials, the lift g̃ is not uniquely determined by g, unless � = Rd .

In [AK23], we introduced the notion of a parametric GP map Z → R with a finite
index set I, which (modulo some notational conventions) is essentially the same as a GP
map RI × Z → R. For instance, the formula

gα,β(n) = ⌊αn⌊βn⌋ +
√

2n2⌋ (α, β ∈ R)

defines a GP map Z → R (or, strictly speaking, a family of GP maps) parametrized by
R2. Formally, a parametric GP map with index set I or a GP map parametrized by RI is
a map RI → RZ, α 7→ gα , such that the combined map RI × Z → R, (α, n) 7→ gα(n),
is a GP map.

Here we will need a marginally more precise notion, where the set of parameters takes
the form RIreal × ZIint × [0, 1)Ifrac rather than RI . Let Ireal, Iint, Ifrac be pairwise disjoint
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finite sets and put I = Ireal ∪ Iint ∪ Ifrac. Then a GP map parametrized by RIreal × ZIint ×
[0, 1)Ifrac is the restriction of a GP map parametrized by RIreal × RIint × RIfrac (as defined
above) to RIreal × ZIint × [0, 1)Ifrac . We note that in the case where Iint = Ifrac = ∅, the new
definition is consistent with the previous one.

In [AK23] we defined the operations of addition, multiplication and the integer part
for parametric GP maps, not necessarily indexed by the same set. Roughly speaking, if
I ⊆ J are finite sets then we can always think of a GP map parametrized by RI as a GP
map parametrized by RJ , with trivial dependence on the parameters in RJ\I . Thus, if g•
and h• are GP maps parametrized by RI and RJ respectively, then we can think of both
g• and h• as GP maps parametrized by RI∪J , which gives us a natural way to define
the (pointwise) sum and product g• + h• and g• · h•. We refer to [AK23] for a formal
definition. This construction directly extends to GP maps parametrized by RIreal × ZIint ×
[0, 1)Ifrac .

Definition 3.1. Let g• and h• be two GP maps parametrized by RIreal × ZIint × [0, 1)Ifrac

and RJreal × ZJint × [0, 1)Jfrac , respectively. Then we say that h• extends g•, denoted
h• � g•, if there exists a GP map ϕ : RIreal × RIint × RIfrac → RJreal × RJint × RJfrac such
that

• ϕ(RIreal × ZIint × [0, 1)Ifrac ) ⊃ RIreal × ZIint × [0, 1)Ifrac , and
• gα = hϕ(α) for all α ∈ RIreal × ZIint × [0, 1)Ifrac .

We use different notation h• � g• than in [AK23] in order to avoid confusion with
the symbol ≻ extensively used in §2. In [AK23] we obtained a polynomial bound on the
number of possible prefixes of a given GP map parametrized by [0, 1)I .

THEOREM 3.2. [AK23, Theorem 15.3] Let g• : Z → Z be a GP map parametrized by

[0, 1)I for some finite set I. Then there exists a constant C such that, as N → ∞, we have

|{gα|[N] | α ∈ [0, 1)I }| = O(NC). (10)

Above, the implicit constant depends only on g•.

Our next goal is to obtain a similar bound for the number of prefixes of a bounded GP
map parametrized by RI . Even though we are ultimately interested in bounded GP maps,
Proposition 3.4 concerning unbounded GP maps is more amenable to proof by structural
induction. We will use the following induction scheme.

PROPOSITION 3.3. [AK23, Proposition 13.9] Let G be a family of parametric GP maps

from Z to Z with index sets contained in N. Suppose that G has the following closure

properties.

(i) All GP maps Z → Z belong to G.

(ii) For every g• and h• ∈ G, we have that g• + h• ∈ G and g• · h• ∈ G.

(iii) For every g• ∈ G, G contains all the parametric GP maps g′
• : Z → Z satisfying

g• � g′
•.

https://doi.org/10.1017/etds.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.112


2632 J. Konieczny and C. Müllner

(iv) For every pair of disjoint finite sets I ⊆ N, J ⊆ N, and every sequence of

parametric GP maps h
(i)
• ∈ G, i ∈ I , with index set J, G contains the parametric

GP map g• defined by

gα,β(n) =
⌊ ∑

i∈I
αih

(i)
β (n)

⌋
, n ∈ Z, α ∈ RI , β ∈ RJ .

Then G contains all parametric GP maps Z → Z with index sets contained in N.

PROPOSITION 3.4. Let g• : Z → Z be a GP map parametrized by RI for a finite set I.

Then there exist finite sets J , K and a GP map g̃• : Z → Z parametrized by ZJ × [0, 1)K

such that g̃• � g• and g̃• takes the form

g̃a,β =
∑

j∈J
ajh

(j)
β , a ∈ ZJ , β ∈ [0, 1)K ,

where for each j ∈ J , h
(j)
• : Z → Z is a GP map parametrized by [0, 1)K .

Proof. (i) If g : Z → Z is a fixed GP map (that is, if I = ∅) then we can simply take
g̃ = g.

(ii) Suppose that the conclusion holds for g•, h• : Z → Z, and let the corresponding
extensions g̃• and h̃• be given by

g̃a,β =
∑

j∈J
ajh

(j)
β , a ∈ ZJ , β ∈ [0, 1)K ,

h̃c,δ =
∑

l∈L
clh

(l)
δ , c ∈ ZL, δ ∈ [0, 1)M .

We may freely assume that the index sets J , K , L, M are pairwise disjoint. We will show
that the conclusion also holds for g• + h• and g• · h•. In the case of g• + h• it is enough
to combine the sums representing g̃a,β and h̃c,δ into a single sum. In the case of g• · h•, we
take

f̃e,(β,δ) =
∑

j∈J , l∈L
ej ,l(h

(j)
β · h(l)δ ), e ∈ ZJ×L, (β, δ) ∈ [0, 1)K×M .

Then f̃ has the required form and (taking ej ,l = ajcl) we see that f̃• � g̃• · h̃• � g• · h•.
(iii) Suppose that the conclusion holds for g• and that g• � g′

•. Then the conclusion
also holds for g′

• because the relation of being an extension is transitive.
(iv) Suppose that I ⊆ N, J ⊆ N are disjoint finite sets, h(i)• are GP maps parametrized

by RJ which satisfy the conclusion for each for i ∈ I , and g• is the parametric GP map
defined by

gα,β(n) :=
⌊ ∑

i∈I
αih

(i)
β (n)

⌋
, n ∈ Z, α ∈ RI , β ∈ RJ .

Let the extensions of h(i) be given by

h̃
(i)
c,δ =

∑

l∈L
clf

(i,l)
δ , c ∈ ZL, δ ∈ [0, 1)M .

https://doi.org/10.1017/etds.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.112


Bracket words along Hardy field sequences 2633

(Note that without loss of generality we may use the same index sets L and M for each
i ∈ I .) We will show that the conclusion is satisfied for g•. We observe that we have the
equality

⌊ ∑

i∈I
αi h̃

(i)
c,δ

⌋
=

⌊ ∑

i∈I , l∈L
αiclf

(i,l)
δ

⌋
=

∑

i∈I , l∈L
⌊αicl⌋f (i,l)δ +

⌊ ∑

i∈I , l∈L
{αicl}f (i,l)δ

⌋
.

This motivates us to define

g̃e,δ,φ :=
∑

i∈I , l∈L
ei,lf

(i,l)
δ + e⋄

⌊ ∑

i∈I , l∈L
φi,lf

(i,l)
δ

⌋
,

e ∈ ZI×L∪{⋄}, φ ∈ [0, 1)I×L, δ ∈ [0, 1)M ,

where ⋄ is some index that does not belong to I × J . Letting also

f
(⋄)
δ,φ :=

⌊ ∑

i∈I , l∈L
φi,lf

(i,l)
δ

⌋
, φ ∈ [0, 1)I×L, δ ∈ [0, 1)M ,

we see that g̃• takes the required form and (setting φi,l = {αicl} and e⋄ = 1) we have
g̃• � g•.

Combining the closure properties proved above, we infer from Proposition 3.3 that the
conclusion holds for all parametric GP maps.

PROPOSITION 3.5. Let M ∈ N and let g• : Z → [M] be a GP map parametrized by RI

for a finite set I. Then there exists a GP map g̃• : Z → [M] parametrized by [0, 1)J for a

finite set J such that g̃• � g•.

Proof. Let g̃(0)• � g• be the parametric GP from Proposition 3.4, and let

g̃
(0)
a,β =

∑

j∈J
ajh

(j)
β , a ∈ ZJ , β ∈ [0, 1)K .

Since the value of gα,β(n) is completely determined by its residue modulo M, we expect
that it is enough to consider the values of a with a ∈ [M]J . This motivates us to put

g̃α,β =
∑

j∈J
⌊Mαj ⌋h(j)β , α ∈ [0, 1)J , β ∈ [0, 1)K .

Let φ : ZI → ZJ and ψ : ZI → RK be GP maps such that gα = g̃
(0)
φ(α),ψ(α). Let θ : ZI →

[0, 1)J be given by θ(α) := {φ(α)/M} (with fractional part taken coordinatewise). Then

g̃
(0)
φ(α),β(n) ≡ g̃θ(α),β(n) mod M for all n ∈ Z, α ∈ RI , β ∈ [0, 1)K .

Since g• takes values in [M], it follows that

gα(n) = g̃
(0)
φ(α),ψ(α)(n) ≡ g̃θ(α),ψ(α)(n) mod M for all n ∈ Z, α ∈ RI .

Replacing g̃• with M · {g̃•/M} if necessary, we may further ensure that g̃• takes values in
[M]. As a consequence, g̃• � g•, as needed.
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PROPOSITION 3.6. Let a = (a(n))n∈Z be a (two-sided) bracket word over a finite alphabet

6, and let g• : Z → Z be a GP map parametrized by RI for some finite set I. Then there

exists a constant C > 0 such that, as N → ∞, we have

|{(a(gα(n)))N−1
n=0 | α ∈ RI }| = O(NC).

Above, the implicit constant depends on a and g•.

Proof. Let M := |6|. We may freely assume that 6 = [M], in which case a is a GP
map by [AK23, Lemma 5.2]. Thus, a ◦ g• is a GP map parametrized by RI and taking
values in [M]. By Proposition 3.5, there exists a GP map g̃• parametrized by [0, 1)J for
a finite set J such that g̃• � a ◦ g•. Thus, it suffices to show that, for a certain C > 0,
the number of words (g̃α(n))

N−1
n=0 for α ∈ [0, 1)J is O(NC) as N → ∞. This is precisely

Theorem 3.2.

As a special case, we obtain a bound on the number of subsequences of bracket words
along polynomials of a given degree.

COROLLARY 3.7. Let a = (a(n))n∈Z be a (two-sided) bracket word over a finite alphabet

6 and let d ∈ N. Then there exists a constant C > 0 such that, as N → ∞, we have

|{(a(⌊p(n)⌋))N−1
n=0 | p ∈ R≤d [x]}| = O(NC),

where the implied constant depends only on a and d.

Thus we are now in a position to prove Theorem A.

Proof of Theorem A. We aim to estimate the number of subwords of length H of
(a(⌊f (n)⌋))∞n=0, that is, we count words of the form

(a(⌊f (N)⌋), . . . , a(⌊f (N +H − 1)⌋)) = (a(⌊f (N + h)⌋))H−1
h=0

for N ∈ N. Since f has polynomial growth, there exists k ∈ N such that f (t) ≪ tk . We
choose ℓ ≥ k + 1 and apply Theorem 2.11 to find some 0 < η < 1 such that for anyH ∈ N

at least one of statements (i)–(iii) in Theorem 2.11 holds, where

eN (h) := ⌊f (N + h)⌋ − ⌊PN ,ℓ(h)⌋, 0 ≤ h < H ,

and PN ,ℓ is the Taylor polynomial of f (see (4)). We distinguish the three possible cases.
Obviously (i) contributes at most O(H ℓ+1) different words. For (ii) we first consider
a(⌊PN ,ℓ(h)⌋)H−1

h=0 . By Corollary 3.7 this word is contained in a set of size O(HC). By
assumption a(⌊f (N + h)⌋) 6= a(⌊PN ,ℓ(h)⌋) for at most O(H η) values of h ∈ [H ], which
can be chosen in

(
H

O(H η)

)
ways For each position h with a(⌊f (N + h)⌋) 6= a(⌊PN ,ℓ(h)⌋)

we have at most |6| possibilities for the value of a(⌊f (N + h)⌋). In total, we can estimate
the number of subwords of length H in this case (up to a constant) by
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HC ·
(

H

O(H η)

)
· |6|O(H η) ≤ HC ·HO(H η) · |6|O(H η)

= exp(C log H +O((log H) ·H η)+O((log |6|) ·H η))

= exp(OC,η(H
(1+η)/2)).

In the last case (iii) we decompose [H ] into O(H η) arithmetic progressions on which
eN is constant. We let these arithmetic progressions be denoted by P1, . . . , Ps . As there
are at most H 3 arithmetic progressions contained in [H ] we can bound the number of
possible different decompositions by (H 3)O(H

η). On every such progression there exists
a polynomial q (which is either PN ,ℓ, PN ,ℓ + 1 or PN ,ℓ − 1) such that a(⌊f (N + h)⌋) =
a(⌊q(h)⌋). As a polynomial along an arithmetic progression is again a polynomial, by
Corollary 3.7 we can bound the number of subwords appearing along some Pj by HC . In
total, we can estimate the number of subwords of length H in this case by

(H 3)O(H
η) · (HC)O(H

η) = exp((C + 3) log(H) ·O(H η))

= exp(OC,η(H
(1+η)/2)).

This finishes the proof for δ = (1 + η)/2 < 1.

4. Nilmanifolds

In this section we recall some basic definitions and results on nilmanifolds and discuss
the connection to generalized polynomials which goes back to the work of Bergelson and
Leibman [BL07].

4.1. Basic definitions. In this section we very briefly introduce definitions and basic
facts related to nilmanifolds and nilpotent dynamics. Throughout this section, we let
G denote an s-step nilpotent Lie group of some dimension D. We assume that G is
connected and simply connected. We also let Ŵ < G denote a subgroup that is discrete
and cocompact, meaning that the quotient space G/Ŵ is compact. The space X = G/Ŵ is
called an s-step nilmanifold. A degree- d filtration on G is a sequence G• of subgroups

G = G0 = G1 ≥ G2 ≥ G3 ≥ · · ·

such that Gd+1 = {eG} (and hence Gi = {eG} for all i > d) and for each i, j we have
[Gi , Gj ] ⊆ Gi+j , where [Gi , Gj ] is the group generated by the commutators [g, h] =
ghg−1h−1 with g ∈ Gi , h ∈ Gj . A standard example of a filtration is the lower central

series given by G(0) = G(1) = G and G(i+1) = [G, G(i)] for i ≥ 1.
A Mal’cev basis compatible with Ŵ and G• is a basis X = (X1, X2, . . . , XD) of the

Lie algebra g of G such that:

(i) for each 0 ≤ j ≤ D, the subspace hj := span(Xj+1, Xj+2, . . . , XD) is a Lie
algebra ideal in g;

(ii) for each 0 ≤ i ≤ d , each g ∈ Gi has a unique representation as
g = exp(tD(i)+1XtD(i)+1) · · · exp(tD−1XD−1) exp(tDXD), whereD(i) := codim Gi

and tj ∈ R for D(i) < j ≤ D;
(iii) Ŵ is the set of all products exp(t1X1) exp(t2X2) · · · exp(tDXD) with tj ∈ Z for

1 ≤ j ≤ D.
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If the Lie bracket is given in coordinates by

[Xi , Xj ] =
D∑

k=1

c
(k)
i,jXk ,

where all of the constants c(k)i,j are rationals with height at most M, then we will say that
the complexity of (G, Ŵ, G•) is at most M. We recall that the height of a rational number
a/b is max(|a|, |b|) (a ∈ Z, b ∈ N, gcd(a, b) = 1).

We will usually keep the choice of the Mal’cev basis implicit, and assume that each
filtered nilmanifold under consideration comes equipped with a fixed choice of Mal’cev
basis. The Mal’cev basis X induces bijective coordinate maps τ : X → [0, 1)D and
τ̃ : G → RD , such that

x = exp(τ1(x)X1) exp(τ2(x)X2) · · · exp(τD(x)XD)Ŵ, x ∈ X,

g = exp(̃τ1(g)X1) exp(̃τ2(g)X2) · · · exp(̃τD(g)XD), g ∈ G.

The Mal’cev basis also induces a natural choice of a right-invariant metric on G and a
metric on X. We refer to [GT12b, Definition 2.2] for a precise definition. Keeping the
dependence on X implicit, we will use the symbol d to denote either of those metrics.

The space X comes equipped with the Haar measure µX, which is the unique Borel
probability measure on X invariant under the action of G: µX(gE) = µX(E) for all
measurable E ⊆ X and g ∈ G. When there is no risk of confusion, we write dx as a
shorthand for dµX(x).

A map g : Z → G is polynomial with respect to the filtration G•, denoted
g ∈ poly(Z, G•), if it takes the form

g(n) = g0g
n
1 . . . g

(nd)
d ,

where gi ∈ Gi for all 0 ≤ i ≤ d (cf. [GT12b, Lemma 6.7]; see also [GT12b, Definition
1.8] for an alternative definition). Although it is not immediately apparent from the
definition above, polynomial sequences with respect to a given filtration form a group
and are preserved under passing to an arithmetic progression (that is, if g ∈ poly(Z, G•)
and g′(n) := g(An+ B) for some A, B ∈ Z then g′ ∈ poly(Z, G•)).

4.2. Semialgebraic geometry. A basic semialgebraic set S ⊆ RD is a set given by a finite
number of polynomial equalities and inequalities:

S = {x ∈ Rd | P1(x) > 0, . . . , Pn(x) > 0, Q1(x) = 0, . . . , Qm(x) = 0}. (11)

A semialgebraic set is a finite union of basic semialgebraic sets. In a somewhat ad hoc
manner, we define the complexity of the basic semialgebraic set S given by (11) to be the
sum

∑n
i=1 deg Pi +

∑m
j=1 deg Qj of degrees of polynomials appearing in its definition.

(Strictly speaking, we take the infimum over all representations of S in the form (11).) We
also define the complexity of a semialgebraic set

S = S1 ∪ S2 ∪ · · · ∪ Sr , (12)
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represented to be the finite union of basic semialgebraic sets Si as the sum of complexities
of Si . (Again, we take the infimum over all representations (12).)

Using the Mal’cev coordinates to identify the nilmanifold X with [0, 1)D , we extend the
notion of a semialgebraic set to subsets of X. A map F : X → R is piecewise polynomial
if there exists a partition X =

⋃r
i=1 Si into semialgebraic pieces and polynomial maps

8i : RD → R such that F(x) = 8i(τ (x)) for each 1 ≤ i ≤ r and x ∈ Si . One can check
that these notions are independent of the choice of basis, although strictly speaking we will
not need this fact.

4.3. Quantitative equidistribution. The Lipschitz norm of a function F : X → R is
defined as

‖F‖Lip = ‖F‖∞ + sup
x,y∈X, x 6=y

|F(x)− F(y)|
d(x, y)

.

A sequence (xn)
N−1
n=0 in X is δ-equidistributed if for each Lipschitz function F : X → R

we have
∣∣∣∣ E
n<N

F(xn)−
∫

X

F(x) dx

∣∣∣∣ ≤ δ‖F‖Lip.

In the case where X = [0, 1] this notion is highly connected to the discrepancy of a
sequence (see (2)). In fact, for δ > 0 small enough we have that (xn)

N−1
n=0 has discrepancy

δ if and only if it is δO(1) distributed. One direction follows immediately from the
Koksma–Hlawka inequality and the other direction can be found for example in the proof
of [DDM+22, Proposition 5.2].

More restrictively, (xn)
N−1
n=0 is totally δ-equidistributed if for each arithmetic progression

P ⊆ [N] of length at least δN we have
∣∣∣∣E
n∈P

F(xn)−
∫

X

F(x) dx

∣∣∣∣ ≤ δ‖F‖Lip.

A sequence (εn)
N−1
n=0 in G is (M , N)-smooth if d(εn, eG) ≤ M and d(εn, εn+1) ≤ M/N for

all n ∈ [N − 1]. A group element γ ∈ G is Q-rational if γ r ∈ Ŵ for some positive integer
r ≤ Q. A point x ∈ G/Ŵ is Q-rational if it takes the form x = γŴ for some Q-rational
γ ∈ G. A sequence (xn)

N−1
n=0 in X is Q-rational if each point xn is Q-rational.

THEOREM 4.1. [GT12b, Theorem 1.19] Let C > 0 be a constant. Let G be a connected,

simply connected nilpotent Lie group of dimension D, let Ŵ < G be a lattice, let G• be

a nilpotent filtration on G of length d, and assume that the complexity of (G, Ŵ, G•) is at

mostM0. Then for eachN ∈ N and each polynomial sequence g ∈ poly(Z, G•) there exists

an integer M with M0 ≤ M ≪ M
OC,d,D(1)
0 and a decomposition g(n) = ε(n)g′(n)γ (n)

(n ∈ Z), where ε, g′, γ ∈ poly(Z, G•) and

(i) the sequence (ε(n))N−1
n=0 is (M , N)-smooth;

(ii) the sequence (γ (n)Ŵ)N−1
n=0 is M-rational and periodic with period less than or equal

to M;

https://doi.org/10.1017/etds.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.112


2638 J. Konieczny and C. Müllner

(iii) there is a group G′ < G with Mal’cev basis X
′ in which each element is an

M-rational combination of elements of X such that g′(n) ∈ G′ for all n ∈ Z,

and the sequence (g′(n)Ŵ′)N−1
n=0 is totally 1/MC-equidistributed in G′/Ŵ′, where

Ŵ′ = Ŵ ∩G′.

4.4. Generalized polynomials. The connection between nilmanifolds and generalized
polynomials was first elucidated by Bergelson and Leibman [BL07].

THEOREM 4.2. [BL07] Let f : Z → [0, 1) be a sequence. Then the following conditions

are equivalent.

(i) f is a GP map.

(ii) There exist a connected, simply connected nilpotent Lie group G, a lattice

Ŵ < G, g ∈ G and a piecewise polynomial map F : G/Ŵ → [0, 1) such that

f (n) = F(gnŴ) for all n ∈ Z.

(iii) There exist a connected, simply connected nilpotent Lie group G of some dimen-

sion D, a lattice Ŵ < G, a compatible filtration G•, a polynomial sequence

g ∈ poly(Z, G•) and an index 1 ≤ j ≤ D such that f (n) = τj (g(n)Ŵ) for all

n ∈ Z.

Remark 4.3. Strictly speaking, [BL07] does not include the assumption that G should be
connected and simply connected. However, this requirement can be ensured by replacing
G with a larger group. (cf. the ‘lifting argument’ in [Fra09, pp. 368] and also [BL07,
Theorem A*]). The cost of this operation is that in (ii) one may not assume that the action
of g on G/Ŵ is minimal, but we do not need this assumption.

In our applications, we will need to simultaneously represent maps of the form
f (⌊p(n)⌋) where f is a fixed GP map and p is a polynomial which is allowed to vary.
Such a representation is readily obtained from Theorem 4.2.

THEOREM 4.4. Let f : Z → R be a bounded GP map and let d ∈ N. Then there exist a

connected, simply connected nilpotent Lie group G, a lattice Ŵ < G, a filtration G•, and

a piecewise polynomial map F : G/Ŵ → Z such that for each polynomial p(x) ∈ R[x]
with deg p ≤ d there exists gp ∈ poly(G•) such that for all n ∈ Z we have f (⌊p(n)⌋) =
F(gp(n)Ŵ).

Proof. By Theorem 4.2, there exist a nilmanifold G(0)/Ŵ(0) together with a piece-
wise polynomial map F (0) : G(0)/Ŵ(0) → R, and a group element g0 ∈ G(0) such that
f (n) = F (0)(gn0Ŵ) for all n ∈ Z. Following the strategy in [Fra09, Lemma 4.1], let
G := G(0) × R and Ŵ := Ŵ(0) × Z, and let F : G/Ŵ → R be given by F(t + Z, hŴ(0)) :=
F (0)(g

−{t}
0 hŴ(0)) for t ∈ R and h ∈ G(0). This construction guarantees that F is piecewise

polynomial and for all t ∈ R we have

F(t + Z, gt0Ŵ) = F (0)(g
⌊t⌋
0 Ŵ) = f (⌊t⌋).

For p ∈ R[x] and n ∈ Z let gp(n):= (p(n), g0
p(n)). Then gα is polynomial with respect to

the filtration G• given by Gi = G(⌊i/d⌋), where (G(j))j denotes the lower central series,
and we have f (⌊p(n)⌋) = F(gp(n)Ŵ) for all n ∈ Z.
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5. Möbius orthogonality

5.1. Main result. In this section, we discuss Möbius orthogonality of bracket words
along Hardy field sequences. Our main result is Theorem B, which we restate below.

THEOREM 5.1. Let a = (a(n))n∈Z be a (two-sided) R-valued bracket word and let

f : R+ → R be a Hardy field function with polynomial growth. Then

1

N

N∑

n=1

µ(n)a(⌊f (n)⌋) → 0 as N → ∞. (13)

As usual, we will use Taylor expansion to approximate the restriction of f (n) to an
interval with a polynomial sequence, and then use Theorem 2.11 to control the error term
involved in computing ⌊f (n)⌋. The sequence a(⌊f (n)⌋) can then be represented on a
nilmanifold by Bergelson–Leibman machinery. As the next step, we require a suitable
result on Möbius orthogonality in short intervals. In §5.2, we will prove the following
theorem, which is closely related to [MSTT22, Theorem 1.1(i)]. Below, we letAP denote
the set of all arithmetic progressions in Z.

THEOREM 5.2. Let G be a connected, simply connected nilpotent Lie group, let Ŵ < G

be a lattice, let G• be a filtration on G, assume that G• and Ŵ are compatible, and let

F : G/Ŵ → R be a finite-valued piecewise polynomial map. Let N , H be integers with

N0.626 ≤ H ≤ N . Then

sup
g∈poly(G•)

sup
P∈AP

∣∣∣ E
h<H

1P (h)µ(N + h)F (g(h)Ŵ)

∣∣∣ = oN→∞(1), (14)

where the rate of convergence may depend on G, Ŵ, G• and F.

Proof of Theorem 5.1 assuming Theorem 5.2. Applying a dyadic decomposition, it will
suffice to show that

E
N≤n<2N

µ(n)a(⌊f (n)⌋) → 0 as N → ∞. (15)

Fix a small ε > 0. We will show that for all sufficiently large N we have
∣∣∣ E
N≤n<2N

µ(n)a(⌊f (n)⌋)
∣∣∣ ≪ ε. (16)

Splitting the average in (16) into intervals of length ⌈(2N)0.7⌉, we see that (16) will follow
once we show that for sufficiently large N and for H satisfying N0.7 ≤ H < N we have

∣∣∣ E
h<H

µ(N + h)a(⌊f (N + h)⌋)
∣∣∣ ≪ ε. (17)

Pick an integer k ∈ N such that f (t) ≪ tk , and let ℓ = 10k. By Theorem 2.11, we have

⌊f (N + h)⌋ = ⌊PN (h)⌋ + eN (h), (18)

where PN is a polynomial of degree (at most) ℓ and one of the conditions (i)–(iii) in
Theorem 2.11 holds. In the case (i) we have N ≪ε H

10/9 ≤ N7/9, which implies that
N = Oε(1). Assuming that N is sufficiently large, we may disregard this case.
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In case (ii) we have Eh<H |eN (h)| < ε, and as a consequence

E
h<H

µ(N + h)a(⌊f (N + h)⌋) = E
h<H

µ(N + h)a(⌊PN (h)⌋)+O(ε). (19)

By Theorem 4.4, there exist a connected and simply connected nilpotent Lie group G, a
lattice Ŵ < G, a filtrationG• and a finite-valued piecewise polynomial map F : G/Ŵ → Z

such that for each polynomial P of degree at most ℓ there exists g ∈ poly(G•) such that
a(⌊P(h)⌋) = F(g(h)Ŵ); it is crucial that we have the same (G, Ŵ, G•) for all polynomials
P. In particular,

∣∣∣ E
h<H

µ(N + h)a(⌊PN (h)⌋)
∣∣∣ ≤ sup

g∈poly(G•)

∣∣∣ E
h<H

µ(N + h)a(F (g(h)Ŵ)

∣∣∣. (20)

By Theorem 5.2 (which is uniform in g), for sufficiently large N the expression in (20) is
bounded by ε. Inserting this bound into (19) yields (17).

In case (iii), passing to an arithmetic progression, we may replace eN with a constant
sequence:

∣∣∣ E
h<H

µ(N + h)a(⌊f (N + h)⌋)
∣∣∣ (21)

≪ε max
P∈AP

max
e∈{−1,0,1}

∣∣∣ E
h<H

µ(N + h)1P (h)a(⌊PN (h)⌋ + e)

∣∣∣. (22)

To finish the argument, it suffices to apply Theorem 5.2 similarly to the previous case.

5.2. Short intervals. The remainder of this section is devoted to proving Theorem 5.2.
We will derive it from closely related estimates for correlations of the Möbius function
with nilsequences in short intervals. Recall that we letAP denote the set of all arithmetic
progressions in Z.

THEOREM 5.3. (Corollary of [MSTT22, Theorem 1.1(i)]) Let N , H be integers with

N0.626 ≤ H ≤ N and let δ ∈ (0, 1/2). Let G be a connected, simply connected nilpotent

Lie group of dimension D, let Ŵ < G be a lattice, let G• be a nilpotent filtration on G of

length d, and assume that the complexity of (G, Ŵ, G•) is at most 1/δ. Let F : G/Ŵ → C

be a function with Lipschitz norm at most 1/δ. Then for each A > 0 we have the bound

sup
g∈poly(G•)

sup
P∈AP

∣∣∣ E
h<H

µ(N + h)1P (h)F (g(h)Ŵ)
∣∣∣ ≪A

(1/δ)Od,D(1)

logA N
. (23)

This theorem is almost the ingredient that we need, except that in our application the
function F is not necessarily continuous (much less Lipschitz). Instead, F is a finite-valued
piecewise polynomial function, meaning that there exists a partition G/Ŵ =

⋃r
i=1 Si

into semialgebraic pieces and constants ci ∈ R such that for each x ∈ X and 1 ≤ i ≤ r ,
F(x) = ci if and only if x ∈ Si . In this case, it is enough to consider each of the level sets
separately. It is clear that Theorem 5.2 will follow from the following more precise result.

THEOREM 5.4. Let N , H be integers with N0.626 ≤ H ≤ N and let δ ∈ (0, 1/2). Let G

be a connected, simply connected nilpotent Lie group of dimension D, let Ŵ < G be a

lattice, let G• be a nilpotent filtration on G of length d, and assume that the complexity of
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(G, Ŵ, G•) is at most 1/δ. Let S ⊆ G/Ŵ be a semialgebraic set with complexity at most E.

Then for each A ≥ 1 we have the bound

sup
g∈poly(G•)

sup
P∈AP

∣∣∣ E
h<H

µ(N + h)1P (h)1S(g(h)Ŵ)
∣∣∣ ≪A

(1/δ)Od,D,E(1)

logA N
. (24)

In the case where (g(n)Ŵ)n is highly equidistributed in G/Ŵ, we will derive Theorem
5.4 directly from Theorem 5.3. In fact, we will obtain a slightly stronger version, given
in Proposition 5.6 below. Then we will deduce the general case of Theorem 5.4 using
the factorization theorem from [GT12b]. In order to avoid unnecessarily obfuscating the
notation, from this point onwards we will allow all implicit constants to depend on the
parameters d, D and E; thus, for instance, the term on the right-hand side of (24) will be
more succinctly written as (1/δ)O(1)/logA N .

5.3. Equidistributed case. Before we proceed, we will need the following technical
lemma.

LEMMA 5.5. Let d , D ∈ N, and let V denote the vector space of all polynomial maps

P : [0, 1)D → R of degree at most d.

(i) There is a constant C > 1 (dependent on d , D) such that for P ∈ V given by

P(x) =
∑

α∈ND0

aα

D∏

i=1

x
αi
i ,

we have the inequalities C−1‖P‖∞≤ maxα|aα| ≤ C‖P‖∞.

(ii) For each P ∈ V and for each δ ∈ (0, 1) we have

λ({x ∈ [0, 1)D | |P(x)| < δd‖P ‖∞}) ≪d,D δ. (25)

Proof. Item (i) follows from the fact that each pair of norms on the finite-dimensional
vector space V are equivalent. For item (ii) we proceed by induction with respect to D.
Multiplying P by a scalar, we may assume that ‖P ‖∞ = 1.

Suppose first that D = 1. We proceed by induction on d. If d = 1 then P is an affine
function P(x) = ax + b, and the claim follows easily. Assume that d ≥ 2 and that the
claim has been proved for d − 1. By item (i), at least one of the coefficients of P has
absolute value ≫d,D 1. In fact, we may assume that this coefficient is not the constant
term, since otherwise for all x ∈ [0, 1) we would have P(x) ∈ ( 99

100P(0),
101
100P(0)) and

hence the set in (25) would be empty for sufficiently small δ. Thus, ‖P ′‖∞ ≫d,D 1. By
the inductive assumption,

λ({x ∈ [0, 1) | |P ′(x)| < δd−1}) ≪d δ. (26)

Thus, it will suffice to show that

λ({x ∈ [0, 1) | |P(x)| < δd , |P ′(x)| > δd−1}) ≪d δ. (27)
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For each interval I ⊆ [0, 1) such that P ′(x) has constant sign for x ∈ I , we have

λ({x ∈ I | |P(x)| < δd , |P ′(x)| > δd−1}) ≪ δ. (28)

Since [0, 1) can be divided into O(d) intervals where P is monotone, (27) follows.
Suppose now that D ≥ 2 and the claim has been proved for all D′ < D. Reasoning as

above, we infer from item (i) that P has a coefficient with absolute value ≫d,D 1 other
than the constant. We may expand P as

P(y, t) =
d∑

i=0

t iQi(y), y ∈ [0, 1)D−1, t ∈ [0, 1),

where the Qi are polynomials in D − 1 variables of degree d − i. Changing the order of
variables if necessary, we may assume that there exists j with 1 ≤ j ≤ d such that Qj has
a coefficient ≫d,D 1, and hence ‖Qj‖∞ ≫d,D 1. For k ∈ N, let us consider the set

Ek := {(y, t) ∈ [0, 1)D | |P(y, t)| < δd , 2−k ≤ |Qj (y)| < 2−k+1}.

The set in (28) is the disjoint union
⋃∞
k=1 Ei , so our goal is to show that

∞∑

k=1

λ(Ek) ≪d,D δ. (29)

Fix a value of k. By the inductive assumption, as long as j 6= d , we have

λ({y ∈ [0, 1)D−1 | |Qj (y)| < 2−k+1}) ≪d,D 2−k/(d−j). (30)

(If j = d , the set in (30) is empty for all sufficiently large k, and the reasoning simplifies.)
For each y ∈ [0, 1)D−1 such that 2−k ≤ |Qj (y)| < 2−k+1, by the inductive assumption
(for D = 1) we have

λ({t ∈ [0, 1) | |P(y, t)| < δd}) ≪d,D 2k/dδ. (31)

Combining (30) and (31) yields

λ(Ek) ≪d,D 2−kj/d(d−j)δ ≤ 2−k/d2
δ. (32)

Summing (32) gives (29) and finishes the argument.

We are now ready to prove a variant of Theorem 5.2 concerning highly equidistributed
polynomial sequences on nilmanifolds. For technical reasons which will become clear in
the next section, it will be convenient to consider more general type of averages, where
instead of a factor of the form 1S(g(h)Ŵ) with semialgebraic S ⊆ G/Ŵ we have a factor
of the form 1S(h/H , g(h)Ŵ) with semialgebraic S ⊆ (R/Z)× (G/Ŵ); thus, in addition to
the highly equidistributed sequence g(h)Ŵ, we keep track of how large h is compared to H.

PROPOSITION 5.6. Let N , H be integers with N0.626 ≤ H ≤ N and let δ ∈ (0, 1/2). Let

G be a connected, simply connected nilpotent Lie group of dimension D, let Ŵ < G be a

lattice, let G• be a nilpotent filtration on G of length d, and assume that the complexity of

(G, Ŵ, G•) is at most 1/δ. Let S ⊆ (R/Z)× (G/Ŵ) be a semialgebraic set with complexity

at most E. Then for each A ≥ 1, there exists B = O(A) such that
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sup
g∈poly(G•)
δ̃-t.e.d.

sup
P∈AP

∣∣∣∣ E
h<H

µ(N + h)1P (h)1S

(
h

H
, g(h)Ŵ

)∣∣∣∣ ≪A

(1/δ)O(1)

logA N
, (33)

where δ̃ := 1/ logB N and the supremum is taken over all polynomial sequences g such

that (g(h)Ŵ)Hh=0 is totally δ̃-equidistributed (t.e.d.).

Proof. We may freely assume that δ ≥ 1/ logA N , since otherwise there is nothing to
prove. In particular, δ = logO(A) N and 1/δ = O(logA N). Decomposing S into a bounded
number of pieces, we may assume that S is a basic semialgebraic set. We will assume that
int S 6= ∅; the case where int S = ∅ can be handled using similar methods and is somewhat
simpler. Thus, S takes the form

S = {(t , x) ∈ (R/Z)× (G/Ŵ) | P1(t , x) > 0, P2(t , x) > 0, . . . , Pr(t , x) > 0}, (34)

where r = O(1) and Pi are polynomial maps (under identification of (R/Z)× (G/Ŵ)

with [0, 1)1+D) with deg Pi = O(1) for 1 ≤ i ≤ r . Scaling, we may assume that
‖Pi‖∞ = 1 for all 1 ≤ i ≤ r . Let τ1 denote Mal’cev coordinates on (R/Z)× (G/Ŵ),
given by τ1(t , x) = (t , τ(x)), where we identify [0, 1) with R/Z in the standard way.
Furthermore, splitting S further and applying a translation if necessary, we may assume
that τ1(S) ⊆ ( 1

10 , 9
10 )

1+D , implying in particular that τ1 is continuous in a neighbourhood
of S.

Let η ∈ (0, δ) be a small positive quantity, to be specified in the course of the argument,
and let 9, 9 ′ : R → [0, 1] be given by

9(t) =





0 if t < 0,

t/η if t ∈ [0, η],

1 if t > η,

9 ′(t) =





0 if |t | > 2η,

2 − |t |/η if |t | ∈ [η, 2η],

1 if |t | < η.

It is clear that ‖9‖Lip = ‖9 ′‖Lip = 1/η. Let 9� : [0, 1)1+D → [0, 1] be an
O(1)-Lipschitz function with 9�(t , u) = 1 if (t , u) ∈ ( 1

10 , 9
10 )

1+D and 9�(t , u) = 0
if (t , u) 6∈ ( 1

20 , 19
20 )

1+D . For 1 ≤ i ≤ r , put

Fi(t , x) = 9(Pi(t , x)), F ′
i (t , x) = 9�(τ1(t , x))9

′(Pi(t , x)),

F(t , x) =
r∏

i=1

Fi(t , x), F ′(t , x) = min

( r∑

i=1

F ′
i (t , x), 1

)
.

It is routine (although tedious) to verify that F and F ′ are 1/ηO(1)-Lipschitz (cf. [GT12b,
Lemma A.4]); this follows from the aforementioned bounds on the Lipschitz norms of 9
and 9 ′ and the fact that the derivatives of the polynomials Pi are bounded by O(1) on
[0, 1)D+1, which follows, for example, from Lemma 5.5. Directly from the definitions, we
see that for each t ∈ R/Z and x ∈ G/Ŵ we have F(t , x) = 1S(t , x) or F ′(t , x) = 1. It
follows that∣∣∣∣ E

h<H

µ(N + h)1P (h)1S

(
h

H
, g(h)Ŵ

)∣∣∣∣ ≤
∣∣∣∣ E
h<H

µ(N + h)1P (h)F

(
h

H
, g(h)Ŵ

)∣∣∣∣

+ E
h<H

F ′
(
h

H
, g(h)Ŵ

)
. (35)
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In order to estimate either of the summands in (35), we begin by dividing the interval
[H ] into O(1/α) subintervals with lengths between αH and 2αH , where

α := (logA N max(‖F‖Lip, ‖F ′‖Lip, 1))−1 = ηO(1)/ logA N (36)

To estimate the first summand, we note that for each such subinterval [k, k +H ′) (where
αH ≤ H ′ < 2αH < H ), for each h ∈ [k, k +H ′), we have

F

(
h

H
, g(h)Ŵ

)
= F

(
k

H
, g(h)Ŵ

)
+O

(
H ′

H
‖F‖Lip

)

= F

(
k

H
, g(h)Ŵ

)
+O

(
1

logA N

)
. (37)

Applying Theorem 5.3 to each subinterval, for each constant C ≥ 1 we obtain
∣∣∣ E
h<H

µ(N + h)1P (h)F (g(h)Ŵ)
∣∣∣ ≪C

1

logA N
+

1/ηO(1)

logC−A N
. (38)

Let us now consider the second summand. We have, similarly to (37),

F ′
(
h

H
, g(h)Ŵ

)
= F ′

(
k

H
, g(h)Ŵ

)
+O

(
1

logA N

)
.

For now, let us assume that α > δ̃, which we will verify at the end of the argument. We
conclude from the fact that (g(h)Ŵ)H−1

h=0 is totally δ̃-equidistributed that

E
h∈[k,k+H ′)

F ′
(
h

H
, g(h)Ŵ

)
=

∫

G/Ŵ

F ′
(
k

H
, x

)
dx +

δ̃

ηO(1)
+O

(
1

logA N

)
, (39)

where we use dx as a shorthand for dµG/Ŵ(x). Taking the weighted average of (39) over
all subintervals, we conclude that

E
h<H

F ′
(
h

H
, g(h)Ŵ

)
=

∫

[0,1)

∫

G/Ŵ

F ′(t , x) dxdt +
δ̃

ηO(1)
+O

(
1

logA N

)
. (40)

Applying Lemma 5.5(ii) to estimate the measure of the support of F ′
i for each 1 ≤ i ≤ r ,

we conclude that ∫

[0,1)

∫

G/Ŵ

F ′(t , x) dxdt ≪ η1/O(1). (41)

Thus, we may choose η = 1/ logO(A) N such that
∫

[0,1)

∫

G/Ŵ

F ′(t , x) dxdt ≤
1

logA N
, (42)

which allows us to simplify (40) to

E
h<H

F ′
(
h

H
, g(h)Ŵ

)
= O

(
1

logB−O(A) N

)
+O

(
1

logA N

)
. (43)

Combining (38) and (43) with (35), we conclude that
∣∣∣ E
h<H

µ(N + h)1P (h)1S(g(h)Ŵ)
∣∣∣ ≪C

1

logC−O(A) N
+

1

logB−O(A) N
+

1

logA N
. (44)
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Letting C and B be sufficiently large multiples of A, we conclude that
∣∣∣ E
h<H

µ(N + h)1P (h)1S(g(h)Ŵ)
∣∣∣ ≪A

1

logA N
, (45)

as needed. Note that choosing B as a large multiple of A also guarantees that
α = 1/ logO(A)N > δ̃ = 1/ logBN .

5.4. General case. We now have all the ingredients necessary to complete the proof.

Proof of Theorem 5.4. The argument is very similar to the proof of Theorem 1.1,
assuming [GT12a, Proposition 2.1]. As the first step, we apply the factorization theorem
[GT12b, Theorem 1.19], Theorem 4.1 above, with M0 = log N and parameter C to be
determined in the course of the argument. We conclude that there exists an integer M with
log N ≤ M ≪ logOC (1) N such that g admits a factorization of the form

g(h) = ε(h)g′(h)γ (h), (46)

where ε is (M , N)-smooth, γ is M-rational, and g′ takes values in a rational subgroup
G′ < Gwhich admits a Mal’cev basis X

′ where each element is an M-rational combination
of elements of X , and (g′(h)Ŵ)H−1

h=0 is totally 1/MC-equidistributed in G′/(Ŵ ∩G′) (with
respect to the metric induced by X

′).
With the same reasoning as in [GT12a], we conclude that (γ (h)Ŵ)h is a periodic

sequence with some period q ≤ M , and for each 0 ≤ j < q and h ≡ j mod q we have
γ (h)Ŵ = γjŴ for some γj ∈ G with coordinates τ(γj ) that are rationals with height
much less than MO(1). Splitting the average in (24) into subprogressions, it will suffice
to show that for each residue 0 ≤ j < q modulo q, and for each arithmetic progression
Q ⊆ qZ + j with diameter at most N/M , we have

∣∣∣ E
h<H

µ(N + h)1Q(h)1S(ε(h)g
′(h)γjŴ)

∣∣∣ ≪A

(1/δ)O(1)

M2 logA N
. (47)

The key difference between our current work and the corresponding argument in
[GT12a] is that 1S is not continuous and hence in (47) we cannot replace ε(h) with a
constant and hope that the value of the average will remain approximately unchanged.
Instead, we will use an argument of a more algebraic type. We note that, as a consequence
of invariance of the metric on G under multiplication on the right, for each h, h′ ∈ Q we
have

d(ε(h)g′(h)γj , ε(h′)g′(h)γj ) = d(ε(h), ε(h′)) = O(1).

Let us fix k ∈ Q and put ε′(h) = ε(h)ε(k)−1. Then d(ε′(h), eG) = O(1) and g(h)Ŵ =
ε(h)g′(h)γjŴ = ε′(h)ε(k)g′(h)γjŴ.

Let � ⊆ G be a bounded semialgebraic set such that ε′(h) ∈ � for all h ∈ Q. For
instance, we may take � to be the preimage of a certain ball with radius 1/δO(1) under τ̃ .
Let also 5 := τ̃−1([0, 1)D) denote the standard fundamental domain for G/Ŵ. Consider
the set

R = {(g1, g2) ∈ �×5 | g1g2Ŵ ∈ S}.
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We may decompose R as

R =
⋃

γ∈Ŵ
Rγ where Rγ = {(g1, g2) ∈ �×5 | g1g2Ŵ ∈ S, g1g2γ ∈ 5}. (48)

Using the quantitative bounds in [GT12b, Lemmas A.2 and A.3], we see that for
each γ ∈ Ŵ such that Rγ 6= ∅ we have |̃τ(γ )| = O(1/δO(1)). Hence, the union in (48)
involves O(1/δO(1)) non-empty terms, and in particular is finite. Each of the sets Rγ is
semialgebraic with complexity O(1). Moreover, since ε′ is a polynomial map of bounded
degree, for each γ ∈ Ŵ the set

Tγ = {(t , x) ∈ [0, 1)×5 | (ε′(tH), x) ∈ Rγ }

is also semialgebraic with complexityO(1). Hence, (47) will follow once we show that for
each semialgebraic set T ⊆ [0, 1)×G/Ŵ with bounded complexity we have

∣∣∣∣ E
h<H

µ(N + h)1Q(h)1T

(
h

H
, ε(k)g′(h)γjŴ

)∣∣∣∣ ≪A

(1/δ)O(1)

M2 logA N
. (49)

Following [GT12a], we put G̃′ := γ−1
j G′γj , 3 := Ŵ ∩ G̃′ and g̃′(n) := γ−1

j g′(n)γj .

Let also D′ = dim G′, let σ and σ̃ denote the coordinate maps on G̃′/3 and G̃′

respectively, and let 1 = σ̃−1([0, 1)D
′
) denote the fundamental domain. Then g̃′ is a

polynomial sequence with respect to the filtration G̃′
• given by G̃′

i = γ−1
j G′

iγj . We have a

well-defined map ι : G̃′/3 → G/Ŵ given by

ι(x3) = ε(k)γjxŴ.

Thus, for all h ∈ [H ] we have

ε(k)g′(h)γjŴ = ι(g̃′(h)3).

As discussed in [GT12b], the Lipschitz norm of the map ι is O(MO(1)) and the sequence
(G̃′(h)3)H−1

h=0 is 1/MλC+O(1)-equidistributed, where λ > 0 is a constant dependent only
on d and D.

For each γ ∈ Ŵ, the map ι is a polynomial on the semialgebraic set 1 ∩ ι−1(5γ ).
The estimate on the Lipschitz norm of ι implies that 1 can be partitioned into MO(1)

semialgebraic sets with complexity O(1) such that on each of the pieces ι is a polynomial
of degree O(1) (using the coordinates τ̃ and σ̃ ). Applying the corresponding partition
in (49), we see that it will suffice to show that for each semialgebraic set T ⊆ (R/Z)×
(G̃′/3) with bounded complexity and for each constant A′ > 0 we have

∣∣∣∣ E
h<H

µ(N + h)1Q(h)1T

(
h

H
, gj (h)3

)∣∣∣∣ ≪A,A′
(1/δ)O(1)

MA′ logA N
. (50)

Bearing in mind that M ≥ log N , it will suffice to show that
∣∣∣∣ E
h<H

µ(N + h)1Q(h)1T

(
h

H
, gj (h)3

)∣∣∣∣ ≪A

(1/δ)O(1)

MA
. (51)
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We are now in position to apply Proposition 5.6 on G̃′/3. The complexity of (G̃′, 3, G̃′
•)

is 1/δ′, where δ′ = 1/MO(1). The largest exponent A′ with which Proposition 5.6 is
applicable to (g̃′(h))H−1

h=0 satisfies logA
′
N ≫ MµC for a constant µ ≫ 1, leading to

∣∣∣∣ E
h<H

µ(N + h)1Q(h)1T

(
h

H
, gj (h)3

)∣∣∣∣ ≪C

1

MµC−O(1) . (52)

In order to derive (51) it is enough to let C be a sufficiently large multiple of A.
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